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ABSTRACT

Drought stress can affect the growth of bamboo. Circle RNAs (CircRNAs) have
been found to play a role in drought stress in plants, but their function in moso
bamboo is not well understood. In previous studies, we observed that under drought
stress, the expression of some circRNAs were altered and predicted to be involved in
calcium-dependent protein kinase phosphorylation, as indicated by KEGG enrichment
analysis. In this study, we cloned a circRNA called PecircCDPK in moso bamboo that
is responsive to drought stress. To further investigate its function, we constructed
an overexpression vector using flanking intron sequences supplemented by reverse
complementary sequences. When this vector was transferred to Arabidopsis plants,
we observed that the roots of the transgenic lines were more developed, the water
loss rate decreased, the stomata became smaller, and the activity of antioxidant
enzymes increased under drought stress. These findings suggest that overexpression
of PecircCDPK can enhance the drought resistance of Arabidopsis thaliana, providing
valuable insights for the breeding of moso bamboo with improved resistance to drought.
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INTRODUCTION

China possesses approximately one-third of the world’s bamboo resources, with moso
bamboo being the predominant and unique species. Moso bamboo is widely distributed
and holds significant practical value as it can be utilized to produce a diverse range of
products (Tang, 2019). As the social economy progresses, the demand for moso bamboo
products has expanded. However, in recent years, the temperature rise caused by global
warming has led to more frequent extreme heat events and long-term droughts, affecting
the yield and quantity of bamboo. The severe lack of water resources during the bamboo
shoot period can result in slow bamboo shoot emergence, high rate of shoot recession, and
low rate of bamboo maturation, which will directly affect the economic benefits of bamboo
plants. The dry weather during the bamboo growing period can also cause burns, loss of
green and white on bamboo leaves. Consequently, drought stress has emerged as a crucial
constraint in enhancing crop yield and quality.
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Soil drought and atmospheric drought are currently the most common types. These
two types of drought often occur simultaneously during plant growth and development.
When drought occurs, plants experience a shortage of water due to the water consumption
exceeding absorption (Hsiao, 1973). Severe water scarcity exerts drought pressure on
plants, reducing the swelling pressure of plant cells, inhibiting cell division, and impeding
the normal extension and growth of plant leaves. This leads to symptoms such as withering
and curling. Furthermore, numerous studies have investigated the molecular regulatory
mechanisms of abiotic stress responses (7Tang ¢& Luan, 2017; Hivrale et al., 2016; Huang et
al., 2017). One such protein, calcium-dependent protein kinase, possesses dual functions
as both a responder and sensor. It can directly sense and respond to calcium ion signals,
converting them into downstream protein phosphorylation pathways (Poovaiah et al.,
2013). This protein plays a crucial role in stomatal movement, root development, and
hormone signal transduction (Wu et al., 2020). Therefore, conducting research on the
drought resistance of moso bamboo is essential.

CircRNAs are a recently discovered type of endogenous non-coding RNA (ncRNA)
(Sanger et al., 1976). They have a unique closed-loop structure formed by 5-3' ligation
during splicing, which makes them resistant to degradation by nucleic acid exonucleases.
For a long time, circRNAs were considered as splicing errors and were not functional.
However, with the advancement of high-throughput sequencing technology and
bioinformatics, their important roles in biology are gradually being revealed. In 2011,
Danan developed a method to identify circRNAs at the genomic level using RNA-Seq
data (Danan et al., 2011). Subsequently, Memczak et al. (2013) analyzed RNA-Seq data and
identified thousands of stable and functional circRNAs in humans, mice, and nematodes.
Not only have circRNAs been extensively studied in humans and animals, but they have also
been identified in various plants such as Arabidopsis thaliana, maize (Zhang et al., 2019),
and rice (Lu et al., 2015). Interestingly, some circRNAs exhibit stage-specific expression
during tissue development. For example, Arabidopsis plants overexpressing Vv-circATS1,
a circRNA derived from glycerol-3-P acyltransferase, showed improved cold tolerance
compared to those overexpressing the linear RNA sequence of Vv-circATS1 (Gao et al.,
2019). Currently, 895 circRNAs have been identified in moso bamboo shoots (Wang et
al., 2019), and 4931 circRNAs have been found in response to drought stress in moso
bamboo (Li et al., 2022). This suggests that circRNAs play a role in lignin synthesis and
response to drought stress in moso bamboo. Among these circRNAs, PecircCDPK has been
predicted to have calcium-dependent protein kinase activity and participate in drought
stress response, as indicated by KEGG enrichment analysis (Li ef al., 2022). Therefore, based
on the aforementioned speculation, we believe that the parental genes of PecircCDPK are
involved in drought stress responses, and PecircCDPK itself is also involved in regulating
stomata, causing changes in plant phenotypes, and other responses to drought stress.

