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ABSTRACT
Background. The polyphagous predatory bug Orius strigicollis Poppius (Heteroptera:
Anthocoridae) is an active predator used to control many insect pests of agricultural
crops. Orius species are significantly affected by the type of food and temperature.
Method. A study of O. strigicollis feeding on Plutella xylostella L. (Lepidoptera: Plutel-
lidae) eggs in climate chambers at 28 and 32 ◦C, 70 ± 5% relative humidity, 16:8
photoperiod, was conducted to determine the effects of different temperatures on
the predation activity, biological characteristics and demographic parameters of O.
strigicollis. Twosex-MS Charts were used to determine the age-stages and characteristics
of this species.
Results. The results showed that the daily consumption of pre-adults on eggs of P.
xylostella was highest at 28 ◦C, and at this temperature, there was a greater probability
that O. strigicollis would survive to adulthood (42.5%) than at 32 ◦C (25.0%). It has
also been found that at 28 ◦C there was a long oviposition period (9.38 days) and the
greatest female fecundity (44.2 eggs/female) In addition to the highest life expectancy
of O. strigicollis (16.96 days) at 28 ◦C, the intrinsic rate of increase (0.087 d−1) was also
highest. According to our results,O. strigicollis has the potential to grow and develop on
the eggs of P. xylostella at 28 ◦C and, therefore, could potentially be used as a biological
control agent in integrated pest management (IPM) programs.
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INTRODUCTION
Diamondbackmoth (Plutella xylostella L., Lepidoptera: Plutellidae) is a cosmopolitan insect
pest that mainly feed on cruciferous crops like broccoli, cabbage, turnips, and cauliflower.
It is widely recognized as one of the most common insect pests globally (Garrad, Booth
& Furlong, 2016; Shakeel et al., 2017; Steinbach, Moritz & Nauen, 2017). The larval stage is
polyphagous, has a short generation time, higher fecundity, exceptional ability to survive
under intensive temperatures and insecticide resistance (Furlong, Wright & Dosdall, 2013;
Gu et al., 2010; Shelton & Nault, 2004; Zalucki et al., 2012). Newly hatched larvae mine
through the spongy mesophyll tissues and initiate damage (Harcourt, 1957). However,
significant damage is caused by the second to fourth larval stages. These stages feed directly
from flowers, leaves, buds, the green outer layer of stems, siliques, and on developing
seeds within older siliques (Sarfraz, Keddie & Dosdall, 2005). P. xylostella is a multivoltine
pest, and in tropical and temperate regions, it could have more than 20 generations
per year (Harcourt, 1986). An individual female can lay over 200 eggs on the upper leaf
surface of plants (Justus, Dosdall & Mitchell, 2000; Talekar et al., 1994). The outbreaks of
P. xylostella are widely distributed in China, and they are often associated with severe losses
in the production of cruciferous crops (Feng et al., 2011). There is also evidence that the
populations found in the southern parts of China migrated northwards and have become
a serious pest of many vegetable crops to the north parts of the country (Yang et al., 2015).
The estimated damage caused by P. xylostella to Brassica vegetable crops in China gradually
increased from 0.15 million hectares to 2.23 million hectares in the last few years (Li et
al., 2016). It has been reported that the use of insecticides systematically and vigorously
to control populations of P. xylostella in tropical and subtropical areas has led to a higher
selection of insecticide resistant (Salman, Aydınlı& Ay, 2015; Shaaya et al., 1997; Talekar &
Shelton, 1993). Therefore, it can be argued that biological control with the use of natural
enemies and botanical extracts can serve as a beneficial alternative to synthetic pesticides as
part of integrated pest management programs against P. xylostella outbreak (Symondson,
Sunderland & Greenstone, 2002).

