# A short stature allele enhances tolerance to Zn deficiency and translocation of Zn in barley (#101706)

First submission

### Guidance from your Editor

Please submit by 20 Jun 2024 for the benefit of the authors (and your token reward) .



#### **Structure and Criteria**

Please read the 'Structure and Criteria' page for general guidance.



#### Raw data check

Review the raw data.



### Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

### **Files**

Download and review all files from the <u>materials page</u>.

5 Figure file(s)

1 Raw data file(s)

## Structure and Criteria



### Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

### **Editorial Criteria**

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

#### **BASIC REPORTING**

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
  Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

#### **EXPERIMENTAL DESIGN**

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

#### **VALIDITY OF THE FINDINGS**

- Impact and novelty not assessed.

  Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.



Conclusions are well stated, linked to original research question & limited to supporting results.



## Standout reviewing tips



The best reviewers use these techniques

| Τ | p |
|---|---|

## Support criticisms with evidence from the text or from other sources

## Give specific suggestions on how to improve the manuscript

### Comment on language and grammar issues

## Organize by importance of the issues, and number your points

## Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

### **Example**

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.



## A short stature allele enhances tolerance to Zn deficiency and translocation of Zn in barley

Ibrahim Saygili Corresp. 1

<sup>1</sup> Field Crops, Gaziosmanpasa University, Tokat, Turkey

Corresponding Author: Ibrahim Saygili Email address: ibrahimsaygili50@gmail.com

**Background:** Zinc (Zn) content is of great importance in healthy human diet, crop productivity and stress tolerance in soils with zinc deficiency. The genes used to increase unit area yield such as semi-dwarf 1 (sdw1) is commonly considered to reduce mineral content of grain.

**Methods**. In the present study, influence of *sdw1.d*, a widely used allele for short plant height in barley breeding, on zinc accumulation and tolerance to zinc deficiency were investigated. A near isogenic line of *sdw1.d* allele, its recurrent parent Tokak 157/37 and donor parent Triumph were grown in zinc-deficient and -sufficient hydroponic cultures. Two experiments were conducted until heading time and physiological maturity.

**Results**. In zinc-deficient conditions, sdw1.d allele increased shoot dry weight by 112.4 mg plant<sup>-1</sup>, shoot Zn concentration by 0.9 ppm but decreased root Zn concentration by 6.6 ppm. It did not affect grain characteristics but increased grain Zn content. In zinc-sufficient conditions, sdw1.d allele increased shoot Zn content, and decreased root Zn content. sdw1.d did not affect grain weight but increased grain Zn concentration by about 30% under zinc-sufficient conditions. The results showed that sdw1.d allele has no negative effect on tolerance to zinc deficiency, and even promotes tolerance to zinc deficiency by more Zn translocation. It was revealed that sdw1.d allele improves Zn accumulation under both zinc-deficient and zinc-sufficient condition. The sdw1.d allele could contribute to solving the problems in plant growth and development caused by zinc-deficiency via improving tolerance to zinc-deficiency. It could also provide a better Zn biofortification .



## A short stature allele enhances tolerance to Zn deficiency and translocation of Zn in barley

3

2

Ibrahim Saygili

5 6 7

8

- Faculty of Agriculture, Department of Field Crops, Tokat Gaziosmanpasa University, Tokat,
- 9 Turkey

10

- 11 Corresponding Author:
- 12 Ibrahim Saygili
- 13 Email address: ibrahimsaygili50@gmail.com
- 14 https://orcid.org/0000-0003-0449-4872

15 16

### **Abstract**

- 17 Background: Zinc (Zn) content is of great importance in healthy human diet, crop productivity
- and stress tolerance in soils with zinc deficiency. The genes used to increase unit area yield such
- as semi-dwarf 1 (*sdw1*) is commonly considered to reduce mineral content of grain.
- 20 **Methods**. In the present study, influence of *sdw1.d*, a widely used allele for short plant height in
- 21 barley breeding, on zinc accumulation and tolerance to zinc deficiency were investigated. A near
- 22 isogenic line of sdw1.d allele, its recurrent parent Tokak 157/37 and donor parent Triumph were
- 23 grown in zinc-deficient and -sufficient hydroponic cultures. Two experiments were conducted
- 24 until heading time and physiological maturity.
- 25 Results. In zinc-deficient conditions, sdw1.d allele increased shoot dry weight by 112.4 mg
- 26 plant<sup>-1</sup>, shoot Zn concentration by 0.9 ppm but decreased root Zn concentration by 6.6 ppm. It
- 27 did not affect grain characteristics but increased grain Zn content. In zinc-sufficient conditions,
- 28 sdw1.d allele increased shoot Zn content, and decreased root Zn content. sdw1.d did not affect
- 29 grain weight but increased grain Zn concentration by about 30% under zinc-sufficient conditions.
- 30 The results showed that *sdw1.d* allele has no negative effect on tolerance to zinc deficiency, and
- 31 even promotes tolerance to zinc deficiency by more Zn translocation. It was revealed that *sdw1.d*
- 32 allele improves Zn accumulation under both zinc-deficient and zinc-sufficient condition. The
- 33 sdw1.d allele could contribute to solving the problems in plant growth and development caused
- 34 by zinc-deficiency via improving tolerance to zinc-deficiency. It could also provide a better Zn
- 35 biofortification.

36

37 **Keywords:** Biofortification, Gibberellic acid, *Hordeum vulgare*, *HvGA20ox2*, Zinc, *sdw1.d*,

38



### Introduction

<mark>61</mark>

Zinc has important roles in many metabolic and physiological events in plants, such as the function of a wide range of proteins, enzyme activation, and phytohormone synthesis (Kimura et al., 2023). Throughout the world, zinc deficiency in food is generally caused by grain-based diets that are low in Zn, resulting in Zn malnutrition. Various diseases caused by zinc deficiency were reported in 30% of the world's population (Xia et al., 2020). Half of the world's agricultural areas consist of soils deficient in zinc (Singh et al., 2023; Yadav et al., 2023). Production of cultivated plants in zinc-deficient areas results in both reduced unit area yields and food containing less zinc. Removing more zinc from the soil by crops and improving their ability to accumulate zinc in seeds is the best solution to these problems. Increased uptake and accumulation of zinc by crops can be improved by more effective use of genetic potential of crops.

