

1 **Asiatic acid reduces lipopolysaccharides-induced pulp**
2 **inflammation through activation of nuclear factor erythroid**
3 **2-related factor 2 in rats.**

4
5 Risya Cilmaty^{1,2}, Arlina Nurhapsari³, Adi Prayitno¹, Annisa Aghnia Rahma⁴, Muhanah Fawwazy
6 Ilyas^{4,5,6}

7
8 ¹ Department of Oral Diseases, Faculty of Medicine, Sebelas Maret University, Surakarta,
9 Central Java, Indonesia.

10 ² Doctoral Program of Medical Sciences, Faculty of Medicine, Sebelas Maret University,
11 Surakarta, Central Java, Indonesia.

12 ³ Department of Conservative Dentistry, Faculty of Dentistry, Islamic University of Sultan
13 Agung, Semarang, Central Java, Indonesia.

14 ⁴ Medical Profession Program, Faculty of Medicine, Universitas Sebelas Maret, Surakarta,
15 Central Java, Indonesia.

16 ⁵ Department of Neurology, Faculty of Medicine, Sebelas Maret University, Surakarta, Central
17 Java, Indonesia.

18 ⁶ Department of Anatomy and Embryology, Faculty of Medicine, Sebelas Maret University,
19 Surakarta, Central Java, Indonesia.

20
21 Corresponding Author:
22 Risya Cilmaty

23 Department of Oral Diseases, Faculty of Medicine, Sebelas Maret University
24 Jr. Sutami Street Number 36, Kentingan, Jebres, Surakarta, Jawa Tengah, Indonesia, 57126
25 Email address: risyacilmaty@staff.uns.ac.id

Formatted: Spanish

26
27 **Abstract**

28 **Background:** Dental pulp inflammation, often initiated by Gram-negative microorganisms and
29 lipopolysaccharides (LPS), can lead to pulpitis and, subsequently, dental pulp necrosis,
30 compromising tooth structure and increasing susceptibility to fracture. Asiatic acid, derived from
31 *Centella asiatica*, has demonstrated pharmacological properties, including anti-inflammatory and
32 antioxidant effects, making it a potential candidate for mitigating LPS-induced pulp
33 inflammation. This *in vivo* study aims to investigate the ~~impact~~ of Asiatic acid on the nuclear
34 factor erythroid 2-related factor 2 (Nrf2) pathway in *Rattus norvegicus* with LPS-induced pulp
35 inflammation.

Formatted: Font: Italic

Deleted: effect

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

36 **Methods:** This quasi-laboratory experimental *in vivo* study employed a post-test-only control
37 group design to investigate the effects of Asiatic acid on LPS-induced pulp inflammation in
38 Wistar rats. Thirty rats were randomly divided into six groups subjected to various interventions.
39 LPS was administered to all groups for 6 hours except the ~~standard~~ control group (CG, n=5). The

Deleted: normal

42 negative control group (NCG, n=5) received only glass ionomer cement. The positive control
43 group (PCG, n=5) received Eugenol with glass ionomer cement. Intervention groups 1, 2, and 3
44 (IG1, IG2, IG3; n=5 each) received Asiatic acid at concentrations of 0.5%, 1%, and 2%,
45 respectively, with glass ionomer cement. Dental pulp inflammation was confirmed through
46 immunological (Tumor necrosis alpha (TNF- α) levels), histopathological (inflammatory
47 parameters), and physiological (pain assessment using the rat grimace scale) analyses.
48 Additionally, Nrf2 levels were examined using enzyme-linked immunosorbent assay (ELISA).
49 **Results:** Asiatic acid administration significantly influenced Nrf2 levels in rats with LPS-
50 induced pulp inflammation. Nrf2 levels were significantly higher in groups treated with 0.5%
51 (IG1) (8.810 ± 1.092 ng/mL; $p=0.047$), 1.0% (IG2) (9.132 ± 1.285 ng/mL; $p=0.020$), and 2.0%
52 (IG3) (11.972 ± 1.888 ng/mL; $p=0.000$) Asiatic acid compared to NCG (7.146 ± 0.706). Notably,
53 Nrf2 levels were also significantly higher in the 2.0% Asiatic acid group (IG3) compared to the
54 PCG treated with Eugenol (8.846 ± 0.888 ng/mL; $p=0.001$), as well as IG1 ($p=0.001$) and IG2
55 ($p=0.002$). However, no significant difference was observed between administering 0.5% Asiatic
56 acid (IG1), 1.0% Asiatic acid (IG2), and Eugenol (PCG).

57 **Conclusion:** The research showed that Asiatic acid significantly impacted the Nrf2 levels in rats
58 with LPS-induced pulp inflammation. This suggests that it has the potential to be used as a
59 therapeutic agent for reducing dental pulp inflammation. These findings support the need to
60 further explore Asiatic acid as a promising intervention for maintaining dental pulp health.

