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ABSTRACT

Background: Symbiotic relationships with diverse microorganisms are crucial for
many aspects of insect biology. However, while our understanding of insect
taxonomic diversity and the distribution of insect species in natural communities is
limited, we know much less about their microbiota. In the era of rapid biodiversity
declines, as researchers increasingly turn towards DNA-based monitoring,
developing and broadly implementing approaches for high-throughput and
cost-effective characterization of both insect and insect-associated microbial diversity
is essential. We need to verify whether approaches such as high-throughput
barcoding, a powerful tool for identifying wild insects, would permit subsequent
microbiota reconstruction in these specimens.

Methods: High-throughput barcoding (“megabarcoding”) methods often rely on
non-destructive approaches for obtaining template DNA for PCR amplification by
leaching DNA out of insect specimens using alkaline buffers such as HotSHOT. This
study investigated the impact of HotSHOT on microbial abundance estimates and
the reconstructed bacterial community profiles. We addressed this question by
comparing quantitative 16S rRNA amplicon sequencing data for HotSHOT-treated
or untreated specimens of 16 insect species representing six orders and selected based
on the expectation of limited variation among individuals.

Results: We find that in 13 species, the treatment significantly reduced microbial
abundance estimates, corresponding to an estimated 15-fold decrease in amplifiable
16S rRNA template on average. On the other hand, HotSHOT pre-treatment had a
limited effect on microbial community composition. The reconstructed presence of
abundant bacteria with known significant effects was not affected. On the other hand,
we observed changes in the presence of low-abundance microbes, those close to the
reliable detection threshold. Alpha and beta diversity analyses showed compositional
differences in only a few species.

Conclusion: Our results indicate that HotSHOT pre-treated specimens remain
suitable for microbial community composition reconstruction, even if abundance
may be hard to estimate. These results indicate that we can cost-effectively combine
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barcoding with the study of microbiota across wild insect communities. Thus, the
voucher specimens obtained using megabarcoding studies targeted at characterizing
insect communities can be used for microbiome characterizations. This can
substantially aid in speeding up the accumulation of knowledge on the microbiomes
of abundant and hyperdiverse insect species.

Subjects Biodiversity, Bioinformatics, Entomology, Microbiology, Molecular Biology
Keywords Biodiversity, DNA extraction, Insects, Microbiome, Symbiont-host interaction

INTRODUCTION

Insects have achieved tremendous evolutionary success, reflected in species diversity
estimated in millions, functional diversity, and distribution across almost all terrestrial
ecosystems, where they fulfill multiple critically important roles (Losey & Vaughan, 2006;
Weisser & Siemann, 2008). However, their biodiversity is now in steep decline, with habitat
degradation, environmental pollution, and climate change identified as some of the key
drivers of biomass and diversity losses estimated at 9% per decade, and potentially 40% of
all species in the near future (Sdnchez-Bayo ¢ Wyckhuys, 2019; Van Klink et al., 2020).
Simultaneously, only a fraction, perhaps one-fifth, of all insect species are known to science
(Stork, 2018).

The dire need to intensify insect biodiversity characterization and monitoring efforts
has not been missed by the scientific community, with the rapid development of
approaches such as metabarcoding or high-throughput cost-effective individual barcoding,
enabling the characterization of entire insect community samples (Iwaszkiewicz-
Eggebrecht et al., 2023; Srivathsan et al., 2024). On the other hand, the description of
approaches for the study of shifting biotic interactions within the monitored multi-species
communities has lagged behind. Arguably, the most significant of these associations, yet
poorly known outside of a limited set of model species, are those with symbiotic
microorganisms: bacteria and fungi that inhabit insect bodies and can dramatically affect
their ecology and evolution (McFall-Ngai et al., 2013; Lukasik ¢ Kolasa, 2024).