Short stature genes have provided significant gains in grain yields of barley via lodging resistance and high harvest index. Semi-dwarf 1 (sdw1), which is widely used in barley to create shorter plants, was formed as a result of mutations in the *gibberellic acid* (GA)-20 oxidase gene (HvGA20ox2) (Xu et al., 2017). The sdw1 alleles resulted in low amounts of bioactive gibberellic acid (Cheng et al., 2022). Gibberellic acid is an endogenous phytohormone that regulates plant height (Cheng et al., 2022) and induces Zn accumulation in grain (Mathpal et al., 2023). Therefore, relationship between sdw1.d allele and Zn accumulation and translocation need to be evaluated.

While grain zinc content is of great importance in terms of nutrition, it is also important for crop productivity, resulting in better seedling strength and stress tolerance in soils with Zn deficiency (Yadav et al., 2023). Loci affecting grain Zn accumulation (Khan et al., 2023; Sadeghzadeh, Rengel & Li, 2015) and leaf-to-grain Zn transport (Hussain et al., 2016) have been identified in barley. In these studies, since the parental lines carried the wild type allele or different mutant allele (sdw1.d and sdw1.a) of sdw1 (Xu et al., 2017), it was reported that the region was not associated with zinc accumulation. A new mutant allele showing similar phenotypic properties as sdw1 allele was mapped to the same locus as sdw1, and it was reported that the locus may be associated with a zinc-ion binding gene (Zhou et al., 2018). On the other hand, Wiegmann et al. (2019) and Herzig et al. (2019) determined that the sdw1 allele of Hordeum vulgare ssp. spontaneum increased grain Zn content compared to sdw1.d. Wiegmann et al. (2019) stated that the lines having sdw1 allele of Hordeum vulgare ssp. spontaneum contained higher zinc, but since these alleles cause low grain yields, this effect was due to the dilution effect. Therefore, the sdwl allele needs to be evaluated compared to the wild type allele found in cultivated varieties. However, the effect of sdw1.d, which is probably the most common sdw1 allele in barley breeding (Xu et al., 2017), on Zn uptake is still unknown.

Zinc deficiency in plant negatively affects metabolic and physiologic process, thereby decreasing crop yields (Kimura et al., 2023). The most appropriate approach to eliminate the negative effects of zinc deficiency on crops is Zn fertilization. However, in developing countries where specialty fertilizers are not available, the way to produce crops in zinc-deficient soils is the



use of cultivars with tolerance to zinc deficiency. Tokak 157/37 (hereafter Tokak) is a variety tolerant to zinc deficiency (Kinaci & Kinaci, 2005). The *sdw1.d* allele was transferred to Tokak and a near isogenic line (NIL) was developed (Kandemir et al., 2022). Since Tokak carries wild type alleles of *HvGA20ox2*, the effects of *sdw1.d* allele were clearly observed by Kandemir et al. (2022). All of the differences between a NIL and its recurrent parent for a trait is attributed to the introgressed gene region (Lu et al., 2020), and therefore, NIL is the best genetic material to evaluate the effects of an allele. Thus, the genetic background of Tokak provides an opportunity to study the effect of the *sdw1.d* allele on tolerance to zinc deficiency.

There is a common belief that genes created by mutation and used in plant breeding to increase unit area yield decrease grain nutrient content (Wiegmann et al., 2019). Genes mutated to develop new alleles may cause loss of activity in traits other than the trait of interest (plant height for sdw1.d). In plant breeding, while increasing grain yields in various ways, nutritional quality characteristics such as the Zn content of grain are generally less taken into account. Therefore, in the present study, the effects of sdw1.d on Zn accumulation and tolerance to zinc deficiency were investigated.

### **Materials & Methods**

### Plant material and growth conditions

A near isogenic line of *sdw1.d* allele (*sdw1.d* NIL), the recurrent parent Tokak and the donor parent Triumph were used as the study material. NIL was developed by marker assisted backcrossing. Detailed information about the production of NIL can be found in Kandemir et al. (2022). Zn contents of seedling material were 30.4 ppm for Tokak, 41.0 ppm for *sdw1.d* NIL and 27.9 ppm for Triumph. To produce seedlings for hydroponic cultures, seeds were sterilized with 1% NaClO and rinsed three times with sterile distilled water. Seedlings were planted in sterile perlite and watered with distilled water until they reached about 10 cm length. Bunch of seven seedlings of about 10 cm height were dipped in 2.5 mM CaSO<sub>4</sub> to stimulate root growth (Cakmak et al., 1998) and transferred to hydroponic culture. Hydroponic cultures were carried out according to Cakmak et al. (1998).

The nutrient solution in hydroponic cultures contained 0.88 mM K<sub>2</sub>SO<sub>4</sub>, 2 mM Ca(NO<sub>3</sub>)<sub>2</sub>, 1 mM

MgSO<sub>4</sub>, 0.25 mM KH<sub>2</sub>PO<sub>4</sub>, 0.1 mM KCl, 100 μM FeEDTA, 1 μM H<sub>3</sub>BO<sub>3</sub>, 0.5 μM MnSO<sub>4</sub>, 0.2 μM CuSO<sub>4</sub> and 0.02 μM (NH<sub>4</sub>)<sub>6</sub>MoO<sub>24</sub>. No Zn was given to zinc-deficient hydroponic culture. 1 μM ZnSO<sub>4</sub>.7H<sub>2</sub>O was used in zinc-sufficient hydroponic culture. Plants were grown in a temperature and light controlled (natural light supplemented by metal halide lamps) greenhouse at 22±2 °C for 16 h light (400 µmol m<sup>-2</sup> s<sup>-1</sup>)/ 18 °C±2 for 8 h dark conditions. The nutrient solution was aerated with an air pump (50 l air min<sup>-1</sup>) during the experiment. The nutrient solution was replaced every three days. Two experiments were conducted for vegetative parts such as roots and shoot (until ear emergence), and grain Zn content (until grain maturity). Each pot of hydroponic cultures containing the bunch of seven seedlings constituted one biological



replicate. All experiments were conducted with three biological replications. Depending on the severity of zinc deficiency symptom and growth retardation in green parts, shoots and roots were harvested at the heading stage. In the experiment conducted to determine the grain Zn content, the grains were harvested when they matured.

