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ABSTRACT
Background. As a powerful tool, bioinformatics analysis is playing an increasingly
important role inmany fields. Osteogenic differentiation is a complex biological process
involving the fine regulation of numerous genes and signaling pathways.
Method. Osteogenic differentiation-related genes are collected from the online
databases. Then, we proposed two indexes Jaccard similarity and Sorensen-Dice
similarity to measure the topological relevance of genes in the human PPI network.
Furthermore, we selected three pathways involving osteoblast-related transcription
factors, osteoblast differentiation, and RUNX2 regulation of osteoblast differentiation
for investigation. Subsequently, we performed functional a enrichment analysis of these
top-ranked genes to check whether these candidate genes identified by similarity-
based metrics are enriched in some specific biological functions and states. we
performed a permutation test to investigate the similarity score with four well-known
osteogenic differentiation-related pathways including hedgehog signaling pathway,
BMP signaling, ERK pathway, and Wnt signaling pathway to check whether these
osteogenic differentiation-related pathways can be regulated by FOXA1. Lentiviral
transfection was used to knockdown and overexpress gene FOXA1 in human bone
mesenchymal stem cells (hBMSCs). Alkaline phosphatase (ALP) staining and Alizarin
Red staining (ARS) were employed to investigate osteogenic differentiation of hBMSCs.
Result. After data collection, human PPI network involving 19,344 genes is included
in our analysis. After simplifying, we used Jaccard and Sorensen-Dice similarity to
identify osteogenic differentiation-related genes and integrated into a final similarity
matrix. Furthermore, we calculated the sum of similarity scores with these osteogenic
differentiation-related genes for each gene and found 337 osteogenic differentiation-
related genes are involved in our analysis. We selected three pathways involving
osteoblast-related transcription factors, osteoblast differentiation, and RUNX2 regula-
tion of osteoblast differentiation for investigation andperformed functional enrichment
analysis of these top-ranked 50 genes. The results collectively demonstrate that these
candidate genes can indeed capture osteogenic differentiation-related features of
hBSMCs. According to the novel analyzing method, we found that these four pathways
have significantly higher similarity with FOXA1 than random noise. Moreover,
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knockdown FOXA1 significantly increased the ALP activity and mineral deposits.
Furthermore, overexpression of FOXA1 dramatically decreased the ALP activity and
mineral deposits.
Conclusion. In summary, this study showed that FOXA1 is a novel significant
osteogenic differentiation-related transcription factor. Moreover, our study has tightly
integrated bioinformatics analysis with biological knowledge, and developed a novel
method for analyzing the osteogenic differentiation regulatory network.

Subjects Bioinformatics, Cell Biology, Computational Biology, Orthopedics, Data Mining and
Machine Learning
Keywords Bioinformatics, Osteogenic differentiation, hBMSCs, FOXA1, Human PPI network

INTRODUCTION
The widespread application of artificial intelligence is changing the paradigm of
biomedical research. Different from traditional hypothesis-based research methods,
artificial intelligence methods can automatically discover potential patterns and laws from
data, providing new perspectives for revealing biological mechanisms (Vora et al., 2023).
Bioinformatics analysis is a computer science method of learning and making predictions
from data through algorithms and statistical models (Saeys, Inza & Larrañaga, 2007; Xue et
al., 2024). The rapid development of bioinformatics analysis technology has brought new
opportunities to biomedical research (Sharma et al., 2021; Sharma et al., 2019; Holtsträter
et al., 2020). These methods, such as Similarity-based metric analysis, can extract valuable
information from a large amount of complex biological data to provide support for disease
diagnosis, prognosis prediction, treatment strategy optimization, etc. (Tian et al., 2024;
Jensen & Nielsen, 2024). With the rapid accumulation of biological big data, how to use
bioinformatics analysis to effectively analyze and utilize these data has become a key issue
that urgently needs to be solved. This is of great significance for accelerating the progress
of biomedical research and promoting the realization of precision medicine (Halder et
al., 2024). Currently, there are some articles which combine bioinformatics analysis and
experiments to study osteogenic differentiation (Yu et al., 2024; Zhang et al., 2024; Feng et
al., 2024).