In our study, we cloned PecircCDPK and construct an overexpression vector by using the
principle of flanking intron sequences supplemented by reverse complementary sequences
(Gao et al., 2019; Li et al., 2022). Phenotypic differences in physiological phenotypic were
observed and analyzed between transgenic and wild-type plants under drought conditions.
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Our study would provide a new insight into the drought stress tolerance in moso bamboo
and lay a foundation for the functional study of circRNAs in bamboo plants in the future.

MATERIALS AND METHODS

Plant materials and treatments

Moso bamboo seeds were collected from Guangxi Zhuang Autonomous Region, China
and planted in a plastic basin with a diameter of approximately 10 cm, filled with humus
soil. The seeds were then incubated in a constant temperature and light incubator, with
a day and night temperature of 25/18 °C and a photoperiod of light/dark 16/8 h. The
culture lasted for approximately 3 months. To simulate drought stress, the seedlings of
moso bamboo were treated with PEG 6000. After O h, 6 h, 12 h, 24 h, and 48 h (P1, P2, P3,
P4, P5) of treatment, the leaves from the same part were collected.

The wild-type Arabidopsis thaliana Columbia-0 was used in this study. First, Arabidopsis
thaliana seeds were sterilized and sown in 1/2 MS medium. Subsequently, the seeds were
vernalized in a refrigerator at 4 °C for 2 days. After the vernalization process, the seeds
were transferred to petri dishes and placed in a growth room for a period of 7-10 days.
Following this, the Arabidopsis thaliana seedlings were transplanted into plastic pots filled
with humus soil. The pots were then placed in an incubator set at a temperature of 23 °C
and a light/dark photoperiod of 16/8 h. Each sample was subjected to three biological
replicates and frozen in liquid nitrogen and stored at —80 °C. All statistical analyses were
conducted using SPSS software.

RNA extraction and cDNA synthesis

Total RNA and DNA was extracted from each sample using the RNAprep Pure Plant Kit
(Tiangen, Beijing, China) and FastPure Plant DNA Isolation Mini Kit (Vazyme, Nanjing,
China) following the manufacturer’s protocol. The purity, integrity and concentration
of total RNA and DNA were examined using NanoDrop2000 (NanoDrop Technologies,
Wilmington, DE, USA) and gel electrophoresis. A Reverse transcription using PrimeSTAR
GXL DNA polymerase (R050A, Takara, Shiga, Japan).

Plasmid construction and genetic transformation
Hic_scaffold_3:83696771|83697493 was previously validated and predicted to function as
a calcium-dependent protein kinase in our previous work (Li ef al., 2022). In this study,
we have named it PecircCDPK. The PecircCDPK overexpression vector was constructed
by incorporating flanking intron sequences supplemented with reverse complementary
sequences into the PCAMBIAsuper1300-GFP vector (Gao et al., 2019).

The principle of using flanking intron sequences supplemented by reverse
complementary sequences is as follows: Firstly, we used the DNA sequence of
PH02Gene31251 as a template and selected a 437 bp intron fragment from it to act as
the upstream cyclization sequence. Next, we added Xbal and KpnlI sites at both ends of the
upstream cyclization sequence. This modified sequence was then connected to the T Easy
vector, transformed into Trans5 &, and finally connected with the PCAMBIAsuper1300-GFP
vector. The PCR amplification reaction for the upstream cyclization sequence involved the
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following steps: 94 °C for 5 min; 94 °C for 30 s, 55 °C for 30 s, 72 °C for 26 s, repeated for
30 cycles; and storage at 4 °C.

The downstream cyclization sequence is the reverse complementary sequence of
the upstream cyclization sequence. BsrGI and EcoRI sites were added at both ends of
the downstream cyclization sequence. The downstream cyclization sequence was then
connected to the T Easy vector and transformed into Trans5 «. Itis also connected with the
upstream cyclization sequence-PCAMBIAsuper1300-GFP vector. The PCR amplification
reaction of the downstream cyclization sequence is performed in the same way as the
upstream cyclization sequence.

Thirdly, we cloned the PecircCDPK looping sequence and its flanking intron, including
171 bp upstream and 137 bp downstream sequences. We introduced Kpnl and BsrGI
sites at both ends of the looping sequence along with the flanking intron. The resulting
construct was connected to the upstream and downstream cyclization sequence of the
PCAMBIAsuper1300-GFP vector.

