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Abstract 19 
Background: The discussion surrounding biological diversity intensified with the introduction of 20 
Nigeria's first transgenic food crop, the Pod Borer Resistant Cowpea. Concerns have arisen regarding 21 
whether the transgenic Maruca vitrata-resistant cowpea poses a threat to human health and other 22 
environmentally beneficial insects. Public apprehension, coupled with social activists' callings for the 23 
removal of this crop from the nation's food market, persists. PresentlyHowever, there is a lack of 24 
data to counter the assertion that cultivating Pod Borer Resistant (PBR) cowpea may have adverse 25 
effects on biodiversity and the overall ecological system. This research has a multifaceted objective, 26 
including an examination of the environmental safety of PBR Cowpea and an assessment of its 27 
impact on biodiversity compared to its non-transgenic counterpart, IT97KN. 28 
Methods: Seeds for both the transgenic PBR Cowpea and its isoline were obtained from the Institute 29 
for Agricultural Research (IAR) Zaria before planting in various farm sites. Both transgenic and non-30 
transgenic cowpea were cultivated following local cultural practices throughout the experiment. 31 
Elaborate taxonomic keys were employed to identify arthropods and other non-targeted organisms. 32 
Principal component analysis was used to evaluate potential modifications in all ecological niches of 33 
the crops. Diversity indices, including Shannon, Pielou, and Simpson, were analyzed using the lmer 34 
function of the R package lme4. The analysis of potential modifications in the dissimilarities of non-35 
targeted organisms' communities was conducted using the Bray-Curtis index. 36 
Results: Examination of ecological species abundance per counting week revealed no disruption in 37 
the biological properties of non-targeted species due to the cultivation of transgenic PBR Cowpea. 38 
Analysis of species evenness and diversity indices indicated no significant difference between the 39 
fields of transgenic PBR cowpea and its isoline. Principal Component Analysis results demonstrated 40 
that planting PBR Cowpea did not create an imbalance in the distribution of ecological species. All 41 
species and families observed during this study were more abundant in transgenic PBR Cowpea 42 
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fields than in non-transgenic cowpea fields, suggesting that the transformation of cowpea does not 43 
negatively impact non-targeted organisms and their communities. Evolution dynamics of the species 44 
community between transgenic and non-transgenic cowpea fields showed a similar trend 45 
throughout the study period, with no significant divergence induced in the community structure due 46 
to PBR Cowpea planting. This study concludes that planting transgenic PBR Cowpea positively 47 
influences biodiversity and the environment. 48 
 49 
Introduction 50 
Biodiversity, a term coined from the word biological diversity, is referred to as the 51 
heterogeneity and variability of the total number of biological organisms found within a 52 
given habitat or ecosystem at any given time (Roe et al., 2019; Dickson et al., 2019; Meine, 53 
2018; Rawat and Agarwal, 2015). The concept of biodiversity is multidimensional, 54 
encompassing genetics, species, and ecology. Several studies, including Tilman et al. (2014) 55 
and Malhi et al. (2020), have revealed that the degree of variability of living organisms on 56 
earth plays a crucial role in sustaining the ecosystem and could serve as a major indicator 57 
for predicting the safety of any environment at any given time. The productivity and 58 
efficiency of any agricultural system around the world can be strongly influenced by its 59 
varietal and species diversity over an extensive scale of conditions (Pawlak and 60 
Kołodziejczak, 2020; Carpenter, 2011; Krishna et al., 2009). Biodiversity also plays crucial 61 
roles in contributing to an organism’s resiliency to stress and shocks and adaptability to new 62 
challenging environmental systems, in addition to being a vital factor in the sustainability 63 
system of production and genetic improvement (Vasiliev, 2022; Ortiz et al., 2021). With the 64 
deleterious negative impact of climate change in view, which is already resulting in 65 
increased crop pest infestation and decreased agricultural soil fertility globally (Pareek, 66 
2017; Skendþić, et al., 2021; Malhi et al., 2021; Habib-ur-Rahman et al., 2022; Subedi et al., 67 
2023), sustaining and improving the variability of crop and animal genetic resources can no 68 
longer be overemphasized as it plays a key role in ensuring the resiliency and stability of 69 