In the family of Anthocoridae, Orius is considered as one of the largest genus of flower
bugs. There are over 80 species in the world that feed on a wide range of small insects
that are pests in forests and agricultural crops (Carpintero, 2002;Hernández, 1999;Herring,
1966; Postle, Steiner & Goodwin, 2001; Yamada, Yasunaga & Artchawakom, 2016). Orius
is known as voracious predator of many lepidopterans (eggs and young larvae), aphids,
spider mites, thrips, and whitefly species globally (Alvarado, Balta & Alomar, 1997; Arnó,
Roig & Riudavets, 2008; Ceglarska, 1999; Riudavets & Castañé, 1998). In addition to being
polyphagous, they have successfully adapted to feed on a wide range of insects and hence
found in all of the zoogeographic regions of the world. As a result, several species have
become effective predators against a wide range of economic insect pests, used as biological
control agents and utilizing in an augmentation strategy globally (Ballal & Yamada,
2016). In a previous study, the Orius sauteri (Heteroptera: Anthocoridae) was used in the
greenhouse to manage pests of pepper and eggplant (Jiang et al., 2011; Kageyama et al.,
2010). Several studies have examined the predatory capacity and behavior ofOrius insidiosus
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(Heteroptera: Anthocoridae), Orius niger (Heteroptera: Anthocoridae), Orius albidipennis
(Heteroptera: Anthocoridae), and Orius majusculus (Heteroptera: Anthocoridae) against
numerous pest species (Fritsche & Tamo, 2000; Rutledge & O’Neil, 2005; Tommasini, Van
Lenteren & Burgio, 2004). Many important pests of vegetable crops are being preyed upon
by Orius laevigatus (Heteroptera: Anthocoridae) in Europe, and it has been used in many
biological control programs (Van Lenteren & Bueno, 2003). Recent studies have examined
the predatory capacity of Orius minutus (Heteroptera: Anthocoridae) and Orius insidiosus
(Heteroptera: Anthocoridae) on egg of many lepidopterans to determine their predatory
capacity (Brito et al., 2009; Sun, Yi & Zheng, 2017).

The predatory bug Orius strigicollis Poppius (Heteroptera: Anthocoridae) which was
previously known as Orius similis Zheng (Heteroptera: Anthocoridae) (junior synonym
of O . strigicollis) (Jung, Yamada & Lee, 2013; Rehman et al., 2020; Yasunaga, 1997), also
called ‘‘minute predatory flower bug’’, is commonly found in the cultivated fields of
China and used as the natural enemy of many destructive pests of agricultural crops
(Zhang et al., 2012). The nymphal and adult stages of this species are both omnivorous
predators, eating the eggs and larvae of lepidopterous insects, such as Helicoverpa armigera
(Lepidoptera: Noctuidae), Spodoptera exigua (Lepidoptera: Noctuidae), Pectinophora
gossypiella (Lepidoptera: Gelechiidae), and Anomis flava (Lepidoptera: Erebidae), as well
as pollen (Aragón-Sánchez et al., 2018; Zhang et al., 1994). Additionally, they are also
predators of Aphis gossypii (Hemiptera: Aphididae), Tetranychus cinnabarinus (Acari:
Tetranychidae), and Frankliniella formosae (Thysanoptera: Thripidae). It is thought that
O. strigicollis may be a crucial biological control agent due to their ability to increase in
number against prey density, searching efficiency, and their capacity to aggregate in areas
with high prey populations (Hodgson & Aveling, 1988). Also, they can produce four to eight
generations between March and October, depending on the temperature ranges between
20 ◦C to 37 ◦C (Ali et al., 2020; Amer, Fu & Niu, 2018; Zhang et al., 2012; Zhou & Lei, 2002;
Zhou et al., 2006). Consequently, the mass rearing of O. strigicollis and their release into
fields or greenhouses can assist in the control of many important agricultural pests (Bonte
& De Clercq, 2011).

Insects are very sensitive to their environment, especially temperature, which has a
significant impact on their growth, development, survival, and feeding activity. It has
also been shown that temperature changes can directly affect predator metabolism, and
thus, disrupt their feeding activity (Angilletta Jr & Angilletta, 2009; Gilioli, Baumgärtner
& Vacante, 2005; May, 1979; Parajulee et al., 2006). An effective predator can thrive and
reproduce within agricultural ecosystems, even under adverse conditions (Cocuzza et al.,
1997). Previous studies have revealed that predators have changed their activity along with
the temperature changes, even at different stages of their life (Jalali, Tirry & De Clercq, 2010;
Khan et al., 2016). Similarly, these conditions not only influence the development of insects,
but also play an important role in determining the rate at which predators consume their
prey. The majority of biological control agents are produced inside controlled laboratory
conditions, where they have a high degree of success in surviving, reproducing, and
developing (Bigler, 1994) but they have less success in controlling prey populations when
released in the field. Thus, it is crucial to ascertain the optimal temperature range at

