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ABSTRACT

Mooney images can contribute to our understanding of the processes involved in
visual perception, because they allow a dissociation between image content and
image understanding. Mooney images are generated by first smoothing and
subsequently thresholding an image. In most previous studies this was performed
manually, using subjective criteria for generation. This manual process could
eventually be avoided by using automatic generation techniques. The field of
computer image processing offers numerous techniques for image thresholding, but
these are only rarely used to create Mooney images. Furthermore, there is little
research on the perceptual effects of smoothing and thresholding. Therefore, in this
study we investigated how the choice of different thresholding techniques and
amount of smoothing affects the interpretability of Mooney images for human
participants. We generated Mooney images using four different thresholding
techniques, selected to represent various global thresholding methods, and, in a
second experiment, parametrically varied the level of smoothing. Participants
identified the concepts shown in Mooney images and rated their interpretability.
Although the techniques generate physically-different Mooney images, identification
performance and subjective ratings were similar across the different techniques. This
indicates that finding the perfect threshold in the process of generating Mooney
images is not critical for Mooney image interpretability, at least for globally-applied
thresholds. The degree of smoothing applied before thresholding, on the other hand,
requires more tuning depending on the noise of the original image and the desired
interpretability of the resulting Mooney image. Future work in automatic Mooney
image generation should pursue local thresholding techniques, where different
thresholds are applied to image regions depending on the local image content.

Subjects Neuroscience, Psychiatry and Psychology, Human-Computer Interaction, Data Mining
and Machine Learning
Keywords Vision, Perception, Perceptual organisation, Mooney images

INTRODUCTION

In the realm of classical vision science, the majority of stimuli are typically characterized by
their simplicity and artificiality. Frequently, a preliminary study is undertaken to identify
the most suitable parameters, which are then utilized in the generation of new stimuli.

With the continual expansion of the internet’s image database, more modern approaches
on the other hand, use natural images or manipulated natural images as stimuli. However,
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Figure 1 Mooney image generation pipeline applied to one example image from the THINGS dataset. In the first step the images are converted
to grayscale and smoothed with a gaussian filter. In the second step four different image thresholding techniques are applied to the smoothed image.
The template image is taken from the THINGS dataset (Hebart et al., 2019), which is shared under a CC-BY-4.0 license. The following pictures were
modified according to the description found in the methods section. Full-size K] DOTI: 10.7717/peerj.18059/fig-1

due to the inherent diversity of underlying images, merely applying repetitive
manipulations may not yield stimuli which are useful in testing hypothesizes and
comparing theories. As a result, various types of image-based stimuli continue to be
manually crafted to ensure their interesting nature.

One classical example of a stimulus that has been used in vision science and is typically
manually crafted are “Mooney images” (named for Mooney, 1957). Mooney images are a
special kind of two-tone images, i.e., images where each pixel is either completely black or
white depending on its original luminance (for examples see Fig. 1).

In the process of converting natural images to Mooney images, information is lost. For
instance, when examining a specific edge within a Mooney image, it is challenging to
perceive whether the observed edge is a consequence of variations in depth that produced a
shadow, alterations in illuminance, or modifications in coloration within the template
scene (Cavanagh, 2011; Hegdé & Kersten, 2010; Moore ¢ Cavanagh, 1998). Therefore,
arriving at a “correct” understanding of the image depends on the observer’s ability to
resolve these ambiguities and interpret the black and white patches meaningfully.
Consistent with a top-down modulation of perception, it has been shown that prior
knowledge of the images’ content significantly enhances the interpretability of Mooney
images (Dolan et al., 1997; Hegdé & Kersten, 2010; Milne et al., 2022; Teufel, Dakin &
Fletcher, 2018; Teufel ¢& Nanay, 2017). Mooney images have also been used to investigate
how humans perceive and mentally complete fragmented or incomplete visual stimuli
(Griitzner et al., 2010; Mooney, 1957; Verhallen ¢ Mollon, 2016), the effect of top-down
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processes on sensitivity of early visual processing (Teufel, Dakin ¢ Fletcher, 2018), object
recognition (Dolan et al., 1997; Imamoglu et al., 2012), face perception (Latinus & Taylor,
2005) and the neurophysiology of the visual system (Hegdé ¢ Kersten, 2010; Hsieh, Vul ¢
Kanwisher, 2010). There are even potential practical use cases; (Castelluccia et al., 2017)
used Mooney images to create an innovative authentication method to replace classical
passwords.

However, Mooney images have one major disadvantage: they are manually created in
almost all previous studies. In Mooney’s original study (Mooney, 1957), two-tone stimuli
were created by hand-coloring the original template images.

While more recent studies apply thresholds to the digital image, the process is
nevertheless both subjective and time-consuming. Typically, template images are first
smoothed to remove noise and subsequently thresholded (Schwiedrzik, Melloni ¢
Schurger, 2018). Smoothing is used to reduce noise in images, which is usually more
noticeable in Mooney images than in template images. We think that the level of
smoothing might affect how well Mooney images can be interpreted because too much
smoothing could distort the edges, leading to less perceived closure and fewer illusory
contours. Normally, these principles help to fill in missing edges and complete contours in
Mooney images, making it possible to recognize objects in Mooney images (Teufel, Dakin
¢ Fletcher, 2018). Thresholding is a procedure where each pixel’s intensity is compared to
a preselected threshold and subsequently set to either black or white (see Image
thresholding techniques for more details). Both operations, smoothing and thresholding,
can be implemented and performed easily using computers. However, the degree of
smoothing and the threshold value still have to be determined manually or with some
specific procedure to yield desirable Mooney images. This requires an iterative process (as
described for example by (Teufel, Dakin ¢ Fletcher, 2018)) which lacks well defined criteria
due to its subjectivity. Consequently, the quality of the resulting Mooney images may vary
across different laboratories and studies (Nobis ¢ Hunziker, 2005).

To avoid these disadvantages and to be able to easily create large collections of Mooney
images, it is necessary to create a technique to generate Mooney images automatically. A
first attempt has been made by Ke, Yu ¢» Whitney (2017) using a deep neural network.
Their approach however is limited to Mooney images of faces. Furthermore, their network
can only select a limited number of possible thresholds. The goal of the current study is
therefore to investigate the perceptual effectiveness of more general techniques to create
Mooney images.

To compare possible algorithms for Mooney image generation however, we must first
define what an optimal Mooney image is. According to Teufel, Dakin ¢ Fletcher (2018, p.8)
for example “ideal two-tone images should be (i) experienced as meaningless black-and-
white patches prior to having seen the template photograph. However, once participants
have seen the template, they should (ii) give the strong experience of a coherent percept.”
This is a useful definition for most of the cases we have outlined above, in which the
motivation is to dissociate low-level content from high-level understanding. However,
there are different usages imaginable for which it might be necessary to create Mooney
images which are quite easy to interpret. Examples are comparing human processing of
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Mooney images to the processing of computer vision algorithms (Zeman, Leers & de Beeck,
2022) or chimpanzees (Taubert ¢ Parr, 2012), where one might first display Mooney
images which are easy to interpret for humans to check whether other species or
algorithms are able to interpret them at all.