living organisms ' over time. 70 
After about thirty years of the safe use of transgenic crops with more than 3 million 71 
hectares planted across Africa (Endale et al., 2022) and their recorded benefits (Gbadegesin 72 
et al., 2022; Smyth, 2022), debate and concerns about their environmental effects have 73 
continued to persist (Gbadegesin et al., 2022; Gbashi et al., 2021; Smyth et al., 2021; Azadi 74 
et al., 2015). Critical among the issues discussed so far is its potential impact on biodiversity 75 
(Fernandes et al., 2022; Lucht, 2015). Though a number of studies, including O’Callaghan et 76 
al. (2005) and Romeis et al. (2014), have suggested that the insecticidal property of the 77 
Cry1Ab protein may be toxic to non-target species, including herbivores, parasitoids, and 78 
predators, many of these studies examined the impact of this protein on species in non-79 
natural systems without taking into account ecological interactions or the actual level of 80 
exposure of vulnerable stages in natural settings (Dale et al., 2002). Conducting additional 81 
studies that take into account complex systems and exposure conditions akin to those 82 
encountered in the field could offer more realistic insights into the detrimental effects of Bt 83 
crops on non-target organisms (Sears et al., 2001). 84 
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 85 
The magnitude and significance of conserving biodiversity have been emphasized in the 86 
guidance documents of the European Food Safety Authority (EFSA) (2016) as a major goal in 87 
environmental protection. Quantifying biodiversity is a prerequisite for being able to reach 88 
set targets. Since Nigeria joined the league of biotech countries after its commercialization 89 
of its first transgenic crop, insect-resistant (IR) cotton, in 2018, the general debate in Africa 90 
on the potential impact of GM crops on biodiversity has triggered (Endale et al., 2022). The 91 
introduction of her first transgenic food crop, pod borer-resistant (PBR) cowpea, in 2019 has 92 
further exacerbated these concerns among Nigeria’s stakeholders. More apparent among 93 
the concerns raised about the safety of the introduction of the transgenic PBR cowpea in 94 
Nigeria is its potential to negatively impact species and ecosystem diversity, with key 95 
stakeholders speculating that its toxicity to the targeted insect, Marucca vitrata, means that 96 
there is a strong likelihood that the crop will also be toxic to non-targeted organisms (NTOs), 97 
including those that play a vital role in the ecosystem. Currently, there is a paucity of data to 98 
refute claims that this transgenic PBR cowpea supports biodiversity and is safe for our 99 
environment. Thise study therefore focuses on the biodiversity assessment of the single-line 100 
transgenic pod borer-resistant cowpea, with the aim of evaluating its potential impacts on 101 
non-target organisms. 102 
 103 
 104 
Materials & Methods 105 
PBR Cowpea Seeds and its Isoline 106 
Seeds of both transgenic PBR Cowpea (SAMPEA 20T) and its Isoline, IT97KN were provided by 107 
the Institute for Agricultural Research (IAR) Zaria prior to planting in the various farm site. The 108 
Cry1Ab event in the PBR Cowpea was confirmed using the lateral flow strip kits obtained from 109 
the Qiagen Inc. at the Mary Halaway Laboratory, Department of Biochemistry, Faculty of Life 110 
Sciences, Ahmadu Bello University: 5g, each of transgenic and non-transgenic seeds were 111 
mashed separately in two different mortals, after which the extraction buffer was added to 112 
each container. The flow strip was then inserted and allowed to stay for about 10 minutes 113 
after which the lines were read (Fig S1). 114 
 115 
Experimental Design and Sampling 116 
The two cowpea lines, IT97KY and IT97KN were planted in three different farms of the 117 
National Biotechnology Development Agency (NABDA) within the period of February – May 118 
and August - October 2022 and February - April 2023 using irrigation farming method during 119 
the dry season with three replications on each farm site (Fig S2). Both cowpea lines were 120 
grown following local cultural practices throughout the experiment. The two crop varieties, 121 
transgenic (IT97KT) and its non-transgenic isoline cowpea (ITN7KN) were planted in a 122 
randomized block design with 3 replications (Fig S2). The measurement of each plot was 123 
estimated at 10m by 15m encompassing eight 30cm interspaced rows with 25cm space 124 
between each plant. 3m plain boundaries were created to function as seclusion among plots 125 
(Fig. S2). No crop was planted on the three research farms one year prior to the research. In 126 