Osteogenic differentiation is an extremely complex biological process involving multiple
cell types and regulatory mechanisms (Valenti, Dalle Carbonare & Mottes, 2016). This
process begins with the differentiation of mesenchymal stem cells into osteoblasts, and
goes through a series of finely regulated stages, ultimately forming functional bone tissue
(Infante & Rodríguez, 2018). The regulatory mechanism of osteogenic differentiation
involves the fine coordination of various cytokines, transcription factors, and signaling
pathways (Chan et al., 2021). Among them, Wnt, BMP, Hedgehog and other signaling
pathways play key roles in the proliferation, differentiation and maturation of bone cells
(Zhou et al., 2022; Hojo, Ohba & Chung, 2015). In addition, transcription factors such
as Runx2 and Osterix are major regulators of osteogenic differentiation (Valenti, Dalle
Carbonare & Mottes, 2016; Li et al., 2020). Exploring key osteogenic differentiation factors
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and understanding the molecular mechanisms of osteogenic differentiation not only help
to deeply understand the biological process of bone development, but also provide an
important theoretical basis for the treatment of various bone diseases such as osteoporosis
and fractures (Xu et al., 2023).

FOXA1 is a member of the FOX family, commonly known as hepatocyte nuclear factor
3 α. It regulates cell proliferation, development, differentiation, metabolism, aging, and
other physiological functions (Yang & Yu, 2015; Bernardo & Keri, 2012). It can specifically
bind to cis-acting elements in the promoter region of target genes, regulating downstream
gene expression and exerting biological functions. However, its involvement in stem cell
osteogenic differentiation is not well defined (Sunkel et al., 2016). Recent research has
discovered that the FOX transcription factor family is linked to bone metabolism and
a variety of bone illnesses, including osteoporosis, osteoarthritis, rheumatoid arthritis,
intervertebral disc degeneration and bone malignancies (Xu et al., 2021; Ye et al., 2018).

In this study, we used bioinformatics analysis to develop a novel osteogenic
differentiation regulatory network analysis model, aiming to automatically mine the
core regulatory genes of this process from the database. In addition, we found the novel
osteogenic-related gene FOXA1 in BMSCs.

METHOD
Data collection
The human PPI network including 19,344 genes is downloaded from the STRING database
(Szklarczyk et al., 2016). It is then simplified by removing multiple edges and self-loops.
Osteogenic differentiation-related genes are collected from online databases including
GO, KEGG, BIOCARTA, PID, REACTOME, and WikiPathways. Among these databases,
osteogenic differentiation-related gene sets or pathways are first retrieved using the keyword
osteoblast. As a result, 10 osteogenic differentiation-related pathways including 337 unique
genes are collected in our analysis. To determine the interaction between FOXA1 and
osteogenic differentiation, four signaling pathways including hedgehog signaling pathway,
BMP signaling pathway, ERK pathway, and Wnt signaling that have widely been studied to
be associated with osteogenic differentiation are retrieved from The Molecular Signatures
Databases (MSigDB) (Subramanian et al., 2005).

Construction of similarity matrix between different genes
To calculate the similaritymatrix between genes, we proposed two indexes Jaccard similarity
and Sorensen-Dice similarity to measure the topological relevance of genes in the human
PPI network. Given a graph G(V ,E), Jaccard similarity between any two vertexes can be
defined as the following formula:

J (A,B)=
|N (A)∩N (B)|
|N (A)∪N (B)|

(1)

whereN (A) is the neighbors of vertex A andN (B) is the neighbors of vertex B. It calculates
the proportion of co-neighbors among all neighbors of vertexes A and B in which a big
similarity score indicates significant overlap of neighbors. In that way, the topological
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similarity between any two genes can be caught and extracted by evaluating the overlap of
co-neighbors.

Additionally, another similarity-based index Sorensen-Dice similarity is carried out to
measure the topological similarity of genes which can be defined as:

SI (A,B)=
2|N (A)∩N (B)|
|N (A)|+|N (B)|

. (2)

Similar with Jaccard similarity, Sorensen-Dice similarity can utilize and calculate the
topological similarity of genes by evaluating the topological overlap of neighbors. But it is
normalized by dividing the total neighbors.

After evaluating the topological similarity of genes in the human PPI network based on
Jaccard similarity and Sorensen-Dice similarity, these two indexes are then integrated them
into a final similarity matrix which is defined as:

S(A,B)=
J (A,B)+SI (A,B)

2
. (3)

It takes into consideration both Jaccard similarity and Sorensen-Dice similarity and
calculates the average similarity which indicates the affinity of genes. This similarity matrix
is then used for osteo-specific scoring in the following analysis. All of these analyses are
conducted using the igraph R package.