Because no single definition of an “optimal” Mooney image exists, we take an empirical
approach to assessing a diverse set of algorithms. Our only objective was to assess and
compare the extent to which humans could effectively interpret the Mooney images
produced by these different algorithms. Portions of this text were previously published as
part of a preprint (Reining ¢ Wallis, 2024).

Image thresholding techniques

We focus here on automatic thresholding techniques that use a global threshold, which are
until now rarely used to create Mooney images (Castelluccia et al., 2017; Imamoglu et al.,
2012; Imamoglu, Koch ¢ Haynes, 2013), but are popular in image processing applications
for applications such as image segmentation (Chaubey, 2016; Lee, Yoon Chung ¢ Park,
19905 Sezgin & Sankur, 2004). It is of course possible that an algorithm’s proficiency in
tasks like image segmentation does not necessarily align with its ability to create Mooney
images, as the algorithms were not designed for this purpose. This is what we want to
experimentally assess in this article.

Thresholding is a procedure where each pixel’s intensity in an image is compared to a
predetermined threshold value. Pixels exceeding the threshold are assigned a value of 1 or
255 (depending on the color mapping), representing white, while pixels falling below the
threshold are assigned a value of zero, representing black.

While thresholding is used in many areas of computer vision, one of the original
applications of image thresholding is image segmentation into foreground and
background. This process assumes that in general the pixels of foreground objects have a
higher intensity than pixels being part of the background. By selecting a threshold lower
than all object pixel intensities and higher than all background pixel intensities it would
then be possible to perfectly separate objects from background. But of course this is not
always possible, as in most pictures the intensities of foreground and background overlap.
Nevertheless, many image thresholding algorithms were extensively tested with regards to
their ability to segment images. Even though results are not perfect, there are some
algorithms which perform well for specific kinds of images (Sezgin ¢ Sankur, 2004). While
for most applications of thresholding there exist a number of more complicated machine
learning algorithms to perform the same task, simple thresholding algorithms remain
appealing because, unlike e.g., deep neural network approaches (Minaee et al., 2022),
thresholding algorithms are relatively simple and transparent with respect to the features
of the image that are used for processing. Over the years many automatic thresholding
algorithms were created which use different features for threshold determination.

Sezgin ¢ Sankur (2004) started to group thresholding algorithms with respect to the
kind of features they use. Their work is one of the most influential works comparing and
categorizing thresholding techniques. Even though new techniques arose in the past two
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decades, the categories described by them are still widely used to describe thresholding
algorithms (Chaubey, 2016).

In the following we want to give a brief overview over the different categories of
thresholding algorithms, discuss which of them were of interest for us, present prominent
examples and discuss their performance. Even though many performance measures are
possible, in this context we will refer to the performance in background-foreground
segmentation as it is the most evaluated and reviewed measure. However, we assume that
algorithms performance in segmenting images does not per se correlate with performance
in creating Mooney images which are easy or hard, respectively, to interpret. This is
because a good segmentation algorithm would for example remove all inner contours in an
object. These on the other hand might be important to recognize the object in a Mooney
image as these contours are important for human object recognition in general
(Biederman, 1985, 1987).

The first major division between thresholding algorithms can be drawn between
non-spatial and spatial techniques. Non-spatial techniques are simpler, because they only
rely on the intensity values of the pixels without respect to their position and context in the
image. Examples of non-spatial techniques include a method to threshold at the deepest
concavities of the intensity histogram (Rosenfeld ¢ De La Torre, 1983), minimizing
expected misclassification error (Kittler ¢ Illingworth, 1986; Cho, Haralick ¢ Yi, 1989),
maximizing information (entropy) between the pixels on either side of the threshold
(Kapur, Sahoo ¢ Wong, 1985), and clustering image pixels into two groups according to
intensity (Kittler ¢ Illingworth, 1985). The most popular non-spatial technique is Otsu’s
method (Ofsu, 1979) which selects a threshold by maximizing the variance between two
groups of pixels. Though other non-spatial methods can perform better in segmentation,
they are also not as simple to use and make more assumptions.

Spatial image thresholding techniques are in most cases more complex. They take the
location of a pixel in the image and the intensities of its surrounding pixels into account.
This allows for the computation of higher-level features such as edges, pixel intensity
correlations or spatial entropy. One can then choose to either select a threshold which
maximizes the feature itself or the similarity between the features of the thresholded and
the same features of the template image. Examples for these are the maximization of edge
information in the thresholded image (e.g., (Dyke-Lewis, Weeks & Myler, 1993; Weeks,
Myler & Lewis, 1993; Weeks, Myler ¢ Apley, 1994)) or maximization of the similarity
between the edges of the thresholded image and the template image (Belkasim, Ghazal &
Basir, 2000; Samopa & Asano, 2009). Most of the techniques in this category are newer
ones and are often superior to non-spatial techniques (Belkasim, Ghazal & Basir, 2000;
Samopa & Asano, 2009).

Besides the division into spatial and non-spatial categories, thresholding algorithms can
also be applied globally or locally. Global algorithms are applied to the whole image at once
(usually with a single threshold), whereas in local algorithms the image is divided into
regions and for each region or sometimes even each pixel a separate threshold is
determined based on local statistics (Sezgin ¢» Sankur, 2004). For specific images with
inhomogeneous lighting and especially for the case of document binarization this can be
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advantageous. For the thresholding of natural images however, local methods tend to be
worse than global methods techniques (at least with respect to segmentation performance
(Sezgin & Sankur, 2004)).

We aimed to determine how the application of different threshold selection methods
(and subsequently smoothing kernel sizes) affects the interpretability of Mooney images.
As Mooney images were previously always generated with global thresholds and the fact
that we could only compare four different techniques due to experimental resources, we
decided to only compare global thresholding techniques in this study.

We generally expected spatial thresholding techniques to have a higher impact on
interpretability of Mooney images since human vision itself is context dependent (though
note that this study should be considered exploratory). To test this, we chose two
non-spatial (mean threshold and Otsu) and and two spatial (max edge and edge similarity)
methods, which are described in greater detail below. In our first experiment we
experimentally compare these four algorithms, and in the second experiment we examine
how the choice of the smoothing kernel size affects the interpretability of Mooney images
created by the different algorithms.

GENERAL METHODS

Dataset

We used images from the THINGS dataset (Hebart et al., 2019; https://things-initiative.
org/) due to the wide range of different concepts that it contains. These concepts are not
only everyday objects but also more specific objects and animals. This wide variety of
concepts was important to us as we wanted to produce as generalizable results as possible.
Another reason for choosing the THINGS dataset are its labels and extensive annotations.
Each of the more than 26,000 images belongs to one of the 1,854 concept groups labelled
with concrete, picturable object names of everyday language. Furthermore, for a subset of
the full image dataset there exists for one image per concept an embedding in a 49
dimensional space created by Hebart et al. (2020) using human similarity judgments.
These 49 dimensions are “highly reproducible and meaningful object dimensions that
reflect various conceptual and perceptual properties of those objects” (p. 1173 Hebart et al.,
2020). They were useful to us as we used some of them for grouping similar concepts for
foil answer generation in the second task in both of our two experiments.