addition, there were no application of any herbicide or insecticide before or during the study 127 
period. 128 
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 129 
Identification of species to family and to functional groups  130 
Arthropods and other non-targeted organisms were identified by using suitable and 131 
elaborated dichotomous taxonomic keys according to Goulet and Huber (1993), Triplehorn et 132 
al. (2005) and Jenny et al. (2017). The taxonomic grouping was done using the family level as 133 
default while in cases where classification based on family level was not obtainable, priority 134 
was given to the order and suborder to which the organism belong (Jenny et al., 2017). The 135 
individual organisms were further grouped into predator, parasitoid and herbivore ecological 136 
functional group. There was no unknown organism recorded all through the study period. 137 
 138 
Non-Target Organism Community Structure 139 
Possible moderations that may have accrued from planting the transgenic PBR Cowpea was 140 
analysed using a precise redundancy analysis (RDA) ordination method called the Principal 141 
Component Analysis (PCA) (Vanden-Brink et al., 2009) as recommended by Cuppen et al. 142 
(2000) and Moser et al. (2007) to be suitable for assessing the impacts of any plants or animals 143 
on the ecosystem. The PCA multivariate technique facilitates the understanding of the 144 
interaction between the organism and their environments (Moser et al., 2007) by analysing 145 
the possible effects of the transgenic PBR Cowpea on the community species and the resulting 146 
changes in the community structure throughout the study period. 147 
 148 
Structural Dissimilarity analysis 149 
The analysis for the potential modification in the dissimilarities of the non-targeted 150 
organisms’ communities between the transgenic PBR cowpea (IT97KT) and its non-transgenic 151 
isoline (IT97KN) were done using Bray-Curtis index. It evaluates the degree of dissimilarity or 152 
similarity between two or more samples using a range of zero (similar) to one (dissimilar) 153 
(Krebs, 1989; Bray and Curtis, 1957). The structural dissimilarity analysis was divided into two 154 
phases. At the first phase of the analysis, the Bray Curtis (BC) Index was computednducted 155 
using the data collected between all the pairs of the sample plots IT97KT and IT97KN on each 156 
sampling date. Similar procedures were repeated for the second phase of the analysis where 157 
data was collected within each cowpea plot (Collins et al., 2000) and was then followed by a 158 
computation of the mean abundance for the respective taxonomic group in line IT97KT and 159 
IT97KN per sampling date.  160 
The Bray-Curtis Dissimilarity was calculated as: BCij = 1 – (2*Cij) / (Si + Sj) 161 
Where Cij = The sum of the lesser values for the species found in each site. 162 
Si: The total number of specimens counted at site i 163 
Sj: The total number of specimens counted at site j 164 
The values for the mean abundance were thereafter used to estimate the BC distance 165 
between the respective treatment sampling dates. A linear regression analysis of the data 166 
obtained from the BC distance estimation was conducted versus the time-lag data. 167 
 168 
Statistical Analysis 169 
The total number (N) of arthropods on each plot in the three different farm sites were taken 170 
per counting week and over the entire period of the study and then divided by the total 171 
number of farm site to get the average. All statistical analyses were performed by using R 172 
version 4.2.0 (R Core Team, 2022) and excel spread sheet. The analysis of the diversity indices 173 
including Shannon (H), Pielou (J) and Simpson (D) which facilitates a comparative assessment 174 
of the community structures between different treatments in the fields (Boyle et al., 1990; 175 



Magurran, 2004; Pielou, 1966; Oksanen, 2013) were done using the lmer function of R 176 
package lme4 with Cowpea variety (Bt or non-Bt) and time (date of sampling) as fixed factors 177 
(Guo et al., 2014). A comparison of the mean values of all the scoring parameter including H, 178 
D, J and N was done using one-way analysis of variance (ANOVA). Population less than 1% 179 
were denoted as ‘‘others’’. 180 
 181 
A covariance analysis was used to carry out a comparative study of the slopes of the 182 
regression lines of the two treatments. The parasitoid, herbivores and predator nutritional 183 
relationships were used to classify the whole organisms into three guilds according to Heong 184 
et al. (1991) and Zhang et al. (2011). The density of the three guilds were analysed using One-185 
