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ABSTRACT
Link prediction (LP) is a task for the identification of potential, missing and spurious
links in complex networks. Protein-protein interaction (PPI) networks are important
for understanding the underlying biological mechanisms of diseases. Many complex
networks have been constructed using LP methods; however, there are a limited
number of studies that focus on disease-related gene predictions and evaluate these
genes using various evaluation criteria. The main objective of the study is to
investigate the effect of a simple ensemble method in disease related gene predictions.
Local similarity indices (LSIs) based disease related gene predictions were integrated
by a simple ensemble decision method, simple majority voting (SMV), on the PPI
network to detect accurate disease related genes. Human PPI network was utilized to
discover potential disease related genes using four LSIs for the gene prediction. LSIs
discovered potential links between disease related genes, which were obtained from
OMIM database for gastric, colorectal, breast, prostate and lung cancers. LSIs based
disease related genes were ranked due to their LSI scores in descending order for
retrieving the top 10, 50 and 100 disease related genes. SMV integrated four LSIs
based predictions to obtain SMV based the top 10, 50 and 100 disease related genes.
The performance of LSIs based and SMV based genes were evaluated separately by
employing overlap analyses, which were performed with GeneCard disease-gene
relation dataset and Gene Ontology (GO) terms. The GO-terms were used for
biological assessment for the inferred gene lists by LSIs and SMV on all cancer types.
Adamic-Adar (AA), Resource Allocation Index (RAI), and SMV based gene lists are
generally achieved good performance results on all cancers in both overlap analyses.
SMV also outperformed on breast cancer data. The increment in the selection of the
number of the top ranked disease related genes also enhanced the performance
results of SMV.

Subjects Bioinformatics, Computational Biology, Molecular Biology, Data Mining and Machine
Learning
Keywords Link prediction, Biological network, Local similarity based indices, Ensemble learning,
Bioinformatics, Gene Ontology analysis

INTRODUCTION
Cancers are mostly polygenic diseases, which are caused by multiple genes that encode
proteins unusually (Sharma & Vella, 2017; Tenesa & Haley, 2013). Essential cellular
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functions and biological processes are regulated by proteins and their interactions.
Protein-protein interaction (PPI) networks contain relations between proteins, where
proteins are presented as nodes and relations between proteins are presented as undirected
edges. The perturbation on PPI networks can change optimal structure of biological
functions and processes in the cell, which causes various complex diseases (Chu & Chen,
2008).

Prioritization of genes from PPI networks are utilized to discover potential disease
related genes (Li et al., 2014; Gentili et al., 2022; Azadifar & Ahmadi, 2022; Luo & Liang,
2015). The validation of molecular relations in wet lab experiments is an expensive and
time consuming work (Feng, Zhang & Shi, 2020). PPI networks, which may consist of
invalidated interactions, can have high false positive and false negative interactions (Lei &
Ruan, 2013). Computational techniques lead to discover novel disease related genes on PPI
networks. The usage of link prediction (LP) algorithms can construct different types of
networks such as social networks (Gou & Wu, 2022; Wang et al., 2023), PPI networks
(Long et al., 2022; Yuen & Jansson, 2023), drug-disease interaction networks (Zhang et al.,
2022; Sadeghi, Lu & Ngom, 2022), metabolic networks (Ekkers et al., 2022), scientific
collaboration networks (Lande et al., 2020; Kim & Diesner, 2019), and other type of
homogeneous or heterogeneous networks (Lim, Jhanjhi & Abdullah, 2019; Lim, Abdullah
& Jhanjhi, 2021).

Kumar et al. (2020) classified LP algorithms into four main categories, which were
similarity based algorithms, probabilistic and maximum likelihood based (PML)
algorithms, dimensionality reduction based (DRB) algorithms, supervised based
algorithms. Early studies of LP algorithms asserted that if two genes in PPI networks share
similar topological features, they are likely to interact with each other (Yang et al., 2015).
Similarity based algorithms exploit node, path or hybrid of node and path similarity
metrics to predict new, missing or spurious links (Mutlu et al., 2020). Node-based
similarity algorithms are called local similarity indices or common neighbors-based
algorithms (Kumar et al., 2020;Wu et al., 2022) hypothesize that more common neighbors
between nodes lead to a greater tendency for association between these nodes. Local
similarity indices can also take into account the degree of nodes. Common neighbors
(CN), the Jaccard Index (JC), Adamic-Adar (AA), Preferential Attachment (PAC),
Resource Allocation Index (RAI), the Sorensen Index, the Salton Index, CAR-based
indexes, the Hub Promoted Index, and the Leicht–Holme–Newman Local Index are some
commonly used local similarity indices (Mutlu et al., 2020; Lü & Zhou, 2011). Path based
similarity techniques, which are also called global similarity indices, intend to solve the
problem of local based approaches, which may not capture whole topological features of
complex networks. Global similarity indices take into account paths between nodes on
entire network, which means the detection of more high level topological relations between
nodes. The Katz Index, Local Path Index, Global Leicht–Holme–Newman, Local Random
Walk, RandomWalk with Restart, Average Commute Time, and SimRank are well known
global similarity indices (Yang et al., 2015; Lü & Zhou, 2011; Martínez, Berzal & Cubero,
2016). However, global similarity indices have target to overcome the problems of local
similarity indices, global similarity indices are not too feasible to apply on large networks
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due to their complexity (Lü & Zhou, 2011). Quasi-local similarity indices intend to utilize
the advantages of local and global similarity indices via effective trade-off between them
(Kumar et al., 2020). Local path index, path of length, similarity based on local random
walk and superposed random walk are popular quasi-local similarity indices (Kumar et al.,
2020; Lü & Zhou, 2011). PML algorithms build parameter based model, which were
designed to optimize objective function. Parameters are derived from network data and the
probability of new links between nodes are calculated due to parameters of distribution
(Wu et al., 2022). DRB algorithms map graph and its features into lower dimensional
space. Extensive graphs such as PPI networks are required to overcome the curse of high
dimensionality, which is intended to solve by DRB algorithms. DRB algorithms can be
classified into two main categories: embedding based and matrix factorization based DRB
algorithms (Kumar et al., 2020). Embedding based DRB algorithms encode network
structure into embedding space (Perozzi, Al-Rfou & Skiena, 2014; Grover & Leskovec,
2016). Matrix factorization based DRB algorithms reduce dimension of complex networks
and generate latent space by using techniques such single value decomposition,
non-negative matrix decomposition (Yang et al., 2022). Supervised learning algorithms
(Kumari et al., 2022b;Malhotra & Goyal, 2021) identify features of node pairs and assign a
positive label if the nodes are related. Support vector machines, k-nearest neighbor, naive
Bayes, artificial neural network based classifiers are popular methods in supervised
learning based link prediction algorithms (Wu et al., 2022; Kumari et al., 2022b; Malhotra
& Goyal, 2021).

