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ABSTRACT

The plant-specific INDETERMINATE DOMAIN (IDD) gene family is important for
plant growth and development. However, a comprehensive analysis of the IDD family
in orchids is limited. Based on the genome data of Phalaenopsis equestris, the IDD
gene family was identified and analyzed by bioinformatics methods in this study.
Ten putative P. equestris IDD genes (PeIDDs) were characterized and phylogenetically
classified into two groups according to their full amino acid sequences. Protein motifs
analysis revealed that overall structures of PeIDDs in the same group were relatively
conserved. Its promoter regions harbored a large number of responsive elements,
including light responsive, abiotic stress responsive elements, and plant hormone
cis-acting elements. The transcript level of PeIDD genes under cold and drought
conditions, and by exogenous auxin (NAA) and abscisic acid (ABA) treatments further
confirmed that most PeIDDs responded to various conditions and might play essential
roles under abiotic stresses and hormone responses. In addition, distinct expression
profiles in different tissues/organs suggested that PeIDDs might be involved in various
development processes. Furthermore, the prediction of protein-protein interactions
(PPIs) revealed some PeIDDs (PeIDD3 or PeIDD5) might function via cooperating
with chromatin remodeling factors. The results of this study provided a reference for
further understanding the function of PeIDDs.

Subjects Agricultural Science, Bioinformatics, Molecular Biology, Plant Science

Keywords IDD gene family, Expression profile, Phylogenetic analysis, Protein interaction,
Phalaenopsis equestris, Promoter analysis, Stress response, Hormone response, Transcription
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INTRODUCTION

Spatio-temporal specific expression of genes is the basis of cell differentiation in
multicellular organisms, in which transcription factors (TFs) play dominant roles

in controlling gene expression by recognizing and binding special cis-elements. The
INDETERMINATE DOMAIN (IDD) genes encode a plant-specific family of zinc finger
TFs, which is characterized by a conserved ID domain that consists of two C2H2 and
two C2HC fingers (Colasanti et al., 2006). IDD genes have been identified in many plants
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and are widely reported to involve in plant growth and development, and adaptation to
environment.

