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Most computational methods for predicting driver mutations have been trained using 
positive samples, while negative samples are typically derived from statistical methods 
or putative samples. The representativeness of these negative samples in capturing the 
diversity of passenger mutations remains to be determined. To tackle these issues, we 
curated a balanced dataset comprising driver mutations sourced from the COSMIC 
database and high-quality passenger mutations obtained from the Cancer Passenger 
Mutation database. Subsequently, we encoded the distinctive features of these 
mutations. Utilizing feature correlation analysis, we developed a cancer driver missense 
mutation predictor called CDMPred, employing feature selection through the ensemble 
learning technique XGBoost. The proposed CDMPred method, utilizing the top 10 
features and XGBoost, achieved an area under the receiver operating characteristic 
curve (AUC) value of 0.83 and 0.80 on the training and independent test sets, 
respectively. 
Furthermore, CDMPred demonstrated superior performance compared to existing 
state-of-the-art methods for cancer-specific and general diseases, as measured by AUC 
and area under the precision-recall curve. Including high-quality passenger mutations 
in the training data proves advantageous for CDMPred’s prediction performance. We 
anticipate that CDMPred will be a valuable tool for predicting cancer driver mutations, 
furthering our understanding of personalized therapy. 

Keywords 
Cancer; Machine learning; Driver missense mutation prediction; Benchmark quality; 
XGBoost 

Introduction 

Cancer is a leading cause of death and suffering in humans worldwide, resulting in 
nearly 20 million new cases alongside 9.7 million deaths in 2022 [1]. Researchers have 
confirmed that cancer is a multifaceted genetic disease caused by the accumulation of 
numerous mutations in the genome [2-4]. However, the tumorigenesis and development 
of most cancers are primarily driven by a small number of critical mutations [5-7], while 
the remaining mutations are considered neutral (passengers). Identifying driver 
mutations from passenger mutations holds significant importance, as drivers are 
commonly utilized as diagnostic and prognostic biomarkers and potential drug targets 
for cancer treatment [8, 9].  

Vogelstein et al. observed that most protein-coding mutations in cancer genomes 
were missense changes [10]. Consequently, our focus in this study is on cancer driver 
missense mutations. To date, numerous computational methods have been developed 
to predict driver missense mutations, such as boostDM [6], Cancer-specific High-
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throughput Annotation of Somatic Mutations (CHASM) [11], Transformed Functional 
Impact score for Cancer (transFIC) [12], Cancer Driver Annotation (CanDrA) [13], 
Functional Analysis through Hidden Markov Models (FATHMM) [14], CScape-
somatic [15], and CHASMplus [16]. Additionally, some methods are focused on 
identifying driver mutations at critical sites, such as protein allosteric sites [17-19]. 
These methods typically utilize positive samples obtained from cancer-related 
databases, such as the Catalogue of Somatic Mutations in Cancer (COSMIC) database 
[11-15], while negative samples are commonly derived from statistical methods [6, 11] 
or putative samples [12-16]. 

This study evaluated the potential for improved driver prediction by investigating 
high-quality passenger mutations. We then proposed a predictor, CDMPred, which 
incorporates high-quality passenger mutations and utilizes the eXtreme Gradient 
Boosting (XGBoost) algorithm. Initially, we conducted comparative analyses of the 
Cancer Passenger Mutations database (dbCPM), which comprises highly curated 
passenger mutations [20]. The results indicated that the dbCPM data aligns with other 
negative datasets regarding most classical features while exhibiting specificity for 
cancer-related features [20, 21]. Subsequently, we employed the high-quality passenger 
mutation data for model training and encoded 65 features. We used feature importance 
to identify the top 10 features from the 65 features mentioned above and evaluated the 
performance of various machine learning algorithms on the training set. Ultimately, we 
employed the optimal model (CDMPred) with an XGBoost classifier and the top 10 
features. The results obtained from the training and independent test sets demonstrated 
that CDMPred exhibited superior performance compared to several state-of-the-art 
methods for both cancer-specific and general diseases, as assessed by two threshold-
independent metrics: the area under the receiver operating characteristic curve (AUC) 
and the area under the precision-recall curve (AUPR). 

