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ABSTRACT
Understanding the relationship between multi-scale processes driving community-
and population-level diversity can guide conservation efforts. While the importance
of population-level genetic diversity is widely recognized, it is not always assessed for
conservation planning, and positive correlations with community-level diversity are
sometimes assumed, such that only the latter is measured. We surveyed species
richness and cumulative multispecies abundance of crayfishes in impounded and
unimpounded streams in the southern Appalachian Mountains (Alabama, USA). We
simultaneously assessed levels of population genetic diversity within two focal
crayfishes (Faxonius validus and F. erichsonianus) using nuclear (nDNA; inter-
simple sequence repeat (ISSR)) and mitochondrial DNA (mtDNA; mitochondrial
DNA cytochrome oxidase subunit I (mtCOI)) markers. We then tested for
species-genetic diversity correlations (SGDCs), species diversity-abundance
correlations (i.e., more individuals hypothesis, MIH), and abundance-genetic
diversity correlations (AGDCs) across sites. We also examined the relationship
between each of the three different types of correlation (i.e., species richness,
cumulative multispecies abundance, and population genetic diversity) and stream
habitat characteristics and fragmentation. Surprisingly, based on F. validus mtDNA
data, sites with the greatest multispecies abundance had the lowest genetic diversity,
indicating a negative AGDC. However, no AGDC was evident from nDNA. There
was no evidence of SGDCs for F. validus based on either of the two genetic data types.
For F. erichsonianus, there was no evidence for SGDC or AGDC. When considering
the community-level data only, there was no support for the MIH. Stream width was
positively correlated with F. validus genetic diversity, but negatively correlated with
multispecies abundance. Similarly, species richness was positively correlated with
stream width in unimpounded streams but negatively correlated with width in
impounded streams. These findings indicate that community-level diversity cannot
be indiscriminately used as a proxy for population-level diversity without empirically
testing this correlation on the focal group. As such, community- and population-level
assessments for multiple crayfish species are needed to better understand drivers of
diversity and eco-evolutionary processes which will aid in the conservation of this
vulnerable taxonomic group.
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INTRODUCTION
Parallel processes may structure biodiversity
Community-level taxonomic diversity (e.g., species richness) and population-level genetic
diversity are both key components of biological diversity (Allendorf & Luikart, 2007).
According to the theory of island biogeography, the balance between colonization and
local extinction determines species richness at a given site (MacArthur & Wilson, 1967),
whereas the counteracting forces of gene flow and drift determine the standing levels of
population genetic variation (Wright, 1940; Kimura, 1983; Nei, 1987). Vellend (2005)
proposed that if parallel processes operate at both the community- and population-level,
this should result in a positive species-genetic diversity correlation (SGDC). In addition to
SGDCs, it has also been proposed that species richness and/or population-level genetic
diversity may be positively correlated with the cumulative multispecies abundance of
individuals within a community (Lamy et al., 2017). There are several reasons why this can
occur. First, under the more individuals hypothesis (MIH; Storch, Bohdalková & Okie,
2018), community-level species richness at a local site may be high if populations of these
species are large and stable in size, such that local extinction driven by negative feedback
between intrinsic stochastic ecological and genetic processes (e.g., Allee effects, genetic
drift, and inbreeding) is negligible. Likewise, direct and indirect species interactions can be
beneficial (e.g., mutualism or facilitation), and species-rich communities may also be
characterized by greater redundancy among key role players that are critical to ecosystem
functioning, making these communities more resilient to environmental perturbations
(Waide et al., 1999; Finke & Snyder, 2008; Lamy et al., 2017). Second, according to the
abundance-genetic diversity correlation (AGDC) hypothesis (Johansson et al., 2005;
Overcast, Emerson & Hickerson, 2019), if effective population size (Ne) and census
population size (Nc) scale with one another (which is supported by a meta-analyses
(Frankham, 1996; McCusker & Bentzen, 2010)), then environmental conditions that
promote high cumulative multispecies abundance of individuals should also translate into
relatively weak effects of drift, preventing the loss of allelic diversity (Storch, Bohdalková &
Okie, 2018). Large Ne also provides the basis for more efficient natural selection, and
balancing selection may play an important role in retaining genetic variation within
populations (Chesson, 2000).

Numerous studies have assessed evidence for positive SGDCs, MIH, and AGDCs in
diverse groups of organisms (Hurlbert, 2004; Dudgeon & Ovenden, 2015; Xie et al., 2021;
Bucholz et al., 2023), but negative and no correlation have also been detected when factors
such as habitat fragmentation and disturbance affect species richness, population genetic
diversity, and multispecies abundance differently (Scribner et al., 2001; Johansson et al.,
2005; Wei & Jiang, 2012; Šímová, Li & Storch, 2013; Seymour et al., 2016; Watanabe &
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Monaghan, 2017; Reisch & Schmid, 2019). Recent meta-analyses (Xie et al., 2021) and
reviews of published studies that investigated evidence for SGDCs (Lamy et al., 2017) and
MIH (Storch, Bohdalková & Okie, 2018) found that most studies (80%-SGDC and
72%-MIH) reported positive correlations. Nonetheless, no relationship between species
richness, genetic diversity, and abundance was detected in studies conducted in highly
disturbed areas or along environmental gradients (Carnicer & Díaz-Delgado, 2008; Wei &
Jiang, 2012; Šímová, Li & Storch, 2013; Fan et al., 2021; Petersen et al., 2022). Additionally,
negative SGDCs have also been documented when there is an opposite influence of
environmental drivers (e.g., altitude, temperature) and/or competition on species diversity,
genetic diversity, and abundance (Scribner et al., 2001; Currie et al., 2004; Seymour et al.,
2016; Lamy et al., 2017; Marchesini et al., 2018; Ishii et al., 2022). Taken together, these
inconsistent results indicate that community- and population-level processes may not
operate in parallel ways in some ecological contexts and groups of organisms (Lamy et al.,
2013; Storch, Bohdalková & Okie, 2018).

SGDC, MIH, and AGDC are not mutually exclusive, but there are several reasons why
only a subset (or perhaps just one) of these hypotheses may receive support in a given
study. First, extrinsic factors may impact species differently (Kahilainen, Puurtinen &
Kotiaho, 2014; Bucholz et al., 2023). This may be due to divergent ecological functions, life
histories, ecological optima, phenotypic plasticity and/or capacity to respond to dynamic
environmental conditions. Second, contrasting carrying capacities of habitats that support
local communities may impose constraints on diversity and abundance of some species but
not others (Loreau, 2000). Additionally, rare and specialized species’ genetic diversity often
have little correlation to carrying capacities of habitats, while in most communities species
diversity and abundance are strongly correlated with carrying capacities (Vellend, 2005).