The images taken from the THINGS dataset we used as templates in our study had to
meet the following criteria. First, to ensure consistent image sizes and avoid the need for
resizing, we opted for a standardized resolution of 800 x 800 pixels. Any images with
different resolutions were excluded from the potential stimulus pool. Second, we removed
all images with fewer than three images of the same concept. This was because the third
task in the first experiment required multiple equally-sized images of the same concept.
Finally, to be able to use the similarity embedding, we used only those images with existing
embedding data. After applying all these constraints we were left with 549 images
belonging to 549 different concepts. These images which we will from now on refer to as
template images were then converted to Mooney images as described in the stimuli
sections of experiment 1 and 2. One example image can be seen in Fig. 1.
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Threshold selection techniques

As described in the introduction, we selected four threshold techniques for this study,
which are representative of various types of global thresholding techniques. These
techniques are explained in more detail below.

Mean threshold

This threshold selection technique can be viewed as a simple baseline. It uses the mean
intensity of all pixels as threshold. In a study by Glasbey (1993) it was found that the
performance of this threshold selection method is not very high when it comes to
background-foreground segmentation. Nevertheless, we included this technique for three
reasons. The first one is its simplicity. Being this simple it is a technique everyone can use
and understand without requiring much background knowledge. The second reason is that
we are interested in techniques to create unambiguous Mooney images as well as
techniques to create Mooney images which are very hard to interpret. And finally, as
already stated in the Image thresholding techniques section, the ability of a algorithm to
segment images does not have to influence how Mooney images generated by it are
perceived.

Otsu’s threshold

Otsu’s threshold selection (Ofsu, 1979) belongs to the clustering-based non-spatial
threshold selection techniques. For it to work well the images it is applied to have to fulfill
some constrains with respect to the histogram shape (Bangare et al., 2015; Kittler ¢
Illingworth, 1985; Lee, Yoon Chung ¢» Park, 1990). However, it still works better compared
to more informed methods (Sezgin ¢ Sankur, 2004). Furthermore, Otsu’s method is one of
the most used and well known threshold selection techniques. It is interesting for our study
as it uses more information than the mean threshold selection method but still works on
intensity values only and is therefore a non-spatial method.

It selects an intensity as threshold value that minimizes the intra-class variance of the
black and white class. This is equivalent to maximizing the inter class variance and can
therefore be viewed as a form of Fisher’s Discriminant Analysis described by Fisher (1936).
We relied on the implementation of the scikit-image library.

Max edge threshold

We furthermore wanted to take techniques into comparison which also consider spatial
features and not only an intensity histogram. As edges are important for human visual
perception and detection of objects (e.g., (Biederman, 1985)) we decided to implement two
algorithms that work with edges as features.

The algorithm described here maximizes the number of edges in the thresholded image.
This could lead to an ambivalent effect on the perception of the images content. On the one
hand, more edges should provide more information to observers about the images content
(Attneave, 1954; Biederman, 1985). Too many edges on the other hand, especially based on
noise in the template image could also be useless for object recognition and make it harder
by cluttering the scene instead (Hegdé & Kersten, 2010).

Reining and Wallis (2024), Peerd, DOI 10.7717/peerj.18059 7129


http://dx.doi.org/10.7717/peerj.18059
https://peerj.com/

Peer/

Thresholding algorithms which try to maximize edge information were already studied
by Dyke-Lewis, Weeks & Myler (1993), Weeks, Myler & Lewis (1993), Weeks, Myler & Apley
(1994). We, however, for reasons of simplicity decided not to maximize edge information
but total amount of pixels classified as edge instead. For this we iterated over all possible
thresholds, applied them to the smoothed image and created an edge map of the
thresholded image using an Canny edge detector (with ¢ = 1).

Canny edge detectors (Canny, 1986) are based on a Gaussian filter and are known to
produce robust edge maps for a wide variety of images (Maini ¢» Aggarwal, 2009; Samopa
¢ Asano, 2009). The edge maps created by this edge detector are images with the same
resolution as the template image but with all pixels being black. Only pixels which were
classified as edge pixels are white. In the following we can simply count the number of
pixels defined as belonging to an edge and select the threshold which produces the highest
number of edge pixels.

Edge similarity threshold

Like the previously described technique, this threshold selection technique uses edges to
determine a threshold. This technique, however, does not simply try to maximize the
number of edges. Its goal is rather to create a Mooney image which edges are as close to the
edges of the template (smoothed) image. This seemed like a reasonable approach as we
wanted to avoid unnecessary edges which are not present in the template image but rather
an artifact of still existing noise in the template image.

Our implementation is inspired by Belkasim, Ghazal ¢ Basir (2000), Samopa ¢ Asano
(2009), which both used slightly different methods and different similarity metrics but both
achieved good results. Despite that, we decided on yet another similarity metric to compare
the edge maps. That was because the metrics used by them are very sensitive to even small
differences, which in our case arose due to the smoothing of our images. Thus, the metrics
used by them produced unreasonable thresholds as results for the smoothed images.

The technique iterates over all possible thresholds while computing an edge map of the
Mooney image for each possible threshold. Afterwards, it compares the edge map of the
template image to the edge maps of the thresholded images by computing the Hausdorff
distance between each template image and Mooney image. It then selects the threshold for
which the distance between the two images is minimal. Therefore, the thresholded image
should be as similar as possible to the template image in terms of edges.

The Hausdorft distance is a common metric for comparing images and is particularly
well suited for comparing edge maps because of its tolerance of small positional errors
(Huttenlocher, Klanderman ¢ Rucklidge, 1993). In our application the Hausdorff distance
can be described as the maximum of the shortest distances between each edge pixel in the
template image and an edge pixel in the thresholded image. For our study we relied on the
scikit-image implementation of the Hausdorff distance.

Stimuli
In both of our experiments we showed Mooney images to the participants. Those Mooney
images were created in a two step process, which can be seen in Fig. 1. First, we converted
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the images to grayscale using the CIE1931 linear intensity mapping and applied a slight
blur to all images, using a Gaussian kernel with a standard deviation that varied between
the different experiments. For all values, the kernel truncated after four times the standard
deviation. Afterwards, all images were mapped to an 8-bit grayscale format to get
meaningful and comparable thresholds after thresholding.

In the second step we computed four thresholds for each image using the four different
threshold selection methods described above. After threshold selection we converted the
smoothed grayscale images to Mooney images by applying the computed thresholds.

The resolution of 800 x 800 pixels and the configuration of the experimental setup
resulted in a stimulus size of 10.5° x 10.5° of visual angle. This size was on the horizontal
axis quite similar to the size of the Mooney images used by Teufel, Dakin ¢ Fletcher (2018).
Vertically, however, our images were larger due to the square aspect ratio.

