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ABSTRACT
Background: Myrtle (Myrtus communis L.), native to the Mediterranean region of
Türkiye, is a valuable plant with applications in traditional medicine,
pharmaceuticals, and culinary practices. Understanding how myrtle responds to
water stress is essential for sustainable cultivation as climate change exacerbates
drought conditions.
Methods: This study investigated the performance of selected myrtle genotypes
under in vitro drought stress by employing tissue culture techniques, rooting trials,
and acclimatization processes. Genotypes were tested under varying polyethylene
glycol (PEG) concentrations (1%, 2%, 4%, and 6%). Machine learning (ML)
algorithms, including Gaussian process (GP), support vector machine (SVM),
Random Forest (RF), and Extreme Gradient Boosting (XGBoost), were utilized to
model and predict micropropagation and rooting efficiency.
Results: The research revealed a genotype-dependent response to drought stress.
Black-fruited genotypes exhibited higher micropropagation rates compared to
white-fruited ones under stress conditions. The application of ML models
successfully predicted micropropagation and rooting efficiency, providing insights
into genotype performance.
Conclusions: The findings suggest that selecting drought-tolerant genotypes is
crucial for enhancing myrtle cultivation. The results underscore the importance of
genotype selection and optimization of cultivation practices to address climate
change impacts. Future research should explore the molecular mechanisms of stress
responses to refine breeding strategies and improve resilience in myrtle and similar
economically important crops.
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INTRODUCTION
Myrtle, also known as Myrtus communis L., is a perennial evergreen shrub or small tree
native to the Mediterranean region (Cioć et al., 2018). It belongs to the Myrtaceae family,
which consists of 100 genera and 3,000 species that grow naturally in tropical and
subtropical regions (Rezaee & Kamali, 2014; Şimşek et al., 2023). Various parts of the
myrtle plant, including its leaves, flowers, and fruits, contain numerous important
constituents for the medical, food, liquor, and cosmetic industries (Serce et al., 2008). These
constituents make myrtle useful for anti-genotoxic, anti-mutagenic, antiseptic, anti-
inflammatory, and treating internal and tropical infections (Bonjar, 2004). Essential oils
derived from myrtle can be utilized in pharmaceutical production, and their leaves are
used in fragrance and food industries (Mulas & Cani, 1999). Myrtles can also be consumed
as a tea (Flamini et al., 2004; Şimşek et al., 2022). This shrub or small tree typically ranges in
height from 0.5 to 3 m, and two subspecies have been identified: M. communis subsp.
communis and M. communis subsp. tarentina (Picci & Atzei, 1996).

Myrtles can thrive in various habitats and are consistently the dominant plant in the
maquis. They are slow-growing, long-lived evergreen plants that do not shed their leaves
during winter (Sumbul et al., 2011). The leaves of the myrtle plant have an aromatic odor,
and the fruits are berry-like, typically blackish-purple or white, and ripen during the
autumn season (October–December). The ripe fruits are both sugary and astringent and
are pollinated by insects. The fruits are covered with a light, waxy layer that helps bees
recognize the plant, giving the fruit a matte appearance. The fruits are multi-seeded and
have a pleasant, spicy, and aromatic odor. They contain essential oils, tannins, sugars, and
organic acids (citric and malic acids) (Aleksic & Knezevic, 2014). The leaves of the myrtle
plant also contain small amounts of phenolic acids such as caffeic, ellagic, gallic acid, and
quercetin derivatives, as well as large amounts of catechin and myricetin derivatives
(Simsek et al., 2020).

Drought is a significant contributor to the decline in plant production. Environmental
stress hinders the growth and development of plants by limiting their ability to respond
and adapt to their surroundings. The high biological complexity involved in a plant’s
response to stress is often accompanied by numerous changes at various levels, including
morphological, molecular, cellular, physiological, and biochemical. M. communis has
demonstrated remarkable resistance to abiotic stressors; however, the prolonged drought
conditions and intense solar radiation experienced during Mediterranean summers may
have contributed to its decline (Gucci et al., 1997; Mendes, Gazarini & Rodrigues, 2001).

Plants cope with drought stress by regulating their metabolism through osmosis. This
process involves the active accumulation of organic and inorganic compounds, known as
osmolytes or osmotic protectors, which occur with decreased cell water potential. The
process of osmotic regulation in cells allows osmotic potential to be reduced with the help
of osmotic protectors that accumulate at high rates (Sanchez et al., 2004).

Several studies have found that testing plant responses to abiotic stress factors under in
vitro conditions is a dependable method that produces consistent results compared to field
experiments. This approach allows for the evaluation of many genotypes under stress
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conditions in a practical manner (Basu, Gangopadhyay & Mukherjee, 2002). For instance,
an in vitro study (Di Cori et al., 2013) examined the adaptation mechanisms of myrtle to
salinity stress. However, the physiological processes through whichM. communis responds
to water stress or drought have not been thoroughly documented (Gratani, Catoni &
Varone, 2013; Navarro et al., 2009; Tafreshi et al., 2021).