61

62 **Introduction**

63 The dental pulp comprises connective tissue, nerve cells, blood vessels, and various types of
64 cells that play specific roles in supporting the tooth's normal function. Rat models are commonly
65 used in dental research to study treatments for dental pulp, as their dental structures and cell
66 functions are similar to those in humans.¹ Inflammation of the dental pulp is a complex process
67 involving nerve, blood vessel, and immune system responses. It is mainly caused by certain
68 types of bacteria known as Gram-negative microorganisms. These bacteria produce
69 lipopolysaccharides (LPS), which is found in their outer membrane and plays a significant role in
70 triggering inflammation in the dental pulp. If pulpitis, which is inflammation of the pulp, is not
71 treated, it can lead to the death of the dental pulp. This can weaken the tooth structure, making it
72 more prone to fractures. Therefore, it is essential to maintain the vitality of the pulp and treat
73 pulpitis to prevent dental pulp necrosis for effective tooth function.³

74 Plant extracts have demonstrated significant pharmacological properties and potential for treating
75 various medical conditions.⁴⁻⁷ Asiatic acid isolates, a saponin (triterpenoids) component
76 extracted from Centella asiatica, have received significant attention considering their
77 pharmacological features and potential for treatment in various medical issues.⁸⁻¹⁰ Asiatic acid
78 exhibits various pharmacological uses, including anti-inflammatory, antioxidant, antinociceptive,
79 antimicrobial, and anticancer properties.^{11,12} This isolate has been investigated for its potential
80 modulatory effects on the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway as a defense
81 mechanism, particularly in inflammation, by inhibiting oxidative stress.¹⁰ Activation of Nrf2 is

Deleted: , suggesting its
Deleted: mitigating
Deleted: The
Deleted: exploration of
Deleted: in preserving
Deleted: Dental
Deleted: involves
Deleted: circulation
Deleted: numerous kinds
Deleted: with particular roles
Deleted: sustain
Deleted: physiological
Deleted: of the tooth.
Deleted: animal
Deleted: for vital pulp intervention
Deleted: widely
Deleted: dentistry studies since
Deleted: cellular
Deleted: comparable
Deleted: observed
Deleted: complicated mechanism that includes neurons [1]
Deleted: primarily triggered
Deleted: Lipopolysaccharides
Deleted:) are components of the Gram-negative bacterial
Deleted: play
Deleted: inducing
Deleted: ² Pulpitis that remains
Deleted: contribute to dental pulp necrosis. Subsequently [2]
Deleted: weakens
Deleted: of the tooth, which leaves
Deleted: susceptible
Deleted: fracture; hence, maintaining
Deleted: pulp's
Deleted: treating the
Deleted: necrosis of the
Deleted: is essential
Deleted: the teeth to
Deleted: effectively
Deleted: Various plant
Formatted: Font: Italic
Deleted: defence

126 believed to potentially increase antioxidant and cytoprotective genes, aiding in the reduction of
127 cellular damage. Therefore, this *in vivo* study aims to examine the impact of Asiatic acid on Nrf2
128 in *Rattus norvegicus* with LPS-induced pulp inflammation."

129 Materials & Methods

130 Study design

131 This quasi-laboratory experimental *in vivo* study uses a post-test-only control group design
132 approach. This study was conducted at the Experimental Animal Handling Laboratory and
133 Molecular Biology Laboratory, Faculty of Medicine, Islam Sultan Agung University, Semarang,
134 Indonesia, in August 2022. The protocol of this study has been registered and approved by the
135 Health Research Ethics Commission, Faculty of Medicine, Gadjah Mada University (UGM),
136 Yogyakarta, Indonesia, with registration number KE/FK/0703/EC/2020 on 29 June 2020. All
137 methods followed the relevant guidelines and regulations for the welfare of UGM laboratory
138 animals. This study also confirmed the Animal Research: Reporting of *In Vivo* Experiments
139 (ARRIVE) guidelines. To ensure unbiased results, allocation, the conduct of the experiment, and
140 the outcome assessment were carried out by blind laboratory assistants.

141 Study subject

142 The study subjects were white rats (*Rattus norvegicus*) of the Wistar strain retrieved from the
143 Pharmacology Laboratory, Faculty of Medicine, Gadjah Mada University (UGM), Yogyakarta,
144 Indonesia. The criteria include male, age 8-10 weeks, body weight (BW) 200-250 grams, and in
145 healthy condition without anatomical abnormalities or physical defects. Exclusion criteria for
146 this study included rats that had contracted a disease or died during the study period, were
147 unable to adapt to the environment, or had experienced a weight loss of more than 10% during the
148 adaptation period. The animals were sourced from a reputable supplier, Kemuning (CV. Dunia
149 Kaca), Karanganyar, Indonesia, with a certificate of cultivation number of 524/082.19/I/2019,
150 after thorough health assessments to ensure optimal health and immune status. Only animals with
151 confirmed wild-type genotypes and no previous procedures were included in the study,
152 enhancing the reliability of the experimental data. This study's sample size was determined using
153 a power analysis of the mean results of preliminary research with a significance level of 0.05 and
154 a power of 0.80.

155 Thirty rats were grouped by computer-generated randomization into six groups. LPS induced the
156 entire group for 6 hours except the normal control group (CG) (n=5). Subsequently, the negative
157 control group (NCG) was given glass ionomer cement only (n=5); the positive control group
158 (PCG) was given Eugenol using paper point + glass ionomer cement (n=5); intervention group 1
159 (IG1) was given Asiatic acid 0.5% using paper point + glass ionomer cement (n=5), intervention
160 group 2 (IG2), was given Asiatic acid 1% using paper point + glass ionomer cement (n=5), intervention
161 group 3 (IG3), Asiatic acid 2% using paper point + glass ionomer cement (n=5). The
162 intervention groups were divided into three groups to investigate each result from several
163 percentage dosages of Asiatic acid.