Genome-wide associations studies (GWAS) focus on thousands of genetic variants
across many genomes to discover disease related locus, which may present potential
disease related genes (Uffelmann et al., 2021). Online Mendelian Inheritance in Man
(OMIM) (Hamosh et al., 2000) and DisGeNet (Piñero et al., 2020) are GWAS based
databases, which contain relations between genes and diseases. However, GWAS are
important for detecting disease related genes, they are time consuming and expensive. LP
algorithms are fast and effective to derive candidate genes for diseases (Lan et al., 2015;
Madeddu, Stilo & Velardi, 2020).

The main objective of the study is to infer candidate disease related genes by using local
similarity indices by rank based approach separately and also applying ensemble technique
on the same similarity indices to derive more robust disease related genes. The study
intends to measure how much a simple ensemble decision of LSIs affects the performance
of the inferred genes. I applied four LSIs for LP to prioritize and discover disease related
genes from a PPI network, the Human Protein Reference Database (HPRD). Gastric,
colorectal, breast, prostate and lung cancers related genes were retrieved from the basic
OMIM database. Four different local similarity indices scores between disease related
genes and other genes were derived from the PPI network. The top 10, 50 and 100 disease
related genes were determined due to ranking of local similarity indices scores in
descending order. The inferred disease related genes of five cancers were validated using
the GeneCard dataset, whose number of disease related genes are more than the basic
OMIM database. GeneCard was utilized in overlap analysis for the validation. The
performance of each local similarity indices was evaluated in overlap analysis. The
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ensemble techniques can enhance the performance of disease related gene predictions with
integration of different LP based disease related gene predictions. Simple majority voting
(SMV) was employed as an ensemble technique on LSIs to derive more accurate and
reliable disease related genes for five cancer types. SMV identified the top 50, 100 and 200
disease related genes by considering the genes that appeared at least twice in the separate
lists of the top 50, 100 and 200 disease related genes generated by the four LSI techniques.
The biological assessment was also employed by using Gene Ontology (GO) terms to
evaluate LSIs and SMV based inferred gene lists. The another objective of the study is to
assess the validity of ensemble-based predictions through GO-term analysis. GO-terms
analysis can help researchers to perceive disease related biological process and functions to
understand underlying mechanisms of diseases. The disease related GO-terms, which were
derived by using OMIM disease related genes in gene set enrichment analysis (GSEA),
were utilized as the validation data in the biological assessment.

The contributions of the study can be summarized as:

. The integration of disease related gene predictions based on LSIs is not well studied area
in LP. The effect of the integration of the predictions of LSIs based on a simple ensemble
decision technique for the disease related gene predictions was investigated.

. The success of the inferred gene lists of five cancers were evaluated to understand how
they were related to cancers based on GO-terms.

. The performance of LSI based gene lists and SMV based gene lists on five cancers were
investigated separately. Their results were also compared to the results of studies in the
literature.

The rest of the article is organized as the following: “Related Works” summarized the
similar studies about LP in the literature. “Materials andMethods” presented materials and
methods part, which includes datasets in the study, LSIs and the proposed method.
“Results” depicted the performance results of the LSIs based gene lists and SMV based gene
lists in overlap analysis. “Discussion” summarized the targets and the findings of the study.
“Discussion” also compared the results of the study to similar studies in the literature and
also presented the limitations of the study.

RELATED WORKS
LSIs were exploited in the predictions of molecular relations on many biological networks.
These studies generally tried to expand candidate disease related genes or build biological
networks with new or missing link predictions. LSIs are also easy to implement in LPs;
thus, they can be utilized for ensemble decision to determine more robust link predictions.

Ghiassian, Menche & Barabási (2015) ranked genes based on their relationship to
disease-specific genes, which were part of disease-related modules, by taking advantage of
the interactome’s interconnection properties. They utilized OMIM and PheGenI databases
for the prediction validation. Diffusion models generally intended to expand candidate
disease related genes on PPI network via random walk and random walk variant models
on graph (Mutlu et al., 2020;Wu et al., 2022; Lü & Zhou, 2011). They also utilized GWAS
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based databases such as OMIM and DisGeNET databases in prediction analysis (Piñero
et al., 2020;Madeddu, Stilo & Velardi, 2020). The most of studies in the literature evaluated
the link prediction algorithms performance via precision, recall, F-measure values, AUC
scores on various complex networks such as the network of Jazz musicians, food web, the
carbon exchange network, email network, Facebook, PPI networks, the network of USA
airline (Liu et al., 2017; Kumari et al., 2022a). When comparing the performance results of
the gene lists based on LSIs and their ensemble inference in this study with those from
other studies in the literature, the results were similar. Liu et al. (2017) applied LP
algorithms to predict the missing links in 15 different complex networks. In the study (Liu
et al., 2017), four local indices and four global indices were applied for the missing link
prediction. The study divided the original datasets into 90% train data and 10% test data
for the cross validation to calculate precision and other performance metrics. Kumari et al.
(2022a) used four global similarity indices to determine relations between nodes to build
communities. The relation predictions of five different communities were combined to
obtain final community for four real networks. Zhao et al. (2011) ranked candidate disease
genes using gene expression data and the PPI network. True positive rates (TPR), false
positive rates (FPR) and receiver operating characteristic (ROC) metrics were utilized for
the performance evaluation in their study. Another comprehensive study (Martínez,
Berzal & Cubero, 2016) applied local, global and quasi-local similarity indices to make
comparison of the performances of different metrics on seven complex networks, which
also contain protein-protein interaction network of budding yeast (YST). This extensive
survey emphasized the strength of local similarity indices in complex network. The recent
studies (Kumar et al., 2020; Kumari et al., 2022a) worked on complex networks, which did
not cover PPI networks, also analyzed the link prediction performance results using
precision, recall and F-measure values. Lee & Tukhvatov (2018) exploited LSIs on social
media network, VKontakte, to compare the local similarity metrics via precision, recall and
F-measure performance evaluation metrics. Kumar et al. (2020) worked on the commonly
used complex networks, which some of them were also used in Liu et al.’s (2017) work, and
he found significantly lower precision and recall values.