way ANOVA for each variety of the cowpea and sampling date. The population of various 186 
treatments, herbivore, parasitoid and predator nutritional guild was defined by sing the 187 
formula Pi5Ni/N, where the population of the herbivore, parasitoid and predator was 188 
connoted as Ni while the treatment’s entire summed abundance was connoted as N. The 189 
specie count for each community organism in the various guild was defined by the formula 190 
Pi5Ni/N, where Ni was defined as the summed ith species and N was the guild count in the 191 
respective treatment. The rare, common and dominant group were denoted by Pi<1%, 192 
1%≤Pi<10% and Pi≥ 10% respectively (Li and Liu, 2013).  193 
 194 
 195 
 196 
 197 
 198 
 199 
Results 200 
Transgene Status Confirmation of the Cowpea Samples 201 
The confirmation of the Cry1Ab event expressed in the PBR Cowpea shows a positive result 202 
as seen in Figure S1. Further test for the presence of the Cry1Ab gene using the event 203 
specific flow strip in the isoline of the PBR Cowpea shows negative, meaning that the isoline 204 
is not transgenic Figure S1. 205 
 206 
Ecological Pattern of the transgenic and Non-Transgenic Cowpea Field  207 
Study of the species disparities and distribution shows that there are no significant 208 
variations between both treatments during the first three weeks after planting in all the 209 
experimental site as seen in Figure 1, Table 1. At week 4, 5, 6 and 7, significant difference 210 
was observed between both treatments with the field of transgenic crop having higher 211 
species activities than the field of non-transgenic cowpea. 212 
 213 
Estimated Species Diversity 214 
From the results of the univariate analyses of both line IT97KT and IT97KN ecological niches, 215 
the estimated biodiversity indices (H, J and D) revealed that there was no significant 216 
difference between the two treatments except during the differentiated flowering time that 217 
was observed between the two cowpea lines (Table 1 and Figure 2 a, b and c). The habitat 218 
information provided from the Shannon diversity index analysis shows that both habitats 219 
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dominated by the transgenic and non-transgenic cowpea has high species richness and 220 
evenness throughout the counting weeks. Results obtained from the analysis using the 221 
Shannon diversity index revealed s a close-range value between the transgenic and non-222 
transgenic cowpea habitats. A higher Shannon score was observed for transgenic cowpea 223 
fields withing the counting week of 3 to 8 where flowering was peak. The diversity index 224 
score for IT97KN went slightly high at the counting week where its flowering was also peak. 225 
Result from the analysis of variance shows no significant difference at week 1, 2, 9, 10, 11 226 
and 12 as against the subsequent counting week of 4, 5, 6 and 7 (Figure 2a). Analysis of the 227 
Simpson diversity indices shows similar trends in both fields of the transgenic and non-228 
transgenic cowpea. With both fields recording their lowest Simpson score at week 1 and 2 229 
respectively, the highest Simpson score for transgenic and non-transgenic cowpea fields 230 
were recorded at week 12 and 11 respectively (Figure 2b). Analysis of the Pielou Evenness 231 
Index shows that the distribution of the individual species is even across the habitat of 232 
transgenic and non-transgenic cowpea (Figure 2c). 233 
Further analysis using the regression line plot between the ecological niches of transgenic 234 
and non-transgenic cowpea shows strong positive correlation with a p and r value of 235 
1.810599e-06 and 0.9522146 respectively (Figure 3a). As the number of species in the 236 
ecological niches of PBR Cowpea increases, the number of species in its non-transgenic 237 
isoline, IT97KN also increases (Figure 3a). 238 
Similar results were observed when the ecological niches of transgenic Cowpea (IT97KT) and 239 
its non-transgenic isoline (IT97KN) were correlated with time (Ffigure 3b). The p and r 240 
values of 3.42862e-09 and 0.9865187 respectively were observed for transgenic cowpea vs 241 
time while p and r values of 1.535e-07 and 0.9522146 respectively were observed for non-242 
transgenic cowpea vs time (Table 2). 243 
 244 
 245 
Analysis of the Evolution Dynamics of the Transgenic and Non-Transgenic Cowpea 246 
i. Component Analysis 247 
Analysis using the multivariate Principal Component Technique reveals that there are no 248 
significant differences in the ecological composition of the entire study fields throughout 249 
the counting weeks (Figure 4a and b). The essence of the Principal Component Analysis 250 