164 Treatment procedure

Deleted: thought
Deleted: lead to the upregulation of
Deleted: helping to mitigate
Deleted: Thus
Deleted: investigate
Deleted: effect
Formatted: Font: Italic
Deleted: among
Deleted: .
Formatted: Font: Italic
Formatted: Font color: Text 1
Deleted: ¶
Formatted: Font: Italic
Deleted: were performed following
Formatted: Font: Italic
Deleted: ¹³
Formatted: Font color: Auto, Not Superscript/ Subscript
Formatted: Font color: Auto
Formatted: Font: Italic
Deleted: health
Deleted: were
Deleted: suffered
Deleted: Animals

Deleted: 3

181 Before the treatment, rats were acclimated for more than a week. Animal care, feeding, housing,
182 and enrichment were carried out as previously outlined in Nurhapsari (2023).¹⁴ The maxillary
183 incisor teeth of Wistar rats were prepared with a low-speed stainless steel round bur 0.10 to a
184 depth of ± 5 mm until they reached the pulp roof; each rat tooth sample was applied with LPS (20
185 mg/ml) using a paper point for 6 hours in the cavity of the maxillary incisor teeth so can result in
186 pulp inflammation. Next, the teeth were filled with GIC Fuji VII. After 6 hours of LPS
187 administration, the cavities in groups PCG, IG1, IG2, and IG3 were opened, and paper points
188 were taken, while in NCG, the pulp tissue was immediately taken. The tooth was split to obtain
189 pulp tissue, extirpation of the pulp in the tooth was carried out with a #40 barbed broach, then the
190 pulp tissue was washed in a petri dish containing NaCl and stored in a microtube at -20°C.
191 Pulpitis was created in the treatment group (NCG, PCG, IG1, IG2, and IG3) by preparing the
192 maxillary incisors and giving LPS for 6 hours. After 6 hours of administration of LPS, treatment
193 was carried out in groups of PCG (Eugenol using paper point + glass ionomer cement), IG1
194 Asiatic acid 0.5% using paper point + glass ionomer cement), IG2 (Asiatic acid 1% using paper
195 point + glass ionomer cement), and IG3 (Asiatic acid 2% using paper point + glass ionomer
196 cement). Analgesia or anaesthesia was not administered to prevent interference with
197 measurements and to preserve the integrity of the experimental model, as pain responses served
198 as physiological confirmatory indicators of the animal model. Euthanasia criteria were
199 established to ensure the humane termination of animals before the planned end of the
200 experiment. This was deemed necessary to minimize suffering and distress. Rats were sacrificed
201 after 72 hours of treatment, and the maxillary incisors were removed. The surviving animals
202 were euthanized using CO₂ asphyxiation, following the American Veterinary Medical
203 Association (AVMA) guidelines. No animals died before the end of the experiment or before
204 they could be humanely euthanized. The treatment procedure is illustrated in Figure 1.

205 Confirmation of Animal Model

206 To confirm dental pulp inflammation in an animal model, various methods were used, including
207 immunological, histopathological, and physiological analyses. The immunological analysis
208 involved examining the level of TNF- α . This was done by measuring the TNF- α level in the
209 supernatant of pulp tissue using a TNF-alpha enzyme-linked immunosorbent assay (ELISA) kit
210 (Rat TNF- α , BZ-08184670-EB, Bioenzy) in accordance with the manufacturer's protocols.¹⁴
211 Subsequently, histopathological analysis was also performed. After the deparaffinization process
212 with xylene, the tissue slice slides were transferred to an aqueous medium by decreasing alcohol
213 levels. Then, the slides were washed with running water, placed in hematoxylin paint for 7-10
214 minutes, and washed again with running water. Next, the slide was placed in eosin paint for 2
215 minutes, washed with running water, and rinsed with 90% alcohol. Finally, the slides were air-
216 dried, cleared with xylene, and covered with a cover slip. Observations were carried out with a
217 microscope magnification of 400 times in 3 fields of view with an area of 17×10^{-5} mm² for each
218 glass object. Parameters and scores used for histopathological evaluation of pulp tissue¹⁵ include
219 the location of inflammatory cells, intensity of inflammatory infiltrate, edema, vascular leakage,

Formatted: Font color: Black
Deleted: adapted
Deleted: over one
Deleted: described
Deleted: Stainless Steel

Deleted: anaesthesia
Deleted: All of the
Formatted: Pattern: Clear
Deleted: 4 of which followed
Formatted: Not Superscript/ Subscript, Pattern: Clear
Formatted: Pattern: Clear
Deleted: illustration of the
Deleted: visualized
Formatted: Pattern: Clear
Formatted: Pattern: Clear
Deleted: Animal model confirmation of
Deleted: was done using
Formatted: Font color: Black, Finnish
Formatted: Font color: Black, Finnish
Deleted: . Immunological analysis using examination
Formatted: Font color: Black, Finnish
Deleted: level. The level of
Deleted: from
Formatted: Font color: Black, Finnish
Formatted: Font color: Black, Finnish
Formatted: Font color: Black, Finnish
Deleted: was measured
Formatted: Font color: Black, Finnish
Deleted: according to
Formatted: Font color: Black, Finnish
Formatted: Font color: Black, Finnish, Superscript
Deleted: oedema

238 and necrosis. Last, a physiological analysis is carried out using pain assessment. During the trial,
239 rat pain symptoms were noted, as were rat pain scores using the rat grimace scale (RGS).¹⁶

240 Examination of Nrf2 level

241 The levels of Nrf2 were measured using an Nrf2 ELISA kit (Rat Nrf2, BZ-08183801-EB,
242 Bioenzy) according to the manufacturer's protocols. The tissue was sonicated and centrifuged to
243 obtain the supernatant, and an ELISA test was carried out using the sandwich technique to see
244 the levels of Nrf2 in each group. The process involves a plate filled with Nrf2 antibodies that will
245 bind to the antigen in the sample. Streptavidin-HRP is given after the Nrf2 antigen is placed in
246 the well. Then, washing and adding substrate were carried out to see Nrf2 levels via ELISA
247 reader.¹⁷

