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Abstract 27 

Amphibians are experiencing severe population declines, requiring targeted 28 
conservation action for the most threatened species and habitats. Unfortunately, we do 29 
not know the basic demographic traits of most species, which hinders population 30 
recovery efforts. We studied one of Madagascar’s most threatened frog species, the 31 
harlequin mantella (Mantella cowanii), to confirm it is still present at historic localities 32 
and estimate annual survival and population sizes. We surveyed eleven of all thirteen 33 
known localities and were able to detect the species at eight. Using a naïve estimate of 34 
detection probability from sites with confirmed presence, we estimated 1.54 surveys 35 
(95% CI: 1.10–2.37) are needed to infer absence with 95% confidence, suggesting the 36 
three populations where we did not detect M. cowanii are now extirpated. However, we 37 
also describe two new populations within the scientific literature for the first time. 38 
Repeated annual surveys at three sites showed population sizes ranged from 13–137 39 
adults over 3–8 years, with the most intensively surveyed site experiencing a >80% 40 
reduction in population size during 2015–2023. Annual adult survival was moderately 41 
high (0.529–0.618) and we recaptured five individuals in 2022 and one in 2023 first 42 
captured as adults in 2015, revealing the maximum lifespan of the species in nature can 43 
reach nine years and beyond. Our results show M. cowanii is characterized by a slower 44 
life history pace than other Mantella species, putting it at greater extinction risk. Illegal 45 
collection for the international pet trade and continued habitat degradation are the main 46 
threats to the species. We recommend conservation efforts continue monitoring 47 
populations and reassess the International Union for Conservation of Nature (IUCN) 48 
Red List status because M. cowanii may be Critically Endangered rather than 49 
Endangered based on population size and trends. 50 

 51 

Introduction 52 

Amphibian species are facing extinction rates at least 22 times faster than the 53 
average rate during the 10 millennia before industrialization, resulting in their status as 54 
the most threatened vertebrate class (Ceballos et al., 2015; Luedtke et al., 2023). Many 55 
species are experiencing severe population declines, leading to widespread range 56 
contractions through extirpation (e.g., Beyer & Manica 2020; Granados-Martínez et al. 57 
2021; Patla & Peterson 2022). Habitat loss is the largest threat to amphibians, but 58 
infectious diseases, invasive species, climate change, overexploitation, and pollution 59 
are all responsible for declines and interact in complex ways (Collins, 2010; Grant, 60 
Miller & Muths, 2020). Such threats and population trends highlight the immediate need 61 
for increased conservation, especially targeted toward the most threatened species and 62 
their habitats.  63 
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The island of Madagascar supports extraordinary amphibian species richness 66 
and endemism, with more than 415 described endemic frog species representing five 67 
anuran clades of independent origin (Crottini et al., 2012; Antonelli et al., 2022; 68 
AmphibiaWeb 2023). Alarmingly, 46.4% of assessed Malagasy frog species are 69 
threatened, owing largely to deforestation (Ralimanana et al., 2022; IUCN, 2023). 70 
Deforestation has eliminated as much as a quarter of the tree cover on the island over 71 
the last 25 years and the rate has only increased since 2005 (Vieilledent et al., 2018; 72 
Suzzi-Simmons, 2023). Consequently, many frog species in Madagascar have patchy 73 
distributions restricted to isolated pockets of forest in an otherwise inhospitable 74 
landscape (Lehtinen & Ramanamanjato, 2006). So far, there have been no documented 75 
modern frog species extinctions in Madagascar (Andreone et al., 2008, 2021), but many 76 
records of species presence are from biological inventories conducted decades ago in 77 
areas with high rates of land use change. Verifying species presence and confirming the 78 
extant distribution of threatened species is some of the most vital information for 79 
informing conservation (Villero et al., 2017). Relatedly, we know little about frog 80 
population trends in Madagascar, even for highly threatened species. The lack of 81 
demographic information is not unique to Madagascar; we do not know survival or 82 
fertility rates for 87.5% of amphibian species globally (Conde et al., 2019). Baseline 83 
estimates of survival, recruitment, and other demographic traits are urgently needed to 84 
improve conservation efforts and inform management decisions (Grant, Miller & Muths, 85 
2020).  86 