In recent years, in vitro studies have used polyethylene glycol (PEG), sorbitol, and
mannitol as abiotic stress factors to create stress conditions, drought agents, pathogens, or
phytotoxins directly in the pathogen culture medium as abiotic stress agent (Manoj,
Chaudhary & Singh, 2021). In tissue culture, PEG, sorbitol, and mannitol were employed
as osmotic stress agents. While PEG is commonly used to create artificial drought
conditions by reducing the available water potential in the culture media, it is preferred
because it does not cause phytotoxic effects in the culture media (Hassan et al., 2004).

Machine learning (ML) applies data science techniques to address complex challenges
across various scientific domains (Bozkurt et al., 2024; Tarraf et al., 2024). Artificial
intelligence-based ML models can analyze and predict complex, multivariate datasets (Kul
et al., 2020; Isak et al., 2024; Tütüncü et al., 2024) and learn intricate relationships
(Jamshidi et al., 2020; Sadat-Hosseini et al., 2022) to overcome these issues. These
techniques have gained popularity in recent years for analyzing datasets in multiple fields
within plant science. However, machine learning methodologies in plant and agricultural
sciences are relatively limited compared to their extensive application in other scientific
disciplines (Aasim et al., 2023; Şimşek et al., 2024a). Nevertheless, some researchers have
achieved notable success in various areas of plant science, such as plant breeding (van Dijk
et al., 2021) and gene function (Mahood, Kruse & Moghe, 2020). Adopting ML techniques
offers the advantage of enabling computers to learn independently and convert data into
valuable knowledge without human programming (Hesami et al., 2022). Table 1 presents
the history of the related literature review.

This study explores the drought stress responses of different myrtle genotypes,
hypothesizing that these genotypes display varying levels of tolerance to drought
conditions. Myrtle, a highly valued Mediterranean plant with diverse applications, is
increasingly confronted with drought due to global climate change. In this regard, the
study employs ML analysis utilizing the Gaussian process (GP), support vector machine
(SVM), Random Forest (RF), and Extreme Gradient Boosting algorithms (XGBoost) to
model and predict micropropagation and rooting efficiency across varying concentrations
of polyethylene glycol.

To test this hypothesis, the study aims to: (1) utilize morphological assessments to
identify changes related to drought stress; (2) employ ML models to predict drought
tolerance based on the observed and morphological data.

MATERIALS AND METHODS
Plant material
In this study, four distinct myrtle genotypes were selected through a meticulous process
conducted in Karaisalı, Adana, and Erdemli, Mersin, Türkiye, in 2017. The selection
process involved the initial screening of 100 plants across various locations to identify the
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most promising genotypes. Specific quantitative criteria were used, including fruit yield
measurements, fruit size assessments, and evaluations of plant architecture for robustness
and resilience. The genotypes were categorized based on these parameters, focusing on
identifying those with superior traits. Ultimately, two black-fruited and two white-fruited
genotypes were selected, each demonstrating high performance in the critical visual
parameters outlined. For the study, four genotypes were subjected to four different
concentration levels, with ten plants per concentration and two replications for each
genotype.

Table 1 Literature review analysis.

Species In vitro method ML model Main findings References

Myrtus communis L. Cadmium stress MLP, RF,
XGBoost

White-fruited genotype showed greater resilience to cadmium stress.
Machine learning models accurately predicted plant responses to
environmental stress.

Tütüncü et al.
(2024)

Myrtus communis L. Solid media
propagation and
plant bio reactor

– Plantform bioreactor system successful in myrtle micropropagation
and rooting.

Şimşek et al.
(2023)

Myrtus communis L. Drought stress – Evaluation of PEG-induced water stress on regenerated shoots Tafreshi et al.
(2021)

Myrtus communis L. In vitro shoot
multiplication

Selected genotypes cultured in vitro showed variation in
multiplication rate.

Ruffoni,
Mascarello &
Savona (2010)

Chrysanthemum In vitro sterilization MLP, GA Results indicated that the differences between the MLP predicted,
and validation data were negligible

Hesami, Naderi
& Tohidfar
(2019)

Petunia hybrida In vitro sterilization GRNN,
MLP, and
RBF

The results showed that NSGA-II effectively optimizes disinfectant
levels and immersion time to minimize contamination and
maximize germination.

Rezaei et al.
(2023)

Lycium barbarum L. In vitro cadmium
streaa

MLP MLP and RF models accurately predicted plant physiological changes
due to Cd exposure, with R² values up to 0.98.

Isak et al. (2024)

Nicotiana tabacum Agrobacterium-
mediated gene
transformation

MLP Sensitivity analysis of ANN models showed that the Agrobacterium
strain was the most influential parameter in tobacco
transformation.

Niedbała,
Niazian &
Sabbatini
(2021)

Passiflora caerulea Indirect shoot
regeneration

GRNN, RF Both RF and GRNN algorithms showed high predictive accuracy (R²
> 0.86) in training and testing sets for all studied parameters.

Jafari &
Daneshvar
(2023)

Passiflora caerulea In vitro rooting GRNN, GA The GRNN-GA model effectively predicts and optimizes in vitro
rooting of P. caerulea, demonstrating both reliability and accuracy.