Materials & Methods 
Figure 1 presents the flowchart of the CDMPred method. The procedure consists of 
four steps: dataset preparation, feature representation, model construction, and 
performance evaluation. Each step is explained in detail below. 
Dataset preparation 
The datasets were divided into two groups: one for feature analysis and the other for 
model construction and performance evaluation. One cancer driver mutation dataset 
and three passenger mutation datasets were used for feature analysis. For positive 
samples, we selected 1,248 driver missense mutations from the Database of Curated 
Mutations (DoCM) (v3.2) [22], which is a reliable source that aggregates functionally 
validated mutations in cancer. For negative samples, we gathered three passenger 
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datasets. The dataset dbCPM (v1.1) consists of 1,919 passenger mutations, including 
1,634 distinct missense mutations [20]. The other two datasets are oriented from classic 
prediction tools for cancer-specific driver mutations. Expressly, the dataset FATHMM 
was initially obtained from the UniProt database, which was taken as negative samples 
in the FATHMM training set [23, 24], and the dataset CHASM (v3.1) consists of 
synthetic passenger mutations in the CHASM training set [11]. We removed the 
mutations simultaneously in DoCM in each passenger mutation dataset. The details are 
presented in Additional file 1: Table S1.  

The datasets utilized for model construction are described as follows. Out of the 
1,634 missense passenger mutations in dbCPM v1.1, 1,104 items from dbCPM v1.0 
were used as negative samples in our training set. We filtered the 13,235 positive 
samples in the CHASM (v3.1) training set to avoid overlap with samples from dbCPM 
v1.0. Next, we included only positive samples within 50 bp of a harmful mutation on 
the same transcript to address the imbalance and potential bias towards positive 
samples. As a result, our training set retained 2,151 driver missense mutations. We 
obtained an independent test set to benchmark performance against state-of-the-art 
prediction tools. First, we collected missense mutations in dbCPM v1.1 reported after 
the initial database update (dbCPM v1.0) to serve as negative samples. Secondly, we 
considered all 1,248 driver mutations in DoCM as our positive samples. To prevent 
type 1 circularity [25], which can cause overfitting from overlapping training and 
evaluation datasets, we excluded overlapping data with the training set, resulting in 567 
driver mutations. The datasets utilized for model construction and performance 
evaluation are detailed in Table 1. 
Feature representation 
Considering both the significance of the protein's functions and conservation, seven 
feature groups were provided to capture the specific characteristics of cancer driver 
mutations, comprising protein physicochemical properties, evolutionary conservation 
scores, exon features, protein local structures, regional composition, amino acid residue 
triplet features, and UniProt annotations. For each missense mutation in the datasets 
mentioned above, the features were encoded with the 85 pre-computed features 
available in SNVBox [25, 26] from a dockerized tool, the Cancer-Related Analysis of 
Variants Toolkit [27] (CRAVAT, version 5.2.3). To prepare the input data, we curated 
the transcript information using Ensembl GRCh37 [28] as a reference. Each feature 
underwent scaling by subtracting the mean value and dividing it by the root mean 
square (RMS) value, utilizing pre-computed values for the entire genome. After 
CHASM [19, 20], we applied the information gain method to remove irrelevant features 
among the 85 candidate features. By using a uniform threshold, we selected 65 
predictive features that possessed a minimum of 0.001 bits of mutual information. 
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Specifically, 13 out of 16 protein physicochemical properties, all six evolutionary 
conservation score features, all three exon features, 11 out of 12 protein local structure 
features, six out of 11 regional composition features, and 26 out of 28 UniProt 
annotations were included. The amino acid residue trimer features were also excluded. 
A detailed list is indicated in Additional File 1: Table S2. 
Model construction 
We utilized feature importance with XGBoost to select an optimal subset of features. 
Subsequently, we comprehensively evaluated multiple algorithms on the training set 
using a 10-fold cross-validation [29]. We selected eight classifiers, namely random 
forest (RF), support vector machine (SVM), multilayer perceptron (MLP), gradient 
boosting decision tree (GBDT), linear discriminant analysis (LDA), logistic regression 
(LR), naïve Bayes (NB), and XGBoost [30]. All the algorithms mentioned above were 
implemented using scikit-learn (v0.22.2) and Python 3.7. The classifiers were 
implemented with parameters optimized through grid search, utilizing the 10-fold 
cross-validation results of the training set. Specifically, we optimized three critical 
parameters in XGBoost: the boosting learning rate (learning_rate), the maximum depth 
of the tree (maxDepth), and the subsample ratio of columns when constructing each 
tree (colsample_bytree). 
Performance evaluation 
As quantitative measurements of prediction results, we employed two threshold-
independent measures: AUC and AUPR [11, 31]. Additionally, we used two qualitative 
measures, namely sensitivity (or actual positive rate) and specificity (true negative rate), 
for model performance analysis, as previously described in research [32, 33]. These 
measures are defined as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
TP