Functional enrichment analysis
To check whether these candidate genes identified by similarity index are enriched in
some specific biological functions and states, we performed functional enrichment analysis
of these genes in the GO and KEGG databases separately. We set 0.01 as the statistically
significant threshold for BH-adjusted p-value. Pathways with BH-adjusted p-value less than
0.01 are considered to be statistically significant and presented by these candidate genes. GO
enrichment analysis is performed in three different categories including biological process,
cellular component, and molecular function. All of these analyses including functional
enrichment analysis and visualization are implemented using clusterProfiler and enrichplot
R packages (Yu et al., 2012).

Permutation test
To check whether these osteogenic differentiation-related pathways can be regulated by
FOXA1, we performed a permutation test to investigate the similarity score with four
well-known osteogenic differentiation-related pathways including hedgehog signaling
pathway, BMP signaling, ERK pathway, and Wnt signaling pathway. As a reference, we
select 50 genes randomly from the whole gene list to calculate the average similarity score
with FOXA1. This sampling process is repeated 10,000 times. Furthermore, the interactions
of FOXA1 with these four pathways are also evaluated by averaging the similarity score with
these genes involved in the osteogenic pathway. The similarity score between osteogenic
differentiation-related pathways and those randomly selected gene sets are then compared
to determinewhether FOXA1 is significantly associatedwith these pathways which indicates
a potential regulation mechanism during osteogenic differentiation.
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Cell culture and reagents
Cyagen Biosciences supplied hBMSCs (human bone mesenchymal stem cells, product
number: HUXMA-01001, Cyagen Biosciences, Guangzhou, China), which may develop
into osteoblasts, chondrocytes, and adipocytes under certain inductive circumstances.
Adherent hBMSCs were cultured in culture flasks in a specific complete growth medium
(HUXMA-90011; Cyagen Biosciences, Inc., Guangzhou, China) in a cell incubator at 37 ◦

C with 5% CO2 and passaged at around 80–90% confluence. Cells from passages two
through six were utilized in future investigations.

Lentiviral packaging and cell infection
Obio Technology (Shanghai, China) provided the hBMSCs with a lentiviral package
that included lentiviral particles to overexpress (FOXA1 overexpress group, OE) and
overexpress control particles (FOXA1 overexpress negative control group, OE-NC), knock
down FOXA1 (FOXA1 knockdown group, KD), and knockdown control particles. When
hBMSCs achieved 30–50% confluence, lentiviral particles containing 5 ug/ml polybrene
were introduced to the growing medium per the manufacturer’s instructions.

ALP staining and quantitation
Cells grown in osteogenic induction media for 5 days in 24-well plates were washed three
times with phosphate-buffered saline, then fixed with 4% paraformaldehyde (BOSTER,
Wuhan, China) for 30 min at room temperature. The cells were stained with a BCIP/NBT
ALP colour development kit (Beyotime). To evaluate ALP activity, an ALP activity assay
(BOSTER, Wuhan, China) was used in accordance with product instructions.

Alizarin Red S staining and quantitation
HBMSCs were cultivated in osteogenic induction media for 16 days after being passaged
on 24-well plates. The cells were fixed in 4% paraformaldehyde (BOSTER, Wuhan, China)
for 30 min at room temperature after being washed three times with PBS. Alizarin Red S
solution (Cyagen Biosciences, Guangzhou, China)) was then added, and incubated at room
temperature for 15 min. ARS stain was incubated with 10% cetylpyridinium chloride for
1 h at room temperature, then the solutions were collected, plated on a 96-well plate and
measured at 560 nmwith a microplate reader (ELX808; BioTek). The data were normalised
to the control group.