One of the participants’ tasks was to identify the concept shown in the image from a row
of four concepts (see Procedure below). To make this task harder, the foil concepts were
chosen from concepts that have similar shapes to the true concept. To determine concepts
with a similar shape, we used the embedding provided by Hebart et al. (2020). From the 49
dimensions provided by the embedding we selected 13 (see “Foil Answers for Concept
Detection Task”) which were shape related and projected all concepts with existing
embedding data in this new shape related space. We used this new space to select the three
concepts for each of our images which were closest to the image’s true concept in terms of
Euclidean distance in this space. As can be seen in the example in-Table A1 the foil
answers selected like this are indeed more related to the correct answer than randomly
selected foils. For each presentation of Mooney images generated from templates with this

object category we reused the three foils concepts. The order of the four alternatives was
shuffled each trial.

Equipment

The code for the experiment in stimulus creation was written and executed in Python
3.10.6. For the latter we furthermore used the scikit-image (0.20.0), pandas (2.0.0) and the
scipy (1.10.1) library.

The stimuli were presented on an LG UltraGear 27GN950 monitor connected to a
computer running Ubuntu 20.04. The monitor had a spatial resolution of 3,840 x 2,160
and a temporal resolution of 144 Hz. For gamma correction a X-Rite i1DisplayPro
colorimeter was used. As the displayed stimuli did not contain any colors no precise color
correction was necessary.

A chin rest was used to fix the observers’ distance to the monitor at a distance of 55 cm.
This resulted in the monitor covering about 57 degrees of visual angle. All experiments
took place in a darkened laboratory of the AG Perception at TU Darmstadt.

Ethics

The procedures adhered to the Standard 8 of the American Psychological Association’s
“Ethical Principles of Psychologists and Code of Conduct”(2010) and were approved by
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the Technical University of Darmstadt Ethics Commission (Application number EK 77/
2022).

Data analysis

For general evaluations and visualization of the data analysis Python (v3.10.6) with the
packages numpy (v1.23.5), pandas (v2.0.0), matplotlib (v3.7.1) and seaborn (v0.12.2) was
used. Statistical tests were conducted using the pingouin (v0.5.3) Python package. The
specific process for the analysis of the data of our two experiments can be seen in the
respective sections.

EXPERIMENT 1
Methods

For this experiment we used a single-subject design and considered each participant as a
replication (Smith e Little, 2018).

Participants

One female and one male observer (20 and 21 years old, respectively) took part in the
experiment. Both had corrected-to-normal vision. While none of them had seen neither
the Mooney images nor the template images before, both participants were familiar with
the research question. One of the participants was the author of the current study. The
stimulus generation pipeline was tested on separate images to the main experiment, so the
author had never seen the test images nor the templates before participating. The other
participant was a TU Darmstadt student who was rewarded with 15 € per hour. Both
participants provided written informed consent.

Stimuli

The stimuli were Mooney images generated from a subset of images of the THINGS
dataset. This subset contained 549 images which were chosen with respect to the
constrains described in the general methods dataset section. We randomly selected 500 of
these as a basis for the stimuli used in our experiment. The remaining 49 were used as basis
for the stimuli in the practice trials.

All images were converted to four different Mooney images in a two step process which
can be seen in Fig. 1 and which is described above in the general methods section. In this
experiment we set the standard deviation of the Gaussian filter kernel to 2 px. We chose
this value as it was the minimal kernel size that removed just enough noise in order to
achieve the characteristic Mooney-image look. This characteristic entails the presence of
numerous black and white patches within the image which are sufficiently large enough to
not be the effect of noise in the template image.

Procedure and design

In this experiment we investigated four different conditions, each one corresponding to
one thresholding method. It is known that the quality of thresholding algorithms for object
segmentation strongly depends on the images they are applied to Sezgin ¢ Sankur (2004).
Therefore, we reasoned this could also hold for the ability to create Mooney images. As a
result, we presented each template image for all different conditions. Consequently, over
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(Mooney image) (Three Money images)

Which of the previous images
have you seen in this trial?
(1,2,3)

Please rate the difficulty of
the previous task from 1 (very
easy) to 7 (very difficult).
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Task 2 .
(subjective rating) ®e

Figure 2 Procedure of one trial of experiment 1. Each trial consisted of three tasks. In the first task (identification task) the participants were
presented with a Mooney image and four different concepts. The participants were supposed to indicate which of these concepts they saw in the
Mooney image. In the second task participants were asked to give a subjective rating about the difficulty of the previous task. In the final third task
(memory task) three different images were presented to the participants. The participants task was to detect which of these images was shown
previously in this trial. The Mooney image is a modified version of one of the images taken from the THINGS dataset (Hebart et al., 2019), which is
shared under a CC-BY license. It was modified according to the methods section. Full-size K&l DOT: 10.7717/peerj.18059/fig-2

the course of the experiment each of the original images was presented four times—each of
those presentations as a slightly different Mooney image. Applying four different
conditions to 500 image and showing each image exactly once per condition resulted in a
total of 2,000 trials per participant.

The main goal of this experiment was to investigate the ability of threshold selection
techniques to create ambiguous or respectively unambiguous Mooney images. To gain
information about this effect three tasks (two based on performance and one based on a
subjective rating) directly followed the presentation of a Mooney image. They differed
from the tasks used in previous experiments with Mooney images (e.g., (Teufel, Dakin ¢
Fletcher, 2018)) because we did not only want to test whether certain edges or presence of
objects were detected or not but rather if the participants were able to detect the content of
the image.

Each trial started with the presentation of a fixation spot for 400 ms to center the gaze of
the participants Fig. 2. Afterwards a Mooney image was shown for 1,500 ms. This is the
same timing as used by Teufel, Dakin ¢ Fletcher (2018) to allow for the visual system to
interpret the black and white spots of the Mooney image as a meaningful concept if
possible. Immediately afterwards the first task started. This first task was a four-alternative
identification task and will from now on be referred to as the identification task. Four
different but shape related concepts were presented to the participants as words on the
screen. The task was to identify which concept was shown in the previous image. This
allowed us to measure if the participants were able to recognize the image’s content in a task
with an objectively correct answer. In a pilot study we used an open (free) response design
and found that performance was very poor, so we used this four-alternative task here.
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After the participants gave their answer by pressing a key on a keyboard, the second task
directly appeared on the screen. Here, the participants were asked to give an additional
subjective rating of the difficulty of the previous task on a scale from one (very easy) to
seven (very difficult). Again, the participants were supposed to indicate their rating by
pressing the corresponding key.

This triggered the beginning of the final task (memory task), which started with the
presentation of a fixation spot for 200 ms. Subsequently, three different Mooney images all
showing the same concept and thresholded with the same thresholding method appeared
on the screen for 1,000 ms. Afterwards participants were supposed to indicate which of the
images they had previously seen in this trial. This task was added to our experiment as yet
unpublished results by W] Harrison (2023, personal communication) indicate that
recognizing the object in a Mooney image increases the probability to recognize it between
unseen images. Once more, the answer was given by pressing the corresponding key. This
triggered the next trial starting with the presentation of the fixation spot.