### Plant growth measurements

Zinc deficiency symptoms were expressed using a 1-5 scale (Cakmak et al., 1998). According to this scale, chlorotic and necrotic spots on leaves are as follows: 1=very severe, 2=severe, 3=mild, 4=slight and 5=very slight or absent. To determine the dry matter yields, harvested shoot and roots were washed with distile water and 0.01% HCl, and dried at 70 °C for 48 hours. After weighing the samples, root dry weight, shoot dry weight and grain weight per plant were determined. Plant height was determined by measuring the plants from the crown to the tip of the last grain in ear excluding the awn. The number of grains obtained from the bunch was divided by number of plants in the bunch, and the number of grains per plant was determined. To determine Zn concentrations of shoot, root and grain, the dry samples were ground in an agate mill and analyzed by wet digestion method in microwave (Mars 6, CEM, Matthews, NC) by H<sub>2</sub>O<sub>2</sub>-HNO<sub>3</sub> acid mixture. Zn concentrations (213.8 nm wavelength) were determined using ICP-OES (Varian, Vista Pro) (Cakmak et al., 1998).

### Statistical analyses

Zinc-deficient and zinc-sufficient experiments were conducted in completely randomized design with three replications. Zinc-deficient and zinc-sufficient experiments were separately subjected to analysis of variance with JMP Pro 14 software (SAS Institute Inc\$ NC, USA) according to the completely randomized blocks design. Comparisons among means were performed by Tukey test at 5% significance level.

### Results

#### The sdw1.d effects in zinc deficiency

In zinc-deficient conditions, Tokak produced 882.1 mg plant<sup>-1</sup>, *sdw1.d* NIL 994.4 mg plant<sup>-1</sup> and Triumph 1067.1 mg plant<sup>-1</sup> shoot dry weight. *sdw1.d* NIL produced 112.4 mg plant<sup>-1</sup> higher shoot dry weight than cultivar (cv.) Tokak (Figure 1a). *sdw1.d* allele caused more shoot production. Triumph had a shoot Zn concentration of 8.8 ppm, Tokak 9.9 ppm and *sdw1.d* NIL 10.8 ppm (Figure 1b). Thus, *sdw1.d* allele resulted in 0.9 ppm higher shoot Zn concentration in zinc-deficient conditions in Tokak background. Tokak had a shoot Zn content of 8.7 μg plant<sup>-1</sup> while Triumph had 9.4 μg plant<sup>-1</sup> and *sdw1.d* NIL 10.7 μg plant<sup>-1</sup> (Figure 1c). Triumph carrying *sdw1.d* allele did not differ from Tokak in shoot Zn content. *sdw1.d* allele increased shoot Zn content by 2 mg plant<sup>-1</sup> compared to wild type allele. Root dry weights of *sdw1.d* NIL (119.5 mg) and Tokak (116.9 mg) were not different whereas Triumph produced 60% more root dry (192.7 mg) than Tokak and *sdw.1d* NIL (Figure 1d). The *sdw1.d* allele did not affect root dry



weight. The *sdw1.d* NIL had a root Zn concentration of 11.7 ppm and Tokak 18.3 ppm. The *sdw1.d* allele reduced the root Zn concentration of Tokak by 6.6 ppm (Figure 1e). The root Zn concentration of Triumph (9.8 ppm) was not different from that of *sdw1.d* NIL. Therefore, *sdw1.d* allele caused lower root Zn concentration. Root Zn contents were 1.40 µg plant<sup>-1</sup> in *sdw1.d* NIL, 1.87 µg plant<sup>-1</sup> in Tokak and 2.14 µg plant<sup>-1</sup> in Triumph (Figure 1f). The *sdw1.d* allele caused a prominent decrease in root Zn content.

Plant heights of *sdw1.d* NIL (52.0 cm), Tokak (61.7 cm) and Triumph (56.3 cm) were statistically different from each other (Figure 2a). The *sdw1.d* allele shortened the plant height of cv. Tokak by about 10 cm. Although *sdw1.d* NIL and Tokak did not show zinc deficiency symptom (symptom scale 5, Figure 2b), Triumph showed severe zinc deficiency symptom with a symptom scale point of 2.3. It was revealed that *sdw1.d* allele had no effect on tolerance to zinc deficiency while Triumph was highly sensitive to zinc deficiency. The number of grains per plant was similar in Tokak (23.7) and *sdw1.d* NIL (19.0) but was very low in Triumph (2.0) (Figure 2c). Grain weights of Tokak (36.0 mg) and *sdw1.d* NIL (36.9 mg) were not different (Figure 2d). The grain weight of cv. Triumph was 17.5 mg. The *sdw1.d* allele did not affect the grain weight of cv. Tokak under zinc-deficient conditions. Since Triumph produced very few grains in zinc-deficient conditions, grain Zn analysis could not be performed in Triumph. Grain Zn concentration of cv. Tokak (8.9 ppm) was less than that of *sdw1.d* NIL (11.7 ppm) (Figure 2e). The *sdw1.d* allele increased grain Zn concentration under zinc-deficient conditions. Grain Zn content of Tokak (0.33 μg plant<sup>-1</sup>) was less than that of *sdw1.d* NIL (0.43 μg plant<sup>-1</sup>). The *sdw1.d* allele increased grain Zn content about 25% under zinc-deficient conditions (Figure 2f).