Ur Rehman et al. (2024), PeerJ, DOI 10.7717/peerj.18044 3/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.18044


which predators can effectively control pests before their release. Therefore, current study
was designed to identify the suitable temperature for releasing of O. strigicollis against
P. xylostella in the field. Until now, a very small number of studies have investigated the
use of predators against P. xylostella (Furlong et al., 2004; Ma et al., 2005). In addition,
the feeding rate of the O. strigicollis and its effect on P. xylostella population has not
been described in the literature (Furlong et al., 2004). Thus, the main objective of this
study was to determine the predation potential along with its biological traits, including
development time, longevity, oviposition and pre-oviposition periods, and survival rate,
when O. strigicollis fed on P. xylostella eggs at two temperatures (28 ◦C and 32 ◦C).
Furthermore, the demographic parameters (r, λ, R0, T and GRR) were also estimated. This
study aimed to contribute information on the potential use of O. strigicollis in integrated
pest management (IPM) programs against P. xylostella.

MATERIALS & METHODS
Insects
A few individuals of O. strigicollis were collected from the experimental cotton fields of
Huazhong Agricultural University (Wuhan, China). A further stack culture was setup
following the same method that we used in our previous study (Rehman et al., 2020),
described by Zhou et al. (2006) with modifications. The rearing arenas were made of small
plastic containers with lids, each measuring 23 cm× 22 cm× 5 cm. Both young and adults
individuals of predatory bugs were supplied with Aphis fabae to eat and two to three stems
of Vitex negundo (Lamiaceae), commonly known as Chinese chaste, were wrapped in wet
cotton at the end to facilitate the oviposition. Moreover, the leaves of V. negundo provide a
microclimate that can be suitable for the development of Orius eggs and nymphs, offering
optimal humidity and temperature conditions (Ali et al., 2020; Zhou et al., 2006). All the
bugs were reared in an insectary located on the campus with the following environmental
conditions; temperature 26 ± 1 ◦C, relative humidity (RH) 70 ± 5%, and a photoperiod
of 16 L: 8 D h at a light intensity of 1,400-1,725 lux.

Eggs of P. xylostella were collected from Hubei Key Laboratory of Insect Resources
Utilization and Sustainable Pest Management, College of Plant Science and Technology,
Huazhong Agricultural University,Wuhan, China. The newly hatched larvae were provided
with Chinese cabbage leaves that were sown in small plastic pots and placed inside large
screen cages (65 × 65 × 65 cm) until pupate. The pupae then transferred to new cages for
adult emergence. After emergence, adult were provided with honey solution (10%). The
radish (Raphanus sativus: Brassicales: Brassicaceae) were potted in small plastic boxes (6×
10× 20 cm) and provided to adults for oviposition. The temperature and relative humidity
for P. xylostellamass rearing were set at 25± 1 ◦C and 75± 5% (RH) respectively with 16
L: 8D light and dark photoperiod.

Experimental protocols
The mean temperature in the area of the Yangtze River is subtropical (Zhang et al., 2012).
The results obtained from the study conducted by Cocuzza et al. (1997) on O. albidpennis,
showed that Orius spp. can adapt to a range of high temperatures. Hence, based on the
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previous studies conducted on O. strigicollis in this region (Ali et al., 2020; Amer, Fu &
Niu, 2018; Zhang et al., 2012; Zhou et al., 2006), two temperatures (i.e., 28 and 32 ± 1 ◦C)
were selected for our study. The artificial climate controlled chamber (HP250GS, Ruihua
Instrument & Equipment Co., Ltd., Wuhan, China) with 70 ± 5% R.H and 16: 8 L & D
photoperiod was used in all experiments.

Bioassay
The biological characteristics of O. strigicollis were determine using the same method
we used in the previous study (Rehman et al., 2020). In total, 80 fresh eggs of predatory
bugs were collected from the insectary, incubated, and after hatching the individuals of
O. strigicollis (≤ 24 h) were separated in small Petri dishes (diameter: nine cm and depth:
two cm) containing filter paper (i.e., experimental unit). A small stem of Vitex negundo
was provided in each arena to avoid desiccation. Based on the preliminary experiment,
30 eggs of P. xylostella were introduced to each experimental unit as food. The number of
eggs consumed by predatory bugs in whole or part was counted after every 24 h. Nymphal
development and mortality were also recorded. The gender was confirmed immediately
after adult emergence. Once the adults had emerged, the male and female gender of
O. strigicolliswere paired formating. The females of predatory bugs that remained inmating
for >1.5 min were considered as mated (Butler & O’Neil, 2006). After mating, each pair was
transferred into small limpid boxes as described above in the mass rearing of O. strigicollis.
Each box was supplied with a small tender stem of Vitex negundo as oviposition substrate
at each temperature (28 ◦C and 32 ◦C). The healthy eggs of P. xylostella (n= 60) were
provided to each pair of O. strigicollis for feeding every day. The number of eggs consumed
by O. strigicollis adults was counted and replaced by new eggs every day. To confirm the
oviposition, the stem was examined every 24 h under a stereomicroscope (15×). After the
first egg was laid by a female, the stem was replaced every day. The total number of eggs
laid by a female was counted under a stereomicroscope (15×) until her death. The daily
egg consumption and life table traits such as developmental time, pre-oviposition and
oviposition, fecundity, longevity, and survival of male and female adults of the predatory
bug were recorded at each temperature.