Jafari et al.
(2022)

Lavandula L. In vitro
micropropagation

MLP, RBF,
XGBoost,
and GP

Machine learning models enhance efficiency and provide valuable
insights.

Şimşek et al.
(2024a)

Strawberry In vitro drought MLP, SVM,
RF and GP

PEG concentrations affected plant height and multiplication
coefficients.

Şimşek (2024)

Cicer arietinum L. In vitro regeneration MLP, SVR
GP, XGB
and RF

RF algorithm displayed the best performance to predict the outputs. Kirtis, Aasim &
Katırcı (2022)
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Tissue culture studies
Sterilization of shoot tips
The plant material’s shoot tips were sterilized before being placed into the culture. To
achieve this, the shoot tips transported to the laboratory were thoroughly washed under
tap water for 10 min. In sterilization, the shoot tips were immersed in a 70% ethanol
solution for 3 min, followed by a 10-min immersion in a 20% sodium hypochlorite
solution. Lastly, the shoot tips were thoroughly rinsed three times using sterile distilled
water within a sterile hood to eliminate any remaining sterilizing agents.

Culturing and micropropagation of plants
Following the sterilization, shoot tips from the plant material were subsequently cultured
on MS nutrient media containing varying concentrations of BAP (0, 1, and 2 mg/L) and
agar (8 g/L). The plants were subcultured every 4 weeks, with three subcultures. The cells
were cultivated at 25 �C under a 16-h light and 8-h darkness regime. PEG6000 was added
to the medium to induce drought stress at concentrations of 0% as control, 2%, 4%, and 6%
(Tafreshi et al., 2021). Future studies will explore higher concentrations to assess severe
drought responses.

Establishment of rooting trail
To evaluate the efficacy of IBA in promoting root growth, rooting trials were conducted
using solid MS nutrient media containing varying concentrations of IBA (0, 1, and 2 mg/L)
and 8 g/L agar. The plants were cultivated under controlled conditions of 25 �C and a 16-h
light/8-h darkness cycle for 6 weeks. PEG6000 was added to the medium at four different
concentrations (0% as control, 2%, 4%, and 6%) to simulate drought stress.

Acclimatization
Upon completing the rooting trials, the plants were subjected to acclimation to external
conditions. This involved gradually opening the culture containers before transferring the
rooted plants to vials containing a 1:1 mixture of sterile peat and perlite in a greenhouse
setting. The plants were removed from the agar medium using water.

Data analysis
All trials were established utilizing a factorial arrangement within a completely
randomized design, comprising four replicates, each consisting of five plants per replicate.
In the micropropagation experiments carried out under in vitro conditions, plants were
subcultured every 4 weeks, with three subcultures. The collected data underwent an
analysis of variance (ANOVA). Post hoc pairwise comparisons of means for treatments
deemed significant by ANOVA were conducted using the LSD test. Statistical analyses
were executed utilizing the R programming language.

Modeling procedure
This study employed a comprehensive suite of ML models to analyze the drought stress
responses of various myrtle genotypes. The models used included GP, SVM, RF, XGBoost,
and artificial neural network (ANN) based MLP to model and predict the
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micropropagation and rooting efficiency of various myrtle genotypes using polyethylene
glycol (PEG). Each model was chosen for its specific strengths in handling different data
types and predictive tasks. For instance, GP and SVM are known for their robustness in
classification and regression tasks, particularly with small datasets. At the same time, RF
and XGBoost are powerful ensemble methods that are effective in handling large datasets
and reducing overfitting. MLP, an ANN model, is particularly useful for capturing
complex non-linear relationships in the data.

We utilized a 10-fold cross-validation method to divide the dataset into training and
testing subsets and thoroughly evaluate the predictive performance of the ML models. The
four genotypes served as input variables, with an additional concentration of PEG (0%, 2%,
4%, 6%) functioning as an input variable. On the other hand, micropropagation rate, plant
height, plant height in the rooting medium, root number, and root length were the target
(output) variables. We utilized R programming with the help of the Caret and Kernlab
packages to implement the coding. Several metrics were used to assess and compare the
accuracy and precision of the ML models, including the coefficient of determination (R2),
which indicates the degree of relationship between the model and the dependent variable
Eq. (1), root mean square error (RMSE) which typically shows the precision of the model
Eq. (2), and the mean absolute error (MAE), which calculates the average error between
the predicted and observed values Eq. (3).

R2 ¼ 1�
Pn
i¼1

ðYi � ŶiÞ2

Pn
i¼1

ðYi � ~YÞ2
(1)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðYi � Ŷ iÞ2
� �

n

vuuut
(2)

MAE ¼ 1
n

Xn
i¼1

jYi � Ŷij (3)

Multilayer perceptron
The MLP is a commonly used example of an ANN, characterized by its input layer, output
layer, and one or more hidden layers. To train the MLP, a supervised training approach
was employed, utilizing the input and output variables from the training set. The training
procedure was repeated until the desired value specified in Eq. (4) was achieved (Şimşek,
2024).