### The sdw1.d effects in zinc-sufficient conditions

In zinc-sufficient hydroponic culture, the differences in shoot dry weights were not significant (Figure 4a). The *sdw1.d* NIL had higher shoot Zn concentration (66. 9 ppm) than Tokak (59.3 ppm) or Triumph (53.2 ppm) (Figure 4b). The *sdw1.d* allele increased shoot Zn concentration approximately 7.6 ppm under zinc-sufficient conditions. Shoot Zn contents were 89.4 μg plant<sup>-1</sup> in *sdw1.d* NIL, 79.3 μg plant<sup>-1</sup> in Tokak and 74.2 μg plant<sup>-1</sup> in Triumph (Figure 4c). In other words, the shoot Zn content of *sdw1.d* NIL was 10.1 μg plant<sup>-1</sup> higher than Tokak. The *sdw1.d* allele increased the shoot Zn contents. Root dry weights were similar in Tokak (96.6 mg plant<sup>-1</sup>) and *sdw1.d* NIL (106.7 mg plant<sup>-1</sup>) (Figure 4d). The *sdw1.d* allele did not affect root dry weight. Triumph produced a higher root dry weight (130.9 mg plant<sup>-1</sup>). Root Zn concentrations were similar in *sdw1.d* NIL (68.4 ppm) and Tokak (66.3 ppm), but lower in Triumph (45.9 ppm) (Figure 4e). The *sdw1.d* allele did not affect root Zn concentration. Root Zn content in *sdw1.d* NIL (6.51 μg plant<sup>-1</sup>) was lower than Tokak (7.06 μg plant<sup>-1</sup>) (Figure 4f). Thus, the *sdw1.d* allele decreased root Zn content.

197 Plant heights of *sdw1.d* NIL (59.7 cm), Triumph (67.7 cm) and Tokak (74.0 cm) were statistically different (Figure 5a). No zinc deficiency symptoms were observed in plants (Figure



5b). The sdw1.d allele decreased plant height about 15 cm. Numbers of grain per plant in Tokak (49.7) and sdw1.d NIL (56.1) were similar, while Triumph produced fewer grains (40.7) (Figure 5c). Grain weights were similar in sdw1.d NIL (39.0 mg) and Tokak (39.5 mg), but lower in Triumph (27.5 mg) (Figure 5d). The sdw1.d allele did not affect grain weight of cv. Tokak. Grain Zn concentration was lower in Tokak (72.5 ppm) than in sdw1.d NIL (92.5 ppm) (Figure 5e). The sdw1.d allele increased grain Zn concentration under zinc-sufficient conditions. The grain Zn content of sdw1.d NIL (3.66 μg plant<sup>-1</sup>) was higher than Tokak (2.83 μg plant<sup>-1</sup>) (Figure 5f). The sdw1.d allele increased the grain Zn concentration by about 30% under zinc-sufficient conditions.

### **Discussion**

Zinc is one of the most important mineral elements required to complete of life cycle in plants and animals and human wealth (Joshi et al., 2023). In addition to efforts to improve unit area yields to feed the rising world population, the mineral content of grain must also be considered. Grain Zn biofortification is affected by many mechanisms (Kamaral et al., 2022). One of these mechanisms is endogenous phytohormones such as gibberellins that increase zinc uptake (Mathpal et al., 2023). The barley semi dwarf allele sdwl.d is associated with less gibberellic acid production and confers significant grain yield increases in barley (Xe et al., 2017). There is a well-characterized relationship between gibberellic acid and plant height (Cheng et al., 2022), Zn content (Mathpal et al., 2023). The gibberellic acid level of sdwl.d allele that reduces plant height may also affect Zn uptake and tolerance to zinc deficiency. Therefore, the effect of the sdwl.d allele was investigated in zinc-deficient and zinc-sufficient hydroponic cultures until ear emergence and harvest maturity.

In zinc deficiency, *sdw1.d* NIL did not show any necrotic symptoms and produced similar amounts of roots as in Tokak. An important indicator of response to zinc deficiency stress is more root production (Cakmak et al., 1999). Since *sdw1.d* NIL and its recurrent parent cv. Tokak, a zinc deficiency tolerant (Kinaci & Kinaci 2005), had similar symptom severity, the *sdw1.d* allele has no negative effect of on tolerance to zinc deficiency. The higher root production, intense necrotic leaf symptoms (Figure 3) and inability to produce seeds under zinc-deficient conditions indicate that Triumph is sensitive to zinc deficiency. Since there is no reliable relationship between grain or shoot Zn content and tolerance to zinc deficiency, zinc deficiency symptoms (necrotic symptoms and more root production) under zinc-deficient conditions are the best way to determine tolerance to this stress (Cakmak et al., 1998).

The higher grain zinc content in *sdw1.d* NIL grown under zinc deficiency condition compared to Tokat indicates that the *sdw1.d* allele enhances zinc translocation from roots to shoot and seed. The similar responses between the zinc deficiency tolerant Tokak and *sdw1.d* NIL shows that the *sdw1.d* allele has no negative effect on tolerance to zinc deficiency. On the other hand, *sdw1.d* NIL accumulated higher Zn in shoot and lower in the roots, produced more shoot and accumulated more Zn in the grain than cv. Tokak under zinc-deficient conditions. The results of