The diversity of insects is reflected in at least a comparable diversity of microbial
symbionts. Different functional categories of symbionts have diverse and often pivotal
effects on the life history traits of their insect hosts, influencing their biology in various
ways (Lukasik & Kolasa, 2024). Particularly well-known are the microbial roles in the
biology and evolution of clades that feed on nutrient-limited diets, including the
sap-feeding hemipteran clade Auchenorrhyncha (Moran, McCutcheon & Nakabachi,
2008) or blood-feeding insects like bedbugs (Husnik, 2018). On the other hand, through
their effects on traits such as reproduction and defense against biotic and abiotic factors
(Lemoine, Engl ¢ Kaltenpoth, 2020), symbionts can strongly influence the biology of
insects on much shorter timescales, providing selective advantages to hosts and thus
shaping their population dynamics and ecological interactions (Ferrari ¢» Vavre, 2011;
Lukasik & Kolasa, 2024). Some insect groups, including diverse ants (Sanders et al., 2017),
have not developed symbiotic relationships with specific bacteria but may still harbor
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transient microbes derived from food or other environmental sources, yet their overall
abundance may be low (Hammer, Sanders & Fierer, 2019). Moreover, pathogens can
dramatically affect individuals and populations, whether they target insects or are vectored
by them (Dwyer, Dushoff & Yee, 2004). We know little about the distributions of different
functional categories of these microbes within and across multi-species natural
communities.

At the same time, insect communities themselves remain poorly characterized in
various ecosystems. To address the gaps in our understanding of insect diversity, several
initiatives have embarked on high-throughput barcoding (“megabarcoding”) (Chua et al.,
2023) and metabarcoding in the past decade (Meier et al., 2016; Geiger et al., 2016; Buchner
et al., 2024). These are improving our understanding of insect community compositions
(Srivathsan et al., 2023), and efforts have been made to significantly reduce costs and
increase throughput in order to conduct such surveys at a large scale effectively (Meier
et al., 2016; Srivathsan et al., 2021). However, to go beyond characterizing insect
communities, to addressing questions about insect microbial diversity, distribution, and
roles across large multi-species insect collections, whether representing particular clades or
community samples, we need robust, cost-effective workflows that simultaneously provide
insect identity information with unbiased picture of their microbiota.

Most studies on insect microbiomes examine target species of interest, but attempts to
address microbiome-related questions at the level of multi-species community have been
rare, with no consensus on the methods (Kolasa et al., 2019; Nakabachi, Inoue ¢ Hirose,
2022). Some authors attempted surveying microbiota using the whole bulk multi-species
samples, the same as those used for insect metabarcoding (Gibson et al., 2014). This is,
however, limiting given that it dissociates the microbial data from specimen identity. The
alternative strategy comprises processing insect specimens individually (Srivathsan et al.,
2023). Recent megabarcoding approaches aim to obtain reference DNA barcodes for insect
specimens using non-destructive DNA extraction approaches that give sufficient template
DNA for PCR while preserving morphological features and much of the genomic DNA
within the specimen (Srivathsan et al., 2024). This is usually achieved by treating the
specimen with alkaline buffers to leach the DNA, which can then be used as a template for
PCR with broad-spectrum primers, often for the mitochondrial cytochrome oxidase
subunit I (COI) gene. The sequenced amplicon products enable the reconstruction of the
barcode, used to group the physical specimens into mOTUs (molecular Operational
Taxonomic Units) for possible further morphological examinations. However, such
barcoded specimens could also be used to obtain associated microbial data.

16S rRNA amplicon sequencing has been a popular technique for characterizing
microbial community composition across multiple samples (Langille et al., 2013). On the
other hand, marker gene analysis may miss some taxa due to amplification biases and
provide limited information on microbiome functional capabilities. Metagenomics, in
contrast, can provide detailed information on the taxonomic position and function of
more abundant symbionts, but its higher cost, computational demands, and analytical
challenges limit broad implementation (Knight et al., 2018). For such methods, we want to
select samples carefully. Then, ideally, when addressing questions about microbiota across
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Figure 1 Insect species used in the study, DNA quality comparison, and study design. (A) Representatives of the insect species used in the
analysis. (B) Gel electrophoresis comparison of DNA extracted from two insect species, Acyrthosiphon pisum (first row) and Aphis fabae (second
row), between HotSHOT-treated and untreated samples. In the control samples, the DNA appears as long fragments, while in the HotSHOT-treated
samples, the DNA appears as a smear of different fragment lengths typically shorter than 1 kb, indicative of substantial degradation (ladder used:
EURx Perfect™ 100-1,000 bp DNA ladder). (C) Experimental workflow (Created with BioRender.com).

Full-size K&l DOI: 10.7717/peer;j.18025/fig-1

diverse insects (Fig. 1A), we would want to combine methods: first, survey insect diversity
broadly and then, based on survey results, select specimens for a thorough characterization
using more comprehensive methods. However, a key question is whether the different
methods can plausibly be applied to the same specimen one after another. In order to
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Table 1 Insect species used in the study.