While the assessment of SGDC, MIH, and AGDC requires a field- and labor-intensive
multi-level approach aimed at investigating different levels of biodiversity, as well as their
evolutionary ecological drivers within a community, such studies can provide important
insights into the “scaling” of processes shaping biodiversity, which in turn have practical
implications for conservation (Kahilainen, Puurtinen & Kotiaho, 2014). For example, if all
three hypotheses are supported in a given study, then natural resource managers could
collect any one of the three types of diversity data (i.e., species richness, genetic diversity, or
cumulative multispecies abundance) and make reasonable predictions about the other two
(Kahilainen, Puurtinen & Kotiaho, 2014; Overcast, Emerson & Hickerson, 2019). Likewise,
if two of the three hypotheses were supported, this information could be used to identify
which one of the three data types should be prioritized in biodiversity assessments (e.g., if
both SGDC and MIH are true, then species richness data alone could be used to predict
genetic diversity and abundance; Bucholz et al., 2023). Although the robustness of such
extrapolations should be empirically verified at several sampling sites, in such situations
there is potential for this predictive framework to improve the cost-effectiveness of
biodiversity monitoring and conservation strategies. Furthermore, making assumptions
without assessing biodiversity correlations can lead to sub-optimal or detrimental
conservation strategies.
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Streams as study systems for assessing parallel processes
When assessing the correlations between biodiversity metrics, having a system that is
explicitly linked through dispersal takes into account the spatial effects of migration and
dispersal which are key processes involved in diversity dynamics (Vellend & Geber, 2005;
Altermatt, 2013; Seymour et al., 2016). As such, a system, such as streams, with a dendritic
network, provide a suitable and tractable study system for empirically testing whether
parallel processes, operating at hierarchically nested levels, structure biodiversity in similar
ways. This is because stream boundaries are clearly demarcated and environmental
characteristics (e.g., habitat area and substrate size), and distributions of stream-dependent
biota, are usually predictably structured along an upstream-downstream gradient
(Vannote et al., 1980; Rimalova, Douda & Stambergova, 2014; Barnett et al., 2022).
Furthermore, because most stream-dependent biota are regionally constrained by the
network spatial arrangement (Grant, Lowe & Fagan, 2007) and locally restricted to the
stream channel, it is possible to temporarily isolate sections so they can be exhaustively
sampled (e.g., via block net multi-pass electrofishing). This provides an otherwise rare
opportunity for quantitative assessments of stream community species richness and
abundance (Hornbach & Deneka, 1996; Ode, Rehn & May, 2005; Hanks, Kanno & Rash,
2018; Barnett et al., 2020).

Potential impacts of stream fragmentation
Notwithstanding the aforementioned advantages of streams as study systems, loss of
connectivity due to human-mediated habitat fragmentation (e.g., dams and
impoundments) is common, and this can impact biodiversity of resident biota by altering
stream habitat, community composition, and population genetic structure (Barnett et al.,
2020, 2022, 2023). Dams and impoundments are among the most prevalent and extreme
alteration on fluvial systems (The Heinz Center, 2002; Liermann et al., 2012; Grill et al.,
2015), with river fragmentation and flow regulation being one of the largest biological
effects of dams (Stanford & Ward, 2001; Grill et al., 2015; Barnett et al., 2021). Unlike
unimpounded streams where organisms experience the natural flow variability and can
freely move throughout the stream system, organisms in impounded streams are often
isolated to one stream section and natural flow variability is greatly reduced causing
changes to habitat composition and accessibility. These changes can impact species
richness, abundance, and dispersal throughout the stream system. Furthermore, habitat
fragmentation is expected to reduce within-patch species richness and abundance due to
decreases in habitat complexity which can reduce suitable habitat for habitat-specialists
(Barnett et al., 2022), as well as reduce intraspecific genetic diversity due to restricted
dispersal and gene flow leading to isolation and drift (Vellend & Geber, 2005; Hartfield,
2010; Barnett et al., 2020). However, a decoupling of the effects on these two diversity
metrics may occur when habitat fragmentation impacts the dispersal ability of some
species differently than others (Lamy et al., 2017). For example, crayfish that prefer smaller
streams and naturally disperse upstream, up steep slopes and against fast water velocities,
may be capable of bidirectional gene flow within fragmented streams, while those
preferring larger sized streams may have unidirectional downstream or no gene flow
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between fragmented sections (Hartfield, 2010; Barnett et al., 2020). Thus, whether changes
to species richness, abundance, and population genetic diversity in fragmented systems
mimic those in connected systems is an important question for conservation biologists.

Crayfish as focal group of organisms
Nearly 70% of the world’s freshwater crayfish species are found in the United States (US)
(Crandall & Buhay, 2008; Richman et al., 2015), with the southeastern US being the major
center of diversity (Hobbs, 1989; Richman et al., 2015). These organisms play fundamental
roles in stream ecosystem trophic processes (e.g., processing detritus, altering the
composition of macrophyte and substrate, transferring energy to higher level organisms),
and they are often considered ecosystem engineers due to their modification of the physical
habitat (e.g., creating habitat for other organisms through burrow creation, bedform
alterations in streams, etc.) (Momot, 1995; Usio, 2000; Statzner, Peltret & Tomanova, 2003;
Usio & Townsend, 2004; Reynolds, Souty-Grosset & Richardson, 2013; Krupa, Hopper &
Nguyen, 2021). Alarmingly, 48% of North American crayfish species are threatened
(Taylor et al., 2007), with extinction rates likely to increase by more than an order of
magnitude over the next several decades (Ricciardi & Rasmussen, 1999; Cowie, Bouchet &
Fontaine, 2022; Finn, Grattarola & Pincheira-Donoso, 2023). Hence, there is an immediate
need for effective crayfish conservation strategies (e.g., Taylor et al., 2019). However,
conservation planning at the community-level has been emphasized much more strongly
than population-level genetic diversity, as has preservation of specific “units” or
phenotypes over the evolutionary processes that generate this diversity (e.g., large
self-sustaining populations living in heterogeneous landscapes; Moritz, 2002). Thus, to
effectively conserve crayfish diversity, understanding the extent to which similar processes
structure biodiversity across different levels of biological organization is key.

In the present article, we assessed evidence for parallel processes, operating at
hierarchically nested levels, within connected and fragmented (i.e., unimpounded versus
impounded) streams in the southern Appalachian Mountains, Alabama. SGDC and
AGDC were each tested using Faxonius validus and F. erichsonianus. These were chosen as
our focal species because they share many ecological traits (e.g., life span, mating season,
burrowing capabilities, preferred habitat) but differ in their preferred stream size and
geographic range (Bouchard, 1972; Williams & Bivens, 2001; Hopper, Huryn & Schuster,
2012; Barnett et al., 2020). Faxonius validus occurs in small intermittent to medium-sized
perennial streams in northern Alabama and southern Tennessee (Cooper & Hobbs, 1980;
Hobbs, 1989), while F. erichsonianus occurs in medium to large streams in six southeastern
states, from Mississippi to Virginia (Hobbs, 1981). For these species, population genetic
diversity was measured using several alternative metrics based on mitochondrial DNA
sequences (mitochondrial DNA cytochrome oxidase subunit I (mtCOI)), as well as
complementary nuclear genetic maker (inter-simple sequence repeat (ISSR)) data. Testing
of all three hypotheses (i.e., including MIH) incorporated data from community-level
surveys of crayfish species richness and cumulative multispecies abundance in five streams
spanning two drainages. To clarify the extent to which habitat fragmentation and
environmental characteristics may contribute to such correlations, we also investigated
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whether stream habitat characteristics (size, connectivity, and habitat complexity) were
correlated with species richness, abundance, and population genetic diversity (Table 1).
Taken together, outcomes from these analyses should inform strategies for crayfish
conservation in a geographic region of high endemism.

MATERIALS AND METHODS
Study area description
This study focused on lotic sections of two unimpounded and three impounded streams
that are distributed across two drainages with diverse aquatic communities and numerous
imperiled species (Allen, 2001; McGregor & Garner, 2003; Phillips & Johnston, 2004;
Barnett et al., 2022). In the Bear Creek drainage (Tennessee River Basin), we surveyed one
unimpounded (Rock Creek) and two impounded (Little Bear and Cedar creeks) streams
(mean stream length: 61.5 km). In the Cahaba River drainage (Mobile River Basin), we
surveyed one unimpounded (Shades Creek) and one impounded (Little Cahaba River)
stream (mean stream length: 41.6 km) (Fig. 1).