248 Statistical analysis

249 Descriptive analysis was used to determine the data distribution and concentration. The Shapiro-
250 Wilk test was performed to determine the distribution of the data. Levene's test was used to
251 assess the homogeneity of the data between groups. The differences between groups were
252 analyzed using an independent T-test for TNF- α level, Pearson Chi-square test for
253 histopathological analysis, Mann-Whitney test for RGS score, and one-way ANOVA + post-hoc-
254 LSD for Nrf2 level. All statistical tests were two-sided, and P-values of < 0.050 were considered
255 statistically significant. Statistical analyses were performed using IBM SPSS Statistics for
256 Windows (version 24.0; IBM Corp. Armonk, NY, USA).

257

258 Results

259 Animal model of LPS-induced pulp inflammation

260 This study was carried out on 30 rats. No rats or tooth samples were excluded or dropped out in
261 this study. In this study, the creation of an animal model of dental pulp inflammation was
262 successfully proven by immunological, histopathological, and physiological analyses.

263 Immunological analysis, there was a significant increase in TNF α level ($p = <0.01$) on NCG
264 (175.82 ± 3.87 ng/mL; $p = 0.015$) compared to CG (117.02 ± 27.37 ng/mL) in the pulp tissue.
265 Furthermore, there are also differences in histopathological analysis between the location of
266 inflammatory cells ($p = 0.002$), intensity of inflammatory infiltrate ($p = 0.007$), and vascular
267 leakage ($p = 0.038$) between NCG and CG. Meanwhile, the two groups had no difference in
268 edema and necrosis. Finally, physiological analysis showed a significant difference in the rat
269 grimace scale for NCG (0.75 ± 0.18 ; $p = 0.008$) compared to CG (0.00 ± 0.00). Data from the
270 immunological and physiological analysis are presented in Figure 2, and data from
271 histopathological analysis are shown in Table 1 and Figure 3.¹⁴

272 Figure 3. Histological description of pulp tissue on the animal model.¹⁴ Notes: Images were
273 taken using magnifications of 40, 100, and 400 times. The yellow box shows the section under
274 magnification, the black arrow shows inflammatory cells, and the yellow arrow shows vascular
275 leakage, characterized by erythrocytes' release from the blood vessels. CG: Normal control
276 group; NCG: negative control group.

Deleted: oedema

Deleted: characterised

280

281 **Effect of Asiatic Acid on Nrf2 level**

282 This study found that administration of Asiatic acid significantly affected Nrf2 levels in *Rattus*
283 *norvegicus* with LPS-induced pulp inflammation (visualized in Figure 4). The Nrf 2 level was
284 significantly higher in the groups given Asiatic acid of 0.5% (IG1) (8.810 ± 1.092 ng/mL;
285 $p=0.047$), 1.0% (IG2 (9.132 ± 1.285 ng/mL; $p=0.020$), and 2.0% (IG3) (11.972 ± 1.888 ng/mL;
286 $p=0.000$) when compared with NCG (7.146 ± 0.706). Furthermore, the Nrf 2 level was also
287 significantly higher in the group given 2.0% Asiatic acid (IG3) when compared with the group
288 given Eugenol (PCG) (8.846 ± 0.888 ng/mL; $p=0.001$) and also Asiatic acid of 0.5% (IG1)
289 ($p=0.001$) and 1.0% (IG2) ($p=0.002$). However, it was found that there was no significant
290 difference between administering Asiatic acid of 0.5% (IG1), 1.0% (IG2), and Eugenol (PCG)
291 ($p>0.05$).
292

293 **Discussion**

294 **Animal Model Study of Dental Pulp Inflammation**

295 Pulp inflammation is a complex process involving neural, vascular, and immune system
296 responses typically induced by Gram-negative microbes. LPS are elements that contribute
297 substantially to the pathogenesis of inflammation, including pulpitis.² Pulpitis starts through a
298 particular injury that produces mediators such as chemokines and cytokines to attract immune
299 cells, including macrophages and neutrophils, into the inflammatory areas.¹⁸ The immediate
300 inflammatory response is regulated by various kinds of molecules, notably toll-like receptors
301 (TLRs) and reactive oxygen species (ROS) leading to oxidative stress and inflammation.^{19,20}
302 On the other hand, ROS will catalyst the mediator-signaling molecules, which includes the
303 NF- κ B pathway, thereby up-regulates the synthesis of pro-inflammatory chemicals, including
304 TNF- α .^{14,22}

305 Moreover, this study observed a significant increase in TNF- α levels between NCG and CG.
306 This finding aligns with previous theories regarding LPS-induced oxidative stress and the
307 immune system, specifically TNF- α . Oxidative stress may enhance the production of TNF- α
308 from immune cells, particularly macrophages, and TNF- α , in turn, can contribute to further
309 oxidative stress.

