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ABSTRACT

Zoraptera (also called “angel insects”) is one of the most unexplored insect orders.
However, it holds promise for understanding the evolution of insect karyotypes and
genome organization given its status as an early branching group of Polyneoptera and
Pterygota (winged insects) during the Paleozoic. Here, we provide karyotype descrip-
tions of three Zorapteran species: Brazilozoros huxleyi (2nd'; Q = 42; 42), B. kukalovae
(2nd'; @ = 43; 44) and Latinozoros cacaoensis (2nd'; Q = 36; 36). These species represent
two of the four recently recognized Zorapteran subfamilies. Contrary to an earlier
suggestion that Zoraptera has holocentric chromosomes, we found karyotypes that
were always monocentric. Interestingly, we detected both X0 (B. kukalovae) and
XY (B. huxleyi, L. cacaoensis) sex chromosome systems. In addition to conventional
karyotype descriptions, we applied fluorescent in situ hybridization for the first time in
Zoraptera to map karyotype distributions of 18S rDNA, histone H3 genes, telomeres
and (CAG), and (GATA), microsatellites. This study provides a foundation for
cytogenetic research in Zoraptera.

Subjects Entomology, Molecular Biology, Zoology
Keywords Karyotype, rDNA, Microsatellites, Sex chromosomes, Telomere

INTRODUCTION

Zoraptera is the third smallest insect order and also one of the most enigmatic (Choe, 2018;
Matsumura et al., 2020). It originated during the Paleozoic (Matsumura et al., 2020; Misof
et al., 2014; Montagna et al., 2019; Wang et al., 2023), and the majority of its extant species
are found living under the bark of fallen logs in subtropical and tropical forests in all
biogeographical regions (reviewed in Choe, 2018). Since being described by Silvestri (1913)
more than a century ago, Zoraptera has received scant attention. Knowledge of the biology
of this insect order is therefore very limited. Moreover, locating Zoraptera in the insect
phylogeny tree has been shown to be a difficult task—Ilabelling it the “Zoraptera problem”
(Beutel ¢ Weide, 2005). The group was either proposed to be sister to Paraneoptera (also
called Acercaria) (Beutel ¢» Weide, 2005; Hennig, 1953; Wheeler et al., 2001) or Eumetabola
(Paraneoptera + Holometabola) (Beutel ¢~ Gorb, 2001; Blanke et al., 2012) or to be an
inner lineage of Polyneoptera (reviewed by Choe, 2018). Even within Polyneoptera, the
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position of Zoraptera was not stable. Silvestri (1913) originally assumed its close affinity
to Blattodea (cockroaches and termites). More recent phylogenetic studies have proposed
sister relationships to Dictyoptera (Blattodea + Mantodea) (Ishiwata et al., 2011; Wang
et al., 2013; Wheeler et al., 2001; Yoshizawa & Johnson, 2005), Embioptera or the entire
Eukinolabia (Embioptera + Phasmatodea) (Dallai et al., 2011; Dallai et al., 2012; Ma et al.,
2014; Mashimo et al., 2011; Mashimo et al., 2015) or Dermaptera (Misof et al., 2014; Misof
et al., 2007; Wipfler et al., 2019). Recently, there seems to be consensus that Zoraptera
represents an early branching lineage of Polyneoptera; phylogenomic studies published
in the last few years have supported its sister position to Dermaptera (Misof et al., 2014;
Wipfler et al., 2019) or to all other Polyneoptera (Tihelka et al., 2021). Only 61 Zorapteran
species have been described to date. However, considerable systematic effort has been
recently focused on inner classification of the group, suggesting that its true diversity
remains largely unexplored (Matsumura et al., 2020; Kocdrek, Horkd ¢ Kundrata, 2020;
Kocdrek & Horkd, 2023a; Kocdrek ¢» Horkd, 2023b; Matsumura et al., 2023). The group is
classified into families Spiralizoridae and Zorotypidae. Spiralizoridae is further divided into
subfamilies Latinozorinae and Spiralizorinae and Zorotypidae is divided into subfamilies
Spermozorinae and Zorotypinae (Kocdrek, Horkd ¢ Kundrata, 2020).

The phylogenetic position of Zoraptera makes the group important for understanding
the evolution of insect karyotype characteristics—including sex chromosome systems
(SCSs), chromosome number and holocentricity. However, even basic descriptions of
Zorapteran karyotypes are still not available. The only exception is in case of Usazoros
hubbardi (Caudell, 1918), whose male karyotype has been shown to constitute 38
chromosomes (2nd" = 38) (Kuznetsova, Nokkala ¢» Shcherbakov, 2002). Those same
authors also suggested that an XY SCS is present in this species and that its chromosomes
are holocentric because no primary constriction was observed. Among insects, holocentric
chromosomes are also found in Odonata, Dermaptera, Phthiraptera, Hemiptera,
Trichoptera and Lepidoptera (reviewed in Drinnenberg et al., 2014). The phylogenetic
positions of these lineages (including Zoraptera) support the idea that holocentric
chromosomes may be ancestral for Pterygota according to maximum parsimony analysis
performed by Melters et al. (2012). However, the transcriptomic and genomic analyses of
Drinnenberg et al. (2014) revealed that Odonata, Dermaptera, Phthiraptera, Hemiptera,
Trichoptera and Lepidoptera lack CENP-A (centromeric histone 3 variant), which is
otherwise essential for inner kinetochore construction in eukaryotes, including the insect
groups with monocentric chromosomes. Drinnenberg et al. (2014) concluded that the loss
of CENP-A and the establishment of holocentricity occurred several times independently
in insects; that finding is at odds with the ancestral holocentricity hypothesis (Melzers et al.,
2012). Importantly, those authors also suggested that perception of some insect orders to
have exclusively holocentric chromosomes might be oversimplified because of limitations
related to the karyological data (Drinnenberg et al., 2014); such limitations could bias
large-scale evolutionary metanalyses.