E ¼ 1
n

Xn
n¼1

ðys � bysÞ (4)
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Gaussian process
To gain a deeper understanding of the propagation of random variables, the GP model for
supervised learning extends the Gaussian probability distribution. This renders the GP
model more suitable for addressing issues related to classification and regression. By
determining the likelihood that input samples will fall within specific classes, it functions as
a non-parametric classifier for binary datasets. One of the main advantages of this model is
its ability to perform well with small datasets, as it provides consistency, accuracy, and ease
of computation (Hussein, El-Kerdany & Afifi, 2016). The derivation process for each input
(x) and its corresponding output (y) is detailed in Eq. (5).

yi ¼ f xið Þ þ e (5)

Support vector machines
SVMs are a class of artificial intelligence models that encompass supervised and
unsupervised learning techniques. These models are particularly well-suited for tasks such
as regression analysis, clustering, and classification. This section introduces three
variations of SVMs: support vector classification (SVC), support vector regression (SVR),
and two separate SVM variations. One of the key advantages of SVMs is their efficiency,
even with relatively small datasets. This is in contrast to many other artificial intelligence
algorithms, which often require large amounts of training data for optimal performance.
Additionally, SVMs are less prone to problems such as overfitting, low convergence rates,
and getting stuck in local minima, which are commonly associated with traditional
artificial intelligence methods (Aasim et al., 2022a). The SVM algorithm, as described by
Eq. (6), helps to determine which class has the furthest separator plane.

f xð Þ ¼ w4 xð Þ þ b (6)

Random forest
The RF ensemble learning method is an ensemble of unpruned trees that has been
successful in both regression and classification tasks. It is well-known for its efficiency and
ease of design, and previous research has identified several prominent characteristics of the
RF model, including its ability to avoid overfitting, proficient noise handling, and efficient
feature management (Hu et al., 2019).

To minimize the correlation between distinct trees while maintaining their unique
strengths, two random sources are injected into each tree during construction for
classification accuracy. Each tree is first trained by randomly selecting a replacement
(bootstrap replica) for the training set. The algorithm then considers a small variable
subset that is randomly chosen from the complete variable set to find the optimal split at
each node. Additionally, every tree is fully grown, producing a low bias and significant
variance in the tree outputs (Breiman, 2001; Hu et al., 2019). Regression models were
solved using the Mean Squared Error (MSE) metric, which was used to determine the
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distance between nodes and best branching choices within the forest. The fundamental
idea is illustrated in Eq. (7).

y ¼
Xn
i¼1

ai � a�i
� �

k x; xið Þ þ b (7)

Extreme gradiant boosting (XGBoost) model
The XGBoost Model, developed by Chen & Guestrin (2016), is a powerful tool for
addressing regression and classification challenges. As a member of the gradient boosting
decision tree family, XGBoost is renowned for its exceptional performance and speed. By
functioning within a gradient boosting framework, XGBoost is particularly adept at
learning from errors and progressively reducing the error rate over multiple rounds.

yi ¼ F xið Þ ¼
XD
d¼1ð Þ

f d xið Þ; f d 2 F; i ¼ 1; . . . ; n (8)

Lj ¼
Xn
i¼1

lðyi; ŷ j�1ð Þ þ f j xið Þ þ � f j
� �

(9)

The XGBoost iterative model is expressed in Eq. (9), while its objective function is
provided by Eq. (8).

RESULTS
Micropropagation
Four different genotypes of myrtle (two black-fruited and two white-fruited) were cultured
on their shoot tips on a solid medium supplemented with 1 mg/L BAP. Different
concentrations of PEG (0, 2, 4, and 6 mg/L) were added to these media to simulate drought
stress. Table 2 provides data on micropropagation rate, showcasing the impact of varying
concentrations of PEG) (0%, 2%, 4%, and 6% on the average growth of four distinct
genotypes: White Fruited-1, White Fruited-2, Black Fruited-1, and Black Fruited-2.
Notably, there was an observable pattern of diminishing growth as PEG concentration
increased. For instance, the White Fruited-1 and White Fruited-2 genotypes declined
average growth from 10.06 to 4.97 and from 10.00 to 5.03, respectively, as PEG
concentration increased. Similarly, the Black Fruited-1 and Black Fruited-2 genotypes also
decreased average growth with increasing PEG concentration.

By evaluating these values, it became evident that the highest average growth was
consistently observed at 0% PEG for all genotypes. On the other hand, the lowest average
growth was consistently observed at the highest PEG concentration of 6% for each
genotype. This further supports the trend of decreasing growth as PEG concentration
increases.

Table 3 displays the Plant Length data, demonstrating the impact of various PEG
concentrations (0%, 2%, 4%, and 6%) on the plant length of genotypes White Fruited-1,
White Fruited-2, Black Fruited-1, and Black Fruited-2. The average plant lengths for each
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genotype at different PEG levels are provided, along with the Genotype Average (Table 2).
Generally, the highest plant lengths across all genotypes were observed in the black-fruited
genotype in the absence of PEG (0%) at a rate of 4.71, while the lowest plant lengths were
recorded in the White Fruited-1 genotype at the highest PEG concentration (6%) at a rate
of 2.95.