Each impounded stream had one earthen storage dam (17–29 m high), creating
impoundments that were 425 to 1,700 ha. The two Bear Creek drainage impoundments
were installed for flood control, and water was released from outlets more than 19 m below
full-pool levels from November until February and during heavy rain events. Conversely,
the Cahaba River drainage impoundment stored water for municipal use. Water was
released from outlets more than 10 m below full-pool levels when river water levels were
insufficient to meet water municipal demands. Dams in both drainages pass normal
inflows via spillways throughout the year.

Site selection
In each of the three impounded streams, we selected sampling sites at set intervals
(Data S1) up- and downstream of impoundments, and we mimicked the same sampling
design in each of the two unimpounded streams. This approach led to selection of two to
five local sites up- and downstream of impoundments, and up- and downstream of the
midpoint in the unimpounded stream (hereafter, up- and downstream sections)

Table 1 Mechanisms impacting diversity at multiple scales, including environmental factors and habitat connectivity. Our predicted outcomes
of each individual factor on species richness, multispecies abundance, and population genetic diversity are denoted as being positive or negative.
As such, higher species richness will be found at sites with higher wetted widths, and species richness will be lower in fragmented streams.
% vegetation ¼ percent aquatic vegetation; D50 ¼ median substrate size; LWD ¼ number of pieces of large woody debris.

Mechanisms influencing diversity Biodiversity hypotheses

Spatial and environmental effects Species richness Multispecies abundance Genetic diversity

Habitat area (“wetted width”) + + +

Habitat heterogeneity (“% vegetation”, “D50”, “LWD”) + + +

Connectivity

Connected (“unimpounded”) + + +

Fragmented (“impounded”) – – –
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(collection data same as in Barnett et al., 2020). Overall, our study included 32 sites: 24 in
the Bear Creek drainage (10 in Little Bear Creek, six in Rock Creek, and eight in Cedar
Creek), and eight in the Cahaba River drainage (four in Shades Creek, and four in Little
Cahaba River) (Fig. 1).

Crayfish monitoring and sampling
For community-level assessment of diversity, sampling was conducted in spring
(May–July) and fall (September–December) of two sampling years, during which all
crayfishes were collected. During the first sampling year (spring and fall 2015), we collected

Figure 1 Map of Bear Creek and Cahaba River drainages, Alabama, US, with shaded polygons representing impoundments and labelled circles
representing collection sites. Sites are labelled in increasing order from up- to downstream (i.e., furthest upstream site = 1), with letters representing
stream names (R, Rock Creek; C, Cedar Creek; LB, Little Bear Creek; S, Shades Creek; and LC, Little Cahaba River). Filled circles, sites where only
Faxonius validus were collected; unfilled circles, sites where only F. erichsonianus were collected; half-filled circles, sites where both species were
collected. Inset shows drainage location within the southeastern US, with the Bear Creek Drainage in the northwest corner, and the Cahaba River
Drainage in the center of Alabama. Full-size DOI: 10.7717/peerj.18006/fig-1
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crayfishes from all sites in the Bear Creek drainage. During the second sampling year (fall
2016 and spring 2017), we collected crayfishes from all streams in the Cahaba River
drainage. At each site, we sampled one linear reach, 30 times the wetted stream width or a
minimum or maximum length of 200 to 500 m, respectively (Barnett et al., 2022). Stream
reach lengths remained constant across seasons unless the dry season shortened a reach.
Each reach was divided into two subreaches of equal length. Each subreach was
simultaneously sampled by electrofishing (3–8 s/m; mean 5 s/m ± 1.2 SD) upstream
subreaches and kick seining (20 plots/100 m, 2 m long × 1.5 m wide) downstream
subreaches (Barnett et al., 2021). Because these methods are ineffective in pools and deeper
waters, crayfish were collected only from riffles and runs with depths less than 1 m (≤15%
of each reach). Electrofishing duration and total number of kick seines were calculated
based on subreach areas. We recorded the amount of area (m2) sampled by each method
once the target sampling effort (electrofishing: 250–2,000 sec/subreach; kick seining: 20–50
kicks/subreach) was reached (Barnett et al., 2021). We used expert knowledge to identify
crayfish species in the field, counting the number of individuals for each species collected at
each site during each sampling round. We preserved voucher specimens (housed at
Mississippi Museum of Natural Science) for each species in ≥70% ethanol and confirmed
species identifications in the lab (Hobbs, 1981, 1989). All collections were approved by the

Table 2 Mean population genetic diversity (± one standard deviation) for each of two focal crayfish species in up- and downstream sections of
each stream. NS, number of sites where focal species were collected; Up, upstream; Dn, downstream; I, impounded; U, unimpounded; h, number of
haplotypes; hd, haplotypic diversity; π, nucleotide diversity; PD, phylogenetic diversity; PPL, proportion of polymorphic loci.

Focal species/Stream section
and name (NS)

Site
codes

Stream
type

No. individuals per stream
section (mtCOI/ISSR)

mtCOI sequences ISSR
markers
PPLh hd π PD

Faxonius validus

Up Little Bear (5) LB1–5 I 28/24 5 0.47 (0.20) 0.002 (0.001) 0.004 (0.001) 0.83 (0.16)

Dn Little Bear (5) LB6–10 I 30/21 7 0.71 (0.06) 0.003 (0.001) 0.007 (0.005) 0.86 (0.06)

Up Cedar (4) C1–4 I 31/21 8 0.70 (0.10) 0.004 (0.003) 0.007 (0.004) 0.86 (0.10)

Dn Cedar (4) C5–8 I 21/24 9 0.76 (0.10) 0.003 (0.001) 0.007 (0.007) 0.82 (0.17)

Up Rock (3) R1–3 U 19/16 4 0.23 (0.29) 0.001 (0.001) 0.001 (0.002) 0.95 (0.08)

Dn Rock (3) R4–6 U 14/18 4 0.44 (0.50) 0.002 (0.003) 0.010 (0.007) 0.94 (0.06)

Faxonius erichsonianus

Up Little Bear (4) LB2–5 I 21/14 5 0.79 (0.20) 0.006 (0.010) 0.016 (0.024) 0.82 (0.10)

Dn Little Bear (4) LB7–10 I 23/12 2 0.23 (0.30) <0.001 (0.001) 0.003 (<0.001) 0.85 (0.09)

Up Cedar (4) C1–4 I 20/13 9 0.91 (0.06) 0.005 (0.004) 0.018 (0.013) 0.72 (0.12)

Dn Cedar (4) C5–8 I 24/16 7 0.77 (0.04) 0.002 (0.001) 0.019 (0.011) 0.91 (0.11)

Up Rock (2) R2–3 U 6/4 6 0.70 (0.10) 0.005 (<0.001) 0.032 (0.013) 0.83 (<0.01)

Dn Rock (3) R4–6 U 18/12 4 0.36 (0.40) 0.002 (0.002) 0.009 (0.008) 0.95 (<0.01)

Up Little Cahaba (2) LC1–2 I 13/8 6 0.88 (0.03) 0.006 (0.005) 0.028 (0.031) 0.85 (0.03)

Dn Little Cahaba (2) LC3–4 I 19/7 4 0.45 (0.40) 0.001 (0.001) <0.001 (0.001) 0.80 (0.14)

Up Shades (2) S1–2 U 14/8 5 0.83 (0.03) 0.007 (0.007) 0.027 (0.036) 0.90 (<0.01)

Dn Shades (2) S3–4 U 15/9 4 0.64 (0.15) 0.001 (0.001) 0.006 (0.003) 0.90 (0.08)
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State Alabama under Alabama Conservation License numbers 2016064289868680 and
2017092711268680.

For population-level assessment of genetic diversity, the two focal species,
F. erichsonianus and F. validus, were both collected from the Bear Creek drainage, but only
F. erichsonianus was collected from the Cahaba River drainage. On average, 20 individuals
per species (SD = 6.6) were collected per stream section, with a total of 143 F. validus and
173 F. erichsonianus collected) (Table 2). Whole specimens were preserved in 95% ethanol.