Zhang, Tong & Wu (2020) developed a novel linear model for integrating various types
of LSIs and employed two typical model-averaging approaches, which were typical model
estimators for the model selection, Akaike information criteria, and Bayesian information
criteria. Zhang, Tong & Wu (2020) applied their proposed model with LSIs in six well
known complex networks. Their selection method slightly outperformed in complex
networks. Chiu & Zhan (2018) constructed an input feature vector by utilizing LSIs. Chiu
applied a stochastic learning weak estimator (SLWE) tried to estimate link existence
probabilities between nodes in dynamic networks, where nodes and edges were inferred by
LSI based feature vector. If a node was inferred by any LSI, then it was labeled as 1 by
SLWE for link prediction classification in the study. This study investigated the link
prediction in dynamic networks and employed the proposed model in three networks and
to evaluate the performance of the proposed model the studies used precision, recall, and
AUC scores.Wu et al. (2019) employed the OrderedWeighted Averaging (OWA) operator
as a serial ensemble strategy to enhance link prediction performance with using nine LSIs.
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Wu ranked nine LSIs based on precision scores of their predictions and some LSIs based
predictions were eliminated by OWA operator. Qiu et al. (2020) utilized LSIs to extract
edge features from two bitcoin datasets to develop tree based classifiers to determine
accurate relations in directed graph.

MATERIALS AND METHODS
The datasets of the study, LSIs, and the proposed methodology were introduced in
materials and methods section.

Datasets
The Human Protein Reference Database (HPRD, Release 9), Online Mendelian
Inheritance in Man (OMIM), the GeneCard dataset, and GO-terms were exploited in this
study. The HPRD database (Keshava Prasad et al., 2009) consists of 8,603 unique proteins
which have 44,376 protein-protein interactions. HPRD presents post-translational
modifications interaction networks and disease association for each protein in the human
proteome (Keshava Prasad et al., 2009). After the advancements in high throughput DNA
sequencing technology, single nucleotide polymorphisms (SNPs) across humans can be
revealed by GWAS. GWAS for human use the entire genome of hundreds of thousands of
humans to detect disease causing mutations (Hamazaki et al., 2017). The OMIM database
(Hamosh et al., 2000) was created using GWAS in which many human disease-gene
relations are presented. EnrichR (Kuleshov et al., 2016) is an online gene set enrichment
analysis tool, which also contains a collection of biological databases such as the OMIM
database. OMIM database was directly generated from the NCBI’s OMIMMorbid Map in
EnrichR (Chen et al., 2013).

To validate the inferred gene list, this study utilized the GeneCard (Safran et al., 2010)
dataset of gene-disease relations, which was constructed using different bioinformatics
databases from the literature. GeneCard retrieved disease-associated genes from NCBI and
UniProt, as well as disease related genes was also obtained using gene expression data and
GWAS data. GeneCard disease-gene list contains 103, 135, 228, 91, 131 disease-related
genes for gastric, colorectal, breast, prostate and lung cancers, respectively. I also evaluated
the performance of the LSIs and SMV based gene lists using the GO-terms, which were
retrieved by g.Profiler python package (version 1.0.0) (Kolberg et al., 2023).

Local similarity indices
A graph can be represented as G = (V, E), where V is a set of nodes and E is a set of
edges indicating relations between nodes. Proteins are nodes and relations between
proteins are edges in PPI networks. LSI-based methods take into account the topological
structure of graph, which may be such as number of common neighbors, node degree, the
shortest distance of nodes in PPI network, to predict new or missing link between
nodes. The study presented the set of adjacent nodes of Vx as Г(Vx), which indicates the
number of neighbors of node x. The degree of node, Vx, was given as kx, and the
similarity score between node x and node y was also presented as S(x, y) in the
notation of the article. Preferential Attachment (PAC), the Jaccard Index (JC), Adamic-
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Adar (AA), and the Resource Allocation Index (RAI) were utilized as LSIs to predict
potential relations between nodes.

Preferential Attachment Index
Biological networks generally present scale free topology, where many of nodes have few
neighbors and few of nodes have numerous neighbors. The degree of nodes in scale free
topology networks follow a power low distribution. The Preferential Attachment Index
(PAC) (Barabási & Albert, 1999; Xie, Zhou &Wang, 2008) assumes that if a node has high
degree than it has tendency to interact to other nodes. PAC leads to have less number of
probable relations for nodes, which have lower degree. PAC is a favored metric due to its
simplicity and computational time.

S x; yð ÞPAC ¼ kxky (1)

PAC based similarity score calculation is given in Eq. (1). PAC based similarity score is
obtained via multiplication of degree of node x, kx, and node y, ky.

Adamic-Adar Index
The high number of common neighbors of two nodes with low degree values increases the
value of the Adamic-Adar based similarity score, which was first employed by Adamic &
Adar (2003) for comparison of web pages. The Adamic-Adar Index (AA) score is
logarithmically penalized due to the degree of common neighbor nodes. The calculation of
AA based similarity score between node x and node y is presented in Eq. (2).

S x; yð ÞAA ¼
X

z2� xð Þ\� yð Þ

1
log kz

(2)

The AA based similarity score utilizes common neighbor nodes of two nodes, x and y,
which are presented as z is Eq. (2). The high degree of common neighbor nodes, kz ,
decreases the AA similarity based score.

Jaccard Index

The Jaccard Index (JC) is a normalized form of common neighbor metric (Jaccard, 1901).
JC assumes that if the ratio of the number of common neighbors of node x and node y to all
neighbors of the two nodes is close to one, JC based similarity score become higher.
Equation (3) presents the calculation of JC based similarity score between node x and node
y.

S x; yð ÞJC ¼ j� xð Þ \ � yð Þ j
j� xð Þ [ � yð Þ j (3)

Resource Allocation Index

The Resource Allocation Index (RAI) similarity score is similar to AA similarity score,
where they differ from each other via penalization. RAI similarity score between node x
and node y is also calculated using common neighbor nodes with their degree values. RAI
does not apply the logarithmic penalization, which leads to punish the high-degree
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common neighbors more heavily than AA (Ou et al., 2007; Zhou, Lü & Zhang, 2009). RAI
similarity score calculation is presented in Eq. (4).