Statistical analysis
All statistical analyses were performed using GraphPad Prism v.7.0 (GraphPad Software,
La Jolla, CA, USA). All experiments were done at least three times. The data is shown as the
mean ± SD. When comparing two groups, statistical significance was established using a
two-tailed Student’s t -test, and when comparing more than two groups, one-way ANOVA
followed by Tukey’s post-hoc test was used. A p-value <0.05 was used to signify statistical
significance.
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RESULT
Similarity-based metric identifies osteogenic differentiation-related
genes
To identify osteogenic differentiation-related genes, we performed similarity-based analysis
to measure the topological relevance of genes involved in the human PPI network. It can be
divided mainly into three steps: data collection, similarity measurement, and osteo-specific
scoring. In the first step, human PPI network involving 19,344 genes is included in our
analysis which then simplified by removing multiple edges and self-loops (Fig. 1B).
Additionally, osteogenic differentiation-related genes are retrieved from published
databases including GO, KEGG, BIOCARTA, PID, REACTOME, and WikiPathways
(Fig. 1C). These genes are then used to extract osteogenesis-related features and grade
genes into different levels. In the second step, we proposed two indexes Jaccard similarity
and Sorensen-Dice similarity analysis to evaluate the topological similarity of genes in
human PPI network (Adamic & Adar, 2003) (Fig. 1A). These two similarity indexes mainly
concentrate on the overlap of neighbors of vertex A and B and measure the proportion of
co-neighbors to evaluate the affinity of genes. After evaluating the similarity of genes using
Jaccard and Sorensen-Dice similarity, they are then integrated into a final similarity matrix
that presents the topological relevance of genes in human PPI network. In the third step,
we mainly focus on these osteogenic differentiation-related genes and check whether some
genes are significantly associated with these osteo-specific genes. We calculated the sum of
similarity scores with these osteogenic differentiation-related genes for each gene which is
then used to rank genes into different orders (Fig. 1D). This ranked gene list with osteo-
specific score has potential in identification of osteogenic differentiation-related genes. We
note that these genes with larger osteo-specific scores are more likely to participate in the
regulation of osteogenic differentiation-related activity than other genes.

Reliable of these candidate genes in regulating osteogenic
differentiation of hBMSCs
A total of 337 osteogenic differentiation-related genes are involved in our analysis to grade
genes into different levels. All of these genes are retrieved from osteogenic differentiation-
related pathways. But whether these genes contribute equally to the osteo prioritization of
genes is unclear. To identify these significant determinants of osteogenic differentiation-
related genes, we selected three pathways involving osteoblast-related transcription
factors, osteoblast differentiation, and RUNX2 regulation of osteoblast differentiation for
investigation. We found that RUNX2, CTNNB1, JUN, and FOS are significant regulators
of transcription factors (Fig. 2A). Analysis of the osteoblast differentiation pathway shows
that BGLAP, SPP1, HOX,HGF, IGF1, BMP2, BMP4, SMAD3, andNOTCH1 are significant
regulators (Fig. 2B). Analysis of RUNX2 regulation of osteoblast differentiation pathway
shows that RUNX2, BGLAP, COL1A1, SRC,MAPK3, AR,MAPK1, andABL1 are significant
regulators (Fig. 2C). In summary, these analyses suggest that these genes are significant
regulators of osteogenic differentiation and play significant roles in the prioritization and
determination of osteogenic differentiation-related genes.
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Figure 1 A diagram illustrating the identification of osteogenic differentiation-related genes. (A) Two
metrics Jaccard similarity and Sorensen-Dice similarity are carried out to measure the topological simi-
larity of genes involved in a network. These two metrics are then integrated into a similarity matrix rep-
resenting the affinity between genes. Red nodes are the co-neighbors of nodes A and B. (B) Human PPI
network used to calculate similarity matrix between genes. (C) Collection of osteogenic differentiation-
related pathways from different sources. (D) Similarity matrix with 337 osteogenic genes which are ex-
tracted from osteogenic differentiation-related pathways. This matrix is then used for osteo-specific scor-
ing based on the similarity with osteogenic genes. The edges of B represent gene-gene associations.

Full-size DOI: 10.7717/peerj.18068/fig-1

To check whether these genes identified by similarity metrics can capture osteogenic
features and are associatedwith osteogenic differentiation of hBMSCs, we investigated them
in published literature. We found that almost all of these osteogenic differentiation-related
genes lie in the upper gene list, suggesting that this ranked gene list can correctly prioritize
and identify ossification-related genes. After removing these osteogenic differentiation-
related genes, SMAD2, KLF4, DKK1, FGF13, NES, CCND1, SMAD7, IGF1R, TGFBR1,
and KDR rank as the top 10 genes. Literature exploration shows that almost all of these
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Figure 2 PPI network of osteogenic differentiation-related gene set. Transcription factor of osteoblast.
(A) Osteoblast differentiation (B) and RUNX2 regulation of osteoblast differentiation (C) are presented in
PPI network. Size of node is proportional with the similarity with top 100 candidate genes. Color of vertex
is also positively correlated with the similarity of top 100 genes. The edges of A, B, C represent gene-gene
associations.