Characterization of population genetic diversity in two focal species
Genomic DNA was extracted from leg tissue of each F. erichsonianus and F. validus
individual using a DNeasy blood and tissue kit (Qiagen, Valencia CA, USA), following
manufacturer’s recommendations. A 618–640 base pair (bp) region of the mitochondrial
DNA cytochrome oxidase subunit I (mtCOI) gene was amplified and sequenced as
described in Barnett et al. (2020). Additionally, we performed genotyping using
inter-simple sequence repeat (ISSR) markers (Ziętkiewicz, Rafalski & Labuda, 1994) for a
minimum of three individuals per focal species per site (mean = 4, SD = 1.07). Whereas
mtCOI is a maternally inherited haploid marker, ISSRs are generally presumed to be
biparentally inherited nuclear autosomal markers, and as such, they have been used for
addressing diverse questions in ecology and evolution (e.g.,Wolfe, Xiang & Kephart, 1998;
Abbot, 2001; Haig, Mace & Mullins, 2003; Dušinský et al., 2006; Sinn et al., 2022). Using
both nuclear and mitochondrial data could provide information on two temporal scales,
with mtCOI having a smaller Ne than ISSRs, potentially giving it the ability to detect more
recent changes to populations (Moore, 1995). Together, these two types of molecular data
should provide a broad overview of population genetic diversity (Garrick, Caccone &
Sunnucks, 2010).

For initial assessment of polymorphism and scorability of ISSRs, ten primers (Data S2)
were screened using a geographically representative of 10 F. validus and 10
F. erichsonianus individuals. Eight ISSR primers were designed by the author (R.C.
Garrick), with the other two primers selected from the UBC Primer Set #9 (University of
British Columbia, Canada, available at www.github.com/btsinn/ISSRseq). Polymerase
chain reaction (PCR) amplifications were carried out in a final volume of 10 mL, containing
the following: 1 mL genomic DNA, 2 mL 5 × buffer (Promega, Maddison WI, USA), 0.8 mL
MgCl2 (25 mM, Promega), 1.6 mL dNTPs (1.25 mM, Promega), 0.5 mL bovine serum
albumin (10 mg/mL, New England Biolabs, Ipswich, MA, USA), 3 mL dH2O, 0.1 mL Go-Taq
DNA polymerase (5 U/mL, Promega), and 1 mL of primer (10 mM). Thermocycling
conditions were: 95 �C for 2 min (one cycle), 95 �C for 30 s, 48 �C for 30 s, 72 �C for 1 min
30 s (35 cycles), and a final extension at 72 �C for 2 min (one cycle). All PCRs contained a
negative control to assess evidence for contamination. Amplified products were
electrophoresed on 2% agarose gels at 100 volts for 2 min and 45 volts for 16 h and 40 min
in a 4 �C cold room, and then viewed under ultraviolet light, and photographed. Sizes of
amplified bands were approximated via comparison to a 100-bp DNA ladder. Preliminary
results identified four primers (two per species) that produced informative data (Data S2),
and these were selected for population-level screening.
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A given allele at each ISSR locus is scored as binary presence (1) vs. absence (0) data, and
several loci are typically co-amplified with the same primer. Accordingly, an individual’s
gel banding profile usually contains multiple bands of different size (i.e., alleles present at
different loci) and represents a multi-locus genotype. To standardize scoring of band sizes
across gels and to ensure repeatability of banding profiles, PCR products from each
individual were run two to three times with strategic re-ordering of individuals across gels
so as to provide key side-by-side comparisons and scoring of each profile performed by
two people. Only those loci and individuals that yielded reproducible results were included
in downstream analyses.

Habitat characterization
During spring and fall sampling 2015–2017, we measured stream channel characteristics.
This included channel wetted width at four evenly spaced transects within our sampled
reach. Using Wolman pebble counts procedures (Wolman, 1954; Barnett et al., 2020), we
analyzed habitat complexity across the bankfull channel width. Ten zig-zag transects from
one bank to the other were sampled at each site, with 10 points in each transect (100
sampling points/site). At each sampling point, we measured the intermediate axis of
substrate. Between adjacent sampling points, we visually estimated the percentage of
streambed covered by vegetation and counted number of pieces of large woody debris
(LWD) (Bain & Stevenson, 1999).

Diversity metrics
Species richness was measured following Chao (1984), using the Chao-1 metric, which
extrapolates the probability of undetected species within each site from the number of rare
species detected (i.e., singletons). Chao-1 species richness was calculated using the “chao1”
function of the fossil package in R software (version 4.2.1; R project for Statistical
Computing, Vienna Austria) (R Core Team, 2022).

To quantify cumulative multispecies abundance, we counted the number of crayfish
collected after electrofishing and kick seining and used total number of individuals and
area sampled to calculate the number of crayfishes collected/100 m2. The cumulative
multispecies abundance was summed across two sampling rounds per site.

Within-population genetic diversity was calculated using several different metrics. For
mtCOI sequence data, we used DnaSP v.5.10.01 (Librado & Rozas, 2009) to calculate
haplotypic diversity (hd; Nei, 1987). Notably, hd treats mtCOI haplotypes as a multi-state
unordered variable. To capture information on how different haplotypes within a
population were from one another, we also calculated nucleotide diversity (π; Nei, 1987).
One of the limitations of both hd and π is that they are calculated using only those
haplotypes present within a given local population, and so these metrics can suffer from
issues of small sample sizes. Accordingly, we also explored the utility of Faith’s (1992)
Phylogenetic Diversity (PD) as means of jointly considering all of the available mtCOI
sequence data for a given focal species when calculating population-specific diversity
values. Briefly, PD is the sum of branch lengths on phylogenetic tree uniting all “taxa” (i.e.,
haplotypes present within a location/population), back to the root of the tree. For both
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F. erichsonianus and F. validus, rooted maximum-likelihood (ML) phylogenetic trees were
estimated in MEGA v.10.2.6 (Kumar et al., 2018). Given that the use of an appropriate
outgroup is important for PD, yet we are not aware of a published genus-level phylogeny
for Faxonius, a phylogenetic analysis was conducted using mtCOI sequence data from 71
formally recognized species available in NCBI’s nucleotide database (see Data S4). This
identified F. spinosus as the sister taxon of F. erichsonianus, whereas a clade including both
F. cooperi and F. pagei was sister to F. validus. For each of the two focal species and their
associated outgroup(s), the best-fit model of nucleotide evolution was determined via
Akaike information criterion (AIC) model selection, and an ML tree was estimated using
the following search settings: missing data = partial deletion (cut-off: 95%), maximum
parsimony starting tree, nearest-neighbor-interchange branch swapping, and branch swap
filter = moderate. Node support was assessed via 500 bootstrap replicates. The resulting
tree was exported in Newick format containing tree topology plus estimated branch
lengths, and PD was then calculated using the picante package (v1.8.2; Kembel et al., 2010)
in R.

For the ISSR data, within-population genetic diversity was calculated as the proportion
of polymorphic loci (PPL) (i.e., number of loci that were polymorphic among individuals
at local site, divided by total number of loci screened for the focal species). Because there
was no correlation between PPL and number of individuals within a population sample
(Pearson correlation: F. validus: r = 0.27, P = 0.22; F. erichsonianus: r = 0.29, P = 0.16),
subsequent rarefaction correction of PPL was not applied (Table 2).