In order to broaden our knowledge on Zorapteran cytogenetics, we provide karyotype
descriptions of three species belonging to the sister subfamilies Latinozorinae (Latinozoros)
and Spiralizorinae (Brazilozoros) (Kocdrek, Horkd ¢ Kundrata, 2020). In addition to
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standard cytogenetic techniques, we also performed fluorescent in situ hybridization
(FISH) to map and compare the karyotype distribution of five different repetitive DNA
markers. Generally, karyotype distribution of various repetitive DNA loci is frequently
mapped in cytogenetic analyses to study their role in chromosomal rearrangements and
its spatial organization and function in genomes (e.g., Cazaux et al., 2011; Raskina et al.,
2008; Slijepcevic, 1998; Stundlovd et al., 2022; Volenikovd et al., 2023). In this study, we
analyzed distribution of telomeric repeats, 18S rDNA and histone H3 gene, which are the
most frequently studied cytogenetic markers in animals and plants (e.g., Fukovd, Nguyen ¢
Marec, 2005; Roa & Guerra, 2012; Rovatsos et al., 2015; St’dhlavsky et al., 2021; St’dhlavsky
et al., 2020 §t’oihlavsk)? et al., 2018). On the other hand, microsatellite sequences constitute
a significant fraction of the repeatomes of eukaryotic organisms (Vieira et al., 2016) and
may mediate centromere and telomere formation, gene expression regulation, chromatin
organization and DNA structure (reviewed in Jonika, Lo ¢ Blackmon 2020). However,
studies focusing on the spatial organization of microsatellite sequences within genomes
have been rare; only a few investigations have involved insects (e.g., Milani ¢ Cabral-de
Mello, 2014; Palacios-Gimenez et al., 2015a; Palacios-Gimenez, Marti ¢ Cabral-de Mello,
2015b; Palacios-Gimenez ¢ Cabral-de Mello, 2015; Panzera et al., 2023; Ruiz-Ruano et al.,
2015; Santos et al., 20105 Dos Santos et al., 2018). In this study, we analyze the distribution
of (GATA), and (CAG), microsatellite sequences in Zoraptera. These two types of
microsatellites have been reported to be present in plants (e.g., Stajner et al., 2005; Vosman
& Arens, 1997), vertebrates (e.g., Andrés et al., 2004; Haerter et al., 2023; Hiramatsu et

al., 2017; Liang et al., 2007; Lin, Dion ¢ Wilson, 2005; Mubiru et al., 2012; Tokarskaya

et al., 2004) and insects (e.g., Milani ¢ Cabral-de Mello, 2014; Palacios-Gimenez et al.,
2015a; Palacios-Gimenez, Marti ¢ Cabral-de Mello, 2015b; Ruiz-Ruano et al., 2015), which
suggests that their presence might be widespread in eukaryotic organisms and represent
suitable markers to study the differences of chromosome organization among even closely
related species (e.g., Palacios-Gimenez et al., 2015a; Pucci et al., 2016).

METHODS

Sampling, rearing, and identification

Zorapteran specimens used in this study were collected during the expedition to French
Guiana in 2022 by P. Kocarek, M. Jankdsek (authors of this study), and I.H. Tuf (Palacky
University, Olomouc, Czech Republic). An aspirator was used to collect zorapteran
specimens from under the bark of different tree species. Breeding cultures were established
from the collected individuals and the zorapterans were reared in plastic containers
(12.0 x 9.5 x 4.5 cm) in crushed oak rotting wood at room temperature (22-24 °C). The
samples for chromosome slide preparations (see below) were extracted from these cultures.
Breeding cultures of Latinozoros cacaoensis Kocarek & Horkd, 2023 and Brazilozoros
kukalovae Kocarek & Horkd, 2023 have been established from samples collected at the
type localities together with the type material (Kocdrek ¢ Horkd, 2023; Kocdrek ¢ Horkd,
2023b). Brazilozoros huxleyi (Bolivar y Pieltain & Coronado, 1963) has been identified
morphologically by comparisons with all described species of Brazilozoros Kukalova-Peck
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& Peck, 1993 (Silvestri, 1946; Bolivar Y Pieltain ¢ Coronado, 1963; New, 1978; Kocdrek ¢
Horkd, 2023b). Phylogenetic affinities of studied species have been compared molecularly
(Kocdrek ¢ Horkd, 2023a; Kocdrek ¢ Horkd, 2023b).