(PCA) output is to give a clear interpretation of the species points that have similar 251 
composition. The species scores which are represented by arrows point in the direction of 252 
increasing abundance. The angle size between a species arrow to another species arrow is 253 
inversely correlated, meaning that the smaller the angle size between two species arrows, 254 
the stronger the correlation and the reverse means a weaker correlation within the space. 255 
As observed from the result output, there is strong positive correlation between EI and DC 256 
in both field of transgenic and non-transgenic cowpea field. The formation of a right angle 257 
between two species arrows means that there is no correlation while the formation of 258 
opposite angle means a strong negative correlation (BioTuring, 2018; Hartmann et al., 259 
2018). The PCA output generated below also attributes significant value to the direction of 260 
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the species arrow with respect to its angle with the principal component axes within the 261 
space. The more parallel a species arrow is to the axis of a principal component, the more 262 
weight they have on that principal component space (Hartmann et al., 2018). The PC 263 
analysis from this study shows that AC and Cs strongly influences PC1 while PP and Zv 264 
strongly influences PC2, having a heavier weight in the transgenic cowpea field. Md and SaC 265 
are the most heavily weighted in PC1, strongly influencing the PC1 of the non- while GB and 266 
PP are the most heavily weighted species of PC2 in the non-transgenic cowpea field. 267 
The estimation of the number of statistically significant principal components for the 268 
ecological niches of both transgenic and non-transgenic cowpea is presented in Figure 5a 269 
and 5b below. The number of break point (10) distribution is similar for both ecological 270 
niches. 271 
 272 
Composition of Organism Community of both the Transgenic and Non-Transgenic Species 273 
As shown in the figure below, three major guilds, herbivores, parasitoids and predators 274 
were identified throughout the study period (Figure 6a, b and c). The guild analysis for both 275 
the Bt (IT97KT) and NBt (IT97KN) field reveals the identification of 12, 8 and 7 different 276 
species in the herbivore, parasitoid, and predator guild. Most of the species in both fields 277 
are herbivores while the predatory guild has the least number of organisms. SC represents 278 
the most abundant species in the parasitoid guild of both IT97KT and IT97KN ecological 279 
niches, while MB and AC are the most abundant species in the herbivore guild. CaC is the 280 
most abundant species in the predator guild. SL, LM and vf represent the least abundant 281 
species in the predator, parasitoid and herbivore guild of both ecological niches as shown in 282 
the figure. A uniform composition of the organisms in all the ecological niches were 283 
observed throughout the whole study period (Figure 6a, b and c). 284 
 285 
Dissimilarity Index 286 
The result of the Bray Curtis dissimilarity Index is presented in Table 3  below. Bray-Curtis 287 
Dissimilarity ranges between 0 and 1, where 0 indicates that the niches have no dissimilarity 288 
while 1 indicates that the two niches have complete dissimilarity. The dissimilarity index 289 
between the ecological niches of PBR Cowpea and non-transgenic isoline is 0.2, which 290 
indicates that all the niches had similar evolutionary trends with no divergence in the 291 
community structure of the NTOs. 292 
 293 
Discussion 294 
In this study, the potential impact of Nigeria’s transgenic Pod Borer Resistant (PBR) Cowpea, 295 
which is the first transgenic cowpea to be commercialised in the world, was assessed with 296 
the aim of evaluating the possible threats and harm that the crop may pose to the 297 
environment and the ecological niches of the diverse useful soil and plant organisms. Bray 298 
Curtis Dissimilarity Index, Pielou Evenness Index, Shannon Diversity Index and Simpson 299 
Diversity Index have been strongly recommended by Guo et al. (2014) and Clergue et al. 300 
(2005) as useful measures and indicators to gaining insight and understanding of the impact 301 
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of any plant on the community structure, evolution dynamics and ecological pattern of 302 
other species and the environments where they are found.  303 
According to Guo et al. (2014), the various functional ecological indices of the surrounding 304 
species to any newly introduced crop such as the PBR Cowpea would be significantly altered 305 
if disruption of any biological property occurs as a result of planting such crop. However, the 306 