310 Upon encountering LPS, immune cells such as macrophages and dendritic cells recognize it and
311 initiate intracellular signaling pathways, including activating NF- κ B, a pivotal transcription
312 factor in inflammation. NF- κ B translocates into the nucleus and binds to the promoter region of
313 the TNF- α gene; once synthesized, TNF- α is released into the extracellular space. TNF- α binds
314 to its receptors on immune cells and endothelial cells, initiating a cascade of inflammation such
315 as cytokine production, leukocyte recruitment, and endothelial activation, leading to detrimental
316 effects, including tissue damage and inflammation such as pulpitis.^{23,24}
317 The histology of tissues in LPS-induced inflammation can show characteristic changes
318 associated with the inflammatory response that might vary depending on the tissue type and the
319 duration of exposure to LPS. We recognized the shift in histological characteristics in this study,

Deleted: has been observed in this study

Deleted: the activation of

322 including the location of inflammatory cells, the intensity of inflammatory infiltration, and
323 vascular leakage in the affected tissue. Inflammation typically involves the infiltration of
324 immune cells into the affected tissue. This can include neutrophils, macrophages, and other
325 immune cells.²⁵ These cells migrate to the site of inflammation to combat the perceived threat,
326 such as LPS, which later can lead to tissue damage. This damage may be reflected in histological
327 examination by disrupting normal tissue architecture or other structural abnormalities.^{26,27}
328 Inflammation can cause vascular leakage through several mechanisms involving endothelial
329 barrier integrity and function alterations. Endothelial cells line the inner surface of blood vessels
330 and play a crucial role in maintaining vascular integrity and regulating the passage of fluids,
331 solutes, and cells between the bloodstream and surrounding tissues. During inflammation,
332 various inflammatory mediators released by activated immune cells and injured tissues can
333 disrupt the endothelial barrier, leading to increased vascular permeability and leakage.
334 Moreover, inflammation and neuropathic-related pain have been evaluated using RGS.^{14,28} It is a
335 method for assessing pain by examining facial expressions and features, such as orbital
336 tightening, nose/cheek flattening, and ear and whisker changes. An increase in the RGS indicates
337 pain or discomfort in the rats following the administration of lipopolysaccharide. The facial
338 expressions captured by the RGS serve as a behavioral indicator of pain. It suggests that the
339 inflammatory response induced by LPS causes pain or discomfort in animals.

Deleted: behavioural

340 Inflammation can cause pain due to the release of various inflammatory mediators that sensitize
341 nerve endings and heighten their response to stimuli. During inflammation, immune cells release
342 prostaglandins, bradykinin, histamine, and cytokines like TNF-alpha and interleukins. These
343 molecules activate nociceptors and generate action potentials transmitted to the central nervous
344 system (CNS), resulting in pain perception.²⁹

Deleted: substances such as

345 In conclusion, exposure to LPS triggers pulpitis in our experimental animals. The changes in
346 immunological analysis, including TNF α , and histopathological and physiological analysis, may
347 indicate the effect of LPS on the dental pulp's inflammatory response.

Deleted: could induce

Deleted: change

Deleted: suggest

Deleted: in

Deleted: pulp

Deleted: own

Formatted: Font: Italic

Deleted: different

Formatted: Font: Italic

348 Effect of Asiatic Acid on Nrf2 level

349 Various compounds and materials have been used to treat pulp inflammation, each with its
350 mechanisms of action and associated disadvantages.³⁰⁻³² *Centella asiatica*'s therapeutic effects as
351 an antibacterial, antioxidant, and anti-inflammatory are strongly correlated with the formation
352 and amounts of several secondary metabolites.¹¹ Among these substances, triterpene saponins,
353 particularly Asiatic acid, represent the primary metabolites implicated in *Centella asiatica*'s
354 biochemical activity.^{33,34} In this study, our results showed that Asiatic acid, as an effective
355 compound, could attenuate inflammation by the Nrf2 application. We also recognized that the
356 therapeutic effect of Asiatic acid concentration to increase Nrf2 was started in 0.5% and 1%
357 concentration with the optimal dose of 2% concentration in the pulpitis-induced model.
358 Several mechanisms contribute to the observed findings. During the pathological inflammatory
359 process induced by LPS, various immune cells, such as monocytes, macrophages, and
360 lymphocytes, are initially activated. The cells further proceed to migrate toward the area of
361 injury, which leads to the production of ROS, which affects molecules, including DNA. These

371 pro-inflammatory cells simultaneously release enormous quantities of pro-inflammatory
372 mediators involving prostaglandins, chemokines, and cytokines. These mediators later will
373 attract macrophages into inflammation sites and consequently engage numerous transduction and
374 transcription pathways that are responsible for inflammation, including Nrf2.^{35,36}
375 In response to oxidative stress, human cells have established protective strategies that prevent the
376 production of ROS by modulating Nrf2 signaling.^{37,38} Nrf2, the primary nuclear transcription
377 element that promotes the antioxidant activity of enzymes, is crucial for overcoming oxidative
378 stress. In physiological settings, the inactive Nrf2 is attached to Kelch-like ECH-associated
379 protein 1 (Keap1) in the cell's cytoplasm. Under particular circumstances, notably oxidative
380 stress, Nrf2 gets released from the Nrf2-Keap1 complex and transported to the nucleus.³⁹ In the
381 nucleus, Nrf2 will be linked to the antioxidant response element (ARE).⁴⁰
382 Furthermore, Asiatic acid initiated the Nrf2 signal, which is strongly linked to promoting Nrf2
383 nuclear translocation, lowering Keap1 expression, and enhancing antioxidant response element
384 (ARE) activity. Previous research has revealed that Nrf2 signal amplification enhanced the
385 expression of antioxidant genes involving nicotinamide adenine dinucleotide phosphate
386 (NADPH), heme oxygenase-1 (HO-1), and other particles that protect cells from various injuries
387 via their anti-inflammatory effects.^{37,38}
388 As seen in this study's findings, Asiatic acid is widely recognized for its pivotal role in
389 suppressing oxidative stress, thereby improving Nrf2 production.¹⁴ Nrf2 initiates the HO-1 gene
390 and suppresses NF- κ B signaling. The Nrf2/HO-1 axis 1 regulates LPS-induced inflammatory
391 responses. The activation of Nrf2 diminished the foam cell macrophage phenotype and inhibited
392 excessive macrophage inflammation. Increased HO-1 expression via the Nrf2 pathway shields
393 cells against death, demonstrating their potential utilization on behalf of inflammatory diseases.
394 While faced with oxidative stress, pro-inflammatory cytokines, including IL-6 and IL-1 β , are
395 excessively produced, triggering damage in target cells.³⁵ Nrf2 activated by Asiatic acid reduces
396 the formation of downstream IL-17 and other inflammatory substances, including Th1 and Th17,
397 and prevents the expression of the mentioned genes induced by LPS. This condition
398 subsequently activates NF- κ B and leads to increased cytokine production. Initiation of the
399 Nrf2/ARE pathway is critical in interrupting the cycle. Elevated Nrf2 lowers the synthesis of
400 pro-inflammatory cytokines and chemokines and reduces NF- κ B activity. Nrf2 regulates COX-2,
401 IL-113, IL-6, and TNF α , reducing the inflammation and damage. The results imply that Nrf2
402 represents an essential modulator for both critical cytoprotective mechanisms: anti-inflammation
403 and anti-oxidation.³⁵ Asiatic acid promotes PPAR- γ , limiting LPS-induced NF- κ B activation and
404 inflammatory mediator production such as PGE2, NO, IL-6, and IL-8.⁴¹
405 Overall, the previously mentioned experimental models proved that the Nrf2/HO-1 axis is
406 essential in anti-inflammatory function, indicating that Nrf2 is a potential therapeutic target in
407 inflammation-related disorders, including pulpitis.