**PeerJ** 

239 the present study suggested that sdw1.d allele improves tolerance to zinc deficiency by 240 increasing zinc translocation from roots to shoot and seed under zinc-deficient conditions, since more zinc accumulation in grains under zinc-deficient conditions is another indicator of zinc 241 deficiency tolerance (Khan et al., 2023). 242 In sufficient zinc conditions, the differences in the shoot dry weights among genotypes were not 243 significant since there was no stress in hydroponic culture. The sdw1.d allele was found to result 244 in 15-20 cm shorter plant height in many studies (Cheng et al., 2023; Kandemir et al., 2022; 245 Teplyakova et al., 2017). Shorter plant height is expected to result in less shoot. However, 246 sdw1.d allele was found to increase the number of tillers in previous studies (Kandemir et al., 247 2022; Kuczyńska, Mikołajczak & Ćwiek, 2014). The lower plant height and higher number of 248 tillers resulted in no change in shoot production. Although root Zn concentration of Tokak and 249 sdw1.d NIL was similar, root Zn contents were lower in sdw1.d NIL. This is actually due to the 250 partially lower root weights observed in sdw1.d NIL, although not statistically significant. 251 252 The sdw1.d allele increased shoot Zn concentration and content. The lower root Zn content and the higher shoot Zn content indicated that sdw1.d allele increases Zn translocation from roots to 253 leaves. sdw1.d increased grain Zn concentration and contents with no difference in grain weights 254 between sdw1.d NIL and Tokak. Low root Zn contents, high shoot and grain Zn contents 255 256 indicated that the sdw1.d allele improves zinc translocation from roots to grain. Zhou et al. (2018) determined that the sdw1 locus is related to Zn-ion binding. Wiegmann et al. (2019) 257 reported that the sdw1.d allele decreased Zn uptake in populations produced from wild species 258 Hordeum vulgare ssp. spontaneum, ssp. agriocrithon and cultivated cv. Barke carrying sdw1.d 259 allele, and that this effect may be due to the dilution effect of the sdw1.d allele as a result of 260 261 increased unit area yield. Consequently, due to the fact that the differences between the near isogenic line and its recurrent parent Tokak involve only the transferred gene region (Lu et al., 262 2020), the higher grain Zn contents measured in the sdw1.d NIL proved that the sdw1.d allele 263 increases zinc accumulation. Xu et al. (2017) found that expression HvGA20ox1 and 264 265 HvGA20ox3, homologs of the HvGA20ox2 gene, increased 2-fold and 3-fold, respectively, in sdw1.d mutants. The HvGA20ox3 gene is located on chromosome 3HL (Dhanagond et al., 2019) 266 267 and HvGA200x1 on chromosome 5HL (Göransson et al., 2019). OTLs related to zinc concentration, shoot and grain zinc content were found around the loci of these genes (Hussain et 268 269 al., 2016; Sadeghzadeh, Rengel & Li, 2015). The increased expressions of *HvGA20ox1* and 270 HvGA200x3 might have enabled the zinc, which is taken up more by the Tokak background in 271 NIL, to be transported more into the grain. Although Tokak uptakes more zinc under both zinc-deficient and zinc-sufficient conditions, 272 273 translocation of zinc in the roots to the shoot and grain was low. The sdw1.d allele increased the translocation of zinc to the grain in the Tokak genetic background. Since the sdw1.d is a different 274 275 form of a gene related to gibberellic acid, it can be concluded that altered levels of gibberellic acid increase zinc translocation. Endogenous hormones already have important effects on the 276 uptake and accumulation of Zn. Sekimoto et al. (1997) found that Zn alters endogenous 277 278 phytohormone levels, and stated that altered shoot amount under zinc-deficient conditions cannot



be attributed to one phytohormone alone. Therefore, it is not known whether the short plant height and other effects of the *sdw1.d* allele are solely due to decreased levels of gibberellic acid or to the interaction of altering levels of gibberellic acid with other hormones. However, *sdw1.d* allele enhances zinc accumulation in shoot and grain under both zinc-deficient and zinc-sufficient conditions. The *sdw1.d* allele was known to have numerous pleiotropic effects such as delayed flowering and maturity, prostrate growth, higher level beta-glucan (Kuczyńska, Mikołajczak & Ćwiek, 2014), lower 1000-seed weight, higher number of ears per area (Kandemir et al., 2022). Increasing Zn translocation from roots to grain under both zinc-deficient and zinc-sufficient conditions is a new addition to the beneficial effects of this allele, providing a better Zn biofortification.

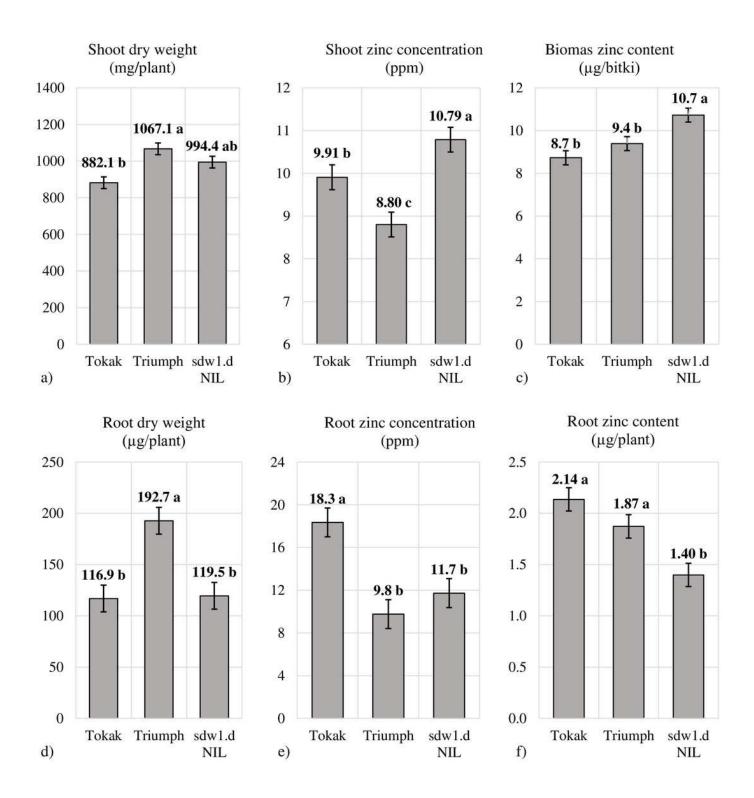
### **Conclusions**

Barley produced in zinc-deficient areas results in not only reduced unit area yields but also in grains containing less Zn. The results of the present study showed that sdw1.d allele improved zinc uptake and tolerance to zinc deficiency in barley. The inference that the dilution effect of the yield-increasing effects of the alleles reduces the mineral content of the plants is not valid for the sdw1.d allele. However, this result is related to the sdw1.d allele. Since other sdw1 alleles differ in the expression of the gene, they may react differently under conditions of Zn sufficiency and Zn deficiency. This can also alter the uptake of Zn when changing gibberellic acid levels interact with other hormones within the plant. While the sdw1.d allele could contribute to solving the problems in plant growth and development caused by zinc-deficiency via improving tolerance to Zn deficiency, it can also result in a better Zn grain biofortification whether zinc is sufficient or deficient in soil. These findings proved that the sdw1.d allele can be reliably used in plant breeding programs due to its zinc-related gains in addition to the benefits it provides in terms of short plant height.