Order Family Species Origin Number of specimens
(HotSHOT treated/control)

Hemiptera Aphididae Acyrthosiphon pisum Cultured clone 7/11

Hemiptera Aleyrodidae Aleyrodes proletella Colony from a single plant 13/10

Hemiptera Aphididae Aphis fabae Colony from the single plant 5/5

Hymenoptera Apidae Apis mellifera Social insect colony 712

Hymenoptera Formicidae Cephalotes varians Social insect colony 6/5

Hymenoptera Braconidae Dacnusa sibirica Commercial culture 8/9

Hemiptera Delphacidae Dicranotropis hamata Wild-caught from a population 7/1

Diptera Drosophilidae Drosophila melanogaster Laboratory culture (2 lines) 11/20

Diptera Drosophilidae Drosophila simulans Laboratory culture (2 lines) 26/21

Diptera Drosophilidae Drosophila teissieri Laboratory culture (2 lines) 3/20

Hymenoptera Formicidae Eciton burchellii Social insect colony 7/5

Orthoptera Gryllidae Gryllodes sigillatus Commercial culture 7/10

Orthoptera Gryllidae Gryllus bimaculatus Commercial culture 7/10

Hemiptera Miridae Macrolophus pygmaeus Commercial culture 6/4

Blattodea Blattidae Shelfordella lateralis Commercial culture 7/10

Coleoptera Tenebrionidae Tribolium confusum Laboratory culture 6/10

combine insect community characterization with microbiome characterization of the same
insects, it is important to assess whether the voucher material generated during
megabarcoding can be used for microbiome characterization, as extraction methods may
have an effect on DNA quality, impacting the amount and reliability of obtained
information (Fig. 1B).

Here, we assessed the impact of the non-destructive DNA extraction method,
HotSHOT, used in popular high-throughput barcoding protocols for insect diversity
surveys (Srivathsan et al., 2021, 2023; Vasilita et al., 2024; Hu et al., 2024), on the
reconstructed microbial community composition. Specifically, we asked whether microbial
abundance estimates and the reconstructed bacterial community profile may change due
to HotSHOT pre-treatment.

We did this by comparing quantitative V4 16S rRNA amplicon sequencing data for 286
specimens of 16 species, whether HotSHOT-treated or not (Figs. 1A, 1C). Our findings of
the limited effects of HotSHOT/barcoding pre-treatment on insect microbial community
profiles open up new avenues for monitoring the diversity and distribution of both insects
and their microbial associates.

MATERIALS AND METHODS

Specimen collection and preparation

Portions of this text were previously published as part of a preprint (Andriienko et al.,
2024). For the study, we selected 16 insect species representing six orders (Table 1). Species
were selected based on the expectation of relative compositional homogeneity in
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microbiota among individuals while acknowledging the potential natural variation caused
by independent factors, such as sex, age, or physiological state. They originated from
standardized commercial or laboratory cultures, social insect colonies, clusters of
hemipteran insects collected from the same plants and likely closely related or clonal, and
in just one case (Dicranotropis hamata), comprised different and likely unrelated
individuals from a single population (Table 1). For three Drosophila species, we used
distinct lines, one Wolbachia-positive and another Wolbachia-negative; for simplicity of
the narrative, we will include these lines in the count of “species” further on. For all insects,
but especially those not originating from commercial or laboratory cultures, we confirmed
their identity by comparing barcodes with a customized reference database based on
MIDORI (Leray et al., 2018). All the specimens of a species were at the same
developmental stage but with some variation in body shape, cuticle properties, and size in
at least some cases. The specimens were preserved in 95% ethanol and stored at —20 °C.
Before the procedure, the size of each individual was measured and categorized into five
groups-1 (up to 2 mm), 2 (up to 5 mm), 3 (up to 1 cm), 4 (up to 2 cm), 5 (more than 2 cm).
We aimed to use eight-12 individuals per species per treatment, but because of specimen
availability, and the loss or damage of some during the barcoding treatment and shipment,
it was not possible in all cases.