In all of the described tasks the participants had as much time as they needed for giving
the answers. To reduce possible learning effects, no feedback was given in any of the tasks.
The 2,000 trials were randomly split into 40 blocks of 50 trials. The 40 blocks were
divided into three sessions of 100 min each on consecutive days. While sessions two and

three consisted of 14 blocks each, the first session consisted of only 12 blocks. At the
beginning of the first session, however, participants had to start with one practice block to
get familiar with the task. The training block consisted of only 25 trials, with stimuli
displayed twice as long as in the first ten trials. The stimuli in the practice trials were taken
from the practice stimuli pool and the results were not included in the analysis. After
finishing the practice trials, participants were only allowed to start the real experiment if
they got at least 15 correct answers in the identification and memory task. Otherwise, they
had to repeat the practice trials until the criterion was met.

Data analysis

First, we compared the results of the different threshold selection techniques
independently of the behavioral data. The first thing we were interested in was whether
some threshold selection techniques tend to select higher or lower thresholds than others.
Therefore, we computed boxplots for the distributions of all thresholds selected by one
threshold selection techniques over all of the 500 images. This not only allowed us to
compare the general tendencies of each algorithm, but also to find out whether some
selected more variable thresholds than others. Furthermore, for each image we computed
the standard deviation of the four thresholds selected by the different thresholding
techniques. Computing the mean of the standard deviations over all images allowed us to
judge whether the algorithms performed indeed differently as intended. To capture the
degree of variation in the resulting images, we computed pairwise dissimilarity ratios
between the Mooney images generated by different algorithms but originating from the
same image. The dissimilarity ratio between two Mooney images is the ratio of the number
of pixels which are white in one of the images but black in the other or vice versa. A value of
one would mean that the Mooney images are polarity-reversed versions of each other
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(every white pixel in one image is black in the other), whereas a value of zero would mean
the images were identical. (Such images would of course be in some sense quite similar to
each other but such a complete flip of polarities is not possible as we only used global
thresholding techniques which maintain the ordering of the pixel intensities).

Second, we examined the behavioral data. We computed the overall performance of the
three tasks as measured by proportion of correct answers (proportion correct) for the first
and third task and the mean of the subjective rating for the second task. This allowed us to
compare the results between the two participants as well as between the different
conditions. Uncertainties of the estimates of proportion correct and the mean of the rating
were always quantified by giving the 95% confidence interval, which was computed by
multiplying the standard error of the mean with 1.96. Additionally, for each participant
and task separate one-way analysis of variances (ANOVA) were conducted to investigate
the significance of the effects of the different thresholding techniques.

Results
All techniques selected similar thresholds on average but produced different Mooney
images.

On average the thresholds selected by the four thresholding techniques were quite
similar. As shown in Fig. 3A the distribution of the selected thresholds for all images are
approximately centered around the templates images’ mean intensity (119). Minor
differences like the mean thresholds of the max edge and edge similarity technique are not
important with respect to the high variance of the thresholds. The threshold variances
however, varies between the different techniques. It is noteworthy that the standard
deviations of the two spatial thresholding techniques are higher (64xedge = 44.39,
Oedgesimilarity = 36.69) than the standard deviations of the non-spatial techniques
(Omean = 30.68, 04y = 23.60) (see Fig. 3A).
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However, even though the thresholds were quite similar in the mean, on the image level
the threshold selected by the different techniques varied substantially. As an example,
Fig. 3B shows a scatter plot of mean and Otsu thresholds. This is also supported by the fact
that the mean standard deviation between the thresholds determined for each image was
20.76.

The differences between the thresholding techniques are more evident when looking at
the mean dissimilarity ratios in Fig. 3C. For the techniques which produced the Mooney
images with the biggest differences, more than one fifth of the pixels was different
depending on the technique. Even for pairwise comparisons with less difference, more
than 15% of the pixels varied for most combinations in the mean.

Performance in the identification task did not differ significantly for
different thresholding techniques

The performance as measured by proportion correct in identifying the correct concept in
the presented Mooney image was very similar for all thresholding techniques. This can be
seen in Fig. 4A. All proportion correct values lie between 0.77 and 0.81. This interval is
rather small considering the fact that all proportion correct values lie in the 95%
confidence interval of each other. The one-way ANOV As for each participant both
indicated non-significant results, F(3, 1,996) = 0.62, p = 0.6 for participant a22s and
F(3, 1,996) = 0.44, p = 0.721 for a25e.

The performance was also similar between the participants. Both had a mean
proportion correct of 0.79 and similar variations in their performance. Furthermore, for
thresholding techniques in which the performance of one participant was slightly
increased, the performance of the other was also increased. The same holds for conditions
in which performance was slightly lower.
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Subjective difficulty ratings differed only slightly for different thresholding techniques.

Participants’ subjective difficulty ratings of the identification task varied only slightly
over techniques. In Fig. 4B we can see that the mean difficulty rating varied with respect to
the 95% confidence interval more than the proportion correct seen in Fig. 4A. Even though
most means still lie in the 95% confidence interval of other, the total differences are greater.
At least for the conditions with the lowest (easiest reported difficulty) (mean threshold
selection) and highest rating (hardest reported difficulty) (edge similarity threshold
selection) the means were not in each others confidence interval. Nevertheless, the
confidence intervals still overlap. The two remaining conditions have quite similar
difficulty ratings which lie beneath the ones for the mean and max edge technique. The
one-way ANOVAs for each participant again both indicated non-significant results
(F(3, 1,996) = 1.37, p = 0.249 for participant a22s and F(3, 1,996) = 2.07, p = 0.102
for a25e). In general, the ratings of participant a25e were slightly higher than those of a22s,
but the general trends described above can be found in either participants data.

Performance in the memory task did not differ significantly for
different thresholding techniques
As for the previous tasks results did not vary much between the different thresholding
conditions. In Fig. 4C we can see that for participant a25e all proportion corrects varied by
less than 0.01 and are in each others confidence intervals. The proportion corrects for
participant a22s are more scattered. While the values for the mean, edge similarity and
max edge technique also only vary by less than 0.01, the performance for the Otsu’s
threshold selection technique is slightly increased. This does not reproduce for participant
a25e. Again, both ANOVAs report non-significant results, F(3, 1,996) = 1.09, p = 0.35
for participant a22s and F(3, 1,996) = 0.13, p = 0.942 for a25e.

In general, participant a25e was slightly better (proportion correct = 0.97) than
participant a22s (proportion correct = 0.93) achieving nearly perfect results.

Discussion

In this experiment we compared four different thresholding techniques with regards to the
Mooney images they created and the interpretabilty of those images as measured by two
performance based tasks and one subjective rating. Overall, our results showed that the
different thresholding techniques did not greatly influence the recognizability or
memorability of Mooney images, even though the techniques did produce physically
different images.