Species richness, abundance, and genetic diversity correlations
For the focal Faxonius species at all study sites, collectively, we investigated SGDC
assessing the relationships between species richness and each of the four genetic diversity
metrics separately (i.e., hd, π, and PD for mtCOI sequences, and PPL for ISSR markers). To
do this, we calculated the Pearson correlation coefficient and asymptotic confidence
intervals based on Fisher’s Z transformation using the “cor.test” function of the stats
package in R to determine significance (R Core Team, 2022). At each of the same 32
sampling sites for F. validus and F. erichsonianus (Fig. 1), we tested the MIH by assessing
the correlation between species richness and cumulative multispecies abundance of all
crayfishes, again using Pearson correlation coefficient and confidence intervals to
determine significance, calculated in R. AGDC was assessed in the same way as SGDC,
except that species richness was replaced by cumulative multispecies abundance.

Relationships between habitat characteristics, community- level
diversity, and population-level diversity
To clarify the extent to which stream fragmentation and environmental characteristics
(size, connectivity, and habitat complexity) may impact SGDC, MIH and/or AGDC, we
examined whether species richness, abundance, and genetic diversity metrics showed any
relationships with stream channel characteristics (see Habitat characterization, above)
using linear models. If stream channel characteristics affect the two levels of diversity in a
different way (e.g., positive relationship between stream size and genetic diversity vs.
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negative relationship between stream size and species richness), we would expect this to
lead to no or negative correlation between different diversity metrics, thus resulting in no
support for SGDC, MIH and/or AGDC.

To assess impacts of stream channel characteristics on diversity correlations, we
calculated the median wetted width, percent vegetation, substrate size (i.e., D50), and LWD
from spring and fall sampling for each site. All sites within unimpounded streams were
characterized as connected, and all sites within impounded streams were characterized as
fragmented. Because dams and associated impoundments can have far-reaching effects up-
and downstream of impoundments (Falke & Gido, 2006; Johnson, Olden & Zanden, 2008),
all sites sampled within impounded streams have the potential to be fragmented (e.g.,
isolation of upstream sites, alterations of seasonal flow patterns downstream and habitat
modification both up- and downstream) (Yeager, 1993). We fit linear models with least
squares estimates using the ‘lm’ function in with stats package in R. In these models,
stream characteristics were treated as the independent variables (potential predictors),
whereas the different metrics for species richness, cumulative multispecies abundance, or
genetic diversity were treated as the dependent variable (response). We included 2-way
interactions of stream characteristics and binary stream type classification (i.e., connected
vs. fragmented). We used theMuMIn R package (Barton & Anderson, 2002) to analyze all
possible models. Model selection was based on corrected Akaike information criterion
(AICc) because sample sizes were small relative to the number of estimated parameters
(Burnham & Anderson, 2004). We compared alternative models by weighting their level of
data support (Hurvich & Tsai, 1989), with delta AICc values ≤2 representing the
best-supported models. We calculated relative variable importance (RVI; number of
models predictor variable appears in/number of total models) scores for each predictor
variable, based on variables appearance in the AICc-best models. Predictors with RVI >0.5
were considered most important. If there were significant stream characteristics by stream
type (connected or fragmented) interactions, pairwise comparisons between each stream
type and stream characteristic were done. Tukey HSD P-value adjustment approach (Sokal
& Rohlf, 1981) was used to correct for the effect of multiple comparison on the family-wise
error rate.

RESULTS
Crayfish collections, and characterization of genetic diversity
Across all sites, we collected 12 crayfish species, with six and eight species collected in the
Bear Creek and Cahaba River drainages, respectively (Table 3). Additionally, nine crayfish
species were collected in both impounded and unimpounded streams. Cumulative
multispecies abundance of individuals varied greatly between sites (N crayfish/100
m2 = 0.001–0.282), with an average of 0.032 crayfish collected per 100 m2 (Datas S5 and
S6). The highest densities of crayfishes were collected in Rock Creek (0.723) and lowest in
Shades Creek (0.016) (Table 3).

For F. validus, we successfully sequenced 143 individuals, obtaining a 618-bp mtCOI
alignment, with 25 polymorphic sites and 28 unique haplotypes (Table 2; Data S3) (data
from Barnett et al., 2020 assessed; GenBank accession numbers MN053979–MN054006,
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Data S3). For F. erichsonianus, we obtained a 640-bp mtCOI alignment, with 68
polymorphic sites and 42 haplotypes from 173 individuals (data from Barnett et al., 2020
assessed; GenBank accession numbers MN054007–MN054048, Data S3). We obtained
ISSR data from 109 F. validus and 95 F. erichsonianus individuals. Faxonius validus and
F. erichsonianus included in ISSR analyses were a subset of those used in mtCOI
assessments. We assessed a minimum of three individuals per site (mean four
individuals/site) and only used individuals that yielded reproducible results. Nelson &
Anderson (2013) showed that genetic diversity estimates were similar when using five
compared to 10 individuals per site, suggesting that our sample sizes are likely reasonable.
ISSR primers yielded 24 and 34 polymorphic loci for F. validus and F. erichsonianus,
respectively (Datas S5 and S6). While this is a relatively low number of polymorphic loci
(Nelson & Anderson, 2013), studies have shown that using 20–30 dominant markers can
yield acceptable results for population genetic assessments (Vandergast et al., 2009;
Guasmi et al., 2012; Nelson & Anderson, 2013).

Habitat characterizations
Crayfish were collected in medium (median wetted width = 11.81 m) sized streams with
mostly pebble substrate (median substrate size = 25 mm) and a relatively wide range of
LWD (2–25 pieces of LWD; median = 10.0) and percent vegetation (6–32%;
median = 15.6) (Table 4; Datas S5 and S6).

Table 3 Cumulative multispecies abundance of crayfish (measured as a density: crayfish individuals/100 m2) in upstream (Up) and
downstream (Dn) sections of impounded and unimpounded streams in the Bear Creek and Cahaba River drainages, Alabama.

Drainage Crayfish Impounded Unimpounded Total

Bear creek Cedar-up Cedar-dn Little bear-up Little bear-dn Rock-up Rock-dn

Faxonius validus 0.0392 0.0246 0.0768 0.0624 0.5223 0.0162 0.7416

Faxonius erichsonianus 0.0367 0.0163 0.0498 0.0205 0.0346 0.0440 0.2019

Cambarus striatus 0.0002 0.0000 0.0018 0.0003 0.0731 0.0077 0.0832

Faxonius compressus 0.0000 0.0000 0.0000 0.0024 0.0000 0.0239 0.0263

Faxonius etnieri 0.0000 0.0000 0.0000 0.0000 0.0000 0.0031 0.0031

Lacunicambarus dalyae 0.0000 0.0000 0.0004 0.0004 0.0000 0.0023 0.0031

Total 0.0762 0.0409 0.1288 0.0860 0.6300 0.0972 1.0591

Cahaba River Little cahaba-up Little cahaba-dn Shades-up Shades-dn

Faxonius virilis 0.0153 0.0048 0.0034 0.0028 0.0263

Faxonius erichsonianus 0.0030 0.0025 0.0019 0.0058 0.0133

Cambarus coosae 0.0001 0.0010 0.0000 0.0000 0.0011

Procambarus clarkii 0.0007 0.0000 0.0000 0.0004 0.0011

Cambarus striatus 0.0002 0.0003 0.0000 0.0021 0.0026

Procambarus acutus 0.0005 0.0000 0.0000 0.0000 0.0005

Faxonius spinosus 0.0001 0.0000 0.0000 0.0000 0.0001

Cambarus acanthura 0.0000 0.0000 0.0000 0.0001 0.0001

Total 0.0200 0.0086 0.0053 0.0111 0.0450
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Species richness and genetic diversity estimates
Regarding community-level diversity, Chao-1 species richness ranged from one to seven
species, with an average of four species per site (Datas S5 and S6). Regarding
population-level diversity, F. validus mtCOI haplotypic diversity and nucleotide diversity
were typically lower than that of F. erichsonianus (mean = 0.57 [SD = 0.20] vs. 0.63 [0.17];
mean = 0.002 [0.001] vs. 0.003 [0.002], respectively Table 2). Likewise, phylogenetic
diversity (PD) values, measured in branch length units of substitutions per site, were

Table 4 Fragmentation status and median values for stream channel parameters (range) from crayfish surveys. D50, median substrate size;
LWD, number of pieces of large woody debris.