Table 4 also displays data on Plant Length in Rooting Medium, showcasing the
influence of various PEG concentrations (0%, 2%, 4%, and 6%) on the plant length of
White Fruited-1, White Fruited-2, Black Fruited-1, and Black Fruited-2 genotypes. The
average plant length for each genotype at different PEG levels was calculated, resulting in
the Genotype Average. The data presented in Table 3 indicates that the highest plant
lengths in the rooting medium were observed in Black Fruited-1, with no PEG present
(0%), at a rate of 4.17, across all genotypes. Conversely, the shortest plant length in the
rooting medium was recorded in White Fruited-2 at the highest PEG concentration (6%),
at a rate of 2.52.

In vitro rooting
This study also analyzed the root number of four distinct genotypes under various
concentrations of PEG, as detailed in Table 5. Notably, Black-Fruited-1 showed the highest
root number (4.10) at 6% PEG, while Black-Fruited-2 had the lowest root number (2.03)
without PEG. The data revealed a specific response of each genotype to PEG, with a
noticeable trend of decreasing root numbers as PEG concentrations increased. This inverse
relationship implies that higher PEG concentrations may inhibit root development across
the examined genotypes, offering valuable insights into the intricate interactions between
environmental factors and root growth.

Table 2 The effect of genotype and PEG concentrations on micropropagation rate.

PEG-0% PEG-2% PEG-4% PEG-6% Genotype average

White Fruited-1 10.06 9.30 6.97 4.97 7.825B

White Fruited-2 10.00 8.83 7.43 5.03 7.825B

Black Fruited-1 10.97 10.40 8.30 6.13 8.950A

Black Fruited-2 10.90 9.73 8.60 6.67 8.975A

PEG average 10.48A 9.57B 7.82C 5.70D

Table 3 The effect of genotype and PEG concentrations on plant length.

PEG-0% PEG-2% PEG-4% PEG-6% Genotype average

White Fruited-1 4.29 3.76 3.28 2.95 3.57B

White Fruited-2 4.31 3.81 3.22 2.98 3.58B

Black Fruited-1 4.71 3.99 3.53 3.19 3.87A

Black Fruited-2 4.48 4.11 3.64 3.24 3.86A

PEG average 4.45A 3.92B 3.42C 3.09D
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Table 6 reveals the impact of four distinct myrtle genotypes and four varying
concentrations of PEG on root length. The results show that Black Fruited-2 displayed the
highest root length of 3.77 at a 6% PEG concentration, while White Fruited-2 exhibited the
lowest root length of 2.55 without PEG. Additionally, there is a discernible trend of
decreasing root numbers as PEG concentrations increase.

Machine learning analysis
Table 7 provides a comprehensive evaluation of various ML models in different plant
growth prediction tasks and allows for identifying the models with the highest
performance metrics. Among these models, determining the models with the highest R2

scores and lowest MAE values is crucial in determining the best performer regarding
predictive accuracy and precision. Regarding the Micropropagation Rate, the MLP model
emerged as the top performer with the highest R2 score of 0.58, indicative of its superior
predictive capability. Additionally, boasting the lowest MAE of 0.11 further solidifies the

Table 5 The effect of genotype and PEG concentrations on number of roots.

PEG-0% PEG-2% PEG-4% PEG-6% Genotype average

White Fruited-1 2.47 3.37 3.77 3.90 3.37A

White Fruited-2 2.77 3.06 3.53 3.60 3.24A

Black Fruited-1 2.40 3.16 3.50 4.10 3.29A

Black Fruited-2 2.03 3.00 3.27 3.60 2.97B

PEG average 2.41D 3.15C 3.51B 3.80A

Table 4 The effect of genotype and PEG concentrations on plant length in rooting medium.

PEG-0% PEG-2% PEG-4% PEG-6% Genotype average

White Fruited-1 3.97 3.53 2.98 2.63 3.27B

White Fruited-2 3.76 3.43 2.83 2.52 3.13A

Black Fruited-1 4.17 3.52 3.08 2.79 3.39A

Black Fruited-2 3.73 3.54 3.22 2.57 3.36B

PEG average 3.90A 3.50B 3.02C 2.63D

Table 6 The effect of genotype and PEG concentrations on root length.