Finally, vector was transformed into A. thaliana Columbia-0 with the floral dip method
mediated by the Agrobacterium tumefaciens strain GV3101. T1 generation transgenic plants
were selected on Hygromycin (50 mg/L, Solarbio, China) 1/2 Murashige and Skoog plates
(Clough ¢ Bent, 1998).

Primers are listed in Table S1.

Validation of transgenic Arabidopsis thaliana

To investigate the role of transgenic plants PecircCDPK in regulating the expression of
A. thaliana related CDPK genes, the transgenic T3 seedlings were analyzed using PCR with
divergent primers. The homology between AtCDPK13 and PH02Gene31251 (the parent
gene of PecircCDPK ) was determined by conducting a BLAST with the A. thaliana database
(http:/www.arabidopsis.org). Subsequently, RT-qPCR was performed on treated and wild-
type plants. The qPCR reaction system is: 2x qPCR Master Mix 5.0 pL, forward primer
0.2 nL, reverse primer 0.2 pL, cDNA 0.8 pnL, ddH20O 3.8 pL. The qPCR reaction program
is: initial denaturation at 95 °C for 30 s (95 °C denaturation for 15 s, 60 °C annealing
for 60 s, 60 °C extension for 60 s) x 40 cycles. The relative expression of AtCDPK13 was
calculated using the 2742 method, with AtACTIN serving as the reference gene (Livak
& Schmittgen, 2002; Shi et al., 2018). The primers used are listed in Table S1.

Phenotypic observation and physiology analysis

T3 generation seedlings were initially grown on a 1/2 MS plate for 7 days. Subsequently, they
were transferred to a medium with different drought treatments to continue root growth.
The root length of both transgenic and wild type plants was observed. The concentration
gradient of PEG 6000 used was as follows: 0%, 6%, and 8%. For specific configuration
methods, please refer to Verslues (Verslues et al., 2006).

Select wild-type and transgenic Arabidopsis thaliana at 4 weeks of age to determine leaf
water loss rate. The night before the experiment, water the required Arabidopsis plants
thoroughly and cover them with a film.

Select wild-type and transgenic Arabidopsis thaliana plants that have grown for 4 weeks
and perform water cut treatment. After 10 days, when the plants show dehydration effects,
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collect samples from 3 Arabidopsis thaliana seedlings as one sample. Freezing with liquid
nitrogen and storing in a —80 °C freezer. We measured the content of malondialdehyde
(MDA) and free proline (PRO), as well as the activity of superoxide dismutase (SOD) and
peroxidase (POD) (The manufacturer of the commercial reagent kit used was obtained
from Nanjing Jiancheng Biotechnology Research Institute in China), and we examined the
size of stomata using Environmental SEM.

All statistical analyses were conducted using SPSS software (SPSS, Armonk, NY, USA).

RESULTS

Construction of PecircCDPK overexpression vector

The overexpression vector of PecircCDPK is made up of by an upstream cyclization
sequence, a downstream cyclization sequence and looping sequence with flanking intron
(Fig. 1A). The qPCR results indicate that PecircCDPK is differentially expressed under
drought stress. Then we successfully cloned these sequences (Fig. 1B). Then we used the
principle of “using flanking intron sequences supplemented by reverse complementary
sequences” to construct the PecircCDPK overexpression vector, and the constructed
recombinant expression vector was double digested for verification. Electrophoresis showed
that there were two bands at about 10,800 bp and 1,900 bp (Fig. 1C). This indicates that
the PecircCDPK overexpression vector of moso bamboo has been successfully constructed.

Detection of transgenic Arabidopsis thaliana with PecircCDPK gene
and AtCDPK13 gene expression

The total RNA of T3 transgenic plants was extracted and then reverse transcribed
after treatment with RNase R (Li ef al., 2022). PCR amplification was carried out using
divergent primer primers. The PecircCDPK fragment, designed with divergent primers,
was successfully amplified from the cDNA of transgenic plant leaves treated with RNase
R. However, the PecircCDPK fragment with divergent primer design was not observed
in the wild-type plants (Fig. 2A). By utilizing the principle of ‘flanking intron sequences
supplemented by reverse complementary sequences,’ the target PecircCDPK was introduced
into Arabidopsis thaliana, resulting in selective splicing and circular formation.