TP + FN 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
TN

TN + FP 

Where TP (true positive) means the number of correctly predicted cancer driver 
mutations, FP (false positive) represents the number of passenger mutations predicted 
as drivers, TN (true negative) represents the number of correctly predicted passenger 
mutations, and FN (false negative) indicates the number of cancer driver mutations 
predicted as passengers. 

The permutation test was conducted on CDMPred to demonstrate that the model 
learned more than noise. Specifically, we first trained the CDMPred model on the data 
and saved the AUC value of 10-fold cross-validation. Secondly, we randomly permuted 
the class labels in the dataset and trained a new model called "CDMPred_random". 
Thirdly, we assessed the performance of "CDMPred_random" regarding AUC. We 
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repeated the second and the third steps 1,000 times. Finally, we calculated the empirical 
p-value by comparing the distribution of the 1000 values to the corresponding value 
from the original CDMPred. The permutation test algorithm was implemented with the 
function named permutation_test_score in scikit-learn. 

Results 
Analysis of features between different datasets 
We quantified 85 features for all datasets presented in Additional file 1: Table S1, which 
comprehensively represents the biological impacts of the mutation in the human 
genome [21]. We statistically analyzed the dbCPM samples using these features in the 
nonparametric Wilcoxon signed rank hypothesis test. Figure 2A displays the significant 
features (P < 0.05) of positive samples obtained from DoCM, dbCPM, and other 
negative samples. Figure 2B illustrates the significant features among all negative 
samples. Our findings indicate that dbCPM data closely resemble other negative 
samples in terms of most classical features, including ‘ExonConservation’ 
(conservation score for the entire exon calculated from the phylogenetic alignment of 
46 species) and ‘PredBFactorS’ (probability that the residue backbone of wild type is 
stiff) [34, 35]. Subsequently, we identified three features based on their P-values, and 
the RMS score distribution of all samples is presented in Figure 2C. Therefore, the 
mutations in dbCPM were utilized as qualified negative samples for predicting disease-
causing mutations. dbCPM exhibited distinguishable characteristics in cancer-specific 
features compared to other negative samples, including ‘UniprotMETAL’ (a binding 
site for a metal ion) and ‘UniprotREP’ (positions of repeated sequence motifs or 
domains) [36, 37]. Figure 2D illustrates the distribution of RMS scores for the 
UniprotMETAL feature across all samples. These findings further support that dbCPM 
mutations are more representative than other negative samples in modeling a wide 
range of passenger mutations and are better suited for predicting cancer driver 
mutations. 
Explorations for an optimal model 
Figure 3 displays the AUC values of the training set for the eight classifiers. XGBoost 
outperformed all other classifiers, achieving an AUC value of 0.82. XGBoost was 
applied with three optimized parameters: learning_rate = 0.04, max_depth = 4, and 
colsample_bytree = 0.2. 