Statistical analysis
To calculate daily and total egg consumption, the data were analyzed by independent
samples t -test without transformation (P < 0.05). Data were analyzed using SPSS (version
23, SPSS Inc., Chicago, IL, USA).

The data obtained from life table study was analyzed following the same method that
was used in our previous study (Rehman et al., 2020). This method based on the age-stage,
two-sex life table theory using a computer program (Twosex-MSChart). (Butler & O’Neil,
2006; Chi, 1988). The population and demographic parameters (eggs, nymphs and adult
development, oviposition, pre-oviposition, fecundity, and r, λ, R0, GRR and T ) were
calculated using the method described by Chi (2015). Equations (1) and (2) was used to
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calculate the age-specific survival rate (lx) and fecundity (mx).

lx =
k∑

j=1

sxj (1)

mx =

∑k
j=1 sxj fxj∑k
j=1 sxj

. (2)

In the equation, Sxj represents age-stage specific survival rate of predatory bug (x = age in
days, and j = stage) which indicates the probability of survival of infant to age x and stage
j. similarly, fxj donates age-stage specific fecundity of adult female (Chi & Liu, 1985). To
calculate the intrinsic rate of increase (r), the Euler–Lotka equation was used, following
the system of iterative division with the age index from 0 using Eq. (3) (Goodman, 1982).
∞∑
x=0

e−r(x+1)lxmx = 1. (3)

The values of (R0) (the potential of a female to produce a mean number of progenies
during her life), was determine using Eq. (4).
∞∑
x=0

lxmx =R0. (4)

The relation between female and R0 can describe as

R0= F
Nf

N
. (5)

In the equation N and Nf donate the total number of O. strigicollis used in the experiment
and the number of adult female respectively (Chi, 1988). The gross reproduction rate
(GRR) and rate of increase (λ) were calculated using Eqs. (6) and (7).

GRR=
∞∑
x=0

mx (6)

λ= er . (7)

The mean generation time (T ) that a population stand in need to rise to R0-fold of its
size i.e., erT =R0 or λT =R0 at the stable age-stage distribution was determine using the
Eq. (8).

T =
lnR0

r
. (8)

To calculate the stander errors (SEM) of population and demographic parameters, a
bootstrap test method (100,000 bootstrap) was used (Akca et al., 2015; Akköprü et al.,
2015; Tuan et al., 2015). To compare the means, a pair bootstrap test method built on the
confidence of the interval of difference was used (Chi, 2015; Pru et al., 2015). To get the
peaks of survival rate, fecundity, life expectancy and reproductive vales curves, Sigma Plot
12.0 was used.
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RESULTS
Predation rate
The effect of two temperatures on daily and total egg consumption of P. xylostella by
O. strigicollis is given in Fig. 1. The daily egg consumption of the first and second instars
nymph were significantly higher at 28 ◦C (F : 0.024, t : 5.071, df : 69, P : 0.0001) than at 32 ◦C
(F : 0.564, t : 4.317, df : 42, P : 0.0001). However, the rest of the nymphal instars showed no
significant difference in daily predation at both temperatures. While considering the entire
pre-adult stage of life, the total egg consumption of third and fifth nymphal instars were
highest (F : 33.262, t :−2.126, df : 53.630, P : 0.038; F : 0.039, t : 2.880, df : 30, P : 0.007), with
36.3 eggs per individual at 32 ◦C compared to 25.8 eggs at 28 ◦C.Whereas, the consumption
of the total eggs by an adultO. strigicollis was statistically higher (68 eggs; F : 1.633, t : 2.872,
df : 62, P : 0.006) at 28 ◦C. The maximum daily predation (15 eggs; F : 6.529, t: −4.523, df :
62, P : 0.000) at the adult stage was recorded at 32 ◦C.