S x; yð ÞRAI ¼
X

z2� xð Þ\� yð Þ

1
kz

(4)

However, AA and RAI performed similar performance results on smaller size networks,
RAI outperformed on networks, where it contains high degree of nodes (Kumar et al., 2020).

Simple Majority Voting
Simple Majority Voting (SMV) is a well-known ensemble learner, which intends to
integrate predictions of different methods (May, 1952;Hayat et al., 2022). SMV assigns the
equal weights, which is equal to one, for predictions of methods separately. If half or more
than half of the number of the methods infer any prediction, SMV determines the
prediction as a valid prediction. Predictions made by less than half the number of methods
are eliminated by SMV. The weights of SMV based prediction is two, which is the half of
the number LSIs in the study. If the total weight of a prediction is two or more than two,
the prediction is added into SMV based prediction list. Predictions made by less than half
the number of methods are eliminated by SMV.

The proposed system
The discovery of disease specific genes is essential to develop disease related drugs for
disease treatment. The study intends to measure how well LSIs and ensemble decision
based results of LSIs predict disease related genes. First HPRD, a PPI database, was
exploited to build a PPI network as presented in Fig. 1.

PAC, AA, JC and RAI similarity scores between all genes, which are presented as nodes in
HPRD network, were calculated. HPRD network contains all types of genes some of them
are related to disease and others are not. Each gene pair has four similarity scores, which
indicate their potential relations. If a gene pair has a high similarity score, there is a likely
relation between these two genes. After calculating the similarity scores, the gene pairs were
ranked separately in descending order according to their four local similarity scores.

The study hypothesized that genes with a high local similarity score with any disease
related genes associated with the disease. The basic OMIM database was exploited to
obtain disease related genes which are presented in Table 1.

The basic OMIM database contains 11, 40, 28, 30 and 21 gastric, colorectal, breast,
prostate and lung cancers related genes respectively. The probable disease related genes
were determined based on their scores across four LSIs, along with all disease-related
genes, as presented in Table 1. To clarify, if a gene has the top 10, 50 or 100 highest score
between any disease related genes then it is selected for the disease specific gene list. This
selection procedure led to infer 12 disease-related gene lists for five diseases separately due
to the multiplication of the number of the top selection criteria, which are 10, 50, and 100,
and the number of LSIs which are AA, PAC, JC, and RAI. A total of 60 different gene lists
were created due to multiplication of the number of disease, the number of local similarity
scores and the number of top selection choices.
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In addition, I applied a simple ensemble technique, SMV, utilizing the scores of LSIs on
gene lists of five diseases, which are determined according to the top 10, 50, or 100 highest
local similarity scores separately. SMV determines SMV based disease related genes for

Figure 1 The flowchart of the proposed system. Full-size DOI: 10.7717/peerj.17975/fig-1
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each disease using genes that are inferred by at least two LSI based gene lists. The threshold
value is determined as two due to the half of number of local similarity metrics, which is
equal to four. For instance, if gene X is in at least two of four LSIs based gene lists related
gastric cancer, which were created by the top 10 local similarity scores, SMV adds gene X
for SMV based gene list related to gastric cancer that is formed due to the top 10 local
similarity scores. There were 15 SMV based gene lists were formed due to the
multiplication of the number of diseases, five, and the number of top selection choices,
three.

Figure 2 depicted the pseudocode of SMV based link prediction. OMIM disease gene
list, other genes out of from the OMIM disease gene list and the number of LSI techniques
were presented R, O, and I respectively in Fig. 2. Algorithm begins with the inference of
PPI network from HPRD database. Four LSI techniques determine the similarity scores
between genes of R and O lists, which are presented as LPindices;i, to measure the association
between potential disease related genes and disease related genes on HPRD network. All
four LSI techniques based predictions were ranked in descending order using RA rank
function in Fig. 2. LSI techniques based ordered lists were aggregated into LPfinal
separately. The number of ranked genes, rv, was also presented 10, 50 and 100 in Fig. 2.
The last loop investigated how many times potential disease related genes were involved in
LPfinal, where if the number of any gene was equal to or greater than two, it was added into
SMV based prediction list.

The study inferred 60 separate gene lists and 15 SMV based gene lists using LSIs for five
diseases. Overlap analysis was applied to evaluate the performance of the inferred gene
lists. Overlap analysis with the GeneCard dataset and biological assessment were exploited
to evaluate disease related gene lists.

RESULTS
First, the overlap analysis with the GeneCard dataset and biological assessment with
GO-terms were exploited in the performance evaluation part. The performance of the
LSIs-based and SMV-based gene lists in the overlap analysis and biological assessment
parts was evaluated using the performance metrics. This chapter started by outlining the

Table 1 Diseases and disease related genes.

Disease name Disease related genes

Gastric cancer IL1RN, IL1B, IRF1, KLF6, APC, PIK3CA, CASP10, CDH1, ERBB2, MUTYH, FGFR2

Colorectal
cancer

CRCS6, CRCS7, DCC, MLH1, CRCS5, CRCS2, PLA2G2A, AXIN2, BRAF, MSH2, SMAD7, MLH3, MCC, TGFBR2, CRCS8,
PDGFRL, CRCS9, TLR2, HMPS1, APC, PIK3CA, DLC1, BUB1B, MSH6, BAX, TLR4, FGFR3, TP53, CTNNB1, CRCS11, CRCS10,
FLCN, NRAS, CCND1, EP300, CHEK2, AKT1, BUB1, PMS2, PMS1

Breast cancer NQO1, XRCC3, BRCD2, PALB2, ESR1, RAD51A, PPM1D, PIK3CA, ATM, SLC22A1L, TP53, KRAS2, TSG101, PHB, HMMR,
RB1CC1, BRCA2, BRCA3, BRIP1, CASP8, RAD54L, CDH1, CHEK2, BRCD1, AKT1, BRCATA, BCPR, BARD1

Prostate cancer MSR1, ZFHX3, ELAC2, HPCQTL19, AR, EHBP1, KLF6, HPC3, HPC5, HPC4, HPC7, HPC6, HPC9, MAD1L1, HIP1, HPC11,
HPC10, RNASEL, PCAP, CD82, HPC15, HPC14, HPCX2, PTEN, BRCA2, HPCX1, MXI1,CHEK2, EPHB2, MSMB

Lung cancer TSG11, CHRNA3, CHRNA5, DDX26, MPO, BRAF, DLEC1, LNCR1, EGFR, RASSF1, IRF1, LNCR4, CASP8, LNCR3, CYP2A6,
PIK3CA, PPP2R1B, SLC22A1L, ERCC6, MAP3K8, KRAS2
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performance metrics. The study then reported the performance findings from the
GeneCard overlap analysis and the biological evaluations of gene lists based on SMV and
LSIs, respectively.