The identification and function analysis of IDD genes originated from crop and model
plant Arabidopsis thaliana. Sixteen, fifteen, and twenty-two IDD genes have been identified
in Arabidopsis, rice, and maize, respectively (Coelho et al., 2018; Feng et al., 2023; Zhang et
al., 2020). These IDD genes are involved in different developmental processes and stress
response. In root development, AtIDD3/MAGPIE (MAG) and AtIDD10/JACKDAW (JKD)
were reported to regulate tissue boundary formation by cooperating with SHR (SHORT-
ROOT) and SCR (SCARECROW) (Long et al., 2015; Ogasawara et al., 2011). OsIDD10 was
involved in the seminal root development of rice seedling via mediating N-linked metabolic
responses (Xuan et al., 2013). During seed formation process, AtfIDD1/ENHYDROUS
(ENY) regulated light and hormonal signal pathway and eventually promoted seed
germination (Feurtado et al., 2011). Duplicated IDD genes (ZmIDDveg9 and ZmIDD9)
encoded NKD (naked endosperm) proteins that were required for maize aleurone cell
fate and cell differentiation (Yi et al., 2015; Gontarek et al., 2016). To the leaf and shoot
development, AtIDD4/IMPERIAL EAGLE and other four AtIDD s (AtIDD5, AtIDDIO0,
AtIDDI1, and AtIDD14), as downstream genes of REV (REVOLUTA), involved in the
ad/abaxial regulatory network (Reinhart et al., 2013). OsIDD14/Loose Plant Architecturel
(LPAI), the ortholog gene of AtIDDI5, had distinct functions from AtIDD15 (Cui et
al., 2013; Liu et al., 2016). As a part of the complicated regulatory network, OsIDD14
affected the sedimentation rate of amyloplasts and shoot gravitropism of rice (Wu et al.,
2013). GA homeostasis and sugar metabolism are associated with flowering. AtIDD8
promoted flowering by activating the expression of two sucrose synthesis genes (SUSI
and SUS4) (Seo et al., 2011b). AtIDD2 (GAI-ASSOCIATED FACTORI, GAFI) encodes
a DELLA-Interacting protein. Overexpression of GAFI resulted in flowering earlier,
while gafl flowered slightly later than WT (wild type) under short-day conditions. The
GA-related phenotype of gafl suggested GA responsiveness was affected (Fukazawa et
al., 2014). The variations in sucrose and starch levels revealed the cause of an extreme
late-flowering phenotype of zmidl (Coneva et al., 2012). In addition, OsID1I, a rice ortholog
gene of ZmID1I, acted as a flowering promoter by regulating flowering-related gene
expression (Matsubara et al., 2008). For stress response, AtIDD14 generated two splice
variants (AtIDD14a and AtIDD14f). The functional AtIDD140 had DNA binding activity
and could promote starch degradation. AtIDD14f form was cold-induced produced and
bound with AtIDD14a to repress AtIDD14a function so as to help plants to tolerate
low temperature (Seo ef al., 2011a). Recent research suggested AtIDD14 also regulated
drought tolerance by interacting with bZIP-type ABFs/AREBs (Liu ef al., 2022). AtIDD4
was identified as a negative regulator of salt stress, and overexpression of AtIDD4 resulted
in hypersensitive to salt-stress (Rawat et al., 2023). ROC1 (regulator of CBF1), an IDD
protein of rice, was verified as a chilling tolerance regulator based on the cold sensitive
phenotype and lower level of CBF1I transcripts in rocl mutant (Dou et al., 2016). OsIDD12,
OsIDD13, and OsIDD14 could form a transcription complex to activate the expression
of MDPK (Malectin Domain Protein Kinase) to enhance resistance of ShB (Sheath blight )
(Cui et al., 2022).
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With the deepening of the research, IDD genes gained more and more attention and
had been explored in ornamental plants. In a comparative genomic analysis of the IDD
gene family in five Rosaceae species, 16 IDD genes were determined in Chinese white pear
(Pyrus bretschneideri) and most of PbIDD s have a high transcription level in productive
organs (Su et al., 2019). The comprehensive analysis of IDD genes in apple identified 20
putative IDD genes and these IDD genes responsed to various circumstances (Farn et al.,
2017). Peach (Prunus persica) has 14 IDD genes, and PpIDD4, PpIDD12, and PpIDD13
can interact with DELLALI, a vital factor in GA signaling pathway, to participate in GA
feedback regulation (Jiang et al., 2022).

Phalaenopsis equestris, known for its butterfly-shaped flowers and brilliant colors, is a
widely cultivated flowers and of great economic importance. Despite extensive studies of
IDD genes were under way, little is known about the features of PeIDD s. Due to the genome
sequence of P. equestris has emerged recently (Cai et al., 2015), the opportunity arises to
conduct the comprehensive study of the PeIDD family. In this study, 10 PeIDD s were
identified from P. equestris. Phylogenetic relationship, gene structure, protein structure
and gene expression profile of 10 PeIDD s were carried out. More importantly, we predicted
the interaction proteins of PeIDDs. The results will provide a certain theoretical basis for
further research on th functions of PeIDDs.

MATERIALS AND METHODS

Identification of IDDs in P. equestris and phylogenetic analysis

The P.equestris genome sequence and annotation file were download from the
National Center for Biotechnology Information (NCBI, https:/iwww.ncbi.nlm.nih.gov/
genome/term=txid78828[orgn|&shouldredirect=false). AtIDD and OsIDD proteins
were downloaded from The Arabidopsis Information Resource (TAIR) database
(https:/www.arabidopsis.org) and The Rice Genome Annotation Project Database and
Resource (http:/rice.uga.eduindex.shtml) (Table S1), respectively. To identifiy potential
IDDs in P. equestris, 16 AtIDD and 15 OsIDD proteins were used as query sequences in a
BLAST search with default parameters in TBtools v1.120 software (Chen et al., 2020). In
addition, all candidate PeIDD proteins were verified according to the method of previous
report (Jiang et al., 2022) to confirm IDD domains. Incomplete and redundant protein
sequences were discarded manually. Subsequently, physicochemical properties (PIs, MWs)
were predicted through the ExPASy website (https:/iwvww.expasy.org)).