Nymphal development
The effect of two temperatures on growth and development of O. strigicollis, when fed
on eggs of P. xylostella, is shown in Table 1. The obtained results showed that the mean
developmental time for eggs of the predatory bug was significantly shorter at 32 ◦C (2.40
days) compared to 28 ◦C (2.83 days). The developmental time for 1st, 2nd, and 5th instar
nymphs of O. strigicollis was significantly increased at 28 ◦C. Similarly, the female adult
longevity was statistically different and higher (17.33 ± 2.30 days) at 28 ◦C. However, no
significant difference was found in male adult longevity (9.12± 1.59 and 7.29± 1.90 days)
at 28 and 32 ◦C, respectively. The highest survival rate (42%) of individuals from the eggs
to adult stage of life was recorded at 28 ◦C than at 32 ◦C (28%).

Fecundity and oviposition
A significant difference was also noticed in the adult pre-oviposition period (APOP),
total pre-oviposition period (TPOP), oviposition period, and fecundity of female adult
O. strigicollis (Table 2). The highest pre-oviposition (5.0 days) and oviposition period
(9.38 days) was recorded at the 28 ◦C. Similarly, the total fecundity per female adult of
O. strigicollis was highest (42 eggs/female) at 28 ◦C, whereas, it was 17.3 eggs/female at
32 ◦C. Moreover, the total longevity of adult females was longer (33.44 ± 1.32) at 28 ◦C.
However, no significant difference was observed in the male adult total longevity at both
temperatures.

Life table and population parameters
The highest intrinsic rate (r : 0.087 d−1) was observed at 28 ◦C (Table 3). Thus, our results
showed that r decreased significantly with the increase in temperature. Whereas, the rate
of increase significantly decreased to λ: 1.09 d−1 at 28 ◦C compared to at 32 ◦C (1.28
d−1). The net reproductive rate was R0: 9.45 and 1.28 offspring/individual at 28 ◦C and
32 ◦C respectively. The mean generation time (T ) and gross reproduction rate (GRR)
significantly increased from 25.71 days, 38.70/offspring and 19.15 days, 8.12/offspring with
the increase in temperature from 28 ◦C to 32 ◦C, respectively.

Ur Rehman et al. (2024), PeerJ, DOI 10.7717/peerj.18044 7/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.18044


Figure 1 Stage-specific daily and total predation ofO. strigicollis fed on eggs of Plutella xylostella at
two temperatures. The value of each bar represent the mean eggs consumption, and the error bars indi-
cates the S.E.M, asterisk indicates a significant difference following the independent samples t -test (These
asterisks (*,**,**) represents the significance level according to the independent t-test which is equal to
P < 0.05.).

Full-size DOI: 10.7717/peerj.18044/fig-1

The age-stage specific survival rate (Sxj , x = age in days while j = stage which describes
the probability of survival of a neonate to age x and stage j) under two different temperatures
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Table 1 Influence of two temperatures on growth and development ofO. strigicollis fed on eggs of P.
xylostella. The developmental time for N1- N5 was significantly higher at 28 ◦C. Similarly, female adult
longevity was also highest at 28 ◦C.

Stage
duration
(days)

Temperatures

28 ◦C 32 ◦C

n Mean± S.E. n Mean± S.E.

Egg 40 2.83± 0.06 a 40 2.40± 0.08 b
N1 29 2.62± 0.09 a 25 2.00± 0.00 b
N2 23 3.13± 0.1 a 19 2.63± 0.14 b
N3 21 2.24± 0.12 a 16 2.38± 0.12 a
N4 20 1.65± 0.11 a 13 1.69± 0.17 a
N5 17 3.18± 0.18 a 10 2.30± 0.21 b
N1-N5 17 13.18± 0.26 a 10 11.10± 0.23 b
Female adult longevity 9 17.33± 2.30 a 3 8.33± 2.73 b
Male adult longevity 8 9.12± 1.59 a 7 7.29± 1.90 a

Notes.
SEs were estimated using 100,000 bootstrap. Means marked with multiple letters in the same row symbolize the significant dif-
ference using a pair bootstrap test. P < 0.05.

Table 2 Influence of two temperatures on biological traits of O. strigicollis fed on eggs of P. xylostella.

Parameters Temperatures

28 ◦C 32 ◦C

Mean±S.E. Mean±S.E.