Lysis and DNA extraction
Collected insects were divided into two groups. From one group, DNA was extracted at the
National University of Singapore using the HotSHOT method (T7uett et al., 2000). The
insects were placed in a 96-well plate filled with 10-15 pl of alkaline lysis solution (25 mM
NaOH, 0.2 mM Na,EDTA, pH 12) individually and then incubated in a thermocycler for
20-18 min at 65 °C and 2 min at 98 °C (Fig. 1C). In the case of larger insects, more lysis
solution was added, although complete submersion was not necessary. Once heated, the
DNA extract was neutralized by adding an equal volume of neutralization buffer (10-15 pl
of 40 mM Tris-HCI) (Truett et al., 2000; Srivathsan et al., 2021). The DNA extract was then
immediately used for the barcoding procedure, as described in Srivathsan et al. (2021), and
the insects were shipped to Jagiellonian University (JU), Poland, for further processing.
From that point onwards, all insects (those HotSHOT-pretreated and untreated
controls) underwent the same processing procedure. For homogenization, the insects were
placed in 2 ml tubes filled with 200 pl of a buffer mixture consisting of 195 ul “Vesterinen’
lysis buffer (0.4 M NaCl, 10 mM Tris-HCl, 2 mM EDTA pH 8, 2% SDS) (Aljanabi ¢
Martinez, 1997; Vesterinen et al., 2016) and 5 ul proteinase K. More solution was added if
the sample was not completely submerged. After adding 2.8 and 0.5 mm ceramic beads, the
tubes were grounded in the Omni Bead Raptor Elite homogenizer for two 30-s cycles, with
the speed set to 5 m/s. Samples were then incubated in a thermal block at 55 °C for 2 h.
Once cooled, 40 pl of homogenate from each tube was transferred to a deep-well plate,
where to each, we added a specific number of copies of a quantification spike-in (Table S1)
—a linearized plasmid carrying an artificial 16S rRNA target Ec5001 (Tourlousse et al.,
2017) suspended in 2 pl of TE buffer. The DNA was then purified with 80 ul of SPRI beads
using a magnetic stand and washed twice with 80% ethanol. After dilution with 20.5 ul of
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TE buffer, 20 ul of the solution was transferred to a new 96-well plate, and the DNA
concentration was measured with the Quant-iT PicoGreen Kit.

Library preparation and sequencing

The amplicon libraries were prepared following a custom two-step PCR protocol (Kolasa
et al., 2023; Mulio et al., 2024). The first step involved simultaneous amplification of two
marker regions: a V4 region of the 16S rRNA bacterial gene and a portion of an insect
mitochondrial cytochrome oxidase I (COI) gene. We used template-specific primer pairs
with Illumina adaptor tails: for the V4 region, 515F (GTGYCAGCMGCCGCGTAA) and
806R (GGACTACNVGTWTCTAAT) (Parada, Needham e Fuhrman, 2016), and for
COI, BF3 (CCHGAYATRGCHTTYCCHCG) and BR2 (TCDGGRTGNCCRAAR
AAYCA) (Elbrecht et al., 2019). The PCR solution consisted of 5 ul of QTAGEN Multiplex
Master Mix, a mix of primers at concentrations 2.5 uM (COI) and 10 uM (16S V4), 2 pl of
DNA template, and 1 ul of water (final volume: 10 pl). The program for the first round of
PCR included the initial step of denaturation at 95 °C for 15 min, followed by 25-27 cycles
of denaturation (30 s, 94 °C), annealing (90 s, 50 °C) and extension (90 s, 72 °C) phases,
and the final extension step (10 m, 72 °C). The products were checked on 2.5% agarose gel
against positive and negative controls and cleaned with SPRI beads.

During the second indexing PCR, Illumina adapters and unique index pairs were added
to the samples. The temperature program for this PCR remained the same, but the number
of cycles was reduced to seven. As in previous steps, positive and negative controls (for
both PCRs) were included to verify accuracy.

The libraries were pooled approximately equimolarly based on band intensity on
agarose gels to ensure a roughly equal representation of each sample in the pool. After the
last cleaning step with SPRI beads, the pools were sequenced on an Illumina MiSeq v3 lane
(2 x 300 bp reads) at the Institute of Environmental Sciences (JU).

Bioinformatic processing

The bioinformatics analysis of the data was performed on a Unix cluster using a pipeline
developed in the Symbiosis Evolution Research Group, combining custom Python scripts
with already established bioinformatics tools, and outlined before (Kolasa et al., 2023;
Mulio et al., 2024).

First, the amplicon data in FASTQ format were split into separate bins based on the
primers using a dedicated script, which split the data based on used primer sequences into
bins representing marker genes of interest (COI, 165V4). As all of the specimens used in
this study were of known species, we focused only on the 16S rRNA data in further steps in
the analysis.