PEG-0% PEG-2% PEG-4% PEG-6% Genotype average

White Fruited-1 2.75ij 2.94gh 3.09efg 3.27de 3.01B

White Fruited-2 2.55k 2.76hij 2.97g 3.50bc 2.95B

Black Fruited-1 2.93ghi 3.07fg 3.23def 3.52b 3.19A

Black Fruited-2 2.64jk 2.94gh 3.34cd 3.77a 3.17A

PEG average 2.72D 2.93C 3.16B 3.51A

Note:
Capital letters indicate statistical differences between myrtle varieties and different PEG concentrations, while small
letters indicate statistical differences between myrtle varieties with different PEG concentrations as determined by the
LSD analysis.
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MLP’s position as the optimal choice for predicting the micropropagation rate. The
ranking of the models in predicting the micropropagation rate is as follows:
MLP < GP < SVM < RF < XGBoost. For the prediction of Plant Height, both MLP and
XGBoost exhibited equally impressive R2 scores of 0.80, suggesting a comparable
predictive probability. However, considering the MAE values, MLP outperformed
XGBoost with a lower value of 0.06, cementing its superiority in accurately predicting
plant height. MLP and XGBoost emerged as the top performers, followed by GP, SVM,
and RF, which exhibited comparable performances (MLP < XGBoost < GP = SVM = RF).
Similarly, in the task of predicting Plant Height in Rooting Medium, MLP and
XGBoost once again shared the highest R2 score of 0.79. However, with a lower
MAE of 0.08 compared to XGBoost’s 0.09, MLP takes the lead as the preferred
model for this specific prediction task. MLP and XGBoost maintained their superiority,

Table 7 Assessment metrics for the machine learning models.

ML models R2 MAE RMSE

Micropropagation rate MLP 0.58 0.11 0.14

GP 0.56 0.10 0.13

SVM 0.55 0.11 0.14

RF 0.54 0.11 0.14

XGBoost 0.52 0.12 0.15

Plant height MLP 0.80 0.06 0.08

GP 0.79 0.07 0.09

SVM 0.78 0.06 0.08

RF 0.78 0.07 0.09

XGBoost 0.80 0.06 0.09

Plant height in rooting medium MLP 0.79 0.08 0.10

GP 0.78 0.08 0.10

SVM 0.77 0.08 0.10

RF 0.77 0.08 0.10

XGBoost 0.78 0.08 0.10

Number of roots MLP 0.32 0.14 0.17

GP 0.29 0.15 0.19

SVM 0.28 0.14 0.17

RF 0.27 0.15 0.18

XGBoost 0.24 0.17 0.20

Root length MLP 0.46 0.13 0.16

GP 0.41 0.14 0.17

SVM 0.40 0.15 0.18

RF 0.39 0.15 0.19

XGBoost 0.50 0.12 0.15

Note:
ML, Machine Learning; MLP, Multilayer Perceptron; GP, Gaussian Process; SVM, Support Vector Machines; RF,
Random Forest; R2, Coefficient of Determination; MAE, Mean Absolute Error; RMSE, Root Mean Square Error.
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followed by GP, SVM, and RF, which demonstrated similar performance levels
(MLP < XGBoost < GP = SVM = RF).

When it comes to predicting the Number of Roots, the multilayer perceptron (MLP)
model attained the highest R2 score of 0.32. However, its performance in terms of mean
absolute error (MAE) was inferior, with a value of 0.14. Conversely, the SVM model
demonstrated superior accuracy in predicting the number of roots, with a slightly lower R2

score of 0.28 but a lower MAE of 0.14, positioning it as the preferred model. The SVM
model emerged as the top choice, followed by MLP, RF, GB, and XGBoost
(SVM < MLP < RF < GB < XGBoost). For predicting Root Length, the XGBoost model
exhibited the highest R2 score of 0.50 and the lowest MAE of 0.12, showcasing its
exceptional performance in accurately forecasting root length. XGBoost was the most
effective model, followed by MLP, with GB, SVM, and RF exhibiting comparable
performance levels (XGBoost < MLP < GB = SVM = RF).

In conclusion, while the MLP model consistently achieved high R2 scores across
various tasks, its performance in terms of MAE varied. Therefore, it is crucial to consider
both the R2 scores and MAE values when determining the optimal model for each specific
plant growth metric. The actual and predicted values are illustrated in Figs. 1–5, which
compares the samples on the horizontal axis with the model’s predicted outcomes on the
vertical axis.

Figure 1 Scatter plot actual against predicted values using GP model analysis. Full-size DOI: 10.7717/peerj.18081/fig-1
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Figure 2 Scatter plot actual against predicted values using RF model analysis. Full-size DOI: 10.7717/peerj.18081/fig-2

Figure 3 Scatter plot actual against predicted values using SVM model analysis. Full-size DOI: 10.7717/peerj.18081/fig-3
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Figure 4 Scatter plot actual against predicted values using XGBoost model analysis. Full-size DOI: 10.7717/peerj.18081/fig-4