Little Bear Cedar Rock Little Cahaba Shades
Fragment status Fragmented Fragmented Connected Fragmented Connected

Wetted Width (m) 11.0 (5.1–13.2) 13.9 (9.1–18.4) 8.2 (3.1–11.7) 13.4 (7.5–17.8) 12.5 (10.5–13.3)

D50 (mm) 24.8 (16–599) 26.8 (6–1,013) 19.1 (12–1,039) 25.4 (17–79) 17.5 (2–25)

Aquatic vegetation (%) 14.5 (3–29) 16.3 (9–29) 27.8 (17–34) 8.2 (7–11) 11.2 (11–19)

LWD 9.0 (2–25) 8.0 (3–16) 6.0 (2–13) 10.8 (9–14) 16.0 (13–20)

Table 5 Correlations (Pearson r) and confidence intervals between species diversity-abundance (i.e.,
more individuals hypothesis, MIH), species-genetic diversity (SGDC), and abundance-genetic
diversity (AGDC) for Faxonius validus and F. erichsonianus. Genetic diversity was measured using
mitochondrial COI sequence data (nucleotide diversity (π), haplotypic diversity (hd), and phylogenetic
diversity (PD)), and ISSR nuclear marker data (proportion of polymorphic loci (PPL)). Significant
relationships are shown in bold.

Pearsons r Confidence interval P value

(A) Faxonius validus

SGDC— π 0.01 [−0.393 to 0.413] 0.96

hd −0.06 [−0.450 to 0.354] 0.79

PD 0.08 [−0.306 to 0.437] 0.70

PPL 0.02 [-0.402 to 0.441] 0.92

AGDC— π −0.36 [−0.666 to 0.052] 0.09

hd −0.45 [−0.723 to −0.059] 0.03

PD 0.04 [−0.340 to 0.405] 0.85

PPL 0.32 [−0.121 to 0.651] 0.15

(B) Faxonius erichsonianus

SGDC— π 0.15 [−0.239 to 0.493] 0.46

hd −0.06 [−0.421 to 0.323] 0.77

PD −0.12 [−0.489 to 0.292] 0.58

PPL −0.12 [−0.489 to 0.292] 0.68

AGDC— π 0.08 [−0.115 to 0.584] 0.17

hd −0.10 [−0.280 to 0.459] 0.60

PD 0.04 [−0.340 to 0.405] 0.85

PPL 0.07 [−0.336 to 0.451] 0.75

(C) MIH −0.16 [−0.527 to 0.262] 0.46
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generally lower for F. validus than F. erichsonianus (mean = 0.006 [0.004] vs. 0.015 [0.014],
respectively; Table 2). Conversely, the ISSR-based proportion of polymorphic loci (PPL)
showed close equivalence between the two focal species (mean PPL = 0.87 [0.11] vs. 0.85
[0.07] for F. validus and F. erichsonianus, respectively; Table 2).

Species richness, abundance, and genetic diversity correlations
Pearson correlation tests showed no significant correlations between species richness
and genetic diversity for any of the mtCOI- or ISSR-based diversity metrics for F. validus
or for F. erichsonianus (Tables 5A, 5B). Additionally, Pearson correlation tests
showed no significant correlations between cumulative multispecies crayfish abundance
and species richness (P = 0.46; Table 5C). As such, neither SGDC nor MIH were
supported.

An AGDC was evident in one focal species (Table 5A). For F. validus, Pearson
correlation tests showed a negative relationship between cumulative multispecies
abundance and genetic diversity for two of the three mtCOI-based metrics (hd: r = −0.45,

Table 6 Linear model results of the relationship between crayfish diversity metrics (species richness,
abundance, population genetic diversity) and stream characteristics. Results include variables from
the models that were within two AICc units of the best model. Stream characteristics are listed by
decreasing relative variable importance (RVI). Null model indicates that the null model was the best
model. Pairwise results for variables with significant interactions are shown in Fig. 2. N, number of
models within two AICc units of the best model. SE, standard error. RVI, relative variable importance
(parameters with RVI of 1.00 were included in all of the best models). D50, median substrate size (mm).
LWD, large woody debris (number of pieces). π, nucleotide diversity. hd, haplotypic diversity. PPL,
proportion of polymorphic loci. *Indicates P values ≤ 0.05. **Indicates P values ≤ 0.01. - Indicates that no
parameters were assessed because null model was the best model.

Model R2 N Estimate SE RVI

Chao 1 species richness 0.36 1

Stream type × stream width** 0.417 0.310 1.00

Cumulative multispecies abundance 0.97 2

Stream type × D50** <−0.001 <0.001 1.00

Stream type × LWD** −0.001 0.001 1.00

Stream width** −0.001 <0.001 0.50

Faxonius validus π 0.19 1

Stream width* <0.001 <0.001 1.00

Faxonius validus hd 0.22 1

Stream width* 0.032 0.012 1.00

Faxonius validus PPL – –

Null model – – –

Faxonius erichsonianus π – –

Null model – – –

Faxonius erichsonianus hd – –

Null model – –

Faxonius erichsonianus PPL – –

Null model – – –
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P = 0.03; π: r = −0.36, P = 0.09), although only the abundance-hd correlation was
significant at the 0.05-level. However, the Pearson correlation test showed no significant
correlation between abundance and ISSR-based PPL (Table 5A). For F. erichsonianus,
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Figure 2 Impounded and unimpounded stream comparisons of mean (standard error) Chao-1
species richness (A) and cumulative multispecies abundance (B, C) among mean stream width
(A), number of pieces of large woody debris (B), and median substrate size (C). Only relationships
with significant interactions in linear models are displayed. Full-size DOI: 10.7717/peerj.18006/fig-2
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Pearson correlation tests showed no significant relationship between cumulative
multispecies abundance and genetic diversity for any mtCOI (hd, π, PD) or ISSR
(PPL) diversity measure (r = −0.10–0.27, P > 0.05; r = 0.07, P = 0.75, respectively)
(Table 5B).

Association between environmental characteristics, community-level
diversity, and population-level diversity
Species richness was significantly correlated with stream width, explaining 36% of species
richness variation (Table 6). However, this correlation varied depending on stream type
(fragmented vs. connected) (Fig. 2A). There was a positive relationship between species
richness and stream width in unimpounded streams, but a negative relationship in
impounded streams.

Cumulative multispecies abundance was significantly correlated with stream width,
LWD, and substrate size, which explained 97% of crayfish abundance variation (Table 6).
Cumulative multispecies abundance increased with decreasing stream width, and its
relationship with LWD and substrate size varied depending on stream type (Figs. 2B, 2C).
There was a significant negative relationship between cumulative multispecies abundance
and amount of LWD in unimpounded streams, but no relationship with LWD in
impounded streams (Fig. 2B). Additionally, there was a significant positive relationship
between cumulative multispecies abundance and substrate size in unimpounded streams,
but no relationship in impounded streams (Fig. 2C).

Stream width was significantly positively correlated with F. validus nucleotide and
haplotype diversity, explaining 19% and 22% of their variation, respectively (Table 6).
There was no significant relationship between ISSR-based PPL and stream characteristics.
Additionally, there were no significant relationships between any F. erichsonianus genetic
diversity metrics and stream characteristics (Table 6).