We analyzed karyotypes of three Zorapteran species in the family Spiralizoridae
from French Guiana: Latinozoros cacaoensis (Latinozorinae), eight males, four females,
locality: Cacao env., Molokoi track (04°33/39.70"N, 52°27'44.52"W); Brazilozoros
huxleyi (Spiralizorinae), five males, three females, locality: Kourou env., Montagne
des Singes (05°04'17.11”N, 52°41'50.26"W); Brazilozoros kukalovae (Spiralizorinae),
seven males, seven females, locality: Kourou env., Montagne des Singes (05°04’17.11”N,
52°41'50.26"W). Voucher specimens are deposited in the Department of Zoology, Charles
University in Prague.

Chromosome slide preparations

The chromosome preparation slides were prepared via the “plate spreading” method
following Traut (1976). The abdomen cavity of an individual was opened and hypotonized
in 0.075 M KCl solution for 35 min. Next, the entire abdomen was fixed in a methanol:acetic
acid (3:1) solution for 20 min and its content was dissolved on a slide in a drop of 60%
acetic acid. Subsequently, the suspension was dried and spread on a histological plate at
45 °C and the chromosomes were stained in 5% Giemsa-Romanowski solution in S6rensen

phosphate buffer.

Microsatellite fluorescent in situ hybridization experiments
Biotin-labelled (GATA)sg, (CAG)1o probes and Cy3-labelled (TTAGG)g probes (Integrated
DNA Technologies, Inc., Coralville, USA) were used to detect the distributions of
microsatellite and telomeric sequences in all the studied species. In order to test specificity
of the telomeric (TTAGG)g probe, we also used (TTAGGG)g probe in L. cacaoensis. The
FISH experiments were performed following a modified version of the non-denaturing
protocol presented by Cuadrado ¢ Jouve (2010). Briefly, no pre-treatment of slides has
been performed and 30 pl of hybridization buffer consisting of 2 pmol of probe in 2xSSC
was denatured in 80 °C for 5 min, chilled on ice for 10 min and applied to each slide.
The hybridization process was conducted over the course of 2 h at room temperature,
and the slides were washed for 10 and 5 min in 4xSSC/0.2% Tween afterwards. For the
biotin-labelled probes, 100 pl of detection mix consisting of streptavidin-Cy3 in 5%
BSA/4xSSC (2:1000) was applied to each slide, and the slides were incubated for 1 h at
37 °C before being washed for 10 and 5 min in 4xSSC/0.1% Tween. Finally, all of the slides
were stained using commercial Mounting Medium with DAPI (Abcam plc., Cambridge,
UK).

18S rDNA and H3 probe preparation

The 18S rDNA probe (~1,200 bp) was amplified via PCR from genomic DNA of B. huxleyi
(GenBank: PQ315823, File S2) using the primers eukA: 5'-AACCTGGTTGATCCTGCCAGT-
3’ and eukB: 5'-TGATCCTTCTGCAGGTTCACCTACG-3'(Medeli et al., 1988) under the
following conditions: 95 °C for 3 min, 35 cycles of 95 °C for 30 s, 51 °C for 40 s and 72 °C
for 2 min. The final extension was at 72 °C for 10 min. The PCR product was purified
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using a Gel/PCR DNA Fragments Kit (Geneaid Biotech Ltd., New Taipei City, Taiwan)
and labelled using a Cy3 NT Labeling Kit (Jena Bioscience, Jena, Germany) following the
manufacturer’s protocols. Next, the solution containing the labelled probe and competitive
Salmon Sperm DNA was ethanol precipitated. The final hybridization mixture contained
20 ng of the probe and 25 pg of competitive Salmon Sperm DNA per slide diluted in 50%
formamide/2xSSC (5.2 ul/slide) and 10% dextran sulphate (5.2 pl/slide) at 37 °C.

The probe for histone 3 (H3) gene detection was prepared specifically for B. huxleyi
(GenBank: PQ309679, File S2) and L. cacaoensis (GenBank: PQ309678, File S2). It was
amplified and labelled with biotin-16-dUTP via PCR using the following primers: H3 AF: 5'-
ATGGCTCGTACCAAGCAGACVGC-3/,H3 AR: 5-ATATCCTTRGGCATRATRGTGAC-
3'(Colgan Donald, Ponder ¢ Eggler, 2000). The PCR conditions were as follows: 95 °C for
5 min, 35 cycles of 95 °C for 1 min, 52 °C for 1 min and 72 °C for 1 min 20 s. The final
extension was at 72 °C for 7 min. After being mixed with competitive Salmon Sperm DNA,
the probe solution was ethanol precipitated; the final hybridization mixture contained 100
ng of the probe and 25 pg of competitive Salmon Sperm DNA per slide diluted in 50%
formamide/2xSSC (5.2 pl/slide) and 10% dextran sulphate (5.2 pl/slide) at 37 °C.