findings from this research shows that the total species count throughout the study period 307 
are similar in values. Analysis of the various ecological indices, including Shannon Diversity 308 
index, Brays Curtis Dissimilarity Index, Pielou evenness index, Principal Component Analysis 309 
(PCA) and Renyi Diversity Silhouettes all showed a close range of values between the 310 
ecological niches of the transgenic Cowpea and its non-transgenic Isoline. Similar research 311 
study conducted at the Germany’s Oderbruch European Corn Borer infestation area by 312 
Schorling and Freier (2006) on a Six-year assessment of the impact of transgenic maize 313 
expressing Cry1Ab gene on non-target organisms reported the same results. In contrast to 314 
Fernandes et al. (2022) who postulated that genetic modification of crop has the tendency 315 
of reducing crop biodiversity, research findings by Abdul et al. (2022) and Anderson (2019) 316 
indicated has underscored that the transformation of crops for insect resistance is beneficial 317 
because it can enable plant species that are near extinction due to the heavy burden of 318 
insect infestation to be revived by improving their adaptation to diverse environmental 319 
conditions.  320 
The Principal Component Analysis (PCA) of both the transgenic and non-transgenic Cowpea 321 
fields reveals that the distribution of the NTOs were not significantly different throughout 322 
the study period. This finding is consistent with the report of Guo et al. (2014) and Candolfi 323 
et al. (2004) who reported where they found out that the Cry1Ab event expressed in the 324 
transgenic Corn does not affect the community structure of the NTOs. Other research study 325 
by Higgins et al. (2009) where a three-year field monitoring of the potential impacts of Cry1F 326 
events expressed in a maize hybrid on NTOs also showed underscored that the community 327 
structure of the organisms remained intact. Though previous research study only centred on 328 
the comparative NTO abundance between transgenic and non-transgenic plots, the present 329 
is study further analysed the possible evolutionary dynamics of the transgenic PBR Cowpea 330 
by carrying out a dissimilarity index analysis. The results  of this study show s that there was 331 
a gradual change in the species composition of both transgenic field and non-transgenic 332 
field and this change increased with time. For instance, the species type present during the 333 
counting week 2 of the study increased when compared to week 1. Similar occurrence was 334 
also observed when counting week 3 was compared with counting week 2. Analysis of the 335 
Bray Curtis Dissimilarity Index showed an index of 0.2 , suggesting which means that the 336 
evolutionary dynamic for both transgenic and non-transgenic crops were significantly 337 
similar. Similar studies conducted by Guo et al. (2014) also recorded a similar evolutionary 338 
dynamic between non-transgenic and transgenic maize expressing CryIAc event. 339 
The potential toxicity of PBR Cowpea can also be carried out by monitoring and evaluating 340 
the exposure of the different life stages of the various species of Cowpea ecosystem (Devos 341 
et al., 2012). The assessment of the different nutritional guild of organisms identified in this 342 
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study shows a rich representation of the herbivores, parasitoids and predators in all the 343 
ecological niches. Despite the high tendency of herbivores having a direct exposure to the 344 
Cry proteins expressed in the PBR Cowpea when feeding on its crop residue and pollen 345 
(Devos et al., 2012; Romeis et al., 2008), a high population density was still recorded for the 346 
PBR cowpea ecological niches when compared to the non-transgenic Cowpea. The number 347 
of herbivore species present in the ecological niches of transgenic cowpea is higher than in 348 
the non-transgenic cowpea ecological niches but the same species type including: Messor 349 
barbarous, Alydus eurinus, Eastern Lubber, Vvariegated fritillary, Deudorix antalus, 350 
Scarabaeus satyrus, Atta cephalostes, Dysdercus cingulatus, Junonia oenone, Chorthippus 351 
biguttulus and Carausius morosus were observed for all the ecological niches. This result is 352 
in line alignment with findings from Wolfenbarger et al. (2008) who carried out a study on 353 
the potential impacts of GM Crops on the functional guild of NTOs. 354 
A further critical analysis of the population density of the predator guild in both transgenic 355 
and non-transgenic field revealeds no significant difference. Assessing the population 356 
density of the predator guild can provide valid assertions on the extent of biological, as well 357 