Multiple sequence alignment of IDD proteins from Oryza sativa, A. thaliana and P.
equestris was done using ClustalX 2.0 software (Larkin et al., 2007). The sequence alignment
results were used to construct the neighbor-joining (NJ) tree by MEGA 7.0 software
(Kumar, Stecher & Tamura, 2016), with the following parameters: Poisson correction,
complete deletion, and bootstrap (1,000 replicates).

Gene structures analysis, conserved motifs prediction, and
cis-element analysis of the promoters

The gene structures of PeIDDs were determined by DNA and cDNA sequence alignment.
The potentially conserved motifs of PeIDD proteins, including ID domain, were determined
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by the online Multiple Expectation for Motif Elicitation (MEME, http:/meme-suite.org),
(Bailey et al., 2009), using the following parameter settings: the maximum number of
motifs, 10; the minimum width of motifs, 5; the maximum width of motifs, 20; and
other default parameters. The promoter sequences of PeIDDs were harvested from
NCBI website and its cis-acting elements were predicted using the PlantCARE database
(http:/bioinformatics.psb.ugent.beivebtools/plantcarehtml)) (Lescot et al., 2002). All gene
structures, conserved motifs, and cis-elements were visualized by running the IBS version
1.0.2 software (Liu et al., 2015).

Protein interaction prediction

The online STRING platform (https:/string-db.org) (Szklarczyk et al., 2017) was used to
predict the protein-protein network between PeIDDs and other proteins, using Dendrobium
catenatum as reference organism, with the parameter: predicted interacting protein score
above 0.4.

Plant materials, RNA extraction and qRT-PCR

Fifteen P. equestris was collected from Lufa Orchid (Taiwan, China) and placed in the
greenhouse of Jingchu University of Technology. Roots, leaves, flowers, and floral
stalks were sampled and immediately stored at —80 °C. For plant hormone and
stress treatment, the plants were exposed to 0.2 M ABA, 107°M NAA, 20% PEG6000,
and 4 °C. Total RNA from different tissues was isolated by TransZol (ET101-01-V2;
TransGen Biotech Co., Ltd., Beijing, China) reagent, and detected by NANODROP
1,000 spectrophotometer to determine the extraction quality, then reversed transcribed
into cDNA with HiScript II Q RT SuperMix for qPCR (+gDNA wiper) (R223-01;
Vazyme, Hangzhou, China) following the manufacturer’s instructions. The cDNA

was diluted to 100 ng/pL and used as a template for RT-qPCR. Specific primers for

10 PeIDD genes with amplified size ranging from 170 to 250 bp were designed using
online programs (https:/sg.idtdna.com/scitools/Applications/Real TimePCR/) (Table S2).
The RT-qPCR was performed on the QuantStudio 6 Flexreal-time PCR instrument
(Applied Biosystems, Foster City, CA, USA). PeActin was used as an internal reference (F:
GCTGAGGGAGGCAAGGATAGAT; R: GCACCCAGCAGCATGAAGATC) to standardize
gene expression levels, and each cDNA was subjected to three biological replicates. The
PCR mixture (10 pL) included 5 pL Taq Pro Universal SYBR qPCR Master Mix (Q712-02;
Vazyme, Hangzhou, China), 10 mM of each primer, 100 ng cDNA template, and nuclease-
free water. The PCR program was performed as follows: 95 °C for 10s; 40 cycles of 95 °C
for 55, 60 °C for 40 s. Relative expression values were calculated using the 2~ AACt method
(Livak & Schmittgen, 2001) and visualized by GraphPad Prism 8.0.2.

RESULTS

Genome-wide identification and characterization of PelDD gene
family

Using 16 AtIDD and 15 OsIDD protein sequences as the queries, 12 PeIDD proteins were
initially identified by BLAST searches. Examined by ID domains, ten proteins were finally
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confirmed as PeIDD family members. According to the order distribution on the scaffolds
(Fig. S1), these genes werer named PeIDD1-PeIDD10. The analysis of these PeIDD protein
sequences (Table S3) revealed that the physicochemical properties of each member were

different (Table S4). The amino acid lengths of the PeIDDs ranged from 197 aa (PeIDD3)
to 480 aa (PeIDD1). The molecular weight (MW) ranged from 22,098.33 Da (PeIDD3) to
50,799.25 Da (PeIDD1). The isoelectric point (pI) of PeIDDs ranged from 8.71 (PeIDD10)
t0 9.56 (PeIDD3). The instability index spanned from 37.79 (PeIDDS8) to 89.71 (PeIDD3).