Full-size DOI: 10.7717/peerj.18068/fig-2

genes have been reported to be associated with osteogenic differentiation. Activation of
SMAD2 signaling pathway has been found to be associated with osteogenic differentiation
(Zheng et al., 2020). KLF4, which encodes a protein that belongs to the Kruppel family of
transcription factors, has been discovered to be a novel transcription factor of osteoblast
differentiation (Yu et al., 2021). It has been found to regulate diverse cellular processes
including cell proliferation, differentiation, and growth (Ghaleb & Yang, 2017). CCND1,
which belongs to the highly conserved cyclin family, has been widely studied in various
literature. Its downregulation has been observed to repress osteogenic differentiation and
proliferation (Wang & Cai, 2020). Targeting Smad7 has been found to repress osteogenic
differentiation of BMSCs (Fang et al., 2019a). The regulatory axis of GR/let-7f-5p/TGFBR1
has been discovered to be important for Dex-inhibited osteoblast differentiation (Shen et
al., 2019). The IGF1R/PI3K/Akt signaling pathway has been shown to play a pivotal role
in regulating osteogenesis (Fang et al., 2019b). In conclusion, these evidence suggests that
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our similarity-based algorithm is reliable in the prioritization of osteogenic differentiation-
related genes.

Functional enrichment analysis of these candidate genes
To check whether these candidate genes identified by similarity-based metrics are enriched
in some specific biological functions and states, we performed functional enrichment
analysis of these top-ranked genes. The top 50 genes are selected for investigation of
functional enrichment analysis. We performed functional enrichment analysis of these
genes in GO and KEGG databases separately. GO enrichment analysis of these candidate
genes shows that they are mainly enriched in osteogenic differentiation-related function
including ossification and osteoblast differentiation (Fig. 3A). Additionally, other pathways
such as mesenchyme development and mesenchymal cell differentiation are also presented
by these candidate genes. Wnt signaling pathway, which has been widely studied and
discovered to be associated with osteogenic differentiation, is observed to be enriched by
these candidate genes. KEGG enrichment analysis of these genes shows that they are mainly
enriched in cancer-related pathways including gastric cancer, hepatocellular carcinoma,
breast cancer, and basal cell carcinoma (Fig. 3B). Apart from these pathways, the signaling
pathway that regulates pluripotency of stem cells is also enriched in our analysis, suggesting
significant value of these genes in regulating stemness. Other pathways such as hippo
signaling pathway and wnt signaling pathway that have previously been reported to be
associated osteogenic differentiation are also presented by these candidate genes. The top
six enriched GO terms of these genes, which include cell fate commitment, epithelial to
mesenchymal transition, mesenchymal cell differentiation, mesenchyme development,
osteoblast differentiation, and regulation of animal organ morphogenesis, are presented
in Fig. 3C. These results collectively demonstrate that these candidate genes can indeed
capture osteogenic differentiation-related features of hBSMCs and confirm again that our
similarity-based methodology is reliable in the identification of osteogenic genes.

FOXA1 is a significant osteogenic differentiation-related transcription
factor
Among these top 100 candidate genes, we found that some of them are transcription factors
such as BMI1, FOXA1, SRF, MYC, FOXC2, CREBBP, and ZEB2. Literature mining of these
transcription factors shows that most of these genes have been reported to be associated
with osteogenic differentiation. FOXA1, which encodes a member of the forkhead class
of DNA-binding proteins, has no literature reporting its interaction with osteogenic
differentiation. Due to the significant rank of FOXA1 in the gene list, it is necessary and
significant to investigate the potential value of FOXA1 in osteogenic differentiation.