Initially, using PEAR, we assembled quality-filtered forward and reverse reads into
contigs (Zhang et al., 2014). Next, contigs were de-replicated (Rognes et al., 2016) and
denoised (Edgar, 2016) separately for every library to avoid losing information about rare
genotypes that could happen during the denoising of the whole sequence set at once
(Prodan et al., 2020). The sequences were then screened for chimeras using USEARCH and
classified by taxonomy using the SINTAX algorithm and customized SILVA database
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(version 138 SSU) (Quast et al., 2013). Finally, the sequences were clustered at a 97%
identity level using the UPARSE-OTU algorithm implemented in USEARCH. The tables
with two levels of classification were produced: ASVs (Amplicon Sequencing Variant) (also
known as zOTUs—zero-radius Operational Taxonomic Units) describing genotypic
diversity and OTUs (Operational Taxonomic Units)—clustering genotypes based on a
similarity threshold.

Bacterial 16S rRNA gene data were screened for putative DNA extraction and PCR
reagent contaminants using negative controls (blanks) for each laboratory step as a
reference. We first used taxonomy classification information to remove genotypes
classified as chloroplasts, mitochondria, Archaea, or chimeras. Next, we calculated relative
abundances and used ratios of each genotype presented in blank and experimental libraries
to accurately assign genotypes as putative actual insect-associated microbes or PCR or
extraction contaminants (Table S2).

Additionally, reads identified as quantitative spike-ins were used to reconstruct bacterial
absolute abundances in the processed insects. Specifically, the symbiont-to-extraction
spike-in ratio, multiplied by the number of extraction spike-in copies and the proportion
of the homogenate, allowed us to estimate amplifiable bacterial 16S rRNA copy numbers in
the homogenized specimens.

Finally, manual analysis was conducted to remove controls, samples with incorrect
indexes or zero abundance of bacteria and create the dataset used in the statistical analysis.

Statistical analysis and visualization

Statistical analysis was performed using the software RStudio v.2023.03.1+446 (R Core
Team, 2023) and QIIME2 v.2023.2 (Bolyen et al., 2019). Inkscape 1.2.2 (Inkscape Project,
2022) was used to modify generated plots and visualizations.

One-way ANOVA with random effects on insect species was used for the absolute
abundance comparison between groups treated with HotSHOT and those that were only
homogenized. The base and ‘nlme’ (Pinheiro, Bates & R Core Team, 2023) packages were
utilized for this step. The analysis was visualized using the packages ‘ggplot2’ (Wickham,
2016), ‘dplyr’ (Wickham et al., 2023), ‘RColorBrewer’ (Neuwirth, 2022) and ‘phyloseq’
(McMurdie & Holmes, 2013).

A biodiversity assessment was performed in QIIME2 on the Unix cluster. Firstly, the
decontaminated OTU table, bacteria taxonomy, and file with bacterial OTU sequences in
fasta format were imported into QIIME2 as artifacts to allow further transformation and
tracking of the origin of the output files of the analysis (McDonald et al., 2012). Next, the
obtained feature table was filtered separately for each insect species so the differences
would not disturb the analysis.

As diversity metrics are sensitive to different sampling depths in the groups, for the
biodiversity index comparison we standardized the samples by rarefying them (Weiss et al.,
2017). Rarefaction level was chosen individually based on the generated summary for these
tables, balancing between retaining the highest amount of samples and the percentage of
the features left for analysis. Note that all other analyses (absolute and relative abundance
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comparisons) were conducted using the original, non-rarefied dataset to avoid additional
stochastic biases.

The alpha- and beta-diversity indexes, calculated using the q2-diversity plugin, were
used to compare the microbiome composition between the methods for each species.
Alpha diversity refers to the diversity within the samples (Whittaker, 1972), and Shannon’s
(1948) entropy, which combines richness and evenness evaluation in a single metric and
provides a comprehensive assessment of diversity, was chosen for its assessment. The
calculated indexes were compared between the groups using the Kruskal-Wallis statistical
test (Kruskal ¢ Wallis, 1952).

The Bray-Curtis dissimilarity (Sorensen, 1948) index was chosen for beta-diversity
analysis. This index calculates the dissimilarity between communities based on the
presence and abundance of different features. It considers both the presence/absence and
the relative abundances of features, providing a quantitative measure of compositional
differences between samples.

To visualize the results and explore the beta-diversity patterns, the principle coordinate
analysis (PCoA) (Halko et al., 2011; Legendre ¢ Legendre, 2012) was performed using the
Emperor tool (Vidzquez-Baeza et al., 2013). Moreover, the PERMANOVA and PERMDISP
tests were conducted to analyze the statistical trends (Anderson, 2001).