H3 and 18S rDNA FISH

The histone H3 and 18S rDNA FISH experiments were conducted following a modified
version of the protocol of Fukovd, Nguyen ¢» Marec (2005). Briefly, the slides were pre-
treated with 100 pul of RNase A (200 pg/ml in 2xSSC) for 60 min, washed twice in 2xSSC for
5 min and denatured in 70% formamide for 3 min 30 s. Next, the hybridization mixtures
were applied, and the hybridization process took place for 16-22 h. The stringency washes
were performed following Sahara, Marec & Traut (1999). The slides with the H3 biotin-
16-dUTP-labelled probe were incubated with 500 .1 of 2.5% BSA /4xSSC blocking reagent
for 20 min. Detection of the probe was carried out using 100 pl of streptavidin-Cy3 in
2.5% BSA/4xSSC (1:1000) for 1 h and was followed by 3 rounds of washing in 4xSSC/0.2%
Tween for 3 min. Finally, all of the slides were counterstained using Mounting Medium
with DAPI (Abcam plc., Cambridge, UK) The slides selected for sequential reprobing after
FISH were washed according to Stundlovd et al. (2022).

Microscopy and imaging

The chromosomes subjected to Giemsa-Romanowski staining and the FISH experiments
were photographed using an Olympus AX70 Provis microscope with an Olympus DP72
camera and fluorescent filters. The chromosomes of five mitotic metaphases were measured
in ImageJ 1.53p (Schneider, Rasband ¢ Eliceiri, 2012) using the Levan plugin (Sakamoto &
Zacaro, 2009) and categorized into morphological categories according to Levan, Fredga ¢
Sandberg (1964).

RESULTS

Brazilozoros huxleyi (Bolivar y Pieltain & Coronado, 1963)
This species exhibited 2n = 42 in female mitotic metaphases (Figs. 1A, 1B). The karyotype
was composed of one pair of metacentric (pair No. 1) and 19 pairs of telocentric
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autosomes. Moreover, females also possessed two large metacentric sex X chromosomes.
The metacentric autosomes and the X chromosomes constituted the largest chromosomes
in the karyotype; each of them accounted for 5.65 and 5.78%, respectively, of the diploid
set. The remaining autosomes gradually decreased in length from 3.06 to 1.26% of the
diploid set. The males of this species possessed 20 homomorphic and one heteromorphic
chromosome pair (Figs. 1E, 1F). The heteromorphic chromosome pair represented the
XY SCS. The Y chromosome was distinctly shorter; it constituted 63.4% (SE = 5.5) of the
X chromosome. These sex chromosomes exhibited intense spiralization that manifested
itself as positive heteropycnosis during the first meiotic division (pachytene and diplotene)
(Figs. 1E, S1A). The application of FISH with the (TTAGG)s probe allowed us to detect
typical telomeric signals in the terminal regions of all of the chromosomes and moreover
two small pericentric signals on the large metacentric pair No. 1 (Figs. 1B, 1C). The position
of the histone H3 gene was terminal on the proposed short arms of one chromosome pair
(Fig. 1D); the (CAG), microsatellite clusters were pericentric on the long arms of another
chromosome pair (Fig. 1D). Unlike previously reported markers, the 18S rDNA cluster was
identified on a different chromosome pair in the interstitial position of the long arms, app.
in the middle of their length (Fig. 1D). The (GATA)g probe yielded a specific chromosomal
pattern. Except for a pair of very intense pericentric signals on one autosome, we also
identified weak signals in the short arm (peri)centromeric regions of all of the autosomes.
Interestingly we also identified small signal in terminal position of the proposed metacentric
X chromosome (Fig. 1F).

Brazilozoros kukalovae Kocarek & Horka, 2023

This species exhibited 2n = 43 in the male mitotic metaphases (Figs. 2A, 2B) and 2n = 44
in the female mitotic metaphases (Figs. 2D, S1D). A comparison of the males and females
revealed the presence of an X0 SCS in this species. This system could also be identified from
the male metaphases IT. One half of the observed metaphases IT contained 21 chromosomes
(Fig. S1B); the remaining metaphases contained 22 chromosomes with a slightly positive
heteropycnotic X chromosome (Fig. 2C). The karyotype was composed only of telocentric
chromosomes (including the X). The X chromosome is the largest in the karyotype; it
represents 3.99% of the diploid set length. The remaining autosomes gradually decrease in
length from 2.96 to 1.38% of the diploid set. The application of FISH with the (TTAGG)s
probe enabled the detection of typical telomeric signals in the terminal regions of all of
the chromosomes (Fig. 2B). Moreover, we identified one distinct interstitial signal on
chromosome pair No. 2 and No. 6 (Fig. 2B). We detected (CAG), microsatellite clusters
on the long arm of one chromosome pair (Fig. 2D). Clusters of 185 rDNA and (GATA),
microsatellites were additionally identified on another chromosome pair in an interstitial
position of the long arms (Figs. 2E, 2F). We did not detect any additional accumulations
of (GATA) repeat units.