408
409 **Limitation of Study**

Deleted: particular sites of

411 This study is limited by its use of only male white rats of the Wistar strain, which may restrict
412 the applicability of the findings to other populations or genders. Additionally, the study only
413 evaluated the effects of Asiatic acid isolate on specific markers. Further research may be
414 necessary to understand its broader impact on dental pulp inflammation. Moreover, the 72-hour
415 duration of the study may not capture the long-term effects of the interventions, and longer
416 observation periods could offer a more comprehensive understanding of the outcomes.
417

418 **Conclusions**

419 The Asiatic acid isolate has potential therapeutic benefits for treating dental pulp inflammation
420 induced by lipopolysaccharide. This study found that Asiatic acid could reduce inflammation by
421 increasing Nrf2 levels at concentrations of 0.5% and 1%, with the optimal dose being 2%. The
422 increased activation of Nrf2 by Asiatic acid was linked to enhanced ARE activity and the
423 expression of antioxidant genes, indicating its potential as a therapeutic target for inflammation-
424 related disorders such as pulpitis.
425

426 **Acknowledgments**

427 None.
428

429 **Data Access**

430 The datasets used and analyzed during this study are available in the Supplementary Files.
431

432 **Declaration of Interest**

433 The authors declare that they have no competing financial interests or personal relationships that
434 could have appeared to influence the work reported in this paper.
435

436 **References**

1. Huang H, Okamoto M, Watanabe M, Matsumoto S, Moriyama K, Komichi S, Ali M, Matayoshi S, Nomura R, Nakano K, Takahashi Y, Hayashi M. Development of Rat Caries-Induced Pulpitis Model for Vital Pulp Therapy. *J Dent Res.* 2023;102(5):574-582. doi:10.1177/00220345221150383
2. Brodzikowska A, Ciechanowska M, Kopka M, Stachura A, Włodarski PK. Role of Lipopolysaccharide, Derived from Various Bacterial Species, in Pulpitis—A Systematic Review. *Biomolecules.* 2022;12(1):138. doi:10.3390/biom12010138
3. Colombo JS, Moore AN, Hartgerink JD, D'Souza RN. Scaffolds to Control Inflammation and Facilitate Dental Pulp Regeneration. *J Endod.* 2014;40(4):S6-S12. doi:10.1016/j.joen.2014.01.019
4. Ghozali DA, Doewes M, Soetrisno S, Indarto D, Ilyas MF. Dose-response effect of L-citrulline on skeletal muscle damage after acute eccentric exercise: an *in vivo* study in mice. *PeerJ.* 2023;11:e16684. doi:10.7717/peerj.16684

Deleted: The limitation of this
Deleted: that it
Deleted: used
Deleted: limit
Deleted: generalizability
Deleted: assessed
Deleted: , and further
Deleted: needed
Deleted: Furthermore
Deleted: study's
Deleted: hours
Deleted: more extended
Deleted: provide
Formatted: Font color: Text 1
Deleted: attenuate
Formatted: Font color: Text 1
Deleted: starting
Deleted: ,
Deleted: % concentration
Deleted: of
Formatted: Font color: Text 1
Deleted: Acknowledgements

Formatted: Spanish

469 5. Novika RGH, Wahidah NJ, Yunus A, Sumarno L, Ilyas MF. Clinical effect of Echinacea
470 purpurea as an antiviral and its effect on reproductive hormones. *J Pharm Pharmacogn*
471 *Res.* 2024;12(2):255-263. doi:10.56499/jppres23.1784_12.2.255

472 6. Geszke-Moritz M, Nowak G, Moritz M. Pharmacological Properties and Safe Use of 12
473 Medicinal Plant Species and Their Bioactive Compounds Affecting the Immune System.
474 *Applied Sciences.* 2023;13(11):6477. doi:10.3390/app13116477