RESULTS

We obtained reliable data for a total of 286 biological samples. We analyzed and
interpreted them using an additional 16 negative control samples of different types,
representing each of the laboratory steps and batches: six for DNA extraction, seven for the
first PCR, and three for the second PCR. Each sample yielded a minimum of 55 16S rRNA
reads, ranging from 55 to 93,394 reads, and a mean of 24,100 reads (Table S1).

The effects of treatment on the microbiome absolute abundance

The quantification spike-in was present in every amplicon library. In experimental
samples, the ratio of bacterial reads not classified as contamination to Ec5001 (extraction
plasmid) reads ranged from 0.0114 (in Dacnusa sibirica) to 16,187.5 (in Drosophila
simulans). With 10,000 copies of artificial amplification target Ec5001 added to 20% of
insect homogenate (in most cases—see Table S1), and assuming no amplification bias
among different types of templates, this translates to between 697 and 2,062,562,500 copies
of bacterial 16S rRNA per insect. When comparing estimated microbial abundances across
species and treatments (two-way ANOVA using log-transformed data), we found
significant differences between treatments (F = 159.86, p < 0.0001). However, the effect of
HotSHOT treatment varied among the species (Fig. 2).

We tested the treatment effect in each of the 16 species. The analysis using the
Kruskal-Wallis test showed that bacterial abundance was significantly lower after
HotSHOT in 13 out of 19 species (Table S3). We also checked if the treatment effect was
connected with the insects’ size, and test results indicate that it was similarly significant for
all size categories that we distinguished (Table S3). On average, the estimated bacterial
absolute abundance decreased 15-fold following HotSHOT. We conclude that these values
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Figure 2 Comparison of the absolute abundance of bacteria between specimens treated with
HotSHOT and control specimens among insect species. Each bar represents the number of speci-
mens used in the control (blue) and HotSHOT (red) treatments. Box plots represent the absolute
abundance calculated for each species and treatment. Asterisks represent the significance levels: * <0.05,
** <0.01, *** <0.001. Full-size K&l DOT: 10.7717/peer;j.18025/fig-2

represent the actual decrease in the concentration of amplifiable gene targets during
incubation in the hot alkaline buffer.

Microbiome diversity analysis

We obtained biologically realistic data for all species (Fig. 3, Tables S4, S5). As expected, we
observed Acetobacter and Lactobacillus as the dominant symbionts of cultured Drosophila
species (Wong, Ng & Douglas, 2011), Buchnera as the dominant symbiont in two aphids
(Douglas, 2003), and well-known members of gut microbiota of honeybees (Engel ¢
Moran, 2013) and Cephalotes (Hu et al., 2018) and Eciton ants (Mendoza-Guido et al.,
2023). Facultative endosymbiont Wolbachia was present in five species and often
dominated their microbial communities, whereas Cardinium dominated the microbiota of
D. hamata planthopper. In cultured Gryllodes sigillatus and Gryllus bimaculatus, we found
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relatively complex microbiota comprising relatively widespread bacterial genera as well as
some specialists (Blattabacterium in S. lateralis), at variable abundances. In the species
with the least abundant microbiota, parasitic wasp D. sibirica, microbiota composition was
highly variable.

In three out of 19 lines/species (Aleyrodes proletella, Gryllodes sigillatus, and Tribolium
confusum), we observed differences between treatments in richness and evenness in the
distribution of features, expressed through significant changes in Shannons’ entropy values
(Table S6). Beta diversity analysis, conducted using the Bray-Curtis index, revealed
significant differences between treatments in microbial community composition in four
other species (Aleyrodes proletella, Cephalotes varians, Dacnusa sibirica, and Drosophila
teissieri). These differences in the presence and relative abundance of features can be
observed on PCoA plots for these species (Fig. S1), where the first axis explains from
15.47% to 86.16% of diversity.
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The comparison of average relative abundances of dominant bacterial clades (Fig. 4)
shows that the bacterial taxa mostly overlap between the different methods, despite
fluctuations in the proportions of some bacterial taxa.

Opverall, the microbial communities were dominated by members previously described
in particular insect species and, in many cases, by commensals characteristic of the
particular species. In general, dominant bacteria were present in all individuals of a species,
although their relative abundance varied, reflecting the anticipated natural variation
among specimens. Significant differences in composition were not systematic and were
related to changes in rarely present bacteria rather than changes in major symbionts. Thus,
no overall difference in composition between pre-barcoded and control samples was
observed.