### References

- Cakmak I, Kalayci M, Ekiz H, Braun HJ, Kilinc Y, Yilmaz A. 1999. Zinc deficiency as a practical problem in plant and human nutrition in Turkey: a NATO-science for stability project. Field Crops Resources 60:175–188 <a href="https://doi.org/10.1016/S0378-4290(98)00139-7">https://doi.org/10.1016/S0378-4290(98)00139-7</a>
- Cakmak I, Torun B, Erenoglu B, Ozturk L, Marschner H, Kalayci M, Ekiz H, Yilmaz A. 1998. Morphological and physiological differences in the response of cereals to zinc deficiency. Euphytica 100:349–357 https://doi.org/10.1023/A:1018318005103
- Cheng J, Hill C.B, Shabala S, Li C, Zhou M. 2022. Manipulating GA-Related Genes for Cereal Crop Improvement. International Journal of Molecular Sciences 23:14046. <a href="https://doi.org/10.3390/ijms232214046">https://doi.org/10.3390/ijms232214046</a>
- Cheng J, Hill C, Han Y, He T, Ye X, Shabala S, Guo G, Zhou M, Wang K, Li C. 2023. New semi-dwarfing alleles with increased coleoptile length by gene editing of *gibberellin 3-oxidase 1* using CRISPR-Cas9 in barley (*Hordeum vulgare* L.). Plant Biotechnology Journal 21:4806–4818 https://doi.org/10.1111/pbi.13998

- Dhanagond S, Liu G, Zhao Y, Chen D, Grieco M, Reif J, Kilian B, Graner A, Neumann K. 2019,
  Non-invasive phenotyping reveals genomic regions involved in pre-anthesis drought
  tolerance and recovery in spring barley. Frontier Plant Science 10:1307.
  <a href="https://doi.org/10.3389/fpls.2019.01307">https://doi.org/10.3389/fpls.2019.01307</a>
- Göransson M, Hallsson J.H, Lillemo M, Orabi J, Backes G, Jahoor A, Hermannsson J, Christerson T, Tuvesson S, Gertsson B, Reitan L, Alsheikh M, Aikasalo R, Isolahti M, Veteläinen M, Jalli M, Krusell L, Hjortshøj R.L, Eriksen B, Bengtsson T. 2019. Identification of ideal allele combinations for the adaptation of spring barley to northern latitudes. Frontier Plant Science 10:542 https://doi.org/10.3389/fpls.2019.00542
  - Herzig P, Backhaus A, Seiffert U, von Wirén N, Pillen K, Maurer A. 2019. Genetic dissection of grain elements predicted by hyperspectral imaging associated with yield-related traits in a wild barley NAM population. Plant Science 285:151–164 https://doi.org/10.1016/j.plantsci.2019.05.008
  - Hussain S, Rengel Z, Mohammadi SA, Ebadi-Segherloo A, Maqsood MA. 2016. Mapping QTL associated with remobilization of zinc from vegetative tissues into grains of barley (*Hordeum vulgare*). Plant and Soil 399:193–208 <a href="https://doi.org/10.1007/s11104-015-2684-1">https://doi.org/10.1007/s11104-015-2684-1</a>
  - Joshi G, Soe YP, Palanog AD, Hore TK, Nha CT, Calayugan MIC, Inabangan-Asilo MA Amparado A, Pandey ID Cruz PCS, Hernandez JE, Swamy BPM. 2023. Meta-QTLs and haplotypes for efficient zinc biofortification of rice. Plant Genome 16:e20315 https://doi.org/10.1002/tpg2.20315
  - Kamaral C, Neate SM, Gunasinghe N, Milham PJ, Paterson DJ, Kopittke PM, Seneweera S. 2022. Genetic biofortification of wheat with zinc: Opportunities to fine-tune zinc uptake transport and grain loading. Physiologia Plantarum 174:e13612 <a href="https://doi.org/10.1111/ppl.13612">https://doi.org/10.1111/ppl.13612</a>
  - Kandemir N, Saygili I, Sonmezoglu OA, Yildirim A. 2022. Evaluation of barley semi-dwarf allele *sdw1.d* in a near isogenic line. Euphytica 218:31 <a href="https://doi.org/10.1007/s10681-022-02983-4">https://doi.org/10.1007/s10681-022-02983-4</a>
  - Khan WA, Penrose B, Shabala S, Zhang X, Cao F, Zhou M. 2023. Mapping QTL for Mineral Accumulation and Shoot Dry Biomass in Barley under Different Levels of Zinc Supply. International Journal of Molecular Sciences 24:14333 https://doi.org/10.3390/ijms241814333
  - Kimura S, Vaattovaara A, Ohshita T, Yokoyama K, Yoshida K, Hui A, Kaya H, Ozawa A, Kobayashi M, Mori IC, Ogata Y, Ishino Y, Sugano SS, Nagano M, Fukao Y. 2023. Zinc deficiency-induced defensin-like proteins are involved in the inhibition of root growth in Arabidopsis. The Plant Journal 115:1071–1083 https://doi.org/10.1111/tpj.16281
  - Kinaci G, Kinaci E. 2005. Effect of zinc application on quality traits of barley in semi arid zones of Turkey. Plant Soil and Environment 51:328–334 <a href="https://doi.org/10.17221/3594-PSE">https://doi.org/10.17221/3594-PSE</a>
  - Kuczyńska A, Mikołajczak K, Ćwiek H 2014. Pleiotropic effects of the *sdw1* locus in barley populations representing different rounds of recombination. Electronic Journal of Biotechnology 17:217–223 <a href="https://doi.org/10.1016/j.ejbt.2014.07.005">https://doi.org/10.1016/j.ejbt.2014.07.005</a>
- Lu L, Liu H, Wu Y, Yan G. 2020. Development and characterization of near-isogenic lines revealing candidate genes for a major 7AL QTL responsible for heat tolerance in wheat. Frontier Plant Science 11:1316 https://doi.org/10.3389/fpls.2020.01316
- Mathpal B, Srivastava PC, Pachauri SP, Shukla AK, Shankhdhar SC. 2023. Role of gibberellic acid and cytokinin in improving grain Zn accumulation and yields of rice (*Oryza sativa*