Latinozoros cacaoensis Koc¢arek & Horka, 2023
This species exhibited 36 chromosomes in the female mitotic metaphases (Figs. 3A, 3B).
During diakinesis and metaphase I, the males possessed 17 pairs of autosomes and X
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Figure 1 Chromosomes of Brazilozoros huxleyi. The chromosomes are counterstained with Giemsa
(A, E) or with DAPI (blue) (B-D, F). The arrows indicate the small pericentric signals; the white arrow-
heads indicate the sex chromosomes; “1” indicates bivalent of chromosome pair No. 1. Each scale bar cor-
responds to 10 pm. (A) Female karyotype (based on mitotic metaphase). (B) Female karyotype after FISH
with the (TTAGG); probe (based on the same mitotic metaphase appearing in the previous karyogram);
the inset shows details of the centromeric region of pair No. 1. Two small pericentric signals are noted
with the telomeric probe. (C) Male diplotene after FISH with the (TTAGG); probe; the inset shows the
same bivalent pair No. 1 after Giemsa staining. (D) Male diakinesis after FISH with the histone H3 gene
probe (green signals), the (CAG);, probe (magenta signals) and the 18S rDNA probe (red signals). The
inset shows details from another diplotene. (E) Male diplotene with slightly positive heteropycnotic sex
chromosomes. (F) The same male diplotene after FISH with the (GATA); probe (red signals).

Full-size G4 DOI: 10.7717/peerj.18051/fig-1

and Y sex chromosome univalents (Fig. 3C). The first two pairs of chromosomes were
distinctly longer than the remaining chromosomes—they were metacentric and accounted
for 6.27% and 3.97%, respectively, of the diploid set length. Moreover, both of these long
autosomal pairs formed two chiasmata during the first meiotic division (Fig. 3C). The X
chromosome also represents a relatively large metacentric chromosome that accounted
for 5.45% of the diploid set length; the Y chromosome is a telocentric chromosome that
was only about 40% of the length of the X chromosome. Moreover, the sex chromosomes
appeared to be positively heteropycnotic during early prophase I. All of the autosomes
gradually decreased in length and accounted for anywhere from 2.92% to 1.36% of the
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Figure 2 Chromosomes of Brazilozoros kukalovae. The chromosomes are counterstained with Giemsa
(A, C) or with DAPI (blue) (B, D-F); the arrowheads point out sex chromosomes. Each scale bar corre-
sponds to 10 Lm. (A) Male karyotype (based on mitotic metaphase). (B) Male karyotype after FISH with
the (TTAGG); probe (based on the same mitotic metaphase appearing in the previous karyogram); the ar-
rows indicate small interstitial signals. (C) One sister cell of male metaphase II with the X chromosome.
(D) Female mitotic metaphase after FISH with the (CAG);, probe (magenta signals). (E) Male mitotic
metaphase after FISH with a probe for 18S rDNA (red signals). (F) Female mitotic metaphase after FISH
with the (GATA); probe (red signals).

Full-size ] DOT: 10.7717/peer;j.18051/fig-2

diploid set length. These autosomes were mainly telocentric with the exception of two
pairs of submetacetrics and two pairs of subtelocentrics. FISH with the (TTAGG)g and
(TTAGGG)g probes revealed standard telomere patterns on all of the chromosomes
(Figs. 3B, S1C). To further test the specificity of both probes, we also applied stronger
stringency washes following the methodology in the H3 and 18S rDNA FISH experiments.
However, this approach did not provide any reliable signals. Clusters of histone H3 genes
and (CAG) microsatellite repeats were detected in the pericentric regions of the short
and long arms of two different telocentric chromosomes, respectively (compare Figs. 3D,
3E). Finally, one pair of 185 rDNA clusters was detected throughout the entire short arms
of a submetacentric chromosome pair (Fig. 3E). Unlike previous markers, we identified
multiple smaller (GATA), microsatellite clusters on six chromosomal pairs and three in a
heterozygous state on two chromosomal pairs (Fig. 3F).
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Figure 3 Chromosomes of Latinozoros cacaoensis. The chromosomes are counterstained with Giemsa
(A, C, D) or with DAPI (blue) (B, E, F). The scale bars correspond to 10 jum. (A) Female karyotype (based
on mitotic metaphase). (B) Female karyotype after FISH with the (TTAGG);s probe (based on the same
mitotic metaphase appearing in the previous karyogram). (C) Male metaphase [; the arrowheads point
out sex chromosomes. (D) One male sister metaphase II. (E) The same metaphase II as in the previous
panel after FISH with the histone H3 gene probe (green signals), the (CAG),o probe (magenta signals) and
the probe for 18S rDNA (red signals). (F) Male diplotene after FISH with the (GATA); probe (pointed by
green arrows, the asterisks show heterozygous signals); the inset shows the bivalent with two heterozygous
signals on one chromosome (red signal: (TTAGG),).