DISCUSSION
The most salient findings of this study were that no positive SGDCs, MIH, or AGDCs were
detected. These findings have several important implications for the conservation of
crayfish diversity. Given no positive correlations, separate strategies for conserving species
richness, abundance, and genetic diversity seem appropriate. Here, we showed that
fragmentation changed the relationship between environmental factors and
community-level diversity metrics, with species richness and multispecies abundance
consistently lower in fragmented habitats. Barnett et al. (2023) showed that in less complex
habitats (e.g., aquatic vegetation and woody debris), more predatory fishes, higher
minimum temperatures, and less variable discharges led to lower densities and diversity of
crayfishes in impounded versus unimpounded streams. Thus, conservation practices
restoring habitat complexity, mimicking natural flow regimes, and increasing connectivity
in fragmented riverine systems may increase community-level diversity in these systems.
Additionally, riverine systems where community-level diversity is high may still deserve
conservation priority to prevent the loss of genetic diversity, as this may nonetheless be
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low. Efforts to increase dispersal and gene flow between populations (e.g., barrier removal,
habitat restoration, hydrologic restoration) may be needed to increase genetic diversity.

Even though no positive correlations between diversity metrics were detected, we did
detect a negative correlation between cumulative multispecies abundance and
mtCOI-based genetic diversity (hd, and π) for F. validus, although only hd was statistically
significant. Negative AGDCs indicate that conditions favoring high abundance of
crayfishes were coupled with low genetic diversity. However, studies have suggested that
large populations maintain high genetic diversity (Frankham, 2010; Allendorf, Luikart &
Aitken, 2013). Nonetheless, in river ecosystems, studies report a downstream increase in
genetic diversity due to increased downstream dispersal with waterflow (Ritland, 1989;
Kikuchi, Suzuki & Sashimura, 2009; Alp et al., 2012; Paz-Vinas et al., 2015), while crayfish
abundance increases upstream due to positive relationships with hydrologic variability of
headwater streams (Flinders & Magoulick, 2003; Yarra & Magoulick, 2018). Similarly in
this study, crayfish abundance was highest in upstream sites in both impounded and
unimpounded streams in the Bear Creek drainage, which could be due to crayfish
burrowing capabilities, along with reduced predation risk in upstream sites (Flinders &
Magoulick, 2003; Yarra & Magoulick, 2018, 2020). Conversely, genetic diversity was
highest at downstream sites which could be due to higher dispersal from tributaries
entering the stream and passive movement of crayfish downstream during high flow events
(Maude & Williams, 1983). Barnett et al. (2020) also showed that higher gene flow
occurred from up- to downstream than down- to upstream among most F. validus
populations in Bear Creek drainage streams, with impoundments negatively impacting
upstream gene flow. Negative AGDC trends were not evident in F. erichsonianus
(Table 5B). This difference between species may be due to contrasting habitat preferences,
with F. erichsonianus commonly collected in small to large streams under rocks and in leaf
litter (Bouchard, 1972; Hobbs, 1981), whereas F. validus is found only along the margins of
small to medium sized streams and in temporary streams that dry seasonally (Bouchard,
1972; Cooper & Hobbs, 1980). Sampling within watersheds revealed that F. validus
dominates at sites furthest upstream, whereas F. erichsonianus dominates at sites near
impoundments and midpoints within unimpounded streams, as well as in our furthest
downstream sites (Barnett et al., 2020, 2022). Additionally, F. erichsonianus were collected
in the Cahaba River drainage during spring 2016 and fall 2017, while both species were
collected in the Bear Creek drainage during spring and fall of 2015. This sampling scheme
could potentially introduce a geographical and temporal bias to the study. However, in
previous studies by Barnett et al. (2022, 2023) which assessed crayfish community structure
in Bear Creek drainage streams between 2015–2017, community structure differences were
not detected between years indicating that crayfish communities may not have seen great
changes within this timeframe. Furthermore, positive correlations were detected between
stream width and F. validus haplotype and nucleotide diversity, whereas no correlations
were detected between stream width and F. erichsonianus genetic diversity metrics. Species
habitat preferences and trend differences between stream size and genetic diversity may
explain species-specific differences in support for AGDCs.
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Negative AGDC trends were not evident with our nuclear DNA (nDNA) assessments.
Discrepancies in AGDC trends between ISSR and mtCOI markers may reflect differences
in effective population sizes and mutation rates among genes, and/or sex-biased dispersal.
Nuclear DNA has roughly four times the Ne of mitochondrial DNA (mtDNA) (assuming
an equal sex ratio among breeding adults). The smaller Ne of mtDNA potentially allows it
to capture the signal of demographic events that may not leave a mark in nDNA loci
(Vandergast et al., 2009; Eytan & Hellberg, 2010), which may explain why we only detected
a negative relationship with mtCOI markers. Nuclear DNA also captures biparental
inheritance and thus dispersal of both males and females, while mtDNA is maternally
inherited and therefore only captures information on dispersal of females. Furthermore,
sex-biased movement could potentially explain differences between our mtDNA and
nDNA findings, however, there is currently no evidence of sex-biased dispersal within
other crayfish (Gherardi, Tricarico & Ilhèu, 2002; Bubb, Thom & Lucas, 2004; Wutz &
Geist, 2013; Galib et al., 2022).

Like other freshwater macroinvertebrate assessments, no SGDCs were detected in our
study (Seymour et al., 2016; Watanabe & Monaghan, 2017; Petersen et al., 2022). Previous
studies that found positive SGDCs indicate that environmental and physical variation
significantly correlated with species richness (He et al., 2008; Lamy et al., 2013), suggesting
that species richness may be locally selected, which then influences genetic diversity. In our
study, we found that stream width was correlated with species richness, but this correlation
had opposite trends in impounded (positive correlation) and unimpounded (negative
correlation) streams (Fig. 2). Stream width was also correlated with F. validus mtCOI
population genetic diversity metrics. Unlike species richness, F. validus population genetic
diversity was positively correlated with stream width no matter the stream type. Thus,
fragmentation may be impacting only species richness, decoupling SGDCs. Additionally,
no tested environmental factor was correlated to F. erichsonianus population genetic
diversity, indicating stream width is not a driver for all crayfishes within this system.

Positive species-abundance correlations (MIH) are mainly expected in communities
where interspecific competition is relatively low and environmental factors (e.g., habitat
heterogeneity, land use intensity) impact most species similarly (Vellend & Geber, 2005;
Storch, Bohdalková & Okie, 2018). Crayfish are not all impacted the same by
environmental factors (Adams, 2013; Mouser, Mollenhauer & Brewer, 2019; Barnett et al.,
2020, 2023), and there is high interspecific competition between co-occurring species
(Blank & Figler, 1996; Mouser, Mollenhauer & Brewer, 2019). For example, in the Ozark
Highlands ecoregion of Missouri, the presence of crayfishes that were strong competitors
resulted in lower occurrence of species that were not strong competitors (Mouser,
Mollenhauer & Brewer, 2019). Additionally, abundance of some crayfish species increased
in Alabama streams with little habitat heterogeneity, while others were found only in sites
with high habitat heterogeneity (Barnett et al., 2022). Crayfish also have different
burrowing capabilities (Hobbs, 1981), which may lead to contrasting responses to
fragmentation and habitat heterogeneity. Indeed, species that we sampled in local
communities ranged from tertiary to secondary burrowers. In the present study, species
richness and cumulative multispecies abundance were correlated with different stream
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environmental characteristics. As such, changes in stream characteristics could impact one
diversity metric but not the other.