Phylogenetic analysis of PelDDs

To better understand the phylogenetic relationship of IDDs in A. thaliana (16 members),
O. sativa (15 members) and P. equestris (10 members), a neighbor-joining (NJ) tree of 41
IDD proteins was constructed based on their full length amino acid sequences. All IDD
proteins were clearly divided into two groups (Iand IT) (Fig. 1). Group I had a large number
of member, with 13 AtIDDs, 12 OsIDDs, and 8 PeIDDs, accounting for 80.5% of the total
IDD proteins. While group II only harbored 8 IDD proteins (three AtIDDs, three OsIDDs,
and two PeIDDs). On the basis of the bootstrap values and topological structure, group
I can be divided into four subgroups. Interesting, subgroup I-2 were solely composed of
AtIDDs and OsIDDs. In other subgroups of group I (subgroup I-1, I-3, and I-4), most
PeIDDs were clustered with OsIDDs firstly, suggesting that PeIDDs might have a close
relationship to OsIDDs.

Gene structure and motif composition of PelIDD gene family

To gain more insight into the potential relationship about gene structure-function

and protein structure-function, gene structure and motif prediction of PeIDDs were
determined. For the exon-intron structures, most PeIDDs displayed three exons, whereas
PeIDD1I and PeIDD7 had four and two exons, respectively (Fig. 2A). The length of exons
was similar, while the intron lengths varied greatly (Fig. 2A). In particular, PeIDD6 and
PeIDD7 had exceptionally long introns, which was similar to the KNOX gene structure of
orchids and might be unique to Orchidaceae (Zhang et al., 2022). In P.equestris genome,
half of PeIDDs (PeIDD3, PeIDDA4, PeIDD6, PeIDD8 and PeIDD10) had no 5'-UTR, 3'-UTR,
and both UTRs (5'-UTR and 3’-UTR) (Fig. 2A). This suggested that they were likely the
UTR-less IDD genes in P. equestris.

Subsequently, MEME (http:/imeme-suite.org) was used to predict the putative motifs
shared among PeIDD proteins. In total, 8 types of motifs were observed (Fig. 2B, Fig. S2).
Motif 2, 3, 4, and 5 were widespread at the N-terminus of all PeIDDs. Motif 2 encoded
a nuclear localization signal (NLS), indicating that all PeIDDs are located in the nucleus.
Motif 3, 4, and 5 constituted the conserved ID domain, which was the unique structure of
IDDs. Motif 1 was specific to the PeIDDs (PeIDD2, PeIDD4, and PeIDD9) of subgroup
I-1 (Fig. 1). Motif 6, following the ID domain, only existed in PeIDD1, PeIDD2, PelDD4,
and PeIDD9. Motif 7 (“MSATALLQKAA” domain) and motif 8 (“TRDFLG” domain)
that were verified to act in protein-protein interactions (Colasanti et al., 2006) were found
in the C terminus of most PeIDDs. Because motifs are associated with protein interactions
or binding to target genes, differences in motif composition suggest that these PeIDDs may
function in different mechanisms.
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Figure 1 Phylogeny of IDD homologs in Phalaenopsis equestris (Pe,red diamond), Oryza sativa (Os,
blue circles), and Arabidopsis thaliana (At, yellow squares). Cluster X and MEGA 7.0 were used to align
the protein sequences and generate the neighbor-joining (NJ) tree, respectively. Bootstrap values (1,000

replicates) more than 50% were shown on branches.

Full-size Gal DOI: 10.7717/peerj.18073/fig-1

Cis-regulatory elements analysis of PelDD genes
In order to a space between the two words in the promoter regions of PeIDDs, 2,000 bp
sequences upstream of transcription start site of PeIDDs were retrieved as the promoters
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Figure 2 Gene structures and conserved motifs in PeIDDs. (A) Gene structures were visualized using
IBS1.0.2. UTRs and exons were represented by green and red boxes, respectively. (B) Conserved motifs
were identified using the online MEME program and represented by different colored boxes. Motif se-
quences were shown in Fig. S2.