Performance metrics
Overlap analysis evaluated the performance of the inferred gene lists via the GeneCard
dataset, which was exploited as the validation dataset. If a gene in LSI based inferred gene

Input:

HPDR: Human Protein Interac�on Database

O= OMIM disease gene list,  o= |O| the number of genes in O

R= Other genes, not belong to the O list, r= |R, the number of candidate genes

I, the number of LSI techniques, which is four in the study

rv, rank value  rv є {10, 50, 100}

, LSI scores for each LSI techniques, i є {PAC, AA, JC, RAI}

LSI (net, i,k,p) Calcula�on of LSI score between gene k and gene p by LSI technique i on net

RA, is rank func�on in descending order

, Ranked list of LSI,  i є {PAC, AA, JC, RAI}

Aggrega�on of all ranked list of LSIs,  i є {PAC, AA, JC, RAI}

SMV, SMV based predic�ons

Output: 

SMV, SMV based interac�ons list

begin: 

net = create PPI network from HPRD

= {}

for i=1 to len (I) do

for j=1 to len (R) do

for k=1 to len (O) do

, = (net, i, j, k)

end

end

end

for i=1 to len (I) do

, = ( , )

+= ,

end

for  i=1 to  rv  do

if in ≥ 2  

add into SMV

end

end

end

Figure 2 Pseudocode of SMV based link prediction. Full-size DOI: 10.7717/peerj.17975/fig-2
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list for the specific disease is also in the GeneCard dataset, which contains the specific
disease-gene relations, then it was determined as a true positive (TP) in overlap
analysis. Otherwise, it was labeled as false positive (FP). If a gene in the GeneCard
dataset for the specific disease is not inferred by a LSI based gene list for the same disease,
then it was labeled as false negative (FN) in overlap analysis. Precision, recall and
F-measure metrics are the well-known performance evaluation metrics, which were
exploited in the overlap analysis of the study. The calculation of three evaluation metrics
was presented in Eqs. (5)–(7). The genes in the GeneCard gene list is limited, which may
lead to retrieve low TP values. This situation led to obtain the low performance results in
overlap analysis.

Precision ¼ TP
TP þ FP

(5)

Recall ¼ TP
TP þ FN

(6)

F �measure ¼ 2 � Precision � Recall
Precisionþ Recall

(7)

The biological assessment also applied overlap analysis by using GO-terms. First,
disease related GO-terms, which were retrieved by using OMIM disease gene list, were
exploited as validation data of the biological assessment. If a GO-term was inferred by LSI
based or SMV based gene list in GSEA and it is also in GO-terms in validation set, it was
determined as TP in the biological assessment based overlap analysis. Otherwise, it was
labeled as FP. If a GO-term in validation set is not inferred by LSI-based or SMV based
gene lists in GSEA, then it was determined as FN in the biological assessment.

ROC curve is a visual representation technique to assess the classification
performance of models across various threshold values. ROC curve also provides a
successful performance evaluation in classification processes that are difficult to
evaluate due to class distribution and imbalanced data problem. ROC curves can be used to
compare how well various approaches perform in terms of sensitivity and specificity
when evaluating the results of the overlap analysis. Sensitivity, recall or true positive rate
(TPR) is the ratio of TP to all actual positive samples. Specificity is the ratio of true
negative (TN) to all actual negative samples. ROC curve utilizes TPR and false
positive rate (FPR), which is equal to 1-specificity, to plot ROC curves. The area under the
curve (AUC) score indicates how well classification was performed. If AUC score is close
to one, then the performance of model is successful. The high AUC score indicates high
TPR and low FPR values across different threshold values, which determine a high
proportion of actual positives and a low proportion of actual negative samples as
positives samples.
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The performance evaluation of the LSI-based and SMV based gene
lists using the GeneCard dataset in overlap analysis
The four LSI values for all possible gene pairs on HPRD PPI network were derived as a first
step in the study. The study focused on the relations of disease related genes, which are in
basic OMIM gene-disease gene database. If a gene has high LSI score with any disease
related gene from basic OMIM database by ranking, then it is regarded as potential disease
related gene. In this section, the study evaluated the performance of LSI based inferred
genes, which have relations with basic OMIM gene-disease list. Figure 3 presented the
individual performance results of LSI based and SMV based inferred genes in overlap
analysis.

The stacked bar chart in Fig. 3 presented the precision, recall and F-measure scores of
the top 10, 50 and 100 inferred genes by LSIs in overlap analysis for five cancer types. The
worst performance results in overlap analysis were generally obtained from JC similarity
based genes in four of five cancer types. JC does not apply any penalization like RAI and
AA, which may increase the impact of hub genes and lead to poorer outcomes. The
performance outcomes of LSIs-based genes in prostate cancer exhibited the lowest values
among all cancer types. However, the performance results on gastric cancer were generally
higher than the performance results of other cancers. The highest performance results
were achieved by RAI, JC, SMV based inferred genes on gastric, colorectal, and breast
cancer respectively. PAC based inferred genes outperformed on prostate and lung cancers.
With the exception of prostate cancer, it was observed that the F-measure values increased
as the number of genes included in the overlap analysis increased. The highest precision
values were also retrieved when choosing the top 10 inferred genes. The precision value
significantly increased if any of the top 10 LSI-based predicted genes were also found in the
GeneCard dataset. Based on the performance results derived from SMV, an analysis of
F-measure values revealed that, with the exception of prostate cancer, SMV was in the top
two most successful algorithms across all four cancer types. The all numeric values of
overlap analysis with GeneCard were given in Table S1.