To investigate the potential impact of PecircCDPK on gene expression in Arabidopsis
thaliana, we conducted a BLAST comparison between the parent gene PH02Gene31251
of PecircCDPK and the Arabidopsis thaliana database. This analysis identified the gene
AtCDPK13 as having the highest homology with PH02Gene31251. Subsequently, a
primer was designed for qRT-PCR detection. The results revealed that the expression
of the AtCDPK13 gene was upregulated in transgenic plants compared to wild type
plants. Notably, the expression levels of AtCDPK13 in OE (overexpression)-1 and OE-2
were significantly higher than those in wild type plants. These findings suggest that
overexpression of PecircCDPK may influence the expression of AtCDPK13 in Arabidopsis
thaliana, potentially leading to the regulation of various reactions (Fig. 2B).
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Figure 1 (A) The overexpression vector of PecircCDPK. (B) Relative expression of PecircCDPK under
the drought stress. Note: ** denotes significant difference at the 0.01 level respectively. (C) Selected in-
tron fragment of moso bamboo PH02.

Full-size @ DOI: 10.7717/peer;j.18024/fig-1

Response characteristics of transgenic Arabidopsis thaliana roots to
drought stress

Different concentrations of PEG were added to the culture medium of PecircCDPK
transgenic and wild-type plants to simulate the effect of drought stress on plant root
length (Fig. 3). The growth of wild-type and transgenic plants on the non-stressed 1/2 MS
medium was similar, with a relatively small number of roots, indicating that a few long
roots were sufficient for water absorption. Under 4% PEG treatment, the total root length
of transgenic plants 1 and 3 was larger than that of wild-type plants, while the root length
of wild-type plants was significantly shorter. At a high concentration of 8% PEG, the root
length of most plants in transgenic line-1 and transgenic line-2 was larger than that of
wild-type plants, while the root length of transgenic line-3 plants was larger than that of
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Figure2 (A) Using divergent primer to identify transgenic Arabidopsis thaliana. Note: M1, DL2000
DNA maker; CK, WT (wild type); 1-4, different transgenic lines. (B) Expression profile of the
AtCDPK13 gene in transgenic Arabidopsis thaliana.
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wild-type plants, and the root length of wild-type plants decreased. Regarding the number
of roots, transgenic plants had more roots than wild-type plants under 6% and 8% PEG
treatments. Through comprehensive analysis, it can be concluded that transgenic plants
have more developed roots, which allows them to absorb more water under drought stress

and improve their resistance to drought.

Determination of water loss rate and relative water content of
transgenic Arabidopsis thaliana leaves

Transgenic and wild-type plants that have grown for 4 weeks are selected, weighed, and
recorded at different time points. The results are presented in Figs. 4A—4B. Overall, the rate
of water loss from the leaves gradually increased over time. In the first 360 min, the water
loss rate of transgenic plants at each time point was lower than that of wild-type plants.
However, after 360 min, the water loss rate of transgenic plants accelerated and eventually
became consistent with that of wild-type plants. By measuring the relative water content of
the leaves, it was observed that the water content of transgenic plants increased significantly
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Figure 3 Root length characteristics of different Arabidopsis thaliana lines under drought stress. Note:
WT (wild type), wild type; OE1-3, different transgenic strains. All materials use three plants as one sample.
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and was higher than that of wild-type plants. These findings indicate that the relative water
content of transgenic plant leaves has improved. Moreover, the transgenic plants exhibited
lower water evaporation compared to wild-type plants in the early stages, suggesting that
transgenic plants are better equipped to retain water under adverse conditions, making
them more resilient to drought stress.

Detection of stomata, free proline content and antioxidant enzyme
activity in transgenic Arabidopsis thaliana under drought stress
Under normal growth conditions, no significant differences were observed in PRO content,
MDA content, SOD activity, and POD activity between wild-type plants and transgenic
plants. However, after drought treatment, the PRO content in transgenic and wild-type
plants showed a significant increase. Specifically, the PRO content in transgenic lines-1 and
transgenic lines-2 was significantly higher than that in wild-type plants. The MDA content
also increased significantly in both transgenic and wild-type plants, although the increase
was smaller in transgenic plants. Notably, the MDA content in wild-type plants was higher
than in transgenic plants, and the difference was statistically significant. Both SOD and
POD activities showed a significant increase in transgenic and wild-type plants under
drought stress conditions, with the POD activity in transgenic plants being significantly
higher than that in wild-type plants (Fig. 5). Furthermore, the stomatal size of transgenic
Arabidopsis thaliana was observed to be smaller after drought stress, which can potentially
reduce water evaporation (Fig. 6).