To explore the possibility of further refining the features selected from mutual 
information, we examined the correlations among the 65 features. We identified several 
highly related features in UniProt, as highlighted in yellow in Additional file 1: Figure 
S1. Subsequently, we utilized the feature selection method with XGBoost (using default 
parameters) to determine the importance of the features. We employed sequential 
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feature selection (SFS) and used the optimized parameters of XGBoost to train the data. 
Figure 4 illustrates the comparison of the AUC results for these features. The top 10 
features (highlighted in bold in Additional file 1: Table S2) achieved the highest mean 
AUC of 0.83 with 10-fold cross-validation. We conducted a performance comparison 
between the top 10 features and the absence of the top k (1 to 10) features using 10-fold 
cross-validation (Figure 5). The results indicate that excluding features like 
ExonSnpDensity and ExonHapMapSnpDensity, which quantify the density of SNPs 
and HapMap-verified SNPs in exons, resulted in a notable 4.8% and 4.3% decline in 
prediction performance, respectively. Although classified as exon features in 
CRAVAT, these features also relate to evolutionary conservation—a factor 
significantly influencing cancer driver prediction performance [7, 38, 39].  

Additionally, the feature UniprotMETAL, which relates to the binding of metal ions 
at mutation sites, is crucial given the role of metal ions as protein cofactors in cellular 
processes linked to cancer development [40, 41]. Lastly, UniprotREP, which denotes 
genomic repetitive regions, is highlighted for its potential to induce genomic 
instability—a hallmark of cancer genomes, thereby strongly correlating with cancer 
occurrence [42, 43]. Consequently, we chose XGBoost with the top 10 features and 
optimal parameters as the final CDMPred model. 
Comparison with models trained on class labels using random 
permutation 
To demonstrate that CDMPred acquired knowledge beyond random noise, we trained 
corresponding models of CDMPred_random. The mean values and standard deviations 
of AUC values on the training set with 10-fold cross-validation are shown in Additional 
file 1: Table S3. The results illustrate an AUC value of 0.826 for the original CDMPred 
model. Nevertheless, the AUC value experienced a significant decrease upon random 
permutation of class labels for training the CDMPred_random model. Additionally, 
CDMPred exhibited statistical solid significance (with a p-value < 0.001) compared to 
other models. The computational setup involved a system with 16 GB of memory, an 
Intel(R) Core (TM) i7-9700 CPU operating at 3.00GHz with eight cores and running 
on a 64-bit Windows 10 system. The permutation test incurred a time cost of 
approximately 966 seconds. 
Performance comparison with state-of-the-art predictors 
To evaluate the performance of CDMPred on unseen samples, we assembled an 
independent test set. We utilized widely recognized tools designed explicitly for cancer-
specific and general diseases, including CHASMplus, CHASM, CanDrA, FATHMM, 
TransFIC, and CScape-somatic. Additionally, we collected ten general disease 
predictors: SIFT [44], Mutation Assessor [45], PolyPhen-2 [46], CADD [47], MetaLR 
[31], MetaSVM [31], DANN [48], REVEL [49], M-CAP [50], and MVP [51]. For the 
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cancer-specific methods, we submitted the test data to the respective websites of each 
tool to obtain the prediction results. As for the general disease predictors, we 
downloaded the dbNSFP4.1a software (https://sites.google.com/site/jpopgen/dbNSFP) 
and utilized Javascript to retrieve the prediction results from the database [52]. All 
comparisons were conducted while disregarding any missing values from the tools. 
Figure 6 and Figure 7 depict the ROC and PR curves, respectively. The results 
demonstrated that CDMPred exhibited the highest performance in terms of AUROC 
and AUPR. The Delong tests [53] were conducted to assess whether the CDMPred’s 
performance was significantly different from that of other cancer-specific methods 
(Additional file 1: Table S4) and general-purpose methods (Additional file 1: Table 
S5). The p-value of the AUC results indicated that CDMPred exhibited significantly 
superior performance to all cancer-specific methods and was superior to nine out of ten 
general-purpose methods, except CADD (p-value=0.09677, Delong’s test). 
Furthermore, CDMPred demonstrated strong significance (with a p-value < 0.001) 
compared to the other methods. It is worth noting that the AUPR value of CADD is 
0.68 while that of CDMPred is 0.80. In total, the performance of CDMPred was robust. 
Case study 
The principal advantage of our computational approach lies in its ability to significantly 
broaden the scope of analysis while concurrently preserving efficiency in terms of time 
and cost. A particularly compelling feature is its potential to inform and direct future 
experimental research, adeptly pinpointing candidate cancer driver mutations that merit 
in-depth investigation. In this context, we presented two illustrative cases predicted by 
CDMPred, juxtaposed with the predictions from several leading-edge methods. These 
include the cancer driver predictors CHASMplus and CScape-somatic and the 
pathogenic missense mutation predictors ESM1b and AlphaMissense. 