Full-size & DOI: 10.7717/peerj.18073/fig-2

(Table S5), and then submitted them to the PlantCARE database. A large number of cis-
elements were obtained and could be classified into three types: growth and development-
related, phytohormone responsive, and abiotic stress responsive (Table S6). Growth
and development-related elements consisted of LRE (light responsive element), SSE
(seed-specific regulation element), MEE (meristem expression element), PEE (palisade
mesophyll cells expression element), and EEE (endosperm expression element). Hormone
responsive elements included ABA, GA, Auxin, SA, and MeJA. Abiotic stresses responsive
elements were low-temperature responsive element and drought-related element (Fig. 3).
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Among these growth and development-related cis-elements, LREs were the most
frequently occurring responsive elements, suggesting that PeIDDs might play important
roles in P. equestris light morphogenesis. Plant hormones are also essential to plant growth
and development. ABA-responsive elements (ABRE) and Auxin-responsive elements
(TGA-element, AuxRR-core) were observed in nine PeIDDs. SA responsive elements
(TCA-element) and MeJA responsive elements (TGACG-motif, CGTCA-motif) existed in
seven PeIDDs. GA responsive elements (P-box, TATC-box, GRAE-motif) were found in
five PeIDDs. The widespread distribution of hormone response elements in the promoter
indicated that PeIDDs might be widely involved in hormone signal pathway.

The adaptability to the environment is a focus in plant breeding. Two cis-elements
related to abiotic stress, namely, drought response element (LTR) and low temperature
response element (DE), appeared in the promoter of PeIDDs. DE existed in seven PeIDDs,
and LTR was present in six PeIDDs. These results suggested that PeIDDs might play a vital
role in stress adaptation.

Expression patterns of PelDD genes in different tissues

The tissue-specific expression patterns of the PeIDD gene family were investigated in
four tissues/organs, including root, flower, leaf, and floral stalk. The results revealed that
the PeIDDs exhibited different expression level in these tissues. Seven PeIDDs (PelDD2,
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PeIDD4, PeIDD5, PeIDD6, PeIDD7, PeIDD9, and PeIDD10) showed high transcripts in
vegetative tissues (root and leaf), but relatively low expression levels in the reproductive
tissue (flower and floral stalk) (Fig. 4). Among them, PeIDD5 was predominantly expressed
inleaf (Fig. 4), hinting PeIDD5 might participate in leaf development. PeIDD9 and PeIDD10
were highly expressed in the root, especially PeIDD10 was expressed specifically in the root
and barely detected in other tissues (Fig. 4), indicating PeIDD9 and PeIDD10 might regulate
root development. The transcript levels of PeIDD1, PeIDD3, and PeIDD8 displayed higher
expression in floral stalk and flower (Fig. 4), suggesting they might be involved in flower
development.

Response of PelDD genes to plant hormones and abiotic stress
Because of lots of hormone and stress responsive elements were found in the promoter
of PeIDDs, the expression patterns of PeIDDs under hormones (ABA and NAA) and
stresses (drought and cold) during the different time courses (0 h, 1 h, 5 h, and 10 h)
were analyzed by RT-qPCR. Under 0.2 M ABA treatment, seven PeIDDs (except PeIDD3,
PeIDD7, and PeIDD10) expression levels reached their peaks after 1 h or 5 h. PeIDD7 was
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of PeActin transcripts. The SDs (standard deviations) of the means of three independent biological repli-
cates were denoted by error bars. Statistically significant differences between untreated and treatment
groups were analyzed by an independent Student’s ¢-tests and shown by asterisks (* P < 0.05).
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induced at 1 h and peaked after 10 h, while PeIDD3 showed no significant changes and the
expression of PeIDD10 was inhibited (Fig. 5). After NAA treatment 1 h, PeIDD1, PeIDD4
and PeIDD?9 transcripts had a significant decline compared with the untreated group, while
the expression levels of PeIDD2, PeIDD5, PeIDD6, and PeIDD7 showed an over two-fold
increase. PeIDD8 was obviously upregulated after NAA treatment 5 h (Fig. 5).