First, these results show that none of the techniques was biased to select consistently
high or low thresholds and therefore selected only reasonable thresholds around the
images’ intensity mean. Extreme thresholds would create Mooney images which are
impossible to interpret, as extreme thresholds would result in images with all black or all
white pixels. However, there are still differences in variance between the different
algorithms, with the variance of the two spatial techniques being greater. This indicates
that those techniques were more flexible when selecting a threshold, which both could
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potentially result in better or worse Mooney images depending on the quality of the
technique.

Furthermore, by looking at the dissimilarity ratios and standard deviations between the
four thresholds for each image, we found that even variations with a standard deviation of
20 in pixel intensity results in very different Mooney images. Especially the large difference
between the Mooney images of two spatial techniques is noteworthy as this shows that
Mooney images created by the max edge technique contain many edges which are not
present in the template image.

The behavioural results show that even though the Mooney images vary, the
interpretability as measured by the three tasks is almost identical for all thresholding
techniques. The unimportance of the small differences of proportion correct in the
identification task is supported by the results of the difficulty rating and the memory task.
In all three tasks all algorithms not only achieved similar results, but there was also no
systematic increase or decrease in performance and rating for one specific technique. This,
however, goes with the caveat that proportion correct in the memory task was so high that
possible differences in memorability might not have been visible in the data due to ceiling
effects.

However, the fact that we did not measure differences in the responses for the different
thresholding techniques may also arise from our experimental design. The performance in
the identification task was unusually high for Mooney images, which are usually
considered hard to recognize (Cavanagh, 2011; Moore ¢ Cavanagh, 1998). We see three
possible causes for this. First, the images of the THINGS might have been so representative
for their specific concept that in many images the objects are shown on a plain background.
A plain background without clutter on the other hand makes concept identification easier
(Hegdé & Kersten, 2010). Therefore, the images of the THINGS dataset might become
Mooney images which are easy to interpret in general. Second, it was reported by both
participants that by seeing multiple images of the same concept in the memory task, they
were sometimes able to recognize the correct concept from the additional images and
remember it for future presentation of Mooney images originating from the same image.
Therefore, it is possible that the identification task was not answered correctly because the
actual identification of the concept was rather done using memory. This would also explain
the indifferent subjective difficulty ratings as a task gets easier regardless of whether it is
done by memory or perception. Third, using a text-based response for the identification
task makes the possible concept(s) more clear than in a Mooney image; therefore people
may have been able to improve their recognition after seeing the response options.

EXPERIMENT 2

To mitigate some of these limitations, we altered the experimental design in Experiment 2.
We removed the memory task from the experiment, changed the difficulty rating into a
visibility rating and selected a subset of images which, on average, should be harder to
interpret. In addition, as smoothing is another important step in Mooney image
generation, we decided to also compare different smoothing kernel sizes in the second
experiment to see whether the interpretability might be more dependant on the smoothing
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than on the thresholding. Finally, here we also targeted the population average
performance rather than examining individual participant performance, and so tested
more participants with fewer trials per participant.

Methods

Participants

A total of 15 participants took part in the experiment. Nine of them were female and six
male with a mean age of 22.2 £ 2.97 (M £ SD). All of them were naive observers who were
not familiar with the purpose of the study. They all had normal or corrected-to-normal
vision and were students of TU Darmstadt. All participants certified their informed
consent and were rewarded with either 15 € per session or one participation credit for a
course assignment.

Stimuli

The stimuli in this experiment were again Mooney images generated from a subset of
images taken from the THINGS dataset. This subset consisted of 40 images and was yet
another subset of the 500 images used in the first experiment. To increase the difficulty of
the second experiment and to account for images of a range of difficulties, the 40 images
were sampled as follows: The 500 images used in experiment 1 were divided into three
groups. The first group consisted of “easy” images for which the correct concept was
detected in more than 75% of the presentations as different Mooney images by the two
participants in Experiment 1. The second group consisted of “medium” images for which
concepts were detected correctly in more than 25% and up to 75% of the cases. The third
group consisted of “difficult” images for which concepts were detected in less than or equal
to 25% of the cases. We randomly selected 13 images of the “easy” group, 14 images of the
medium group and 13 images of the “difficult” group, but filtered out all images for which
concept nouns might not be known to new participants due to language difficulties.

The 40 images were again converted to Mooney images by the process described in the
general methods section. For this experiment however, we did not only vary the
thresholding technique in the process of generation, but also varied a second dimension.
Before applying the four different threshold techniques one of the template images was
converted to three different smoothed images using three different standard deviations of
the gaussian smoothing kernel (two, four and six pixels). We selected these three specific
values for the following reasons: First, a minimum standard deviation of two was necessary
to effectively eliminate a major portion of the noise in the thresholded images. Second, for
thresholds exceeding six, we observed that there were no longer any illusory contours
visible to us. Thus, these chosen values strike a balance between noise reduction and the
emergence of illusory contours, which both are characteristic properties of Mooney images
(Castelluccia et al., 2017; Teufel, Dakin ¢ Fletcher, 2018). Furthermore, the study by Ke, Yu
¢ Whitney (2017), which proposed a method for automatically generating Mooney faces,
also used standard deviations between two and six. The effect of varying the size of the
smoothing kernel on a Mooney image can be seen in Fig. 4A.
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the THINGS dataset (Hebart et al., 2019), which is shared under a CC-BY license. It was modified according to the methods section.
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Applying four different thresholding algorithms to three differently smoothed images
resulted in a total of twelve different Mooney images for each of the 40 template images.
This made a total of 480 different Mooney images.

The stimuli for the practice trials were the same as in experiment 1.

Procedure and design

The procedure of each trial was as in experiment 1 with two exceptions Fig. 5B. First, we
omitted the third task (memory). It was originally meant as a secondary measure of how
well the participants understood the presented Mooney images. Reports by the participants
however suggested that observers might learn the content of the images by combining the
information from the three pictures in the third task, which all showed the same concept.
Therefore, to avoid such learning effects, we removed this task. Second, we changed the
subjective rating. In the previous experiment we asked the participants for a difficulty
rating of the task. This rating might also have been influenced by learning effects. To more
precisely target participants’ subjective impression of their understanding of the Mooney
image, participants were asked to judge how well the concept they had chosen in the first
task was visible on the Mooney image on a scale from one (clearly visible) to seven (not at
all). We reasoned that even if participants would learn some concepts, they would still
judge the visibility based on the quality of the Mooney image only.
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As in the first experiment, we adhered to the principle of showing each image exactly
once for each condition. Each of the selected 40 template images was presented twelve
times over the course of the experiment-each time as a different Mooney image (four
threshold selection techniques times three gaussian smoothing kernels), for a total of 480
trials per participant. The 480 trials were split into twelve blocks of 40 trials, with breaks in
between. In each block we ran through all of the 40 template images but in a random order
and with randomly changing conditions. This made sure that none of the original images
were presented twice in the same block.

All twelve blocks were performed in one session of 60 min. As in the first experiment,
one practice block with 25 trials, of which 15 needed to be correct, had to be performed by
the participants before the beginning of the real experiment. One participant failed to get
15 out of 25 correct in the first practice block and had to repeat the practice.