APOP (d) 5.0± 0.50 a 2.5± 0.58 b
TPOP (d) 21± 0.71 a 15.50± 1.50 b
Oviposition (d) 9.38± 0.71 a 6.0± 0.00 b
Fecundity (total eggs/female) 42± 6.26 a 17.3± 8.54 b
Mean longevity of adult Female 33.44± 1.32 a 21± 3.00 b
Mean longevity of adult Male 25.38± 1.32 a 20.86± 1.92 a
Sex ratio (F:M) 9:8 3:7

Notes.
APOP, Adult pre-oviposition period of female adult;
TPOP, Adult pre-oviposition period of female counted from the birth.
SEs were estimated using 100,000 bootstrap. Means marked with multiple letters in the same row symbolize the significant
difference using a pair bootstrap test P < 005.

when fed on eggs of P. xylostella is given in Fig. 2. The results showed variations in the
developmental rate and overlapping occurred at the start and end of each stage at both
temperatures. The probability of survival of a newly laid female egg to the adult stage of
life was 22.5% and 7.5% at 28 ◦C and 32 ◦C temperatures respectively. Similarly, for male
eggs, the probability of surviving to adulthood was 20% and 17.5% at 28 ◦C and 32 ◦C,
respectively.

The curve of age-specific survival rate (lx), the age-specific total fecundity of the whole
population (mx), the age-stage based female fecundity (fx), and age-specific maternity
(lxmx : formed on the basis of lx & mx) at two temperatures when Anthocorid spp. fed on
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Table 3 Influence of two temperatures on demographic parameters ofO. strigicollis fed on eggs of P.
xylostella. The demographic parameters showed significant increase at 28 ◦C.

Parameters Temperatures

28 ◦C 32 ◦C

Mean±S.E. Mean±S.E.

Intrinsic rate of increase (r) (d−1 ) 0.087± 0.015 a 0.013± 0.028 b
Rate of increase (λ) (d−1 ) 1.091± 0.016 a 1.28± 0.029 b
Net reproductive rate (R 0) (offspring/individual) 9.45± 3.081 a 1.28± 0.784 b
Generation time (T ) (days) 25.71± 0.769 a 19.15± 1.213 b
Gross reproduction rate (GRR) (offspring) 38.70± 6.560 a 8.12± 4.124 b
Intrinsic rate of increase (r) (d−1 ) 0.087± 0.015 a 0.013± 0.028 b

Notes.
SEs were estimated using 100,000 bootstraps. Means marked with different letters in the same row symbolize the significant
difference using a pair bootstrap test. P < 005.

Figure 2 Age-stage-specific survival rate (Sxj) ofO. strigicollis at two temperatures fed on P. xylostella
eggs. The probability of survival of a newly laid female egg to the adult stage of life was highest at 28 ◦C.

Full-size DOI: 10.7717/peerj.18044/fig-2

eggs of P. xylostella is shown in Fig. 3. In the life table study, (lx) and (mx) are considered
essential parameters. Age-specific survival (lx) decreased with age and showed an inverse
relation with low and high regimes. However, fx , mx and lxmx first increased and then
decreased as age increased at both temperatures. The highest value of mx and fx (3.62 eggs
and 5.1 eggs) was calculated at 28 ◦C.

The curve of age-stage specific life expectancy (exj) forO. strigicollis, when fed on eggs of
P. xylostella, affected by different temperatures is shown in Fig. 4. Results showed an inverse
relation for life expectancy with temperature as it decreased from 16.96 days to 10.04 days
at 28 ◦C and 32 ◦C respectively. The age-stage reproductive value (vxj i.e., the forecasting
scale for future population individuals of O. strigicollis at age x and stage j) under two
temperatures is given in Fig. 5. The peak of age-stage specific curve (Vxj) for newly laid
eggs was 1.51 eggs and 1.53 eggs at 28 ◦C and 32 ◦C, respectively. The curve of reproductive
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Figure 3 Age-specific survival rate (l x), female age-specific fecundity (f x), age-specific fecundity of
the total population (m x), and age-specific maternity (lxmx) ofO. strigicollis. lx , Age-specific survival
rate; fx : female age-specific fecundity;mx : age-specific fecundity of the total population; lxmx : and age-
specific maternity.

Full-size DOI: 10.7717/peerj.18044/fig-3

Figure 4 Age-specific life expectancy (exj) ofO. strigicollis on P. xylostella eggs at two temperatures.
Results showed an inverse relation for life expectancy with temperature as it decreased from 28 ◦C to
32 ◦C.