DISCUSSION

The DNA extraction that involves specimen incubation in the hot alkaline buffer, called
HotSHOT, affects the DNA integrity and, consequently, the microbial DNA yield within
the treated specimens. This results in decreased absolute abundance estimates of 16S rRNA
copies in processed specimens, which is presumably a direct consequence of DNA
degradation caused by the HotSHOT treatment. Nevertheless, the reconstructed microbial
community composition, especially the reconstructed presence of abundant microbial
clades, which are likely to play the most significant roles in insect biology, was not
substantially affected. Thus, even though the barcoding process disrupts our ability to
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estimate the amounts of bacteria colonizing insect bodies, it does not seem to substantially
bias conclusions about the identity of these bacteria. However, it has to be kept in mind
that pre-treatments such as HotSHOT might decrease the ability to detect less abundant
bacteria, such as pathogens vectored by insects. Hence, the combination of HotSHOT
pre-treatment and microbiome metabarcoding may not be suitable for all types of
microbiome-focused studies.

Effects on microbial abundance

Insects and other organisms differ dramatically in the abundance of microorganisms they
host, and these differences often correlate with the microbes’ importance in insect biology
(Hammer, Sanders ¢ Fierer, 2019). Assuming all else equal, the greater number of
microbial cells should translate to their stronger effect, driven by higher nutritional
demands and greater amounts of biologically active compounds produced. However, the
effects may not be linear due to the bacterial ability to detect their abundance and alter
biological activity in response (quorum sensing) (Miller ¢ Bassler, 2001). For example,
some microbial pathogens may delay the production of virulence factors until they sense
abundance sufficient for overwhelming host defenses (Munoz et al., 2020). On the other
hand, in Sodalis praecaptivus—a versatile opportunist that seems representative of the
ancestral state of many heritable symbionts, quorum sensing attenuates virulence,
facilitating a long-lasting and benign association (Enomoto et al., 2017). From a more
technical perspective, microbiome abundance also determines the precision of its
reconstruction. We know that low-bacterial-abundance samples are much more prone to
contamination from reagents and other sources (Salter et al., 2014), likely leading to
erroneous conclusions. While deeper sequencing would increase the representation and
likelihood of detection of any low-abundance microbes, it would also magnify noise—and
in our experience, it can be very hard to separate the two. We can be much more confident
about the presence of abundant microbes.

For these reasons, it is important to estimate the absolute abundance of the microbiome
rather than just report the relative abundance of microbial clades. Unfortunately, with
some notable exceptions (Hammer et al., 2017; Sanders et al., 2017; Ravenscraft et al., 2019;
Surmacz et al., 2024), it is rarely done in experimental studies. We argue that the available
tools for abundance estimation, including quantitative PCRs and spike-ins (Props et al.,
2017; Tourlousse et al., 2017; Jian et al., 2020; Harrison et al., 2021), should become a part
of standard microbiome analyses. Although amplicon-based sequencing of bacterial
marker gene fragments might be burdened with various biases (Gloor et al., 2017), careful
experimental design and the awareness of multiple known caveats (Knight et al., 2018) can
effectively limit such biases providing a clear picture of insect symbiosis (Kolasa et al.,
2023; Mulio et al., 2024). At the same time, we must be aware that aggressive treatments,
such as an incubation in an alkaline buffer at high temperatures, may lead to the
degradation of the substantial share of the available DNA and disrupt or complicate
abundance reconstruction. Changes to the HotSHOT protocol, such as reduced incubation
time, will likely limit DNA degradation while yielding sufficient amounts for barcoding
analyses. Indeed, we have recently reduced the routine incubation time to 5 minutes
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without compromising barcoding results (V Andriienko & A Michalik, 2024, unpublished
data).

Effects on microbial composition

Organisms differ in which microorganisms they host, and different microbial functional
categories, clades, and even strains have very different effects on host biology and evolution
(Bourtzis ¢ Miller, 2003).