Some of the most well-known amphibians in Madagascar are the Malagasy 87 
poison frogs in the genus Mantella. One species (M. laevigata) exhibits parental care 88 
and all Mantella species display aposematic coloration to warn predators of their 89 
poisonous skin alkaloids sequestered from prey (Vences et al., 2022). As such, they are 90 
familiar examples of convergent evolution with Neotropical dendrobatids (Daly, Highet & 91 
Myers, 1984; Chiari et al., 2004; Fischer et al., 2019). While several Mantella species 92 
are widespread and have been found in degraded habitat and agricultural plantations 93 
(e.g., M. betsileo, M. ebenaui, and M. viridis, Vences et al., 1999; Andreone et al., 2006; 94 
Crottini et al., 2012), most are restricted to small areas, have highly localized 95 
populations, show a recent dramatic demographic decline, and are threatened by 96 
ongoing habitat changes (e.g., Crottini et al., 2019). Compounding the threat of habitat 97 
loss is overexploitation; thousands of wild poison frogs are exported annually from 98 
Madagascar for the international pet trade (Rabemananjara et al., 2007b), though 99 
export quotas have been restricted recently to smaller quantities of just six species 100 
(CITES, 2022).  101 

The harlequin mantella frog (M. cowanii) is one of the most threatened Mantella 102 
species, with a small and fragmented distribution in the central highlands. This region of 103 
Madagascar was formerly a mosaic of grassland, woodland, and subhumid forest, 104 



covering the mountainous area between the island’s humid east and dryer west (Yoder 105 
et al., 2016). Today the central highlands consist mostly of secondary grasses and land 106 
converted for subsistence agriculture and cattle grazing, with little humid forest 107 
remaining (Andriambeloson et al., 2021; Ranarilalatiana et al., 2022). Thirteen localities 108 
of M. cowanii are known from the region: six in a cluster around the village of Antoetra, 109 
five 80 km northwest on the Itremo Massif, and two isolated localities located >100 km 110 
north of all other known populations, one near Betafo and the other east of Antakasina 111 
(Rabibisoa, 2008; Rabibisoa et al., 2009). All populations occur along mountainous 112 
streams with large boulders and adjacent wet rockfaces, which are typically covered in 113 
wet moss and bryophytes. While some sites have intact gallery forests, others are 114 
almost entirely devoid of trees (Fig. 1).  115 

Crucially, some M. cowanii populations are known from only one or two scientific 116 
expeditions carried out in the early 2000s (e.g., Andreone & Randrianirina, 2003; 117 
Andreone et al., 2007; Crottini et al., 2011) and could now be extirpated. Due to its 118 
striking black and orange coloration (Fig. 2), M. cowanii was heavily exploited for the 119 
international pet trade during the 1990s and early 2000s (Andreone, Mercurio & Mattioli, 120 
2006). From 1994–2003, several thousand frogs recorded as M. cowanii were exported 121 
from Madagascar for commercial purposes, after which legal trade was halted and the 122 
export quota was set to zero (Rabemananjara et al., 2007b; CITES, 2022). Despite 123 
heavy collection pressure and ongoing habitat loss, the demographic characteristics of 124 
M. cowanii populations remain largely unknown.  125 

In 2008, a conservation strategy for M. cowanii was spearheaded by the IUCN 126 
Amphibian Specialist Group of Madagascar and Conservation International, which 127 
focused on improving habitat management at two localities near Antoetra (Rabibisoa 128 
2008). A decade later, a workshop was organized to update, build on, and revitalize the 129 
initial conservation strategy. The 2018 workshop participants included officials from 130 
Malagasy government, academia, biodiversity conservation organizations, and local 131 
communities (Edmonds, Andreone & Crottini, 2022). The workshop resulted in the 132 
Mantella cowanii Action Plan (McAP), which was officially launched in 2021 (Andreone 133 
et al., 2020; Rakotoarison, Ndriantsoa & Rabemananjara, 2022). The McAP proposed 134 
38 conservation actions needed for M. cowanii, with actions grouped into five themes: 135 
habitat protection, scientific research, local development, environmental awareness, 136 
and long-term sustainability. We aimed to fill the most critical research needs in the 137 
McAP by 1) confirming the presence of M. cowanii at localities across its range and 2) if 138 
present, estimating the key demographic traits of survival and population size.  139 