Regardless of whether PeIDDs had drought responsive elements or not (Fig. 3, Table 54),
all PeIDDs responded to drought at different time points. Nine PeIDDs showed at least
two-fold increase of transcripts, while PeIDD4 exhibited down-regulation of transcript
level. The results revealed that PeIDDs might be widely involved in drought response.
Under cold treatment, these results were related to the number of LTRs in the promoter
of PeIDDs (Fig. 3, Table S4). For example, four PeIDDs (PeIDD7, PeIDDS8, PeIDD9, and
PeIDD10) contained two or three LTRs and showed obvious induced expression (Fig. 6),
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Figure 6 The expression patterns PeIDDs under drought and cold stress. PeIDD transcript levels were
determined by RT-qPCR under different abiotic stresses. Grey, red and blue bars represented untreated,
drougt, and cold stress groups, respectively. The PCR signals were normalized with those of PeActin tran-
scripts. The SDs (standard deviations) of the means of three independent biological replicates were de-
noted by error bars. Statistically significant differences between untreated and treatment groups were ana-
lyzed by an independent Student’s ¢-tests and shown by asterisks (*P < 0.05).
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among which the expression of PeIDD 8 increased more than 8-fold after 1 h of treatment.
PeIDD?2 and PeIDD3 had one LTR and exhibited a slight increase in expression. However,
PeIDD1, PeIDD4, PeIDD5, and PeIDD6 had no LTR elements, their expression level was
down-regulated after cold stress (Fig. 6), which suggested that they might be regulated
indirectly or had other unknown cold responsive elements.

Prediction of protein interaction network of PelDD proteins

Although the function of PeIDDs has not been reported, understanding the protein—protein
interaction (PPI) network may help us understand their regulatory mechanism. Based on
the prediction results from the STRING website (Table S5), the interaction network was
constructed by Cytoscape software. The results showed PeIDDs could interact with 21
proteins, including TFs (5), chromatin remodeling factors (4), enzymes (2), and other
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proteins (10) (Fig. 7, Table S5). Among TFs, ERF021 and TINY are ethylene responsive
factors (Xie et al., 2019). PeIDD2 and PeIDD10 could interact with ERF021 and PelDD4
with TINY, suggesting that the three PeIDDs might be integrated into the ethylene response
pathway. WRKY family is known to involve in biotic and abiotic stress response (Warni
et al., 2021; Khoso et al., 2022). WRKY24 was predicted to interact with PeIDD4 and
PeIDD9Y, indicating PeIDD4 and PeIDD9 might participate in stress adaptation. PTI5

is a pathogenesis-related transcriptional activator (Wang et al., 2021). PeIDD5 might be
involved in plant immune response by interacting with PTI5. Among chromatin remodeling
factors, SWI/SNF (SWITCH/SUCROSE NONFERMENTING) was reported to regulate
chromatin structure (Bieluszewski et al., 2023). PeIDD3 and PeIDD5 were predicted to act
with SWI3 subunit, indicating PeIDD3 and PeIDD5 might regulate transcript levels of
their target genes by recruiting chromatin remodeling factors. The interaction of PeIDD8
to SMC3 (structural maintenance of chromosomes protein 3) indicated that PeIDD8
might help to stabilize chromosome structure. ATP-dependent helicase BRM is one of the
enzymes that PeIDDs bound. Its interaction protein PeIDD5 might help it locate to specific
chromatin regions. Dehydration-responsive element-binding protein (DREB) and the
SHR-SCR (SHORTROOT-SCARECROW) complex stood out among the other proteins.
PeIDD2, PelDD4, PeIDD?9, and PeIDD10 could interact with DREB, indicating that they
could participate in drought responses. SHR-SCR complex was reported to involve in root
development (Shaar-Moshe ¢ Brady, 2023), suggesting that PeIDD6 and PeIDD7 might
be in a common regulatory pathway with it. These results fully demonstrated the function
diversity of PeIDDs and the complexity of the regulatory pathways.

DISCUSSION

P. equestris is an ornamental plant and known for its elegant appearance and extended
longevity. A comprehensive understanding of P. equestris IDD gene family, and making
use of them, will help to enhance the growth and ornamental value of P. equestris. Here,
a total of ten PeIDD genes were identified in the P. equestris genome, their expression
profiles in different tissues, under hormone and stress treatment, and interaction proteins
information were determined.