475 7. Capasso R, Di Cesare Mannelli L. Special Issue "Plant Extracts: Biological and
476 Pharmacological Activity." *Molecules.* 2020;25(21):5131.
477 doi:10.3390/molecules25215131

478 8. James J, Dubery I. Pentacyclic Triterpenoids from the Medicinal Herb, *Centella asiatica*
479 (L.) Urban. *Molecules.* 2009;14(10):3922-3941. doi:10.3390/molecules14103922

480 9. Kamble SM, Goyal SN, Patil CR. Multifunctional pentacyclic triterpenoids as adjuvants in
481 cancer chemotherapy: a review. *RSC Adv.* 2014;4(63):33370-33382.
482 doi:10.1039/C4RA02784A

483 10. Kamble SM, Patel HM, Goyal SN, Noolvi MN, Mahajan UB, Ojha S, Patil CR. In silico
484 Evidence for Binding of Pentacyclic Triterpenoids to Keap1-Nrf2 Protein-Protein Binding
485 Site. *Comb Chem High Throughput Screen.* 2017;20(3).
486 doi:10.2174/1386207319666161214111822

487 11. Polash SA, Saha T, Hossain MS, Sarker SR. Phytochemical contents, antioxidant and
488 antibacterial activity of the ethanolic extracts of *Centella asiatica*(L.) Urb.leaf and stem.
489 *Jahangirnagar University Journal of Biological Sciences.* 2017;6(1):51-57.
490 doi:10.3329/jujbs.v6i1.33731

491 12. CU ON, FU I, J A, OJ P, PH W. Nutrient and Phytochemical Composition of *Centella*
492 *asiatica* Leaves. *Med Aromat Plants (Los Angel).* 2020;9(2). doi:10.35248/2167-
493 0412.20.9.346

494 13. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A,
495 Cuthill IC, Dirnagl U, Emerson M, Garner P, Holgate ST, Howells DW, Karp NA, Lazic
496 SE, Lidster K, MacCallum CJ, Macleod M, Pearl EJ, Petersen OH, Rawle F, Reynolds P,
497 Rooney K, Sena ES, Silberberg SD, Steckler T, Würbel H. The ARRIVE guidelines 2.0:
498 Updated guidelines for reporting animal research*. *Journal of Cerebral Blood Flow &*
499 *Metabolism.* 2020;40(9):1769-1777. doi:10.1177/0271678X20943823

500 14. Nurhapsari A, Cilmiyati R, Prayitno A, Purwanto B, Soetrisno S. The Role of Asiatic Acid
501 in Preventing Dental Pulp Inflammation: An in-vivo Study. *Clin Cosmet Investig Dent.*
502 2023;Volume 15:109-119. doi:10.2147/CCIDE.S408158

503 15. He Y, Gan Y, Lu J, Feng Q, Wang H, Guan H, Jiang Q. Pulpal Tissue Inflammatory
504 Reactions after Experimental Pulpal Exposure in Mice. *J Endod.* 2017;43(1):90-95.
505 doi:10.1016/j.joen.2016.09.003

506 16. Sotocina SG, Sorge RE, Zaloum A, Tuttle AH, Martin LJ, Wieskopf JS, Mapplebeck JC,
507 Wei P, Zhan S, Zhang S, McDougall JJ, King OD, Mogil JS. The Rat Grimace Scale: A
508 Partially Automated Method for Quantifying Pain in the Laboratory Rat via Facial
509 Expressions. *Mol Pain.* 2011;7:1744-8069-7-55. doi:10.1186/1744-8069-7-55

510 17. Sakamoto S, Putalun W, Vimolmangkang S, Phoolcharoen W, Shoyama Y, Tanaka H,
511 Morimoto S. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis

512 of plant secondary metabolites. *J Nat Med.* 2018;72(1):32-42. doi:10.1007/s11418-017-
513 1144-z

514 18. Germolec DR, Shipkowski KA, Frawley RP, Evans E. Markers of Inflammation. In: ;
515 2018:57-79. doi:10.1007/978-1-4939-8549-4_5

516 19. Brenner DR, Scherer D, Muir K, Schildkraut J, Boffetta P, Spitz MR, Le Marchand L,
517 Chan AT, Goode EL, Ulrich CM, Hung RJ. A Review of the Application of Inflammatory
518 Biomarkers in Epidemiologic Cancer Research. *Cancer Epidemiology, Biomarkers &*
519 *Prevention.* 2014;23(9):1729-1751. doi:10.1158/1055-9965.EPI-14-0064

520 20. Landén NX, Li D, Stähle M. Transition from inflammation to proliferation: a critical step
521 during wound healing. *Cellular and Molecular Life Sciences.* 2016;73(20):3861-3885.
522 doi:10.1007/s00018-016-2268-0

523 21. Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. *Cytokine.*
524 2008;42(2):145-151. doi:10.1016/j.cyto.2008.01.006

525 22. Buelna-Chontal M, Zazueta C. Redox activation of Nrf2 & NF-κB: A double end
526 sword? *Cell Signal.* 2013;25(12):2548-2557. doi:10.1016/j.cellsig.2013.08.007

527 23. van der Bruggen T, Nijenhuis S, van Raaij E, Verhoef J, van Asbeck BS.
528 Lipopolysaccharide-induced tumor necrosis factor alpha production by human monocytes
529 involves the raf-1/MEK1-MEK2/ERK1-ERK2 pathway. *Infect Immun.* 1999;67(8):3824-
530 3829. doi:10.1128/IAI.67.8.3824-3829.1999