To check whether FOXA1 can participate in the regulation of osteogenic differentiation-
related activity, we selected four well-known pathways for exploration which include the
hedgehog signaling pathway, BMP signaling pathway, ERK pathway, and Wnt signaling
pathway that have widely been reported to be related to osteogenic differentiation.
Permutation test is first performed to check whether FOXA1 is significantly associated with
these four pathways. We found that these four pathways have significantly higher similarity
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Figure 3 Functional enrichment analysis of top 50 candidate genes. (A) GO enrichment analysis of
these osteogenic differentiation-related candidate genes. (B) KEGG enrichment analysis of these candidate
genes. (C) Top six enriched GO terms that are associated with these candidate genes. The edges of C rep-
resent gene-gene associations.

Full-size DOI: 10.7717/peerj.18068/fig-3

with FOXA1 than random noise (Fig. 4A), suggesting that FOXA1 is a significant regulator
in mediating these osteogenic differentiation-related pathways.

We hypothesize that some genes involved in these pathways are more likely to be
regulated by transcription factor FOXA1. In that way, FOXA1 can participate in the process
of osteogenic differentiation-related activity by indirectly mediating these pathways. To
identify target genes that are significantly regulated by transcription factor FOXA1, we
analyzed the similarity score of these pathway genes with FOXA1. We found that GATA4,
DKK1, SMAD2, and FOXD1 are significantly associated with FOXA1 in the BMP pathway
with higher similarity scores than other genes (Fig. 4B), suggesting that these genes can
be potentially regulated by FOXA1. Analysis of the Wnt signaling pathway shows that
CCND2, DKK1, TCF7, HDAC2, NCOR2, and MYC are potential targets of FOXA1 (Fig.
4C). Analysis of the other two pathways hedgehog signaling pathway and erk pathway
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Figure 4 Association of FOXA1 with osteogenic differentiation-related pathways. (A) Similarity com-
parison of osteogenic differentiation-related pathways with randomly selected genes. Fifty genes are ran-
domly selected from the total gene set which are repeated 10,000 times. Grey bar indicates the distribution
of mean similarity of these 10,000 randomly selected gene sets. Similarity distribution and PPI network
of four osteogenic differentiation-related gene sets including BMP signaling pathway, WNT beta catenin
pathway, Hedgehog signaling pathway, and ERK pathway are presented in B, C, D, and E. The edges of B,
C, D, E represent gene-gene associations.

Full-size DOI: 10.7717/peerj.18068/fig-4

shows that VEGFA, ETS2, TLE1, TLE3, and NKX6-1 are potential targets in the hedgehog
pathway, and STAT3, EGFR, IGF1R, PDGFRA, and MAP2P1 are potential targets in
the ERK pathway (Figs. 4D–4E). These analyses suggest that FOXA1 participates in the
regulation of osteogenic differentiation by indirectly regulating these target genes of
ossification-related pathways.

FOXA1 knockdown enhanced alkaline phosphatase (ALP) activity and
calcium deposit formation whereas FOXA1 overexpression decreased
ALP activity and calcium deposit formation
ALP activity is a characteristic of early osteogenesis. On the 5 day of osteogenic
differentiation, ALP activity was evaluated. ALP activity was significantly higher in the
FOXA1-KD group compared to the KD-NC group (p< 0.05), and ALP staining results
were similar (Figs. 5A and 5B). In comparison to the FOXA1 OE-NC group, the FOXA1
OE group had decreased ALP activity (P < 0.05) (Figs. 5A and 5B).

The calcium deposits were investigated using alizarin red staining (ARS). On day 16, the
FOXA1 knockdown group had more calcium deposits than the KD-NC group, whereas
the FOXA1 OE group had less calcium deposits than the OE-NC group. Quantification
analysis yielded comparable results (Figs. 5A and 5B).
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Figure 5 Stain effects of FOXA1 knockdown and overexpress on osteogenic differentiation of hBM-
SCs. (A) Knockdown of FOXA1 significantly enhanced hBMSC ALP activity (after 7 days of osteogenesis)
and calcium deposits. (after 14 days of osteogenesis) whereas FOXA1 overexpression decreased ALP activ-
ity and calcium deposit formation. (B) Quantitative detection of ALP and ARS. All data are means± SDs
(n= 3). ∗ p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001 versus the control group.