The study also depicted the effect of the ensemble approach by comparing the best and
worst performance results obtained from LSI-based methods with the performance results

Figure 3 Individual performance evaluation of LSI and SMV based genes. Full-size DOI: 10.7717/peerj.17975/fig-3
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from SMV in Fig. 4. SMV utilized four LSIs-based genes, thus the performance results of
SMV were expected to range between SB and SW in overlap analysis. The highest
F-measure values according to the genes selected by the ranking of the top 10 and 50 genes
were determined with SB based genes. However, the highest F-measure values were
obtained from SMV based genes on breast cancer when taking into account the top 100
ranked genes. Furthermore, the highest F-measure values of SB based genes were too close
to results of SMV based gene lists on breast cancer when the number of the top ranked
genes was determined as 100. These findings were important for emphasizing the
efficiency of the ensemble approach. The increment in the number of ranked genes also
enabled SMV to predict more reliable and accurate disease related genes.

The performance of the overlap analysis between disease-related genes and LSI-and
SMV based genes for each cancer type was also evaluated with ROC curves in Fig. 5. The
study employed only three threshold values, which were top 10, 50, and 100 ranked genes,
to measure the performance of each LSI-based gene list for five cancers. The optimal ROC
curves could not be plotted efficiently due to the limited threshold values and low
performance results in overlap analysis by using the GeneCard dataset. Figure 5 depicted
that all AUC scores under ROC curves of LSI-based and SMV based genes in overlap
analysis was close to 0.5, which indicated that the success of the genes obtained with the
LSI-based and SMV based gene lists in the overlap analysis was close to the success of the
random prediction.

The highest AUC scores were retrieved by the inferred gene list on gastric cancer. SMV
did not significantly enhance the performance of overlap analysis for all five cancer types.
The results of the overlap analysis with the GeneCard dataset emphasized that high FP,
FN, and TN values led to have low AUC scores under ROC curves.

The performance evaluation of the LSI-based and SMV based gene
lists using GO terms
Genes associated with the same disease have tendency to be part of similar biological
processes, biological functions and sub-cellular localizations (Cingiz, Biricik & Diri, 2021;
Cao et al., 2024; Zhang et al., 2024). The GO project comprises three structured ontologies
that categorize gene products based on their biological processes, molecular functions and
cellular components. The GO represents product attributes through specific terms called
GO-terms. GO-terms group genes involve in the same biological processes, activities or
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Figure 4 F-measure values of single best (SB), single worst (SW) and SMV results. Full-size DOI: 10.7717/peerj.17975/fig-4

Cingiz (2024), PeerJ, DOI 10.7717/peerj.17975 14/27

http://dx.doi.org/10.7717/peerj.17975/fig-4
http://dx.doi.org/10.7717/peerj.17975
https://peerj.com/


cellular structures. The biological process and molecular function ontology terms provide
insight into the activities or events that a gene product is involved in. Cellular component
terms specify the location within a cell where a gene product functions. The performance
of LSIs-based and SMV based gene lists were assessed by utilizing GO-terms. Figure 6
presented how GO-terms were used for the performance evaluation of inferred gene lists.

Figure 5 ROC curve analysis of LSIs and SMV based inferred genes in overlap analysis.
Full-size DOI: 10.7717/peerj.17975/fig-5
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I utilized the OMIM disease gene list, which was also employed to infer the LSIs-based
gene list for five cancers on the HPRD dataset, to identify significant cancer related
GO-terms. The g: Profiler python package (Kolberg et al., 2023) (version 1.0.0) was applied
to identify significant GO-terms from the five cancer gene lists through GSEA. In g:
Profiler, p-values were adjusted using the Bonferroni correction method, with an adjusted
p-value threshold of <0.05, which was also used as threshold value in the study. After the
identification of significant disease related GO-terms, LSI-based and SMV based gene lists
were exploited to determine the GO-terms of inferred gene lists by LSIs and SMV. GSEA
was also employed to derive the GO-terms of all LSI-based and SMV-based gene lists. The
GO terms from LSI-based and SMV-based gene lists were evaluated by comparing them
with disease-related GO terms derived from the OMIM disease gene list in overlap
analysis. If a GO-term of LSI or SMV base gene list was also in GO-terms of disease-related
GO-terms, it was labeled as TP. Otherwise, it was labeled as FP. If a disease related GO-
term was not overlapped in GO-terms of LSI or SMV base gene list, then it was labeled as
FN. The study evaluated the performance of GO-terms of LSIs-based and SMV based gene
lists using precision, recall, F-measure, and ROC curves. Figure 7 depicted the performance
of GO-terms of LSIs-based and SMV based gene lists.

The performance results of LSIs and SMV based gene lists by using GO-terms, which
can be accessible in Table S2, presented higher than the performance results of LSI and
SMV based gene lists by using the GeneCard dataset. RAI outperformed on gastric,
colorectal, and lung cancer data when the top number of was selected as 50 or 100. RAI
achieved more than 0.5 F-measure values, which were 0.57, 0.62, and 0.54 for gastric,
colorectal, and lung cancer respectively. The performance results of AA were similar to
those of RAI across four cancer types, except in the case of prostate cancer, where AA
achieved the highest F-measure score, 0.47, when the top-ranked value was set to 100.
SMV presented the highest F-measure score, 0.52, on breast cancer if the top 100 ranked
genes were selected. The performance of LSIs and SMV based gene lists were also higher on
gastric and colorectal cancer data. The SMV based gene lists demonstrated performance
close to the highest values across all cancer types. The increment of the top ranked genes in
overlap analysis of GO-terms also enhanced the performance results. The lowest F-
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Figure 6 LSI-based and SMV based gene lists using GO terms.
Full-size DOI: 10.7717/peerj.17975/fig-6
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measure values were retrieved by LSI and SMV based genes on all cancer types when the
top ranked gene number was selected as 10. I also analyzed the effect of the ensemble
approach by comparing the best and worst performance results of the LSI-based methods
with the performance results of SMV by utilizing GO-terms in Fig. 8.

The F-measure values of SMV based gene lists varied between the highest and lowest F-
measure values as expected. However, the highest results on breast cancer data was also
achieved by SMV when the number of top ranked gene was set to 100. The performance
results of SMV closely approached those of SB, particularly when the number of
top-ranked genes was set to 100. These findings are important for emphasizing the
efficiency of the ensemble approach. The increment in the selected genes in GSEA led to
obtain more disease related GO-terms from the SMV based gene lists. The increment in

Figure 7 Individual performance evaluation of LSI and SMV based genes using GO-terms. Full-size DOI: 10.7717/peerj.17975/fig-7
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the SMV based selected genes also increased gene diversity, which also enabled to retrieve
the accurate and disease related GO-terms.