Our study used insect species hosting a broad range of microbial functional categories
and taxonomic clades, reflecting the broad range of host ecological niches. Our results are
congruent with a priori expectations about symbionts present in these species, and
HotSHOT treatment has not affected the detection of their dominant microbes. We
conclude that our ability to detect abundant bacteria, including nutritional and facultative
endosymbionts and specialized gut bacteria known to have major effects on the host
ecology, is not being altered by HotSHOT pre-treatment. Although amplicon-based
sequencing is not free of errors and can provide a skewed picture of microbiome
composition due to factors such as primer bias (Gloor et al., 2017), we have found that our
amplicon data is congruent with metagenomic data obtained for the same individuals
(Buczek et al., 2024). However, the ability to detect less abundant but significant microbes
following HotSHOT may be reduced. For example, we have recently reported that the
agriculturally significant plant pathogen Phytoplasma is often represented by only a few
reads in 16S rRNA amplicon datasets for individual vector leathoppers (Mulio et al., 2024);
the infection signal may be even harder to detect following HotSHOT. Given the known
issues with reagents- and cross-contamination, the reliability of detection of such microbes
may be limited regardless, even when appropriate controls are used. 16S rRNA amplicon
sequencing using broad-spectrum primers may not be the most appropriate tool for
surveying Phytoplasma infections in wild-caught leathoppers to begin with! Thus, while
HotSHOT treatment in combination with microbiome screening proves to be a valuable
tool, it is essential to acknowledge its limitations and the potential biases of
amplicon-based sequencing.

Statistical analyses indicate that in a few cases, the HotSHOT treatment introduces bias
in the relative abundance of some bacteria taxa. We interpret those results as a likely
outcome of the reduction of symbiont DNA amounts caused by the HotSHOT treatment,
with reagent contamination thus becoming more pronounced. However, it is on a
relatively low level and does not change the overall composition of the insect microbiome.
Nevertheless, this fact should not be trivialized, and appropriate negative controls should
be implemented and processed to filter out any introduced bacterial signal effectively.

Considering this, the HotSHOT treatment may confound some of the conventional
approaches to microbiome analysis, including altering zZOTU or OTU counts, rarefaction,
or diversity index comparisons. While these approaches may be considered the “gold
standard” nowadays, we argue that researchers must carefully consider the biological value
and relevance of the information they provide for their system, taking into consideration
reagent contamination and other challenges. This is particularly relevant for small
organisms such as insects, with often low overall bacterial abundance or dominated by one
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of few abundant microbes and with the remainder at low abundance. While this should be
decided on a case-by-case basis, we think that analyses focused on abundant insect
symbionts—unaffected by the HotSHOT treatment—provide much more reliable and
biologically relevant information.

Broader context

The methods for biodiversity discovery have been shifting, with approaches such as
ultra-throughput individual barcoding, or alternatively, metabarcoding, rapidly gaining in
popularity. International projects such as BOLD are already processing millions of insect
specimens to discover global insect diversity. Thus, we have a growing amount of
individuals processed with non-destructive DNA extraction techniques. There is an
assumption that these insects remain suitable for further morphological or DNA-based
characterization, as their integrity remains preserved. This could prove to be a significant
advantage for the field of entomology, given that species definitions rely considerably on an
integrative taxonomic approach that combines molecular data with detailed morphological
and ecological information (Dayrat, 2005; Pante, Schoelinck & Puillandre, 2015). However,
there are limited examples of successful usage of such pre-processed specimens for
addressing further questions.

Our work demonstrates clearly that the associations with some of the most important
players in insect biology-symbiotic microorganisms-can be reconstructed reliably, albeit
with some caveats, from such pre-processed material. This opens up exciting avenues for
microbiota study across large numbers of pre-barcoded wild-caught specimens and
cost-effective reconstruction of broad microbiome-related patterns. With bacterial
symbionts increasingly regarded as important players in insect biology and a potential
source of rapid insect adaptation to changing environments, we advocate that microbiome
screening should become a standard procedure in insect biodiversity studies (Lukasik ¢
Kolasa, 2024). Hence, rather than attempting labor- and cost-intensive additional
sampling for fresh material, relying on microbiome typing on pre-barcoded material could
be an extremely frugal way of conducting science. Simultaneously, our approach confirms
that the material will likely be suitable for other DNA-based approaches aiming to unravel
mechanisms that shape insect diversity and biology.

CONCLUSIONS

Biodiversity and microbiome researchers have multiple tools that vary in their information
output, per-sample cost, and plausible throughput. When addressing biological questions,
it is essential to balance these criteria. However, our results suggest that we do not need to
limit ourselves to just one tool. On the contrary, by serially applying different methods to
the same specimens, we can combine the breadth of extremely cost-effective approaches,
such as barcoding, with much deeper insights that could be obtained from multi-gene
amplicon sequencing and, likely, also genomics tools. Combining these different tools
could become a new paradigm for biodiversity studies in the turbulent era of the
Anthropocene.
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