According to protein sequence similarity, all PeIDDs identified in this study were
classified into two groups (group I and II) (Fig. 1), which was consistent with the
classification of IDD proteins in rice (Zhang et al., 2020), Phyllostachys edulis (Guo
etal.,, 2022), and Arabidopsis (Coelho et al., 2018). These IDD proteins in different
groups/subgroups might have been functionally diverged and involved in different
biological processes. In subgroup I-2, AtIDD4, AtIDD6 and OsIDD10 were related to
root development (Moreno-Risueno et al., 2015; Yoshida et al., 2014; Xuan et al., 2013). In
subgroup I-3, OsID1 and OsIDD1 are flowering regulator (Wu et al., 2008; Deng et al.,
2017). Among PeIDD proteins in the same subgroup, PeIDD1 clustered with OsIDD1
firstly and PeIDD7 with OsID1 (Fig. 1). Combined higher expression level of PeIDDI in
flower (Fig. 4), we speculated that PeIDDI might be involved in flowering of P. equestris.
As flowering factors controlling the phase transition from vegetative to reproductive phase,
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Figure 7 Protein—protein interaction network of PeIDDs. Orange, purple, and green circles represented
PeIDDs, epigenetic factors (SWI3) and structural maintenance of chromosomes (SMC3), and other pro-
teins, respectively. The information of interacting proteins was shown in Table S7.
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OsID1 and OsIDD1 proteins differ in motif composition. OsIDD1 had motif 7 at the C-
terminus, OsID1 did not (Zhang et al., 2020). This indicated that there might be differences
in regulating rice flowering mechanism between OsID1 and OsIDD1. PeIDD1 also had
motif 7 (Fig. 2), suggesting PeIDD1 might have similar mechanism of promoting flowering
to OsIDD1. Taken together, PeIDD1 might be a potential target gene for regulating flower
development in P. equestris, which needs further experiments to verify its function.

The cis-elements in the promoter determined the response of genes to environmental
cues. The promoter of PeIDD genes contained a variety of cis-acting elements (Fig. 4,
Table 54), which suggested that PeIDDs might function in various physiological processes
and response to different signals. Hence, the expression level of all PeIDD genes to plant
hormones and abiotic stresses were investigated by RT-qPCR (Figs. 5 and 6) and are mainly
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consistent with the cis-elements. Interesting, although not all PeIDD genes have drought-
responsive elements, all PeIDDs responded to drought stress, whether their expression
levels increased or decreased (Fig. 6). This indicated PeIDDs directly or indirectly involved
in drought response, consistent with previous reports that IDDs might be related to the
formation of Kranz ring in C4 plants and important in drought resistance (Coelho et al.,
2018). Among PeIDD genes, PeIDD8 had the most cold-responsive elements (Table 54)
and showed a rapid response to cold stress, with a sharp transcript level increase (Fig. 6).
Low temperature seriously inhibits the growth of P. equestris. Based on the response of
PeIDDS8 to cold stress, PeIDD8 might act as an effective regulators to improve cold stress
resistance/tolerance in P. equestris.

PPI prediction have been thought as an important content in gene family analysis,
because it can help us to understand the molecular mechanism of protein function.
In Brassica napus, Wang et al. (2018) predicted 38 proteins interacted with BnWOXs,
including peptides, TFs, and other proteins. In rice, Zhang et al. (2020) predicted histone
modifiers could interact with OsIDDs which indicated that OsIDDs might regulate
the expression of downstream target genes through changing the chromatin structure.
Interestingly, PPI analysis revealed that some PeIDDs (PeIDD3 and PeIDD5) could
cooperate with chromatin remodeling factors (Fig. 7). Both chromatin remodeling
factors and histone modifiers are epigenetic modifiers with the ability to alter chromatin
structure. Consequently, interaction with epigenetic modifiers to regulate the expression
of downstream genes might be a common regulation mode of IDDs.

CONCLUSIONS

In this study, ten PeIDDs were characterized and classified into two groups based on
protein sequence and conserved motifs at the C-terminal. Expression profiles of PeIDDs
under plant hormones and abiotic stresses suggested that PeIDDs might widely participate
in hormone/abiotic stress signaling pathway. Importantly, PPIs analysis revealed some
PeIDDs might interact with chromatin remodeling factors to modulate target genes
expression. Taken together, our studies provided a theoretical basis for further analysis of
the molecular mechanism of PeIDDs in P. equestris.
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