Full-size G4l DOI: 10.7717/peerj.18051/fig-3

DISCUSSION

We have presented detailed cytogenetic analyses of three Zoraptera species representing
two subfamilies belonging to the family Spiralizoridae. The observed diploid chromosome
numbers in B. huxleyi, B. kukalovae and L. cacaoensis were 2nd', @ = 42, 42; 2nd’, @ = 43,
44 and 2nd", Q = 36, 36, respectively. The number of diploid chromosomes in Polyneoptera
ranges from 7 in males of Hemimerus bouvieri (Hemimeridae, Dermaptera) (White, 1971)
to 98 in both sexes of Mastotermes darwiniensis (Mastotermitidae, Blattodea) (Bedo, 1987;
Luykx, 1990). According to the Polyneoptera karyotype database assembled by Sylvester
et al. (2020), the modal chromosome numbers of Polyneoptera are 2nd’, ¢ = 23, 24.
However, these numbers are not very informative in the context of the entire Polyneoptera
group, because it is prevalent in Caelifera, an extensively karyotyped group (Husemann
et al., 2022; Sylvester et al., 2020). Moreover, Sylvester et al. (2020) showed that relatively
more cytogenetically studied Polyneoptera orders (Blattodea, Mantodea, Orthoptera and
Phasmatodea) have divergent karyotype evolution modes (i.e., differing optimal rates of
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chromosome fission, fusion and polyploidy). However, the karyotype evolution modes
of cytogenetically less studied Polyneoptera orders remain unknown. The karyotypic
descriptions of B. huxleyi, B. kukalovae and L. cacaoensis presented here and those of
U. hubbardi presented by Kuznetsova, Nokkala ¢ Shcherbakov (2002) represent an initial
body of knowledge for karyotype evolution studies in Zoraptera. Kuznetsova, Nokkala ¢
Shcherbakov (2002) suggested that the chromosomes of U. hubbardi are holocentric, but
the entire chromosome complements of the species we studied are clearly monocentric.
However, variability in kinetochore organization (monocentricity or holocentricity) cannot
be ruled out in Zoraptera, since U. hubbardi represents family Zorotypidae and all of the
species sampled here belong to sister family Spiralizoridae. This needs to be confirmed
with additional analyses since the chromosomal images presented by Kuznetsova, Nokkala
& Shcherbakov (2002) are not of sufficient quality to address this issue. Furthermore,
it has been proposed that holocentricity might possibly represent synapomorphy for the
Dermaptera + Zoraptera group (Kuznetsova, Nokkala & Shcherbakov, 2002), but that seems
to be uncertain in light of our results and recent phylogenomic research in Polyneoptera,
where Zoraptera was found to be sister to all other Polyneoptera (Tihelka et al., 2021).

The differing chromosome numbers between U. hubbardi and the species studied herein
suggest that Zoraptera are not in a karyotype evolution stasis, a phenomenon which is
sometimes present even in specious insect groups (e.g. in termites of family Termitidae
(reviewed in Jankdsek, Kotykovd Varadinovd ¢~ St'dhlavsky, 2021) or Acrididae grasshoppers
(Husemann et al., 2022)). All three of the species that we examined possessed karyotypes
composed entirely or mostly of (sub)telocentric chromosomes. These chromosomes may
undergo Robertsonian fusions (also frequently called centric fusions or Robertsonian
translocations). The presence of two large metacentric chromosomes in B. huxleyi (2nd®
= 40 + XY) and their lack in B. kukalovae (2nd® = 42 + X0) might suggest that the
two metacentric chromosomes originated by fusions. However, exact directionality of
the process cannot be revealed without reconstruction of the ancestral Brazilozoros
karyotype. Therefore, future studies focused on inter-specific applications of specific
chromosome painting probes and/or comparative chromosome-scale macrosynteny
analyses are necessary to better understand the cross-species relationships between
particular chromosomes.

Kuznetsova, Nokkala & Shcherbakov (2002) suggested the presence of an XY SCS in
U. hubbardi since they observed only bivalents in the first meiotic divisions in males. We
detected an XY SCS in B. huxleyi and L. cacaoensis and an X0 SCS in B. kukalovae. It is
tempting to imagine that an XY SCS is ancestral in Zoraptera since it has been found
in three genera (including Usazoros) characterized by deep evolutionary divergencies
(Kocdrek, Horkd ¢» Kundrata, 2020; Matsumura et al., 2020) and could be shared with
Dermaptera, which have been considered to be sister to Zoraptera (Wipfler et al., 2019)
(but see Tihelka et al., 2021), where XY (or XY derived) SCS is as far as known predominant
(Blackmon, Ross ¢» Bachtrog, 2017; White, 1976). In that case, it might be possible that the
X0 SCS in B. kukalovae was derived from an XY SCS via the degradation and loss of a Y
chromosome. However, the homeology of the X and Y chromosomes across Zoraptera
needs to be tested, particularly since it has been shown that the emergence of neo-XY SCSs
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from an X0 SCS via X chromosome-autosome fusions is frequent in insects (Blackmion,
Ross & Bachtrog, 2017). In support of the alternative hypothesis of an ancestral X0 SCS,
the X chromosome of B. kukalovae differed from the metacentric X chromosomes of the
other two studied species in that it was telocentric. That situation makes it easy to form
neo-XY SCSs via Robertsonian fusions. Nevertheless, the homeology of the observed X
chromosomes still needs to be confirmed, even though it has been shown recently that
the ancestral X chromosome genetic linkage group is conserved in X chromosomes across
Hexapoda with some exceptions in Diptera and in Lepidoptera where sex chromosome
turnovers occurred (Li, Mank ¢ Ban, 2022; Meisel, Delclos & Wexler, 2019; Toups ¢ Vicoso,
2023).