Materials & Methods 140 

Study Sites 141 

 We surveyed 11 of the 13 M. cowanii localities known from the literature and 142 
identified at the McAP workshop, nine in the Amoron’i Mania Region and two in the 143 
Vakinankaratra Region (Fig. 3). Sites ranged in elevation ~1380–2120 m asl. We 144 
repeatedly surveyed three sites (Ambatofotsy, Soamasaka, and Fohisokina) during 145 
2020–2024 for 2–7 days/year to estimate demographic traits (Table 1). The sampling 146 
effort varied because of logistical constraints and security concerns, limiting our ability 147 
to survey for the same number of days annually. Additionally, we combined these data 148 
from 2020–2024 with a survey at Fohisokina in 2015, which lasted 20 days to 149 
accomplish additional research objectives related to habitat use (Newton-Youens, 150 
2017). The remaining eight sites (Ambinanitelo, Andraholoma, Antakasina, 151 
Antsirakambiaty, Bekaraka, Farihimazava, Tsimabeomby, and Vatolampy) were visited 152 
up to two times for 1–6 days to confirm species presence. We worked closely with local 153 
communities, surveying sites together with people from nearby villages, and asked if 154 
there were other places people had seen M. cowanii to help identify additional sites. 155 
Only two sites have some form of habitat protection: Fohisokina (also known as 156 
Vohisokina) is community-managed with an NGO (Nowakowski & Angulo, 2015), and 157 
Antsirakambiaty falls within the boundaries of Itremo Massif Protected Area (Alvarado, 158 
Silva & Archibald, 2018). The other sites are unmanaged and without legal protection. 159 

Data Collection 160 

Like most other Mantella species, M. cowanii is highly seasonal in its behavior 161 
and is rarely observed before or after the rainy season. Additionally, prior fieldwork 162 
suggested M. cowanii is mainly active at dawn and dusk, with frogs hidden under refuge 163 
during midday (Tsiorisoa Andrianasolo 2016; Newton-Youens 2017). As such, we 164 
conducted fieldwork from late November to mid-January, surveying for frogs during 5–165 
8h. In 2015, we also surveyed Fohisokina during 16–18h and combined these data with 166 
surveys from the morning of the same day. We did not survey during 16–18h in 2020–167 
2024 or at other sites due to safety concerns about traveling after dark. We searched for 168 
frogs visually, walking together in teams of 2–7 people along the stream or adjacent wet 169 
rockface. Our search extended opportunistically up to 10–15 m from the stream or wet 170 
rock wall. If we heard a frog calling, we used the call to help find its location. Stream 171 
segment length varied from 38 m at Bekaraka to 690 m at Ambatofotsy. At Fohisokina, 172 
we surveyed along six 50 m-long transects rather than opportunistically throughout the 173 
entire site to accomplish additional research objectives (see Newton-Youens 2017). 174 

After capturing a frog, we held it in a plastic bag (or a petri dish in 2015 at 175 
Fohisokina), marking the location with a GPS point, flagging tape, and a unique number. 176 
We measured snout-to-vent length to the nearest mm with digital calipers or a ruler. 177 
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Individuals <22 mm were recorded as subadults under one-year post-metamorphosis 178 
based on Guarino et al. (2008). Weight was recorded with a digital scale to the nearest 179 
0.01 g, and sex was recorded based on whether an individual had been calling before 180 
capture and, if not, body size (Tessa et al. 2009). We also took dorsal and ventral 181 
photographs, allowing us to identify recaptured individuals because each frog has a 182 
unique ventral pattern (Fig. 4). To a certain extent, such photographic capture-mark-183 
recapture techniques can be more accurate and are less invasive than traditional toe-184 
clipping or visual implant elastomers (Caorsi, Santos, & Grant 2012; Davis, 185 
VanCompernolle, & Dickens 2020). Though software exists to help automate the photo-186 
matching process (sensu Edmonds et al. 2019), we found photograph angle and quality 187 
varied between days, sites, and years, so the automated process was prone to false 188 
negatives. Instead, one of us (D. Edmonds) visually examined all ventral photographs 189 
side-by-side and recorded when there was a match. Following photographs and 190 
measurements, frogs were released in the location where they were found, typically 191 
within 1–3 hours after capture.  192 