The kinase insert domain receptor (KDR), a type III receptor tyrosine kinase, is 
pivotal in mediating proliferation, survival, and migration induced by vascular 
endothelial growth factor. Its involvement is implicated in several diseases, including 
lymphoma [54]. Experimental evidence has shown that p.A1065T, located within the 
activation loop, induces constitutive autophosphorylation on tyrosine independent of 
vascular endothelial growth factor stimulation. Additionally, kinase inhibitors 
effectively suppressed its activity [54, 55]. Our computational approach, CDMPred, 
precisely identified the KDR-p.A1065T mutation as a significant driver with a high 
prediction score of 0.824. In stark contrast, the cancer driver predictors CHASMplus 
and CScape-somatic misclassified it as a passenger mutation, with substantially lower 
prediction scores of 0.119 and 0.139, respectively. The pathogenic missense mutation 
predictors ESM1b and AlphaMissense also provided divergent assessments, with 
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ESM1b categorizing it as a tolerated mutation (score = 0.423) and AlphaMissense as a 
likely benign mutation (score = 0.335). 

The Mitogen-Activated Protein Kinase Kinase 1 (MAP2K1) gene encodes MEK1, a 
pivotal protein kinase in the RAS/MAPK pathway that transduces extracellular 
chemical signals to the cell nucleus. This signaling pathway regulates fundamental 
cellular processes such as proliferation, differentiation, migration, and apoptosis. A 
recent clinical observation identified the p.E120D mutation in a non-small-cell lung 
cancer patient [56]. CDMPred and CScape-somatic correctly predicted MAP2K1-
p.E120D as a significant driver mutation, with prediction scores of 0.810 and 0.742, 
respectively. Conversely, CHASMplus misclassified this mutation with a borderline 
score of 0.499, suggesting it was a passenger mutation. Additionally, ESM1b and 
AlphaMissense provided divergent classifications, with ESM1b scoring it as a tolerated 
mutation (score = 0.334) and AlphaMissense deeming it an ambiguous mutation (score 
= 0.366). 

Discussion 

For cancer-specific methods, TransFIC applied to PolyPhen-2 predictions due to the 
fewest missing values and achieved the second-highest AUC performance but ranked 
sixth in terms of AUPR. The CHASM prediction yielded an AUC of 0.61, sensitivity 
of 0.74, and specificity of 0.15. Similarly, CanDrA achieved an AUC of 0.51, 
sensitivity of 0.76, and specificity of 0.07. Therefore, both CHASM and CanDrA 
exhibited poor performance on the negative samples, indicating a severe imbalance that 
resulted in significantly low AUC values (as discussed below). 

The CHASM training set comprised a balanced collection of positive and negative 
samples; however, there was only a 0.6% overlap at the transcript level [11]. Therefore, 
we hypothesized that CHASM might be influenced by type 2 circularity, where the 
variant status was predominantly predicted based on other variants within the same 
protein [25]. As anticipated, 53% of false negatives in the CHASM predictions occurred 
in transcripts that completely overlapped with positive data in the CHASM training set. 
In contrast, only 0.9% were found in transcripts that entirely overlapped with harmful 
data in the CHASM training set. Moreover, the opposite was observed for the actual 
negatives of the CHASM predictions, with a higher number of samples found in 
transcripts that exclusively overlapped with negative data in the CHASM training set. 
Consequently, CHASM was influenced by type 2 circularity. 