531 24. John E, Pais P, Furtado N, Chin A, Radhakrishnan J, Fornell L, Lumpaopong A, Beier
532 UH. Early Effects of Lipopolysaccharide on Cytokine Release, Hemodynamic and Renal
533 Function in Newborn Piglets. *Neonatology.* 2008;93(2):106-112. doi:10.1159/000107352

534 25. Page MJ, Kell DB, Pretorius E. The Role of Lipopolysaccharide-Induced Cell Signalling in
535 Chronic Inflammation. *Chronic Stress.* 2022;6:247054702210763.
536 doi:10.1177/24705470221076390

537 26. Li M, Tian J, Xu Z, Zeng Q, Chen W, Lei S, Wei X. Histology-based profile of
538 inflammatory mediators in experimentally induced pulpitis in a rat model: screening for
539 possible biomarkers. *Int Endod J.* 2021;54(8):1328-1341. doi:10.1111/iej.13514

540 27. LIN HC, LEE HS, CHIUEH TS, LIN YC, LIN HA, LIN YC, CHA TL, MENG E.
541 Histopathological assessment of inflammation and expression of inflammatory markers in
542 patients with ketamine-induced cystitis. *Mol Med Rep.* 2015;11(4):2421-2428.
543 doi:10.3892/mmr.2014.3110

544 28. Domínguez-Oliva A, Mota-Rojas D, Hernández-Avalos I, Mora-Medina P, Olmos-
545 Hernández A, Verduzco-Mendoza A, Casas-Alvarado A, Whittaker AL. The neurobiology
546 of pain and facial movements in rodents: Clinical applications and current research. *Front*
547 *Vet Sci.* 2022;9. doi:10.3389/fvets.2022.1016720

548 29. Fang XX, Zhai MN, Zhu M, He C, Wang H, Wang J, Zhang ZJ. Inflammation in
549 pathogenesis of chronic pain: Foe and friend. *Mol Pain.* 2023;19:1744806923117816.
550 doi:10.1177/17448069231178176

551 30. Meschi N, Patel B, Ruparel NB. Material Pulp Cells and Tissue Interactions. *J Endod.*
552 2020;46(9):S150-S160. doi:10.1016/j.joen.2020.06.031

553 31. Qureshi A. Recent Advances in Pulp Capping Materials: An Overview. *JOURNAL OF*
554 *CLINICAL AND DIAGNOSTIC RESEARCH.* Published online 2014.
555 doi:10.7860/JCDR/2014/7719.3980

Formatted: Spanish

556 32. Cilmiyat R, Illyas MF. A Bibliometrics and Scientometrics Study of Mineral Trioxide
557 Aggregate Material for Irreversible Pulpitis. *Journal of Medicinal and Chemical Sciences*.
558 2024;7(5):729-743. doi:10.26655/JMCHEMSCI.2024.5.9

559 33. Ren B, Luo W, Xie M jun, Zhang M. Two new triterpenoid saponins from *Centella*
560 *asiatica*. *Phytochem Lett*. 2021;44:102-105. doi:10.1016/j.phytol.2021.06.012

561 34. Shen X, Guo M, Yu H, Liu D, Lu Z, Lu Y. *Propionibacterium acnes* related anti-
562 inflammation and skin hydration activities of madecassoside, a pentacyclic triterpene
563 saponin from *Centella asiatica*. *Biosci Biotechnol Biochem*. 2019;83(3):561-568.
564 doi:10.1080/09168451.2018.1547627

565 35. Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: Pivotal roles
566 in inflammation. *Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease*.
567 2017;1863(2):585-597. doi:10.1016/j.bbadi.2016.11.005

568 36. Kaulmann A, Bohn T. Carotenoids, inflammation, and oxidative stress—implications of
569 cellular signaling pathways and relation to chronic disease prevention. *Nutrition
570 Research*. 2014;34(11):907-929. doi:10.1016/j.nutres.2014.07.010

571 37. Kovac S, Angelova PR, Holmström KM, Zhang Y, Dinkova-Kostova AT, Abramov AY.
572 Nrf2 regulates ROS production by mitochondria and NADPH oxidase. *Biochimica et
573 Biophysica Acta (BBA) - General Subjects*. 2015;1850(4):794-801.
574 doi:10.1016/j.bbagen.2014.11.021

575 38. Qi Z, Ci X, Huang J, Liu Q, Yu Q, Zhou J, Deng X. Asiatic acid enhances Nrf2 signaling to
576 protect HepG2 cells from oxidative damage through Akt and ERK activation. *Biomedicine
577 & Pharmacotherapy*. 2017;88:252-259. doi:10.1016/j.biopha.2017.01.067

578 39. Kensler TW, Wakabayashi N, Biswal S. Cell Survival Responses to Environmental
579 Stresses Via the Keap1-Nrf2-ARE Pathway. *Annu Rev Pharmacol Toxicol*.
580 2007;47(1):89-116. doi:10.1146/annurev.pharmtox.46.120604.141046

581 40. Ma Q. Role of Nrf2 in Oxidative Stress and Toxicity. *Annu Rev Pharmacol Toxicol*.
582 2013;53(1):401-426. doi:10.1146/annurev-pharmtox-011112-140320

583 41. Hao C, Wu B, Hou Z, Xie Q, Liao T, Wang T, Ma D. Asiatic acid inhibits LPS-induced
584 inflammatory response in human gingival fibroblasts. *Int Immunopharmacol*.
585 2017;50:313-318. doi:10.1016/j.intimp.2017.07.005

586

Page 2: [1] Deleted

EDITOR

7/25/24 8:17:00 PM

Page 2: [2] Deleted

EDITOR

7/25/24 8:17:00 PM