Many SGDC, MIH, and AGDC studies have reported contrasting results, depending on
the focal species (Scribner et al., 2001; Wei & Jiang, 2012; Watanabe & Monaghan, 2017;
Storch, Bohdalková & Okie, 2018) and the environmental context. Assuming ecological
similarity, focal species that are common are expected to show positive SGDCs, while rare
species are more likely to differ from the overall community, with population sizes and
genetic diversity of rare species often not positively correlated with locality area and thus
also not positively correlated with abundance and richness of the overall community
(Vellend, 2005). In this study, we selected the most abundant species collected in our study
systems (making up ≥30% of individuals collected) as focal species for genetic diversity
assessments. Faxonius erichsonianus is also relatively abundant throughout the
southeastern region, occurring in six southeastern states from western Tennessee south to
northern Mississippi and northwestern Georgia, north to Virginia (Hobbs, 1981).
Conversely, Faxonius validus occurs only in the Tennessee and Black Warrior River basins
in northern Alabama and southern Tennessee (Cooper & Hobbs, 1980; Hobbs, 1989).
Unlike these two focal species, other species within the study streams that make up the
local community are more broadly distributed throughout the eastern US (e.g.,
Procambarus acutus) or the entire US (e.g., F. virilis and P. clarkii), and are invasive in
some environments (e.g., F. virilis, P. acutus, and P. clarkii). Thus, the geographic range
and commonality of our focal species is much less than other species in our study systems,
indicating dispersal and niche limitations in our focal species (Astorga et al., 2012).
Additionally, our sampling sites were in the Eastern Highland region, which has a
pre-Pleistocene origin and is likely the center of origin of Faxonius (Crandall, Templeton &
Neigel, 1999). Focal species responses to glaciation and sea-level fluctuation along with
dispersal differences between species and sexes could drive differences detected between
F. validus and F. erichsonianus, as well as ISSR (bi-parentally inherited) and mtCOI
(maternally inherited) markers (Crandall, Templeton & Neigel, 1999; Mayden, 1987).
Furthermore, specific demographic histories of population bottlenecks and expansions are
unknown for these species. Moreover, ecological, evolutionary, and demographic
differences between our focal species and other members of the overall community may
have contributed to the absence of significant correlations between diversity measures.

The effects of habitat fragmentation and modification, such as those caused by
impoundments, have long been recognized as a major threat to biodiversity (Vandergast
et al., 2007; Bessert & Ortí, 2008; Quadroni et al., 2016), with life history characteristics
such as dispersal ability and physiological tolerances often determining the degree of
impact (Luoy et al., 2007; Reid et al., 2008; Alp et al., 2012). Both community-level diversity
correlations with stream characteristics differed between impounded and unimpounded
streams. Conversely, genetic diversity correlations with stream characteristics did not
differ between impounded and unimpounded streams. These findings indicate different
responses of community-level diversity and population-level genetic diversity to
environmental conditions. Nonetheless, we could not assess differences between diversity
correlations from impounded and unimpounded streams separately because only nine of
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the 32 sampling sites were in unimpounded streams, which provides low power for
detecting any differences.

This study used both nuclear (ISSR) and mitochondrial (mtCOI) markers to assess
within-population genetic diversity. While methods such as next-generation sequencing
are becoming increasingly common for genetic diversity assessments, in conservation
planning the need remains for simple, cost-effective, yet robust methods. Numerous
studies highlight the reliability, simplicity, and cost effectiveness of ISSR markers when
assessing genetic variation (Grativol et al., 2011; Sarwat, 2012; Saha et al., 2020). The
mtCOI gene is the most commonly used genetic marker for crayfish assessments (Fetzner
& DiStefano, 2008; Barnett et al., 2020; Cabe et al., 2022; Lovrenčić et al., 2022). Therefore,
it may be of broad interest to understand if the diversity metrics estimated from this
marker correlate with community-level metrics, so that managers can understand the
potential for re-purposing existing mtCOI datasets. Additionally, using both ISSR and
mtCOI markers provides replicate samples of the demographic history of focal species
(Brito & Edwards, 2009). However, markers may estimate demographic history differently
due to mechanisms affecting their evolution, Ne, or rates of recombination (Graur & Li,
2000; Hare, 2001; Brito & Edwards, 2009; Eytan & Hellberg, 2010). For example, ISSRs are
transmitted biparentally, may have interlocus recombination and a large Ne. Conversely,
mtCOI is transmitted maternally as a single nonrecombining block and has a
comparatively small Ne. This small Ne gives mtDNA the ability to detect more recent
changes to a population than nDNA (Moore, 1995), while nDNA has the ability to provide
replicate samples of the underlying demographic history affecting the genome of an
organisms and coalescent process (Carling & Brumfield, 2007). Thus, these markers should
complement each other (Eytan & Hellberg, 2010; Garrick, Caccone & Sunnucks, 2010).
Nonetheless, one shortcoming of our study is the relatively small number of ISSR loci
assessed (24 and 34 polymorphic loci for F. validus and F. erichsonianus, respectively).
While similar numbers of loci have been shown to be reliable in other studies (Vandergast
et al., 2009; Guasmi et al., 2012; Nelson & Anderson, 2013), the minimum number of loci
required to yield acceptable results depends on the analyses being performed and level of
genetic differentiation among populations (Nelson & Anderson, 2013). Thus, future studies
should add more nDNA loci to assess correlations between diversity metrics. Additionally,
the differences between the suite of genetic diversity metrics used in this study indicates
that other types of nDNA markers should also be assessed.

CONCLUSIONS
We assessed evidence for species-genetic diversity correlations (SGDCs), more individuals
hypothesis (MIH), and multispecies abundance-genetic diversity correlations (AGDCs)
within crayfish communities in impounded and unimpounded streams in the southeastern
US. Our results indicated a significant relationship between cumulative multispecies
abundance and genetic diversity (AGDC) for one of the focal species, but unexpectedly,
this AGDC was negative. Notably, the level of support for this negative AGDC differed
across genetic marker types, and even among different metrics for mtCOI variation. We
also investigated the association of several environmental factors with species richness,
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population genetic diversity, and cumulative multispecies abundance. In this context, we
found that fragmentation status affected the relationship between several environmental
factors and species richness, population genetic diversity, and cumulative multispecies
abundance, which could explain why there was generally little or no support for SGDC,
MIH and/or AGDCs.

Crayfish are among the most threatened North American taxa, and the need for crayfish
conservation is particularly urgent (Taylor et al., 2019). However, most conservation
planning is focused at the community-level, with less emphasis on population-level genetic
diversity. Our study showed that community-level diversity was not positively correlated
with population-level genetic diversity, and eco-evolutionary processes influencing genetic
diversity were not the same as those influencing community-level diversity. Thus,
conservation at the community-level may not be protecting population diversity and could
potentially lead to a loss of population-level diversity with detrimental consequences for
the species in the long term. Accordingly, managers need to survey both community- and
population-level diversity, as well as habitat diversity and integrity and set separate
conservation actions for each hierarchical level of biodiversity (i.e., decreasing
sedimentation may increase multispecies abundance). Additionally, efforts to preserve
evolutionary and ecological processes is crucial for the long-term conservation of species,
particularly in the face of habitat alteration/fragmentation and environmental change.
Future studies assessing crayfish species across a larger geographic range in fragmented
and connected habitats will give further insight on how diversity metric correlations,
ecological preferences, and interspecific interactions impact crayfish communities on a
broader scale and in different riverine ecosystems. Understanding the relationship between
biodiversity levels for vulnerable taxonomic groups will not only give insight to factors
impacting at-risk crayfishes, it will allow conservationists to protect the numerous
ecosystem services (e.g., transferring energy to higher level organisms, creating habitat for
other organisms through burrow creation) provided by crayfishes, with an overall
protection of the existing biodiversity within these communities.
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