CanDrA proposed that driver mutations recurrently occurred in proximity (hotspots) 
in various types of cancer, whereas passenger mutations were not detected in any 
Cancer Gene Census (CGC) genes [13, 57]. Based on our findings, we suspected the 
presence of type 2 circularity in CanDrA since it adhered to the screening criteria of the 
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training set, resulting in minimal overlap between positive and negative samples at the 
transcript level. When the genes of the negative sample in the independent test set 
overlapped with the CGC genes, we identified shared genes in both sets. These genes 
were absent in the CanDrA training set, and the independent test set consisted of 95% 
negative samples, of which only 3% were true negatives. Moreover, the genes 
exclusively present in the negative samples of the independent test set, which could 
potentially be the genes corresponding to negative samples in the CanDrA training set, 
comprised 5% of the negative samples in the independent test set, of which >80% were 
predicted to be true negatives. Therefore, CanDrA predicted the variant status by 
relying on other variants within the same protein, indicating the presence of type 2 
circularity. We have shown that the low AUC values obtained by both CHASM and 
CanDrA can be primarily attributed to type 2 circularity. Furthermore, considering the 
quality of training data, we propose that negative samples used in CHASM and CanDrA 
fail to represent the broad spectrum of passenger mutations. 

CDMPred demonstrated the highest comprehensive predictive capacity among the 
general-disease deleterious mutation predictors, followed by CADD, Polyphen-2, and 
REVEL. Interestingly, these methods also surpassed the second-best predictor specific 
to cancer. PolyPhen-2 achieved an AUPR of 0.75 and a sensitivity of 0.83, indicating a 
relatively higher predictive ability than CDMPred for positive samples. However, in 
both the positive and negative samples of the independent test set, numerous predictions 
made by PolyPhen-2 were classified as "positive", potentially corresponding to a range 
of diseases rather than solely cancer drivers [58]. For instance, one of the true positives 
predicted by PolyPhen-2, “GATA2:p.R398W”, is associated with acute myeloid 
leukemia and alveolar proteinosis [59, 60].  

Furthermore, one of the false negatives predicted by PolyPhen-2, 
“HMBS:p.D359N”, is associated not only with cancer but also with acute intermittent 
porphyria [61, 62]. Therefore, we directed our attention to the genes corresponding to 
the actual negative and positive categories and the false negative and positive categories 
in the PolyPhen-2 predictions. We conducted enrichment analysis using the online tool 
DAVID to validate the suppositions mentioned above [63]. We gathered the pathways 
exclusively associated with general diseases, excluding cancer, and subsequently 
calculated the adjusted P-value (< 0.05) using the hypergeometric test followed by the 
Benjamini-Hochberg test. Upon mapping the enrichment results at the mutation level, 
65% of the results were associated with diseases present in both the true negatives and 
true positives of the PolyPhen-2 predictions. In comparison, 54% were associated with 
diseases present in both the false negatives and false positives of the PolyPhen-2 
predictions. In conclusion, these findings support the presence of a systematic bias in 
driver mutation prediction by PolyPhen-2, even among general disease predictors. 
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CDMPred utilizes high-quality passenger mutations from dbCPM to distinguish 
between cancer missense driver mutations and passenger mutations. The results 
demonstrate that CDMPred achieved superior performance compared to various state-
of-the-art methods for cancer-specific and general diseases. While our method offers 
significant insights, it has limitations. First, the curated datasets exhibit inherent biases, 
acknowledging that a mutation’s role as a driver or passenger mutation can vary with 
tumor microenvironments, as noted in recent literature [7, 64]. Therefore, this 
introduces selection and information bias in our supervised learning model. Second, 
our current method lacks the exploration of advanced machine-learning techniques. 
Recent studies have demonstrated that deep learning and protein language models could 
enhance performance in identifying pathogenic missense mutations [65, 66]. 

Conclusions 
The predictive performance of machine learning methods relies heavily on the quality 
of the training data. Consequently, including well-defined positive and negative 
samples of known instances is crucial. This study introduces CDMPred, a novel 
predictor that distinguishes cancer missense driver mutations from passenger 
mutations. Specifically, high-quality passenger mutations from dbCPM, chosen for 
their superior representativeness in modeling the diverse range of passenger mutations, 
were utilized as negative samples in the training set. The results demonstrated that 
incorporating high-quality passenger mutations through an ensemble learning method 
enhanced the accuracy of algorithms in predicting driver mutations in human cancer. 
In the future, our research will expand to include a broader collection of experimentally 
verified negative samples and explore the utilization of ensemble deep learning 
methods further to refine the predictive model [67, 68].  
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