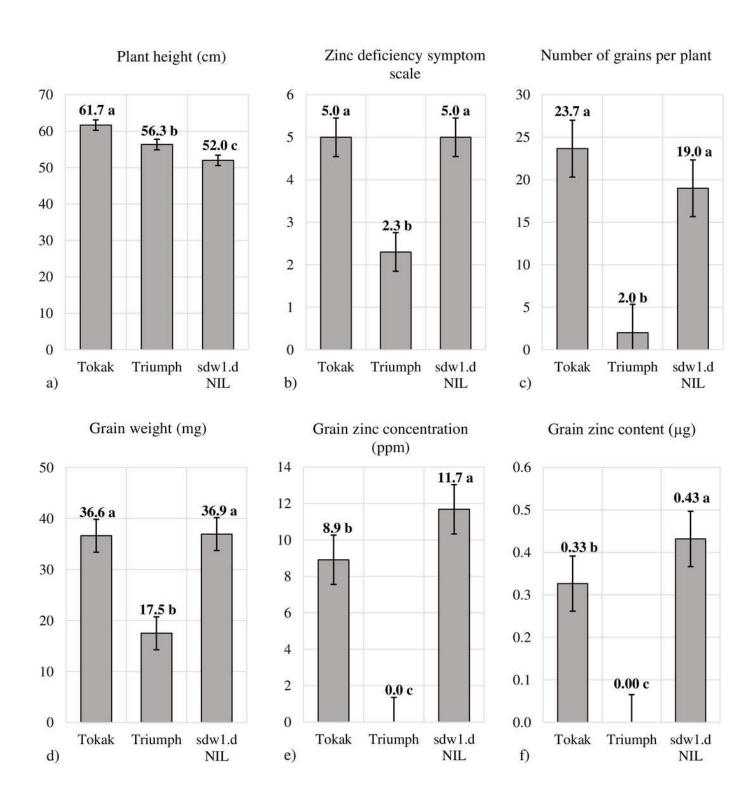

- 367 L.). Journal of Soil Science and Plant Nutrition 23:6006–6016 368 https://doi.org/10.1007/s42729-023-01459-1
- Sadeghzadeh B, Rengel Z, Li C. 2015. Quantitative trait loci (QTL) of seed Zn accumulation in
   barley population Clipper X Sahara. Journal of Plant Nutrition 38:1672–1684
   <a href="https://doi.org/10.1080/01904167.2014.991036">https://doi.org/10.1080/01904167.2014.991036</a>
  - Sekimoto H, Hoshi M, Nomura T, Yokota T. 1997. Zinc deficiency affects the levels of endogenous gibberellins in *Zea mays* L. Plant Cell Physiology 38:1087–1090 https://doi.org/10.1093/oxfordjournals.pcp.a029276
  - Singh S, Kaur J, Ram H, Singh J, Kaur S. 2023. Agronomic bio-fortification of wheat (*Triticum aestivum* L.) to alleviate zinc deficiency in human being. Reviews in Environmental Science and Bio/Technology 22:505–526 <a href="https://doi.org/10.1007/s11157-023-09653-4">https://doi.org/10.1007/s11157-023-09653-4</a>
  - Teplyakova S, Lebedeva M, Ivanova N, Horeva V, Voytsutskaya N, Kovaleva O, Potokina E. 2017. Impact of the 7-bp deletion in *HvGA20ox2* gene on agronomic important traits in barley (*Hordeum vulgare* L.). BMC Plant Biology 17:1–10 <a href="https://doi.org/10.1186/s12870-017-1121-4">https://doi.org/10.1186/s12870-017-1121-4</a>
  - Wiegmann M, Thomas WT, Bull HJ, Flavell AJ, Zeyner A, Peiter E, Pillena K, Maurer A. 2019. Wild barley serves as a source for biofortification of barley grains. Plant Science 283:83–94 https://doi.org/10.1016/j.plantsci.2018.12.030
  - Xia H, Wang L, Qiao Y, Kong W, Xue Y, Wang Z, Kong L, Xue Y, Sizmur T. 2020. Elucidating the source–sink relationships of zinc biofortification in wheat grains: A review. Food Energy Security 9: e243 <a href="https://doi.org/10.1002/fes3.243">https://doi.org/10.1002/fes3.243</a>
  - Xu Y, Jia Q, Zhou G, Zhang XQ, Angessa T, Broughton S, Yan G, Zhang W, Li C. 2017. Characterization of the *sdw1* semi-dwarf gene in barley. BMC Plant Biology 17:1–10 https://doi.org/10.1186/s12870-016-0964-4
  - Yadav AK, Seth A, Kumar V, Datta A. 2023. Agronomic biofortification of wheat through proper fertilizer management to alleviate zinc malnutrition: A review. Communications in Soil Science and Plant Analysis 54:154-177 https://doi.org/10.1080/00103624.2022.2110892
- Zhou Y, Zhou G, Broughton S, Westcott S, Zhang X, Xu Y, Xu L, Li C, Zhang W. 2018.
   Towards the identification of a gene for prostrate tillers in barley (*Hordeum vulgare* L.).
   PLOS One 13: e0192263 <a href="https://doi.org/10.1371/journal.pone.0192263">https://doi.org/10.1371/journal.pone.0192263</a>



Shoot and root characteristics under zinc deficiency.