Full-size DOI: 10.7717/peerj.18068/fig-5

DISCUSSION
Currently, an increasing number of bioinformatics analysis research are focusing on the
discovery of osteogenic differentiation-associated genes. However, practically all of them
concentrate on the expression patterns of BMSCs and osteogenically generated samples (Liu
et al., 2021; Li et al., 2022). Our study focuses on identifying osteogenic differentiation-
related genes using similarity-based metric analysis and a human PPI network for gene
classification by multiple online public database. This is different from the results of
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the previous study (Li et al., 2022), in which identified shared osteogenic differentiation-
relatedmiRNAs and constructed anmiRNA-transcription network between humanBMSCs
(hBMSCs) and human dental pulp stem cells (hDPSCs) on GEO database. Although the
specific analytical methods and experimental conditions—including packages, database,
analytical tools, experimental time, grouping and reagents, etc.—are different between
our study and the previous study (Li et al., 2022), the transcription factor, FOXA1,
was commonly identified as the crucial and novel osteogenic differentiation biomarker.
The comparable results further demonstrate the reliability of our study, which indicate
both studies provide credible and considerable findings about osteogenesis biomarkers.
Therefore, it suggests these candidate biomarkers merit more study in subsequent studies.

The osteogenic differentiation of BMSCs is a highly regulated, multi-step, and complex
physiological process that involves the post-transcriptional regulation of numerous
miRNAs and transcription factors (TFs) (Iaquinta et al., 2021; Gomathi et al., 2020).
Exploring the changes in genetic material during the osteogenic differentiation process of
stem cells and selecting key genes for osteogenic differentiation as new gene targets are
important scientific issues for accelerating bone repair and treating bonemetabolic diseases
(Jiang et al., 2022; Ahmadi et al., 2022; Grottkau & Lin, 2013). BMSCs are the source of
osteogenic differentiation, possess self-renewal capabilities and the potential to differentiate
into a variety of cell types, including osteoblasts,chondrocytes, and adipocytes (Wang et al.,
2016; Li et al., 2023). As a key contributor to the bone formation, BMSCs are regulated by
genetic factors (Chan et al., 2021;Xu et al., 2023; Javed, Chen & Ghori, 2010).Mesenchymal
stem cells have been proved to be ideal seed cells for bone tissue engineering and are closely
associated with bone defects fracture nonunion and osteoporosis (Wang et al., 2016; Sun
et al., 2022; Shang et al., 2021; Stamnitz & Klimczak, 2021). Better understanding of the
molecular mechanism in osteogenesis will enable researchers to design suitable targets for
more effectively inducing bone tissue regeneration and treating related diseases (Ansari,
2019). Bioinformatics analysis enables us to explore the genetics alterations and identify
novel biomarkers in mesenchymal stem cells osteogenesis.

In this study, we performed similarity-based analysis tomeasure the topological relevance
of genes involved in the human PPI network, which divided mainly into three steps: data
collection, similarity measurement, and osteo-specific scoring. These genes are found to
be significantly associated with osteoblast-related pathways, suggesting a significant value
of these genes in regulating osteogenic pathways. We found that these four pathways
(hedgehog signaling, BMP signaling, ERK pathway, and Wnt signaling pathway) have
significantly higher similarity with FOXA1 than random noise, suggesting that FOXA1
is a significant regulator in mediating these osteogenic differentiation-related pathways.
Moreover, FOXA1 knockdown enhanced alkaline phosphatase (ALP) activity and calcium
deposit formation whereas FOXA1 overexpression decreased ALP activity and calcium
deposit formation (Li et al., 2022).

The human PPI network is included in our analysis. Jaccard similarity and Sorensen-Dice
similarity are suitable for measuring the topological structure of genes in the network. But
they are limited by the local features that only first neighbors are included in the similarity
calculation without taking the second neighbors into consideration. The bioinformatics

Sun et al. (2024), PeerJ, DOI 10.7717/peerj.18068 13/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.18068


analysis and vitro analyses show that FOXA1 is a newly discovered potential regulator
in osteogenic differentiation of hBMSCs. However, new insights into the regulatory
mechanisms involved is in need of further research. In addition, the effect of FOXA1
regulate BMSCs on osteoblast differentiation needs to be further investigated.

CONCLUSIONS
Our research integrates bioinformatics analysis with biological knowledge to develop a
unique approach utilizing the human PPI network and similarity-based metric analysis.
This methodology investigates the regulatory network of osteogenic differentiation,
providing a crucial theoretical foundation and potential targets for the treatment of various
bone diseases. Furthermore, we identified FOXA1 as a novel and significant osteogenic
differentiation-related transcription factor.
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