We followed all applicable international, national, and institutional guidelines for 193 
the care and use of animals. The study methods were approved by the Ministère de 194 
l’Environnement et du Développement Durable in permits 195 
N°173/20/MEDD/SG/DGGGE/DAPRNE/SCBE.Re, N°439/21/ 196 
MEDD/SG/DGGGE/DAPRNE/SCBE.Re, and N°173/22/ 197 
MEDD/SG/DGGGE/DAPRNE/SCBE.Re and by the University of Illinois Urbana-198 
Champaign Institutional Animal Care and Use Committee in protocol #21180. 199 

Analysis 200 

We used a robust design capture-mark-recapture model (Pollock 1982) to 201 
estimate population size (𝑁") and apparent annual survival (𝜑) at Ambatofotsy, 202 
Fohisokina, and Soamasaka. These sites were selected because we had sampled them 203 
for at least three years, the minimum required for estimating annual survival when 204 
detection is imperfect. The robust design uses primary periods when the population is 205 
assumed open to births, deaths, immigration, and emigration to estimate 𝜑 and 206 
secondary periods when the population is assumed closed to estimate 𝑁". We used 207 
annual surveys from late November to mid-January as open primary periods and days 208 
as closed secondary periods (Table 1).  209 

Our analysis compared 17 models, all incorporating site as a group-level effect. 210 
We considered models with either constant or site-specific 𝜑 and the temporary 211 
emigration parameters 𝛾!! and 𝛾! either constrained to 0 assuming no movement or set 212 
equal assuming random emigration. To account for individual heterogeneity in capture 213 
probability (𝑝), we included a random effect of individual on 𝑝. Additionally, we 214 
compared models with capture probability covariates of site, year, number of surveyors, 215 



and survey effort calculated as the number of surveyors multiplied by the survey 216 
duration in minutes. We could not include environmental covariates that might be 217 
associated with capture probability because environmental variables were not collected 218 
consistently across all sites and years. To compare candidate models, we ranked them 219 
using Akaike’s Information Criterion adjusted for small sample sizes (AICc; Burnham and 220 
Anderson 2002). Models with ∆ AICc < 2 were considered to have support. We analyzed 221 
capture-mark-recapture data in program MARK through the RMark interface (White & 222 
Burnham, 1999; Laake, 2013) and assessed the goodness-of-fit with package R2ucare 223 
in R version 4.2.0 (Gimenez et al., 2018; R Core Team, 2022). 224 

To infer absence if we did not detect M. cowanii at a historic locality, we 225 
estimated detection probability with a single-season occupancy model in package 226 
unmarked (Fiske and Chandler 2011). Data from nine localities with confirmed presence 227 
and at least three surveys were used to generate a naïve estimate of detection 228 
probability assuming constant detection and occupancy. We then followed Pellet and 229 
Schmidt (2005) to estimate the number of surveys needed to detect the species as: 230 

𝑁"#$ =
ln(0.05)
ln(1 − 𝑝) 231 

where 𝑁"#$ is the minimum number of surveys, 𝑝 is the detection probability, and 0.05 is 232 
the confidence level needed to be 95% certain of absence, assuming independent and 233 
comparable surveys. Using the number of surveys, we then calculated the confidence 234 
level around an observed absence given	𝑁 number of surveys as: 235 

𝑐𝑜𝑛𝑓 = 	𝑒%∗'(	(+) 236 

Results 237 

Verifying Species Presence  238 

We confirmed M. cowanii presence at 8 of 11 surveyed localities and identified 2 239 
previously unrecorded populations. However, we failed to detect the species at the 240 
historical localities of Andraholoma, Tsimabeomby, and Vatolampy. The naïve detection 241 
probability from sites with confirmed presence was 0.86 (95% CI: 0.72–0.93), showing it 242 
takes 1.54 surveys (95% CI: 1.10–2.37) to be 95% confident a population is extirpated 243 
and 2.37 surveys (95% CI: 1.69–3.65) to be 99% confident. With at least two days of 244 
surveys at Andraholoma and Vatolampy during suitable climatic conditions, we can be 245 
>97.9% (95% CI: 91.9–99.9%) confident the populations are extirpated and 85.7% (95% 246 
CI: 71.7–93.4%) confident there are no M. cowanii at Tsimabeomby. 247 