Full-size DOI: 10.7717/peerj.18044/fig-4

values significantly increased as the age and stage increased at each temperature. The
highest peak for an adult female of O. strigicollis was obtained on the 20th and 15th day at
28 ◦C and 32 ◦C respectively.

DISCUSSION
The present study concluded that O. strigicollis could develop and survive at both
temperatures when fed on P. xylostella eggs. Except 1st, 3rd and 5th nymphal instars,
no significant effect of temperature was recorded on predation. However, O. strigicollis
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Figure 5 Age-stage specific reproductive values (Vx j) ofO. strigicollis on P. xylostella eggs at two tem-
peratures. The curve of reproductive values significantly increased as the age and stage increased at each
temperature.

Full-size DOI: 10.7717/peerj.18044/fig-5

adults consumed significantly more eggs at 32 ◦C. It is possible that the difference in
consumption was caused by the large body size and the high nutritional requirements of
adults stage (Aragón-Sánchez et al., 2018). The results of previous studies were in agreement
with our results whenO. similis was tested at different temperatures (20, 25, 30 and 35 ◦C),
and the Aphis gossypii consumption was maximum at 35 ◦C (Zhou et al., 2006). Comparing
our results with Brito et al. (2009), the O. insidiosus predation capacity on P. xylostella eggs
was lower than our results. While, the mean daily consumption of O. minutus and O.
laevigatus on eggs of P. xylostella and S. exigua was higher than the number obtained in the
present study (Aragón-Sánchez et al., 2018; Sun, Yi & Zheng, 2017).

The results obtained from the age-stage two-sex life table analysis showed that the
predatory bug O. strigicollis successfully survived and developed at each tested temperature
when fed on eggs of P. xylostella. However, the eggs and nymphal development of
Anthocorid spp. were significantly different and shorter when the temperature was 32 ◦C.
In recent studies,O. similis eggs developed relatively longer (3.9, 3.4 and 3.2 days) when fed
on Aphis gossypii andMyzus persicae at 28, 30 and 31 ◦C, respectively (Ahmadi, Sengonca &
Blaeser, 2007; Zhou et al., 2006). Whereas, the development ofO. albidipennis eggs at 25, 30
and 35 ◦C, when fed on F. occidentalis andM. sjostedti, was 3.8, 2.9 and 2.7 days, respectively
(Cocuzza et al., 1997; Gitonga et al., 2002). The above-cited studies are supporting our
results and indicate that the egg development of the predatory bug of the genus Orius
decreased with an increased temperature. Moreover, O. strigicollis pre-adults also showed
sensitivity to different temperatures. The nymphal development of predatory bug was
short at 32 ◦C when fed on eggs of P. xylostella. The same interaction was documented in
numerous studieswhere the fluctuations in temperatures influencednymphal development.
Relating our results with Zhou et al. (2006), the nymphal development of O. similis was
short and similar at 32 ◦C when tested against five different temperatures. Similarly,
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when fed on different prey species, the mean developmental duration of O. laevigatus,
O. similis, O. majusculus and O. albidipennis significantly decreased with increased in
temperature (Ahmadi, Sengonca & Blaeser, 2007; Cocuzza et al., 1997; Martínez-García et
al., 2018). During the exposure to 28 ◦C and 32 ◦C temperatures, O. strigicollis’ adult
longevity was greatly influenced. A significant increase in female adult longevity was
observed at 28 ◦C, while no significant differences were observed in male adult longevity
at either temperature. An increase in the temperature significantly affected the longevity
of O. sauteri and O. strigicollis adults when they were fed different prey species (Nagai &
Yano, 1999; Ohta, 2001). Thus, these variations in the developmental duration of eggs,
pre-adults and adults ofO. strigicollismay directly be associated with the change in the type
of prey they consumed at different temperatures (Jaleel, Lu & He, 2018; Sengonca, Ahmadi
& Blaeser, 2008). The results further showed that pre-adult survival from eggs to adulthood
decreased when the temperature increased. The highest levels of survival occur at 28 ◦C. The
nymphal survival of O. strigicollis decreased from 60% to 37.3% at temperatures between
15 to 30 ◦C (Ohta, 2001). Similarly, O. albidipennis nymphal survival was highest at 25 ◦C
when tested against three different temperatures (Gitonga et al., 2002).