as environmental safety of the transgenic crop since predators have multiple ways by which 358 
they come in contact with the Cry1Ab gene including direct feeding on the pollen of the PBR 359 
Cowpea, herbivores that have feed on PBR Cowpea or via the surrounding soil in which the 360 
PBR Cowpea is planted.  The number of predator species present in the ecological niches of 361 
transgenic cowpea is higher than in the non-transgenic cowpea ecological niches though 362 
both had the same species type including Chilocorus stigma, Odontoponera transversa, 363 
Conozoa hyaline, Camponotus cruentatus, Pirata piraticus, Graphoderus bilineatus and 364 
Stenolophus lecontei.   365 
Analysis of the parasitoid population can provide some very useful ecological indices 366 
because they possess the unique characteristics of having the ability to complete their life 367 
cycle by feeding on a particular host (Salama and Zaki, 1983) or a range of herbivores in a 368 
particular ecological niche (Romeis et al., 2008). They are therefore most likely to ingest the 369 
Cry protein in the host herbivore where they are found or directly from the PBR Cowpea 370 
plant (Lit et al., 2012). The analysis shows that the population density of the parasitoids in 371 
the PBR Cowpea ecological niches were not significantly different from the non-transgenic 372 
Cowpea ecological niches throughout the study period. Studies by Comas et al.  373 
(2014) and Albajes et al. (2013) who carried out meta-analysis of the ecological impact of Bt 374 
Maize on NTOs also reported that the transgenic maize had no significant effect on the 375 
population density of the predator, herbivore and parasitoid guild throughout the study 376 
period. 377 
The result of the Principal Component Analysis (PCA) shows similar evolutionary dynamics in 378 
both the ecological niches of the transgenic and non-transgenic Cowpea. The broken stick 379 
distribution which models the number of variances by adopting a stick of unit length which 380 
is thereafter randomly broken into n pieces reveals no statistically significant difference 381 
between both ecological niches. This finding is in line alignment with result obtained by Guo 382 
et al. (2014) whose research study revealed that the BtCry1Ac event expressed in the insect 383 
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resistant corn caused no alteration in the community distribution of both transgenic and 384 
non-transgenic corn. 385 
The strong positive correlation between both transgenic and non-transgenic cowpea vs time 386 
shows that the increase in the species in both niches is as a result of increase in agronomic 387 
factors as the growth of both cowpea progresses. Such factors may include the onset of 388 
flowers and the steady increase, the onset of pods which followed thereafter and its steady 389 
increase, in addition to the continuous increase in the number of leaves over time. It also 390 
means that the Cry1Ab gene expressed in the PBR Cowpea had no negative impact on any of 391 
the ecological components including the non-targeted organisms. Other factors that may 392 
have played significant roles include temperature, rainfall, sunshine, nature of the soil and 393 
other surrounding elements and plants (Desneux and Bernal, 2010). 394 
 395 
Limitation of the Current Study 396 
The current study does not take the effect of the PBR Cowpea on egg laying capacity of non-397 
targeted arthropods in contrast to Dang et al. (2017). Furthermore, the collection of data on 398 
the effect of PBR Cowpea on soil invertebrates over longer periods of time and the potential 399 
transfer of the Cry1Ab gene to conventional cowpea still need to be assessed. 400 
 401 
Conclusions 402 
The findings from this study shows that the introduction of the Cry1Ab transgene in the PBR 403 
cowpea did not negatively impact biodiversity and the environment. The comparative 404 
assessment of the evolutionary dynamics of the non-targeted species community of the 405 
transgenic cowpea and that of non-transgenic cowpea recorded no significant divergence 406 
throughout the study period. The data accrued from the analysis of the species evenness 407 
and diversity indices also did not show any significant difference between the fields of 408 
transgenic PBR cowpea and its isoline. The findings The data accrued from this research are 409 
useful in provide ing valuable insights that will help to shape decision-making for the 410 
regulation of the crop across the all cowpea major growing areas in the country.  countries 411 
where it can be grown. 412 
 413 
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