The performance of the overlap analysis between GO-terms of disease-related genes and
GO-terms of LSIs and SMV based genes for each cancer type was also evaluated with ROC
curves in Fig. 9. The top 10, 50, and 100 ranked genes were exploited to measure the
performance of GO-terms of each inferred based gene list for five cancers. AA

Figure 9 ROC curve analysis of LSIs and SMV based inferred genes by GO-terms.
Full-size DOI: 10.7717/peerj.17975/fig-9
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outperformed on gastric, colorectal, prostate, and lung cancer data with 0.797, 0.798, 0.767,
and 0.78 AUC scores. The performance of RAI on the same cancer types were also close to
the performance of AA with 0.763, 0.783, 0.687, and 0.751. SMV performed the highest
AUC score on breast cancer data. PAC and JC generally obtained significantly lower AUC
scores than AA, JC, and SMV on all cancer types. When comparing the disease-related
GO-terms obtained using the SMV-based gene lists with those derived from four
LSI-based methods, it was observed that the SMV results closely approximated the highest
AUC scores achieved by the LSI-based methods. The study concluded that SMV slightly
enhanced the performance of inferred gene lists and it approximated the best individual
LSI-based performance results. The AUC scores presented in Fig. 9 aligned closely with the
F-measure values shown in Fig. 7, indicating consistent performance across these metrics.

DISCUSSION
The identification of disease-related genes is a significant issue in bioinformatics. A single
nucleotide mutation in genes may cause many diseases. However, some of the complex
diseases such as cancers, diabetes mellitus can be related more than one specific gene.
There can be various molecular relations, which disrupt the usual structure of biological
functions and processes, can cause such complex diseases. With developments in
sequencing technology, various biological datasets enable researchers to infer molecular
relations to determine the disease related genes. However, GWAS are important for
detecting disease related genes, they are time consuming and expensive.

The main objective of this study is to assess the effect of a simple ensemble approach,
which combines the disease related gene predictions from various LSIs, on the accuracy of
disease related gene prediction. The four local similarity indices were applied on HPRD to
infer potential disease related genes of gastric, colorectal, breast, prostate and lung cancers.
It also allowed to compare the performance of four LSIs based predictions on five different
cancer types. The study intended to enhance performance of disease related gene
prediction using ensemble method, SMV. The SMV algorithm aggregates all predictions of
LSIs based predictions and if any predicted gene is inferred by at least half of four LSIs
based predictions then it was determined as disease specific gene. The gene prediction for
diseases were evaluated with two separate ways. First, the GeneCard dataset was exploited
as validation dataset in the overlap analysis for evaluating the performance of LSI-based
and SMV based gene lists. Second, disease related GO-terms were retrieved by using
OMIM disease gene list in GSEA to measure how much GO-terms of LSI-based and SMV
based gene lists were overlapped with disease related GO-terms.

LP studies in the literature intend to discover potential, missing and spurious links in
complex networks. The study presented the performance results of LP prediction studies in
gene prediction and complex networks in Table 2 to compare the performance results. The
researchers of the study, prediction models, validation type for the performance
evaluation, performance metrics, and the performance scores were presented respectively
as columns in Table 2. The studies presented in Table 2 were selected based on the usage of
similar similarity indices, network type, the usage of ensemble techniques for LP, or
validation types to those employed in this study.
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Ghiassian, Menche & Barabási (2015) applied diffusion models on PPI networks to
predict genes associated to diseases; the recall performance of these genes was assessed by
overlap analysis using the OMIM and PheGenI databases, and it was found to be
between 0.05 and 0.3. Liu et al. (2017) and Martínez, Berzal & Cubero (2016) worked
on PPI networks for LP via utilizing LSIs and global similarity indices. In Liu et al. (2017),
the precision results of the eight indices on Yeast PPI network varied from 0.062 to 0.853.
The precision results of the eight indices on human PPI network, Figeys, were changed
from 0.01 to 0.223. The global, local, and quasi-local indices’ performance results on YST
were found by Martínez, Berzal & Cubero (2016) to be extremely close following cross-
validation, with precision values ranging from 0 to 0.1857. Lee & Tukhvatov (2018) found
the highest F-measure value by employing Adamic-Adar indices on VKontakte which is
equal to 0.0077. The proposed model in the study (Zhang, Tong & Wu, 2020) achieved
25.86% precision value; however, RAI performed 25.54% precision values, which was too
close to the performance of the proposed model. Chiu & Zhan (2018) found AUC scores of

Table 2 Performance comparison between literature and our study.

Researchers Model Network type Validation type Performance
metrics

The highest performance
score

Ghiassian, Menche
& Barabási (2015)

Diffusion models PPI network OMIM & PheGenI
(overlap analysis)

Recall, hit rate 0.05–0.3 (recall)

Liu et al. (2017) Local and global
similarity indices

PPI network (Yeast, Human) and
various complex networks

Overlap analysis
(cross validation)

Precision 0.062–0.853 (Yeast)
0.01–0.223 (Human)

Martínez, Berzal &
Cubero (2016)

Local, global and
quasi-local
similarity

PPI network (Yeast) Overlap analysis
(cross validation)

Precision 0–0.1857

Lee & Tukhvatov
(2018)

Local similarity Social network Overlap analysis F-measure 0.007658 (Adamic Adar)

Zhang, Tong & Wu
(2020)

Ensemble local
similarity indices

Yeast and five other complex
network

Overlap analysis
(cross validation)

Precision 0.2586 (for Yeast)

Chiu & Zhan (2018) LP with weak
estimators

Three temporal networks Classification AUC score 0.86–0.986

Wu et al. (2019) Ensemble local
similarity indices

Eight real networks Overlap analysis
(cross validation)

Precision 0.105–0.578 (varied from
network to network)

Our study Four LSI and
integration of LSIs

PPI network (Human) Overlap analysis F-measure,
AUC score

F-measure with GeneCard
(GC, CRC, BC, PC, LC)
[0.11, 0.054, 0.049, 0.02,
0.06]
F-measure with GO-terms
(GC, CRC, BC, PC, LC)
[0.57, 0.61, 0.52, 0.47, 0.54]
AUC scores with GeneCard
(GC, CRC, BC, PC, LC)
[0.54, 0.52, 0.514, 0.508,
0.524]
AUC scores with GO-terms
(GC, CRC, BC, PC, LC)
[0.8, 0.8, 0.72, 0.77, 0.78]
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the proposed model on MathOverflow and Eu-core networks were close to the AUC scores
of LSIs. However, the proposed model significantly increased the performance of
individual LSIs on CollegeMsg, where AUC score of the proposed model is 0.855, however
individual LSIs based AUC score was varied between 0.6 and 0.7. Wu et al. (2019)
emphasized that ensemble approach slightly enhanced the precision scores, which varied
between 0.105 and 0.578 on eight networks. However, the performance of individual LSIs
and the ensemble approach were generally comparable across eight real world networks,
the RA and CN outperformed on certain real networks among eight networks.