Capture Patterns Across Sites  248 

We made 764 captures of 280 individuals across all study sites and years, 249 
excluding putative M. baroni x M. cowanii hybrids. All but 8 frogs were adults. Over half 250 
of all captures were at Fohisokina, where we caught 149 individuals 481 times. Six 251 
individuals at Fohisokina were recaptured 7 years after initially being caught in 2015 as 252 
adults (Fig. 4), one of which was recaptured again in year 8 in 2023. At our second most 253 
intensively surveyed site, Soamasaka, we made 137 captures of 40 individuals during 254 
annual fieldwork in 2020–2023. Three frogs were recaptured 4 years after their initial 255 
encounter in 2020, and 4 were recaptured 3 years apart. At Ambatofotsy, we conducted 256 
surveys in 2021, 2022, and 2023 and made 76 captures of 32 individuals, all adults. 257 

Annual Survival and Population Sizes 258 

The most parsimonious capture-mark-recapture model had capture probability 𝑝 259 
and annual adult survival 𝜑 varying by site (Table 2). Models with no movement 260 
generally performed better than those with random emigration (Table 2). The top model 261 
estimated population sizes (𝑁") ranging from 13–137 adult frogs per site across years 262 
(Figs. 5–7). The highest 𝑁"	estimate was from Fohisokina in 2015 (137, 95% CI: 120–263 
170) and the lowest from Soamasaka in 2023 (13, 95% CI: 11–22). Fohisokina showed 264 
a decreasing population size during 2015–2023 (Fig. 5), whereas Soamasaka and 265 
Ambatofotsy were relatively stable over a shorter period (Figs. 6 and 7). There was 266 
strong support for site-varying survival (Table 2), with the estimated annual adult 267 
survival more precise for Fohisokina than Soamasaka (Fig. 8). For Ambatofotsy, the 268 
survival estimate was too imprecise to be informative because the data spanned only 269 
three years and only a small number of frogs were captured each year. Overall, the 270 
annual survival estimates at Fohisokina and Soamasaka were comparable, although the 271 
estimate from Soamasaka was lower than Fohisokina (Fig. 8).  272 

Discussion 273 

 Our results demonstrate M. cowanii was still present at no less than ten localities 274 
in 2022–2023, but the population size is very small for at least three sites (<50 adults 275 
per site). Extrapolating across all known localities, in the worst-case scenario, the total 276 
adult population size for the species may number <500 individuals. However, frog 277 
populations naturally fluctuate in abundance, and a snapshot over several years can 278 
easily lead to erroneous conclusions that populations are declining when they are stable 279 
(Pechmann et al., 1991; Blaustein, Wake & Sousa, 1994; Meyer, Schmidt & 280 
Grossenbacher, 1998). Such fluctuations are typical of species with fast life histories, 281 
where fecundity is high and generation time short, thus, demographic rates tend to vary 282 
(Sæther et al., 2004, 2013). Additionally, amphibian populations fluctuate more for pond 283 
breeding species and less for terrestrial and stream breeding species (Green, 2003). 284 
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Considering M. cowanii is a terrestrial stream-breeding frog with comparatively low 290 
reproductive output (20–57 eggs per egg mass; Tessa et al. 2009), relatively high 291 
annual adult survival, and a maximum lifespan in nature of at least nine years, we 292 
believe our results are not an artifact of stochastic fluctuations in population size.  293 

We highlight three possible factors contributing to the >80% population decline at 294 
Fohisokina between 2015 and 2023. First, fires burnt much of Fohisokina in November 295 
2020 at the start of their breeding season, just before our survey. Though M. cowanii 296 
presumably is protected from fire while sheltering in moist rock crevices and caves for 297 
much of the year, fire can cause mortality in terrestrial frogs when they are active above 298 
ground during the breeding season (e.g., Humphries & Sisson 2012; Potvin et al. 2017). 299 
Second, according to a European private breeder, in 2017 more than 100 M. cowanii 300 
were illicitly offered for sale in Germany, and an unknown number were offered again in 301 
2021. As Fohisokina is the most easily accessed M. cowanii locality and was historically 302 
a collection site for the pet trade (Rabemananjara et al., 2007b), the frogs were possibly 303 
poached from Fohisokina. Lastly, although no records of chytridiomycosis have been 304 
confirmed in Madagascar and all frogs we sampled appeared healthy, the amphibian 305 
chytrid fungus Batrachochytrium dendrobatidis has been reported from the island, and 306 
in 2014 was detected on a single M. cowanii individual at Soamasaka ~5 km south of 307 
Fohisokina (Bletz et al., 2015). Therefore, we cannot rule out disease either.  308 