Data analysis

As in the first experiment, we computed the proportion correct in the identification task as
well as the mean of the subjective ratings as measures of how well the images’ content had
been perceived in each of the twelve conditions. To measure the uncertainty of these
measures we again computed the 95% confidence intervals using the standard error of the
mean. Variance in subjective visibility ratings was quantified using a 4 x 3 repeated-
measures ANOVA. The subjective visibility ratings were flipped to make data presentation
more intuitive.

To quantify differences in proportion correct as a function of the experimental
conditions, we estimated the posterior parameter distributions of a set of generalized linear
(logistic) mixed models. These models allow us to capture inter-participant and image
differences while estimating average tendencies and variance in the data.

We estimated the fixed effects of threshold selection method and size of the smoothing
kernel as well as their interaction along with random effects for participant and template
image on the probability to correctly identify the concept in an image. To evaluate whether
kernel size and/or thresholding technique significantly influenced the probability of
correctly identifying the concept we created three additional models. The second model
was similar to the one described above but without the interaction term between
thresholding technique and kernel size. Models 3 and 4 lacked either the factors for
thresholding technique or kernel size. For descriptions of model parameters however, we
will always refer to the first (full) model. The remaining models will only be used for
comparison.

The parameters of all models were initialized with weakly informative priors, providing
plausible scale estimates to the parameters without biasing the model towards any
particular differences between conditions. The posterior distributions of the models were
estimated using a Markov Chain Monte Carlo procedure. More details regarding the
modelling can be found in “Generalized Linear Mixed Models”. All models were
implemented in the Stan language (v2.26.1 (Stan Development Team, 2022)) with the
wrapper package brms (v2.19.0 (Biirkner, 2018)) in the R statistical environment (v4.3.1).
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Full-size K&l DOT: 10.7717/peerj.18059/fig-6

The different models were compared by their expected log-predictive density (ELPD),
which is an estimate of how well the model generalizes to new data. This score was
computed using the loo package (v2.6.0) which utilizes LOOIC as an approximation to the
leave-one-out log likelihood (Vehtari, Gelman & Gabry, 2017). For model comparisons we
will always present the difference in ELPD and standard error of the difference (SE).

Results
Thresholding techniques yielded mostly similar results while smoothing demonstrated
significant impact on concept identification

The results of proportion correct were very similar for all thresholding techniques. Only
the edge similarity technique yielded a lower proportion correct for the most smooth blur
kernel (Fig. 6). This is supported by a model comparison, which revealed an ELPD
difference of 9.4 (with relatively large uncertainty of SE = 8.1) between the full model
(containing both smoothing and thresholding technique and their interaction as
predictors) and a model which did not take thresholding technique into account (only
smoothing).

Smoothing on the other hand influenced the probability of correctly identifying
concepts more. This main effect can not only be seen in Fig. 6 but is also supported by the
following arguments. First, the mixed model without a representation of kernel size has a
by 44 (SE = 10) lower ELPD than the full model. And second, the full model describes the
posterior probability that the kernel size has a negative influence (as described by its
coefficient f) on concept identification as p (< 0) >0.999 with f = —0.15 and
95% CI = [—0.21 to — 0.08].
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As described above the results for the mean, otsu and max edge thresholding technique
were very similar for all different smoothing kernel sizes. Only the edge similarity
technique yielded less correct classifications for the highest smoothing condition. This,
however, is not enough for the model comparisons to confirm a large interaction effect
between smoothing kernel size and thresholding technique. This can be seen as the model
with and the one without interaction received very similar ELPD scores
(ELPD difference = 2.3, SE = 3.4).

Subjective visibility ratings show a similar pattern to proportion
correct

The findings of the mixed effects analysis of proportion correct in the concept
identification task align with the subjective visibility ratings. Consistent with the fact that
the full model performed best in the mixed effects analysis, the results of the two-way
repeated measures ANOVA indicate a significant main effect on the visibility rating for
thresholding technique, F(3,42) = 16.10, p<0.001, and a significant main effect for
smoothing kernel size, F(2,28) = 25.43, p<0.001.

For the highest amount of smoothing the edge similarity technique not only received the
lowest proportion correct but also got rated as producing the least visible images. This is
reflected in the two-way repeated measures ANOVA which reported for the visibility
rating a significant interaction between thresholding techniques and kernel size,

F(6,84) =9.02, p<0.001, even though the results for the remaining thresholding
techniques were very similar.

Probability of recognizing objects strongly depended on template
image

Our mixed-effects model also revealed that the template image had a major influence on
the probability of correctly interpreting the created Mooney images. The standard
deviation of the distribution of image specific intercepts had a posterior mean of 2.25
(95% CI = [1.81,2.80]). The same standard deviation for the participant specific
intercepts was only 0.52 (95% CI = [0.33,0.81]). This indicates that the variance in
performance associated with different template images was approximately four times
larger than the variance between different participants.

Discussion

In this analysis we compared four different thresholding techniques as well as three
different degrees of smoothing with regards to the interpretability of the generated
Mooney images as measured by one performance based task and one subjective visibility
rating.

Our results demonstrate that the recognition of objects in Mooney images is for all
degrees of smoothing mostly independent from the four compared thresholding
techniques. This aligns with the results from our first experiment, indicating that the
similar performance of the thresholding techniques is not a result of the experimental
design of the first experiment.
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Only the edge similarity technique produces worse results for larger degrees of
smoothing. This effect might arise as the smoothing distorts the edges of the original
image. When using the max edge similarity technique to choose a threshold for smoothed
template images and Mooney images, it is possible that the selected threshold could
emphasize edges that are not crucial for recognizing objects in the original, unsmoothed
image. In other words, the chosen threshold might effectively highlight irrelevant edges,
potentially affecting the accuracy of object recognition.

On the other hand, the amount of smoothing represented by the size of the smoothing
kernel significantly influenced the recognition of the shown objects. A high amount of
smoothing significantly decreased the probability to recognize a depicted object. Likely,
this is caused by the distortion of the edges produced during smoothing. First, the
distortion of the objects’ edges in the Mooney image makes it per se harder to detect.
Second, the distortion of edges in the smoothed template could also lead to less closure and
illusory contours perceived from the Mooney image. Normally, these principles are used to
fill in missing edges and complete contours in Mooney images to enable object perception
(Teufel, Dakin ¢ Fletcher, 2018). However, if parts of existing contours and edges are
already distorted and therefore misaligned the completion of missing parts of those
contours as seen for example in Mooney images might be much harder (Field, Hayes ¢
Hess, 1993). Furthermore, as smoothing reduces the number of edges and amount of
details, less information is available to the observers to interpret the images. For these
reasons we conclude, that smoothing indeed increases the difficulty to interpret Mooney
images.

However, the choice of template images seems to have an even stronger influence. We
showed that the probability of correctly identifying a depicted object varies a lot from one
template image to another. These deviations were far bigger than those achieved by
manipulating the size of the smoothing kernel or thresholding technique. Analyzing which
image features are associated with resulting Mooney image interpretability variation would
be a useful avenue for future work.