Only one pair of 18S rDNA clusters was detected in all three of the Zorapteran species
that we studied. In animals and plants, rDNA clusters are most frequently found terminally
and/or on short arms of (sub)telocentric chromosomes (Roa ¢ Guerra, 2012; Roa ¢
Guerra, 2015; Sochorovd et al., 2018). On the other hand, the interstitial position of 18S
rDNA on along chromosomal arm, which was observed in both studied Brazilozoros species,
is the least common type of rDNA localization in animals and plants (Roa ¢ Guerra, 2012;
Roa & Guerra, 2015; Sochorovd et al., 2018). Even so, it is more frequent in arthropods than
in other animals (Sochorovd et al., 2018). The low incidence of interstitial rDNA clusters (as
observed in both of the Brazilozoros species we studied) is not fully understood; however,
the more-prevalent distribution of rDNA in terminal chromosome regions compared with
elsewhere might be due to the spatial organization of chromosomes into bouquet formation
during meiotic prophase. The bouquet formation is present in many animals from the
leptotene stage to the pachytene stage; during that time, the telomeres are clustered in
one region of the inner nuclear membrane causing the chromosomes to form loops into
the nucleus. The proximity of the terminal regions of non-homologous chromosomes
in this stage increases the likelihood of ectopic recombination (Goldman ¢ Lichten, 1996;
Goldman & Lichten, 20005 Penfold et al., 2012). As a result, even rDNA might be transposed
in these terminal regions and therefore be more frequent there than in interstitial regions
(Cazaux et al., 2011).

Unlike rDNA, the number of clusters containing histone H3 genes appears to be
conservative among insects; most of the groups studied thus far have had at most one cluster
per haploid set, e.g., Cicadomorpha (Anjos et al., 2019), Scarabaeidae beetles (Cabral-de
Mello, Moura & Martins, 2010; Cabral-de Mello, Moura & Martins, 2011; Cabral-De-Mello
et al., 2011a; Cabral-de Mello et al., 2011b); grasshoppers (Cabral-De-Mello et al., 201 1a;
Cabrero et al., 2009; Camacho et al., 2015). The same situation was also observed in our
study of B. huxleyi and L. cacaoensis. The localization and transposition of histone genes
is supposedly subject to the same mechanisms as in case of rDNA and other repetitive
DNA sequences (Bueno, Palacios-Gimenez ¢ Cabral-de Mello, 2013). Individual histone
genes (H4, H3, H2A, H2B and H1) are generally arranged in numerous tandem repeats,
which enables their detection via standard FISH techniques (e.g., Cabral-De-Mello et al.,
2011a; Cabrero et al., 2009). However, individual clusters may differ in their composition
of histone genes and their sequence order within individual repeats, i.e., different histone
gene combinations may be present in different clusters in various organisms (reviewed in
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Maxson et al. 1983). Thus far, the colocalization of H3 and H4 genes has been confirmed
in Acridid grasshoppers (Cabrero et al., 2009), and the presence of all of the histone genes
(H2a, H2b, H3, H4 and H1) in a single locus has been confirmed in Drosophila melanogaster
(reviewed in Koreski et al., 2020). Therefore, it is of interest to test the colocalization of
histone genes in Zoraptera as well as in other insect species in the future.

In all three of the Zorapteran species we studied, (CAG),, microsatellite clusters were
always detected in the pericentric region of one telocentric chromosome pair. This finding
suggests that these chromosomes are homeologous and that the (CAG), band serves as
their marker. Similarly, (CAG),, accumulations have been detected in the centromeres of all
three of the autosomal chromosome pairs and the X; and X, chromosomes of the Eneoptera
surinamensis cricket (Palacios-Gimenez et al., 2015a). Among Polyneoptera, the (CAG),
microsatellite has been also detected in low abundances in genomes of Eyprepocnemis
plorans and Locusta migratoria grasshoppers without forming any FISH detectable clusters
(Ruiz-Ruano et al., 2015).

The distribution of GATA microsatellite accumulations was largely distinct in each
of the species we studied. Moreover, a heterozygous state—in sense of presence/absence
of detectable GATA clusters—was observed on two autosomal chromosome pairs in
L. cacaoensis. Among other insects, distribution patterns of GATA microsatellite have
been mostly studied in Orthoptera. The findings are generally congruent with our results
and show largely differing and specific GATA repeats distributions (Palacios-Gimenez
& Cabral-de Mello, 2015; Palacios-Gimenez ¢& Cabral-de Mello, 2015; Ruiz-Ruano et al.,
2015). However, these studies always compared karyotypes of different genera and did not
focus on differences between closely related species. Contrary to that, the GATA repeats
were found to be almost exclusively on Y chromosome across closely related species of
Triatomini (Reduviidae, Hemiptera) (Panzera et al., 2023). The GATA microsatellite has
been also found to be frequently located on sex chromosomes of various vertebrates
(Arnemann et al., 1986; Jones & Singh, 1981; Nanda et al., 1990; Schiifer et al., 1986; Singh et
al., 1994; Subramanian, Mishra ¢ Singh, 2003), where it has been shown to downregulate
or upregulate expression via GATA-binding proteins (Ravid Lustig et al., 2023; Singh et al.,
1994). Concerning the sex chromosomes, we identified distinct GATA accumulation only
on the X chromosomes of B. huxleyi (Fig. 1F) close to the region where the chiasma with
the Y chromosome formed. However, it should also be noted that many of GATA arrays
might be too small to be detected via the standard FISH method; therefore, the importance
of GATA repeats in sex-chromosome expression regulation cannot be ruled out in the
other two species that we studied.