The results of the studies in the literatures presented that the performance of LSIs were
close to results of more complex techniques in LP. RAI and AA obtained good results when
comparing more complex algorithms in the literature and this study. PAC, AA, JC, and
RAI were selected to prevent complexity problem for the LPs based integration. The
selection of simple LSIs might decrease the diversity, however, the main target of the study,
which was the investigation of the effect of a simple ensemble method for discovering
disease related genes, was implemented easily.

The results of four local similarity metrics and their integration in this study were
similar to the results from different studies. The performance results in the literature were
also differentiated due to the evaluation process, where some of the studies exploited k-fold
cross validation and others used the most related top n genes for performance assessment.
GeneCard disease-gene relation dataset and disease related GO-terms were utilized as
validation datasets in overlap analysis, thus cross validation wasn’t needed in the study. In
overlap analysis by using GeneCard, the highest F-measure values were obtained via the
inferred gastric cancer genes by RAI as 0.11, the inferred colorectal cancer genes by JC as
0.054, the inferred breast cancer genes by SMV as 0.049, the inferred prostate cancer genes
by PAC as 0.02 and the inferred lung cancer genes by PAC as 0.06. AA and RAI based
generally outperformed on all five cancers and the lowest performance scores were
retrieved by JC based similarity indices. However, the increment of the number of the top
genes also increased the F-measure values, it reduced the precision values on some cancer
types. The highest F-measure values were obtained when the top gene selection is higher,
100. The highest precision values were generally retrieved when the number of related
genes is 10. The study also visualized the performance of the LSI-based and SMV based
gene lists using ROC curves. The AUC scores of these ROC curves were similar to the
F-measure values for both the LSI and SMV methods. However, the AUC scores for the
LSI-based and SMV-based gene lists were close to 0.5, suggesting that the results were
nearly equivalent to random predictions in the overlap analysis with GeneCard. SMV also
could not significantly increase the disease related gene predictions based on AUC scores.
However, the highest F-measure value was derived by SMV based gene list on breast cancer
data.

The study also evaluated the biological performance of gene lists by deriving GO-terms
with GSEA. It measured how well the GO-terms of the LSI-based and SMV based gene lists
were overlapped to disease related GO-terms. The F-measures and AUC scores obtained
from the biological evaluation using GO terms were significantly higher than those derived
from the overlap analysis with the GeneCard dataset. RAI, AA, and SMV based gene lists
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achieved more than 0.5 F-measure values in gastric, colorectal, and lung cancer. AUC
scores of AA, RAI and SMV based gene lists were also higher than 0.75 for the same cancer
types. The ensemble approach approximated the highest F-measure and AUC scores for all
cancer types. SMV based gene list also outperformed on breast cancer data. The study can
conclude that SMV enhanced the performance of inferred gene lists in the overlapping
analysis with GO-terms. The results also emphasized that if the number of genes were
increased, the performance of LSI-based and SMV based gene lists were also increased.
When comparing the performance of the studies in the literature and the current study, the
findings of the study clarified that the simple ensemble techniques have limited effects on
the enhancement for the performance. The similar performance scores were obtained in
this study and other studies in the literature.

The theorical contribution of the study investigated the ensemble learner affect in the
link prediction. The integration of gene predictions of LSIs is not well studied area in link
prediction. Therefore, the study intended to generate new insight to aggregate the gene
predictions of four local similarity indices to infer disease related genes more accurately.
For this purpose, a simple ensemble algorithm, SMV, was employed to retrieve diseases
related genes. The performance of SMV was assessed against the four LSIs in the current
study. To measure the effect of SMV based integration the overlap analysis with the
GeneCard dataset, and also the biological assessment with GO-terms were utilized in the
study. SMV based gene lists achieved good performance in the overlap analysis with GO-
terms. The increment in the number of the top ranked genes also led to obtain better
results using SMV methods on all cancer types according to both overlap and biological
analyses. The diversity of the selected genes was also increased when the number of
selected genes in SMV-based gene lists was high. The high diversity among inferred genes
enabled to reveal more disease related GO-terms by SMV based gene lists.

There are also some limitations of the study. First, the four simple LSIs were applied to
infer disease related gene lists. There are also outstanding link prediction algorithms,
which may be global, quasi-local indices as similarity based indices, probabilistic and
maximum likelihood based approaches (hierarchical random graph, local probabilistic
model, etc.), dimensionality reduction approaches (embedding based, matrix
factorization based, etc.) and other hybrid techniques. The usage of the four LSIs
may lead to obtain similar gene predictions due to the lack of diversity. The selection
of different approaches such as global, quasi-local similarity can increase the
diversity in link prediction. The integration of different types of link prediction
algorithms may increase the performance of the SMV due to the high diversity. For future
work, different types of LP algorithms are employed to increase the diversity of the
predictions. The more sophisticated ensemble decision approaches, such as weighted
ensemble techniques or boosting-based algorithms, are also intended to be applied in
future work. The usage of different PPI networks more than HPRD to apply LP
algorithms may also increase the diversity in LP. The increment in the PPI network
database selection may also enhance the performance of the disease related gene
predictions in future work.
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interaction database for humans. This was active in the first half of 2024, though it was not
accessible for a period of time in 2024. It can be accessed here if the original site is still
unavailable: https://www.hsls.pitt.edu/obrc/index.php?page=URL1055173331.

The OMIM database from EnrichR is available at: https://maayanlab.cloud/Enrichr:
OMIM_Disease.
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Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
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