At Vatolampy, we did not detect M. cowanii after six days of surveys and suspect 309 
the population is extirpated. Until our work, the site had not been surveyed since 2003–310 
2004, when Andreone et al. (2007) and Rabemananjara et al. (2007a) collected tissue 311 
samples and voucher specimens from the population. Similarly, Andraholoma had not 312 
been surveyed since 2009 when the site was visited by one of us (C. 313 
Randrianantoandro) for one day and 5 individuals observed. Conversely, we question 314 
whether Tsimabeomby, the third site where we did not detect M. cowanii, ever supported 315 
a population. We believe the locality was possibly published in error by Rabibisoa 316 
(2008) because Tsimabeomby consists of a wet meadow, is without rocks or running 317 
water, is isolated from the next nearest population by >3 km, and the local people we 318 
worked with had never encountered M. cowanii there whereas they knew of the other 319 
populations. Nonetheless, M. cowanii could have been present but undetected during 320 
our surveys if the detection probability at Andraholoma, Tsimabeomby, and Vatolampy 321 
was lower than elsewhere. Additionally, the naïve estimate of detection probability we 322 
used to infer absence did not account for observer, environmental, or temporal factors 323 
influencing detection. Still, our team detected M. cowanii at other sites on the days we 324 
surveyed Andraholoma, Tsimabeomby, and Vatolampy, illustrating local environmental 325 
conditions were favorable for detecting Mantella. We recommend re-surveying the three 326 
sites in the coming years to confirm if the populations are extirpated, especially 327 



considering the site-level variation in capture probability we found at sites where M. 328 
cowanii was present. 329 

Some amphibian species are capable of dispersing long distances to recolonize 330 
suitable habitat (Marsh & Trenham 2001; Fonte, Mayer, & Lötters 2019), but we do not 331 
expect so for M. cowanii in Madagascar’s degraded highland landscape. There are no 332 
studies on the movement of Madagascar’s poison frogs (but see Andreone et al. 2013), 333 
however research on their Neotropical dendrobatid counterparts shows adults rarely 334 
move more than a few hundred meters from established territories (e.g., Ringler et al. 335 
2009, Pašukonis et al. 2013; Beck et al. 2017; Pašukonis et al. 2019). Moreover, in a 336 
review of the dispersal ability of amphibians, Smith and Green (2005) found nearly half 337 
of studied species moved <400m. Historically, adult frogs may have moved between 338 
patches when there was more forest in the highlands. However, we suspect Mantella 339 
usually passively disperse when tadpoles are flushed between habitat patches during 340 
heavy rain. As such, natural recolonization of Vatolampy or Andraholoma is unlikely, 341 
especially considering the physiological, movement, and site fidelity constraints 342 
amphibians face (Blaustein, Wake & Sousa, 1994). At Vatolampy, the next closest 343 
locality is Farihimazava, 1.5 km northeast in a different valley, which supports mostly M. 344 
baroni and M. baroni x M. cowanii hybrids (Chiari et al., 2005; Andreone et al. 2007). 345 
For Andraholoma, the next closest locality is Andaobatofotsivava >7 km north, though 346 
admittedly, the area of the Itremo Massif is poorly explored and there could be 347 
additional unrecorded populations between the two.  348 

Previous skeletochronology research estimated the maximum lifespan of M. 349 
cowanii at three years (Guarino et al., 2008; Andreone et al., 2011), but we identified 350 
individuals at least eight years post-metamorphosis and one individual nine years. 351 
Skeletochronology is known to underestimate the ages of older individuals because 352 
skeletal growth rings progressively converge with age, and amphibian bone tissue is 353 
prone to reabsorption (Eden et al., 2007; Sinsch, 2015). Our results show the 354 
advantages of using capture-mark-recapture surveys for estimating demographic traits if 355 
resources are available. The long lifespan of M. cowanii is notable when considered 356 
together with their reproductive output and body size. The species is one of the largest 357 
in the genus, has the largest egg diameter, and has the lowest number of eggs per 358 
mass, exemplifying their slow life history compared to other Mantella species (Tessa et 359 
al. 2009). All of this aligns with our discovery that M. cowanii has the longest lifespan for 360 
the genus. Life history traits often follow altitudinal clines, with slower traits associated 361 
with higher altitudes (Hille & Cooper, 2015; Laiolo & Obeso, 2017). Indeed, amphibians 362 
tend to live longer and have larger body sizes at higher altitudes (Morrison & Hero, 363 
2003; Andreone et al. 2004); M. cowanii is no exception (Tessa et al. 2009). Such 364 
patterns also occur within species across altitudinal gradients (Zhang & Lu, 2012). 365 
Considering the M. cowanii from Betafo populations occur ~500m higher than where we 366 
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recorded ~8–9-year-old individuals, frogs from Betafo may live even longer. Such slow 367 
life history traits also have conservation implications because they are associated with 368 
higher extinction risk (Webb, Brook & Shine, 2002). Given the relatively long lifespan 369 
and low reproductive output of M. cowanii, the success of recovery efforts for the 370 
species may not be as rapid as in other related amphibian species. 371 