DISCUSSION

Efficient and accurate method for constructing circRNA-OE vector
Several plasmid construction methods have been used to cyclize RNA in animal bodies,
including complementary sequence mediated cyclization (Hansen et al., ), flanking
sequence mediated cyclization (Kramer et al., 2015) and circularization of transfer RNA
introns (Noto, Schmidt ¢ Matera, 2017). Moreover, the Drosophila Laccase2 and human
zinc finger protein with KRAB and SCANdomains] flanking intronic sequences have been
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optimized so that they can efficiently express “designer” exonic circRNAs in human and fly
cells (Kramer et al., 2015). In addition, an efficient and accurate strategy for overexpressing
circRNA in mammals has been developed based on classical complementary sequence
mediated cyclization of circRNA (Liu et al., 2018). CircRNA has been identified in various
plant species, but its function is currently unclear. The lack of this knowledge is partly
due to the lack of clear methods for effectively and accurately producing circRNAs in
plants. Multiple studies have utilized the feature that paired complementary reverse
sequences can promote circRNA biogenesis in animals (Lu et al., 2015; Gao et al., 2019;
Conn et al., 2017). However, overexpressing of plasmids can lead to the generation of many
undesirable circRNAs in rice (Lu et al., 2015), and no Sanger sequencing results concerning
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back-splicing sites are available for Arabidopsis (Conn et al., 2017). Therefore, there is an
urgent need for an efficient and accurate circRNA expression strategy in plants. Therefore,
our study employed the principle of using flanking intron sequences supplemented by
reverse complementary sequences to construct the overexpression of circRNA (Gao et al.,
2019). Finally, divergent primers were used to confirm the transgenic Arabidopsis thaliana,
indicating successful transfer of the target PecircCDPK into Arabidopsis thaliana, resulting
in a certain degree of selective splicing to form a circular structure.

Function of PecircCDPK in the drought stress response

When exposed to drought stress, plants demonstrate diverse responses. Prior investigations
have hypothesized that the parental gene PH02Gene31251 of PecircCDPK functions as a
calcium-dependent protein kinase. This protein kinase holds a pivotal position in regulating
the root system, stomata, enzyme activity, and other plant responses to drought. These
regulatory mechanisms collectively contribute to the enhancement of plants’ drought
tolerance.

Plants obtain sufficient water through well-developed roots. When faced with water
scarcity, plants can adapt to the challenging conditions by adjusting the length and quantity
of their roots (Fang ¢» Xiong, 2015). In this study, the functional analysis of transgenic plants
demonstrated that their root growth ability was enhanced compared to wild-type plants.
Measuring the relative water content of plant leaves has been established as a highly effective
method for assessing water status (Torres ef al., 2019). Furthermore, the rate of water loss
from plant leaves serves as an indicator of their water-holding capacity, greatly influencing
water regulation. Notably, the transgenic plants demonstrated a gradual decrease in the
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Figure 6 Environmental scanning electron microscope (ESEM) analysis of PecircCDPK transgenic
Arabidopsis thaliana leaves. (A) PecircCDPK transgenic Arabidopsis thaliana. (B) Wild type.
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rate of water loss over time and a notable elevation in the relative water content of their
leaves.

When plants are exposed to a water deficit environment, it can cause changes in their
metabolic reaction pathways. For instance, the alteration of stoma size and the accumulation
and metabolism of proline are closely linked to the mechanisms that plants employ to avoid
abiotic stress (Jiao et al., 2022). These changes enable plants to retain water within their
bodies and reduce water potential, which is crucial for protecting plant cell membranes
during drought. Zhang et al. (2019) discovered that in transgenic Arabidopsis thaliana with
excessive expression of the circGORK gene, the content of free proline increased 38 times
after drought treatment compared to before treatment (Danan et al., 2011).

MDA, a commonly used indicator of membrane lipid peroxidation, can effectively
indicate the degree of damage to plants under stress conditions (Wu ef al., 2020). Numerous
studies have demonstrated that plants tend to accumulate MDA under drought conditions,
and the MDA content is often inversely correlated with plant drought resistance (Wei et al.,
2022). SOD and POD are key components of the plant antioxidant system and are closely
associated with plant drought resistance. Species with strong drought resistance are capable
of maintaining high levels of antioxidant enzyme activity for extended periods under
drought conditions (Gharred et al., 2022). In this study, transgenic lines of Arabidopsis
exhibited increased proline content, SOD activity, and POD activity under drought
conditions. These findings suggest that the heterologous expression of the PecircCDPK
gene can mitigate biofilm damage to some extent and enhance plant tolerance by increasing
the activity of antioxidant enzymes.

However, the importance of this research extends beyond that. Through literature review,
it was found that using RNA interference and CRISPR technology, we can also study the
role of circRNAs. Additionally, constructing circRNAs deficient mutants can provide
further insights into their function. Therefore, in the future, more advanced techniques
can be employed to analyze the function of this gene and comprehensively understand the
role of PecircCDPK in enhancing drought stress resistance in moso bamboo.
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