SUMMARY AND CONCLUDING DISCUSSION

In two experiments we investigated the influence of smoothing and different thresholding
techniques on the interpretability of Mooney images. We generated Mooney images from
images of the THINGS dataset (Hebart et al., 2019) using different smoothing kernel sizes
and thresholding techniques. These images were shown to participants and the
interpretability was measured via performance-based multi-alternative identification tasks
as well as subjective ratings.

Our results demonstrate that the recognition of objects in Mooney images is mostly
independent from the four compared thresholding techniques. Moreover, it seems that as
long as the exact threshold is reasonably chosen, somewhere around the image’s mean, it
does not significantly impact the interpretability of Mooney images in these images. This
has potential implications on the generation of large Mooney image datasets in the future.
In particular this means that one neither has to select the most suitable threshold in a
tedious, manual procedure nor use complex algorithms for threshold selection as the
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resulting Mooney images might be of similar recognizability anyway. There seems to be no
single global threshold which creates the most ambiguous or most unambiguous Mooney
image.

Nevertheless, depending on the goal of the studies using Mooney images it might still be
necessary to generate Mooney images with varying interpretability. Our results show that
this cannot be achieved by only using one of the compared thresholding algorithms.
Rather, we suggest to manipulate the amount of smoothing which is applied before
thresholding. By increasing the smoothing we were able to achieve a minor decrease in the
probability of correctly interpreting a Mooney image (in particular for the edge similarity
technique).

Additionally, the interpretability can also be manipulated by the choice to the template
images. We showed that the probability of correctly interpreting a Mooney image varies
greatly between different template images. For example, we speculate that Mooney images
created from noisy and cluttered images are much harder to interpret than images with a
uniform and noiseless background (Hegdé ¢ Kersten, 2010).

But what if we want to increase or decrease the interpretability of Mooney
images even more? After comparing global thresholding techniques from various
categories as described by Sezgin ¢ Sankur (2004), we believe that global techniques are
not flexible enough for this task. 8-bit grayscale images have only 256 possibilities to select
a threshold. Although our study demonstrated variations in the resulting Mooney
images, it is important to note that they may not yet be optimal in terms of specific
features. For example the global max edge technique might select a threshold to have as
many edges as possible in the image. However, even more edges might be possible if they
are detected on a local scale (Weeks, Myler & Apley, 1994). This means local
thresholding techniques are far more flexible than global thresholding techniques and can
produce a greater variety of thresholded and therefore Mooney images (Weeks, Myler ¢
Apley, 1994). Even though, to our knowledge, local thresholding techniques were not used
for Mooney image generation yet and generally perform worse in segmenting images
(Sezgin ¢ Sankur, 2004), we suggest that the application of local instead of global
thresholding techniques might have the ability to further enhance or suppress certain
features in Mooney images.

Additional research could furthermore remove some limitations of this study. For one,
it could investigate the influence of image statistics on the interpretability of Mooney
images. Are there any specific image configurations that make for ambiguous or
unambiguous Mooney images? Additionally, here images were presented to each
participant multiple times-each time under a different condition. This strategy was used to
obtain repetitions within a participant-image pair. Future research could conduct similar
experiments but without repeated image presentations to avoid the learning of concepts,
and minimizing the influence of memory on task performance. However, to get sufficient
data for each condition and image a larger pool of participants would be necessary.

In conclusion, this study demonstrated that Mooney images can be automatically
created by pre-selecting a reasonable amount of smoothing and application of automatic
thresholding techniques, achieving a high interpretability of the resulting Mooney images.
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While the amount of smoothing influences the interpretability of the generated Mooney
images slightly, the choice of thresholding technique has only minimal influence on
interpretability, as long as a threshold somewhere around the images intensity mean is
chosen. Future research could investigate whether local thresholding algorithms and the
choice of template images might provide more influence on the interpretability of Mooney
images.

FOIL ANSWERS FOR CONCEPT DETECTION TASK

Shape-related dimensions
The following shape related dimensions from the embedding of the THINGS dataset
created by Hebart et al. (2020) were used to select shape-related concepts:

disc-shaped, course pattern, paper-related/text-related, long-thin, powdery/fine-scale
pattern, spherical, repetitiveness, flat/patterned, thin/flat, stringy, has beams/support, has
grating, cylindrical/conical.

Increased task difficulty due to shape-related concepts
Selecting shape-related concept produced foil answers which were in terms of shape harder

to discriminate from the correct answer. This can be seen in the examples presented in
Table Al.

GENERALIZED LINEAR MIXED MODELS

For further and more detailed data analysis of the concept detection task in experiment 2
we fitted a generalized linear (logistic) mixed model. We estimated the fixed effects of
threshold selection method and size of the smoothing kernel as well as their interaction
along with random effects for participant and template image on the probability to identify
the concept in an image correctly. The model which assumes a Bernoulli process that
depends on the mentioned factors using a logit link function can be described by the
following Ime4 formula:

correct ~ 1 + thresholding_technique +

kernel _size + kernel_size:thresholding_technique

(1 + thresholding_technique + kernel_size +
kernel_size:thresholding_technique|participant) +

(1 + thresholding technique + kernel_size +
kernel_size:thresholding technique|original_img name)

To evaluate whether kernel size and/or thresholding technique significantly influenced
the probability of correctly identifying the concept we created three addition models. The
formula of the second model which was the same as the first one but without an interaction
between thresholding technique and kernel size was:

correct ~ 1 + thresholding_technique + kernel_size +

(1 + thresholding_technique + kernel_sizel|participant) +
(1 + thresholding technique + kernel_sizel|original_img name)

The third model did not take the kernel size as fixed effect into account. The

corresponding formula is:
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Table A1 Comparison of foil answers selected randomly and by using shape similarity.

Correct answer Random foils Shape-related foils

Koala Skateboard, seatbelt, latte Weasel, warthog, chipmunk
Seagull Trumpet, envelope, shirt Badger, seal, bison

Olive Doorbell, crutch, cardinal Gumdrop, nut, almond

correct ~ 1 + thresholding_technique +
(1 + thresholding_technique|participant) +
(1 + thresholding_technique|original_img_name)

The fourth model did not take the thresholding techniques as fixed effect into account.
The corresponding formula is:

correct ~ 1 + kernel_size +

(1 + kernel_sizel|participant) +
(1 + kernel_size|original_img_name)

All effects were encoded using sum coding and were initialized with weakly informative
priors, which were supposed to reduce the probability of unrealistic parameter values while
not adding much bias to the model. Fixed effects coefficients and intercepts were given
Normal (0, 1) priors. The priors of random effect standard deviations were Normal (0.5, 1)
distributions which were truncated for values smaller zero as standard deviations cannot
be negative. For the correlation matrices we used a LK]J (2) prior which was supposed to
introduce a small bias against overly large correlations.

The posterior distributions of the models were estimates using a Markov Chain Monte
Carlo procedure. We run four chains, each with 1,000 warmup-samples and 2,000 actual
samples resulting in a total number of 8,000 post warmup draws from which the posterior
was estimated.
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