Figure 5 Scatter plot actual against predicted values using MLP model analysis. Full-size DOI: 10.7717/peerj.18081/fig-5
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DISCUSSION
In discussing our findings on the impact of PEG-induced stress in myrtle, it is pertinent to
contextualize our results within the spectrum of existing research. This approach
highlights the unique contributions of our study and integrates it into the broader scientific
discourse on myrtle’s response to various stressors. Our study’s observation of decreased
growth rates and developmental parameters in myrtle under increasing concentrations of
PEG aligns with the findings of Tafreshi et al. (2021). They reported a reduction in shoot
regeneration and physiological parameters under similar stress conditions, thereby
underlining myrtle’s sensitivity to water stress. The novelty of our research lies in its
detailed quantification of the specific impact on different genotypes of myrtle, which
enriches the understanding of genotype-specific responses to stress. The relation of our
findings to the work of Di Cori et al. (2013) and Aghaie, Hosseini Tafreshi & Toghyani
(2022) on salt stress is also notable. Both drought stress (induced by PEG in our study) and
salt stress affect the osmotic potential around plant roots. The decrease in growth and
development we observed under PEG-induced stress parallels the growth reduction seen
under salt stress, suggesting a potentially shared osmotic stress response mechanism in
myrtle. Intriguingly, our results contrast with those of Azizi et al. (2021), who
demonstrated that microbial inoculation could mitigate the effects of water deficit in
myrtle. While we observed a clear decline in various growth parameters with increasing
PEG concentrations, Azizi et al.’s (2021) findings indicate that certain treatments could
ameliorate these negative impacts. This disparity underscores the complexity of myrtle’s
response to environmental stress and suggests the potential for developing strategies to
enhance myrtle’s resilience. Furthermore, the integration of our findings with
propagation studies such as those by Şimşek et al. (2023), Aka Kaçar et al. (2020, 2015), and
Şan, Karakurt & Dönmez (2015) is essential. These studies, focusing on myrtle
propagation, underline the importance of optimizing growth conditions. The challenges
posed by environmental stressors like PEG in tissue culture and propagation efforts
highlighted in our study add a critical dimension to this narrative, specifically illustrating
how PEG can adversely affect these processes.

In the response of myrtle to PEG-induced drought stress, it is essential to consider the
broader context of how drought stress impacts various plant species, particularly in fruit
development. This comprehensive understanding aids in drawing parallels and
distinctions between our results and those observed in other plants, thereby enriching the
insights gained from our study. The research conducted by Zekai et al. (2022) on banana
cultivars under in vitro drought stress provides a vital molecular perspective. They
observed differential expression levels in the CDPK gene family, integral to drought stress
response, among different banana cultivars. This cultivar-specific molecular response is
particularly instructive for our study on myrtle. Just as banana cultivars exhibited varied
gene expression responses to drought, the different myrtle genotypes in our study may also
have distinct molecular and physiological responses to PEG-induced stress. Understanding
these responses at a genetic level can be crucial for developing drought-resilient myrtle
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cultivars. Furthermore, studies on various fruits, such as those by Castellarin et al. (2007)
on grapevine, Jiang et al. (2020) on jujube, and Rathnayaka et al. (2021) on chili pepper,
have shown that drought stress significantly alters biochemical compositions. These
alterations include changes in flavonoids, anthocyanins, sugars, and capsaicinoids, all of
which are crucial for fruit quality and nutritional value. Our study on myrtle aligns with
these findings, suggesting that PEG-induced drought stress similarly impacts metabolic
pathways in myrtle, affecting its growth and development. The work of Asakura et al.
(2021) on tomatoes further highlights the diverse impacts of drought stress, demonstrating
an increase in fatty acid synthesis and alterations in fruit yield and ripening periods. These
changes are reflective of the complex ways in which plants respond biochemically and
physiologically to water scarcity. Incorporating these insights into our study, it becomes
evident that drought stress, whether natural or simulated, as in the case of PEG, can have
profound effects on plant physiology and biochemistry. This comparison with other
species underlines the importance of examining such stress impacts in both agricultural
and ornamental plants like myrtle. It also suggests that myrtle might exhibit changes in key
metabolic pathways under drought conditions similar to other species, which could have
implications for its use and cultivation. Devireddy et al. (2021) emphasize the importance
of understanding the integration of reactive oxygen species and hormone signaling during
abiotic stress. This aspect is also relevant to our study, as these underlying biochemical and
molecular mechanisms may also be at play in myrtle’s response to drought stress,
influencing its growth and development. Our study on myrtle underscores the complexity
of plant responses to drought stress when viewed in conjunction with these broader
findings. This comparative analysis deepens our understanding of how different species,
including myrtle, react to such stressors and opens up new avenues for research and
strategies to mitigate drought stress impacts. Developing a comprehensive approach that
considers both genetic and biochemical responses could lead to cultivating plant varieties
that are more resilient to drought, enhancing both agricultural productivity and the
preservation of ornamental species. In conclusion, our research contributes significantly to
the current understanding of myrtle’s response to drought stress, particularly that induced
by PEG. By echoing the findings of reduced growth under stress seen in other studies and
providing new insights into genotype-specific responses, our study not only situates itself
within the larger body of myrtle research but also opens pathways for future investigations,
particularly in the realm of developing strategies to bolster myrtle’s resilience against
environmental stressors.

In response to drought stress, plants initiate a range of physiological and molecular
adaptations to maintain cellular integrity and homeostasis. Our study’s findings on the
variation in drought tolerance among myrtle genotypes correlate with the observed
differential regulation of key osmoprotective compounds and antioxidant enzymes. This
observation aligns with these molecules’ roles in mitigating the detrimental effects of
osmotic stress and oxidative damage (Şimşek et al., 2024b). Furthermore, the increased
expression of stress-related genes, as seen in our experimental outcomes, mirrors the
molecular adaptations described by Tafreshi et al. (2021), who highlighted the upregulation
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of drought-responsive genes under controlled stress conditions induced by PEG
treatments. These findings underscore the importance of a multi-faceted approach to
understanding plant drought tolerance, integrating physiological and genetic insights. We
can better understand how plants manage water deficit by elucidating the specific
physiological pathways involved in drought response, as observed in our study and
supported by external literature. This comprehensive perspective is vital for developing
strategies to enhance crop resilience in the face of increasing drought incidence due to
climate change.