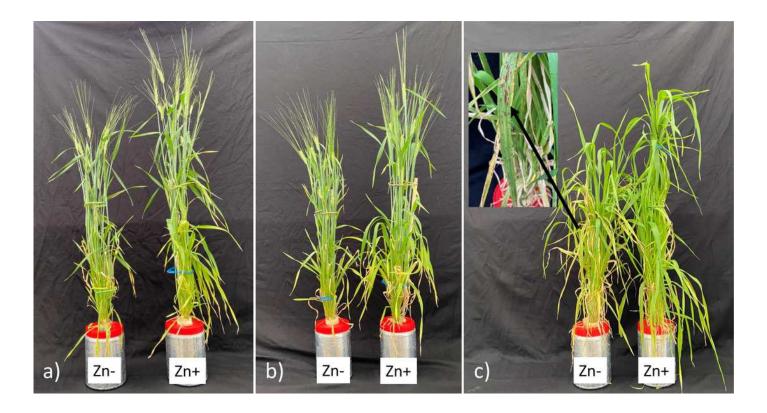
Means followed by different letters are significantly different at an alpha level of 0.05 according to Tukey's test. The error bars indicate the standard error.








Plant height, zinc deficiency symptom and grain characteristics under zinc deficiency.

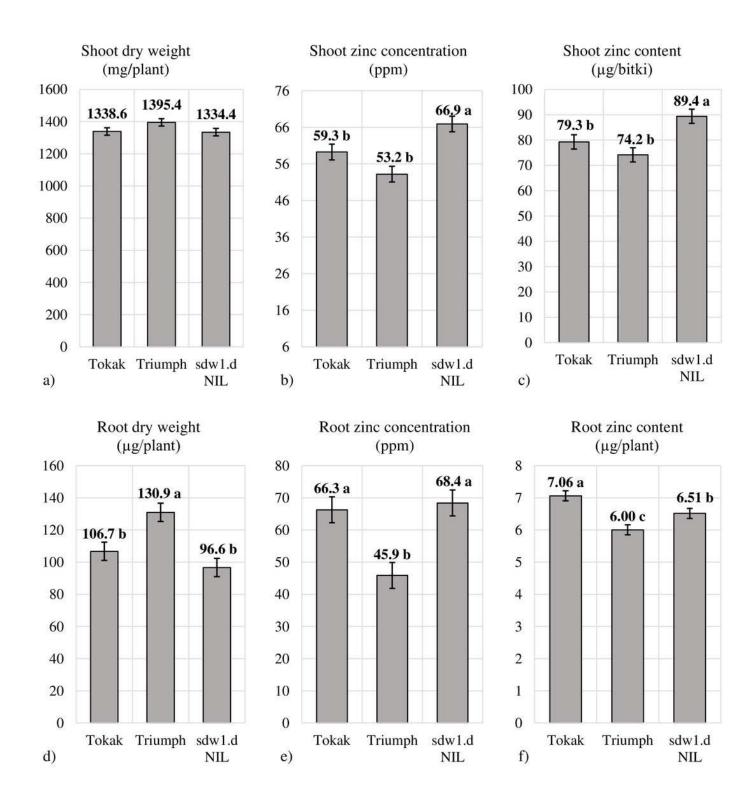

Means followed by different letters are significantly different at an alpha level of 0.05 according to Tukey's test. The error bars indicate the standard error. \*Zinc deficiency symptom scale: (necrotic patches on leaves) 1 = very severe, 2 = severe, 3 = mild, 4 = slight and 5 = very slight or absent). Since Triumph produced very few grains in zinc deficiency conditions, grain Zn analysis could not be performed.





Genotypes a) Tokak 157/37, b) sdw1.d NIL, and c) Triumph under zinc-deficient (Zn-) and zinc-sufficient (Zn+) conditions.

The black arrow (in figure c) indicates the zinc deficiency symptom in leaves of Triumph.

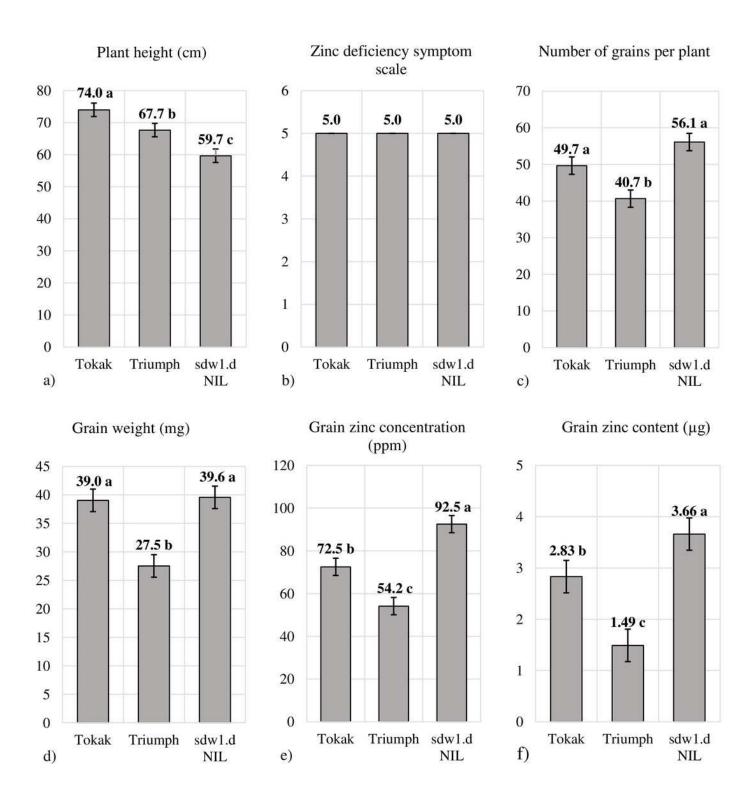





Shoot and root characteristics under zinc-sufficient conditions.

Means followed by different letters are significantly different at an alpha level of 0.05 according to Tukey's test. The error bars indicate the standard error.








Plant height, zinc deficiency symptom and grain characteristics under zinc sufficient conditions.

Means followed by different letters are significantly different at an alpha level of 0.05 according to Tukey's test. The error bars indicate the standard error. \*Zinc deficiency symptom scale: (necrotic patches on leaves) 1 = very severe, 2 = severe, 3 = mild, 4 = slight and 5 = very slight or absent.).