The adult pre-oviposition period (APOP) showed an inverse relation at both
temperatures and significantly decreased at 32 ◦C. A similar inclination was reported
in previous studies when the length of the pre-oviposition period ofO. strigicollis decreased
from 15.6 to 4.7 days at 17 ◦C and 29 ◦C, respectively (Kakimoto et al., 2005). Similarly,
the recorded pre-oviposition period for O. similis was shorter (5.5 days) at 31 ◦C, when
fed on T. cinnabarinus at three constant temperatures (Zhang et al., 2012). In a study
documented by Ahmadi, Sengonca & Blaeser (2007), the oviposition period of female adult
O. similis was significantly highest at 30 ◦C compared to at 18 ◦C when fed on two different
species of aphid. Furthermore, O. similis oviposition period decreased from 21.1 to 18.8
days when fed on T. cinnabarinus at 28 ◦C and 31 ◦C (Zhang et al., 2012). Our results
are in agreement with the above-cited studies and show that the oviposition period of
O. strigicollis was significantly high at 28 ◦C and gradually shortened with an increase in
temperature. In the present study, the mean total fecundity of female adult O. strigicollis
was affected by P. xylostella eggs as prey at both temperatures (28 and 32 ◦C). In previous
studies, many authors confirmed similar changes in fecundity with different prey species
and temperatures (Fritsche & Tamo, 2000; Sengonca, Ahmadi & Blaeser, 2008; Tommasini,
Van Lenteren & Burgio, 2004). Present study showed that O. strigicollis mean fecundity
decreased at 32 ◦C. Zhang et al. (2012) reported similar results, when the total fecundity of
O. similis decreased from 40.3 to 34.3 eggs at 28 ◦C and 31 ◦C supplied with spider mites.

Life table studies enable us to understand the ecology of an organism. They provide
some crucial tools for assessing the effect of different temperatures on biological traits and
population parameters. Our results showed an inverse relationship in age-stage specific
fecundity (mx), survival rate (Sxj), life expectancy (exj) and reproductive value (vxj). As the
age and stage of O. strigicollis increase, all the parameters dramatically decreased at both
temperatures. The effect of two different temperatures on O. strigicollis, when fed on P.
xylostella eggs, was further substantiated by the intrinsic rate of increase (r). The intrinsic
rate of increase (r) and net reproductive rate (R0) are considered crucial population
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parameters to determine the fitness traits of an organism such as growth, development,
survival, and its higher values (r > 0 and R0 > 1) confirm the suitability of prey with its
predatorwith increased in themean population (Chen et al., 2017; Southwood & Henderson,
2009). Moreover, using the intrinsic rate of increase, we can get the effects of fertility and
mortality factors into a single value. Consequently, a single comparison can be applied
between populations instead of comparing the several biological characteristics (Havelka
& Zemek, 1999). Our results were according to the above-mentioned theories and r and R0

were significantly different and highest at 28 ◦C. In contrast, the calculated values of r and
R0 forO. niger were comparatively higher, when fed on eggs of Ephestia kuehniella at 29 and
32 ◦C (Baniameri, Soleiman-Nejadian & Mohaghegh, 2005). Similar results were reported
when O. similis and O. sauteri fed on T. cinnabarinus and T. palmi as prey under different
temperatures (Nagai & Yano, 1999; Zhang et al., 2012). The gross reproduction rate (GRR)
is considered an indicator of population growth and is associated with the number of
eggs laid and hatched and adult eclosion (Cocuzza et al., 1997; Huang & Chi, 2013). In our
results, the GRR and T were significantly different and higher at 28 ◦C. A similar reduction
in T andGRRwas observed whenO. similis, O. laevigatus andO. albidipenniswere tested at
different temperatures (Cocuzza et al., 1997; Zhang et al., 2012). However, the documented
values for T and GRR by several authors were significantly changed and increased with
temperatures when different species of Orius were tested at several constant temperatures
(Hamdan, 2015; Hamdan, 2012; Kakimoto et al., 2005; Tommasini, Van Lenteren & Burgio,
2004).

CONCLUSIONS
In summary, our study concluded that O. strigicollis can grow, developed, reproduce
and prey on P. xylostella eggs at both temperatures. However, the predatory bug showed
relatively good survival, maximum predation and female fecundity at 28 ◦C. Thus, we
can suggest that the inoculative release of O. strigicollis at 28 ◦C against P. xylostella could
suppress the P. xylostella population more progressively. Laboratory experiments should
help integrated pest management (IPM) strategies. However, field experiments are needed
to confirm the hypotheses constructed from the present study.
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