Fluorescent in situ hybridization with a specific probe for (TTAGG), arthropod
telomeric repeats showed regular telomeric patterns in all three studied Zorapteran species.
However, this does not specifically determine the Zorapteran telomeric motif, since FISH
with (TTAGGG)g in L. cacaoensis showed the same telomeric pattern (Fig. S1C). Therefore,
we suggest the Zorapteran telomeric motif is similar to the probe sequences, though, it
needs to be determined in further studies. The TTAGG repeat is ancestral in insects
and likely originated from widespread TTAGGG telomeric repeats (Vitkovd et al., 2005).
Nevertheless, several insect lineages have lost the TTAGG telomeric motif; alternative motifs
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have been detected in some of those lineages (reviewed in Kuznetsova, Grozeva ¢ Gokhman,
2020). Interestingly, the ancestral TTAGG motif was not detected in two Forficula species
(Frydrychovd et al., 2004), which suggests that it is not present in at least some Dermaptera.
In addition to the standard telomeric pattern, pericentric interstitial telomeric sequences
(ITSs) have been found in the largest chromosome of B. huxleyi (Figs. 1A, 1C). Interestingly,
size of this metacentric chromosome is approximately double the size of the largest
autosomes in B. kukalovae, and some of these chromosomes also bear pericentric ITSs
on their long arms. Paradoxically, ITSs are sometimes observed in chromosomal regions
where Robertsonian fusions have occurred, even though one of the primary functions
of telomeres is to prevent such rearrangements (Murnane, 2012). Therefore, it has been
proposed that ITSs may originate from telomere inactivation followed by chromosome
fusion within the telomere sequence (Slijepcevic, 1998) or by telomeric sequence insertion
via telomerase during repairs of DNA double-strand breaks via the non-homologous end
joining repair mechanism (Nergadze et al., 2004; Nergadze et al., 2007). Pericentric ITSs are
distributed on both sides of centromeres in the largest chromosome of B. huxelyi; no signal
is present directly in the primary constriction. Therefore, there is also the possibility that
the ITSs were not generated during the process of putative fusion of two telocentrics but
they might actually correspond to the ITSs that were already present in the telocentrics
prior to fusion (i.e., as observed in B. kukalovae). In that case, fusion would be facilitated
by the centric regions of the telocentric chromosomes with a loss of proximal telomeres.
Since we do not know the ancestral karyotype of Brazilozoros, the entire process could also
be reversed: the ITSs on the telocentric chromosomes of B. kukalovae might instead be
the products of chromosomal fission. Irrespective of directionality, both scenarios require
that the pericentric ITSs are already present prior to fusion/fission. Conveniently, the
spatial organization of telomeric repeats can be also driven by evolutionary mechanisms
that generally act upon satellite DNA (e.g., unequal and ectopic recombination, gene
conversion and the formation of extra-chromosomal DNA circles) (reviewed in Aksenova
& Mirkin, 2019).

CONCLUSIONS

We have described the karyotypes of three Zorapteran species representing the subfamilies
Latinozorinae and Spiralizorinae within the Spiralizoridae family. We determined
chromosome numbers of 2nd"; ¢ = 42; 42 in B. huxleyi and 2nd'; @ = 44; 43 in B. kukalovae,
2nd'; @ =36; 36 in L. cacaoensis; the karyotypes are predominantly composed of telocentric
chromosomes. None of the sampled species had holocentric chromosomes; Kuznetsova,
Nokkala & Shcherbakov (2002) suggested as much for U. hubbardi. Interestingly, both X0
and XY SCSs were detected in Zoraptera; additional research is necessary to confirm which
of these SCSs is ancestral in Zoraptera. Such work could help refine our understanding
of SCS evolution in Polyneoptera and early branching Pterygota lineages. Fluorescent in
situ hybridization using probes for histone H3 gene and (CAG),, microsatellites revealed
one locus for each distributed in a stable pattern across all three of the studied species.
That finding is indicative of the homeology of chromosomes bearing the loci. On the other
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hand, the positions of the 18S rDNA cluster differed between the species in the Brazilozoros
and Latinozoros genera, and the distribution of GATA repeat accumulations was unique in
each of the species. Both (TTAGG)s and (TTAGGG)g probes visualized standard telomeric
pattern in Zoraptera. Therefore, we suggest the Zorapteran telomeric motif is sequentially
similar to the used probes but needs to be determined in further studies. Interstitial
telomeric sequences have been detected in both Brazilozoros species; however, it is not
clear whether those sequences were generated during chromosomal fusions or via the
transposition mechanisms that can generally drive the distribution of repetitive DNA in
genomes. This description of Zorapteran karyotypes serves as a stepping stone for further
cytogenetic research focused on this group. Our results show that Zorapteran species may
substantially differ at the karyotype and genomic organization level. Furthermore, both
X0 and XY SCSs have been detected in Zoraptera. Ongoing research regarding evolution
and variability of Zorapteran karyotype is critical for understanding the broad picture of
karyotype evolution not only in Polyneoptera but also in the whole Insecta.
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