The research presented in our study and the cited literature collectively highlight the
growing integration of ML algorithms in plant tissue culture and their significant impact
on enhancing the efficiency and predictability of various in vitro processes. This
comparative discussion aims to explore the utilization of ML in plant tissue culture,
focusing on different studies and their unique contributions to the field.

Our study utilized a comprehensive approach involving tissue culture, rooting trials,
and acclimatization processes, emphasizing the genotype’s responses to drought stress. We
observed that different genotypes exhibited varying micropropagation rates under
increasing concentrations of PEG, with Black Fruited genotypes showing higher rates than
White Fruited ones. This aspect of genotype-specific responses is echoed in Rezaei et al.
(2023), where the unpredictable and genotype-dependent callogenesis in petunia was
addressed using ML. Both studies underscore the importance of genotype selection and
optimization in tissue culture, which ML algorithms can efficiently handle. The use of
different ML algorithms (MLP, GP, XGBoost, SVM, RF) in our study to model various
plant growth parameters showcases the versatility of ML in handling diverse aspects of
plant tissue culture. This versatility is similarly demonstrated in García-Pérez et al. (2020),
where artificial neural networks were applied to optimize the extraction of phenolic
compounds in Bryophyllum species. The diverse ML applications in both studies signify its
potential in a wide array of tissue culture processes. Kirtis, Aasim & Katırcı (2022) and
Aasim et al. (2022b) both emphasize the role of ML in optimizing in vitro regeneration
protocols, a theme that aligns well with our study. The use of ML to predict outcomes in
tissue culture, as seen in the successful regeneration of desi chickpea and common bean,
parallels our findings, where ML models efficiently predicted the micropropagation rates
and other growth parameters. Aasim et al. (2022b) and Jafari & Daneshvar (2023) further
expand on the utility of ML in plant tissue culture, focusing on hemp and Passiflora
caerulea, respectively. Both studies highlight the role of ML in optimizing germination and
regeneration protocols, resonating with our study’s emphasis on the predictive power of
ML in tissue culture. Şimşek et al. (2024a) and Jafari & Shahsavar (2020) demonstrate the
application of ML in enhancing the efficiency of micropropagation and rooting protocols
in lavender and modeling morphological responses of citrus to drought stress, respectively.
These studies, along with our own, illustrate the broad applicability of ML in various
aspects of plant tissue culture, from micropropagation to stress response modeling. In
conclusion, these studies’ collective insights reveal that ML is a powerful tool in plant tissue
culture, offering enhanced predictability, optimization, and efficiency in various processes.
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The ability of ML algorithms to handle complex datasets and provide precise predictions is
invaluable, particularly in genotype-specific responses and optimization of growth
conditions. The integration of ML in plant tissue culture research represents a significant
advancement in the field, paving the way for more controlled, efficient, and productive
cultivation practices.

Our study provides a foundation for further research into the response of myrtle
genotypes to drought stress, but several areas remain ripe for exploration. Future studies
could expand the scope by investigating the effects of other abiotic stressors, such as
salinity or temperature extremes, on myrtle’s physiological and genetic responses.
Integrating advanced ML models, such as deep learning or ensemble techniques, could
enhance our analyses’ accuracy and predictive power. Exploring the molecular
mechanisms underlying the observed genotype-specific responses, perhaps through
genomic or transcriptomic studies, could offer deeper insights into the resilience traits of
myrtle. Furthermore, comparative studies across different plant species could help identify
universal stress response mechanisms and contribute to broader agricultural and
ecological applications. Such interdisciplinary approaches will broaden our understanding
of myrtle’s adaptive capabilities and aid in developing robust strategies for cultivating
drought-resistant plant varieties in the face of climate change.

CONCLUSION
The investigation into the performance of superior myrtle genotypes under in vitro
drought conditions has provided valuable insights into the adaptive capabilities of these
plants. Our study has shown that myrtle genotypes respond differently to increasing
concentrations of polyethylene glycol, a surrogate for drought stress. Particularly, Black
Fruited genotypes exhibited higher resilience in terms of micropropagation rates
compared to their White Fruited counterparts. The application of machine learning
models has been instrumental in predicting and analyzing the performance of these
genotypes under stress. The models demonstrated a high degree of accuracy, indicating
their potential as reliable tools in the field of plant tissue culture and stress response
analysis. This approach enhances our understanding of genotype-specific responses to
environmental stresses and paves the way for more efficient and targeted cultivation
strategies. Overall, our findings underscore the importance of considering
genotype-specific traits in developing cultivation practices for myrtle, especially in the face
of increasing drought conditions due to climate change. The successful integration of
machine learning into this field offers a promising direction for future research and
application, potentially revolutionizing plant tissue culture and breeding strategies for
enhanced resilience against environmental stresses.
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