Local people brought our attention to two new M. cowanii localities during 372 
fieldwork, highlighting the value of community engagement when conducting research 373 
on threatened species. To our knowledge, the new localities had not been identified 374 
before but were noticed after our initial work conducting surveys together with local 375 
communities during 2020–2021. Indeed, people who live in biodiverse rural areas have 376 
a unique opportunity to assist in ecological research and monitoring programs 377 
(Schmiedel et al., 2016). Such opportunities are especially present in Madagascar (e.g., 378 
Dolch et al., 2015; Price, Randriamiharisoa & Klinges, 2023), where most people are 379 
subsistence farmers in rural areas and often depend heavily on forest resources. By 380 
actively participating and being included in fieldwork, local people recognized the 381 
significance of observing M. cowanii at new sites, helping inform conservation efforts.  382 

To ensure populations remain extant, we must better identify the causes of 383 
declines and the magnitude of threats. Screening populations for Bd and monitoring for 384 
illicit M. cowanii in the pet trade are essential actions, while disentangling the complex 385 
threat of habitat loss presents additional challenges. The number of trees remaining at 386 
sites varies from intact closed-canopy forest to rocky landscapes almost entirely devoid 387 
of trees, so the degree to which deforestation is a threat may depend on additional 388 
habitat characteristics. Newton-Youens (2017) identified rock caves and refuges as 389 
essential habitat features, and speculated they might be used for breeding, though so 390 
far, no eggs, tadpoles, or newly metamorphosed individuals have been found in nature. 391 
Studies on the microhabitat preferences and activity levels of M. cowanii, like those 392 
carried out by Edwards et al. (2019, 2022) for M. aurantiaca and Rasoarimanana, 393 
Edmonds & Marquis (2024) for M. baroni, would further help identify the most critical 394 
habitat features to protect and the best time to survey sites. Likewise, better information 395 
about habitat requirements could be used to locate new sites with unprotected 396 
populations we do not know about. All known M. cowanii populations are centered 397 
around four isolated sites with likely past connectivity when the highlands were an intact 398 
forest-grassland mosaic (Bond, Silander & Ratsirarson, 2023). Fieldwork in the remote 399 
areas between the four population centers could uncover additional isolated M. cowanii 400 
populations, but time is running out. 401 

Conclusions 402 

We set out to verify the presence and estimate key demographic traits for one of 403 
Madagascar's most threatened frog species and found three historical localities may be 404 
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extirpated while other populations are extremely small. Unfortunately, our results are not 407 
unique to Madagascar but represent a global trend in amphibian populations (Stuart et 408 
al., 2004; Grant et al., 2016). Amphibians are at the forefront of the extinction crisis, and 409 
population monitoring is essential to measure responses to conservation actions and 410 
detect declines before recovery is impossible. We used capture-mark-recapture 411 
methods to estimate abundance at three localities (Ambatofotsy, Soamasaka, and 412 
Fohisokina; Fig. 3), but less costly approaches relying on presence-absence data are 413 
likely suitable for monitoring M. cowanii across its entire range (Joseph et al., 2006; 414 
Jones, 2011). When enacted with local people as part of a broader program, monitoring 415 
can galvanize conservation efforts by adding value to a threatened species and instilling 416 
pride in local communities (Andrianandrasana et al., 2005; Danielsen, Burgess & 417 
Balmford, 2005). Given that adequate information on a species basic ecology and life 418 
history is essential to addressing the causes of decline, we recommend further research 419 
run concurrently with conservation efforts and focus on determining the relative impact 420 
of disease, illegal trade, and habitat loss. We also recommend reassessing the IUCN 421 
Red List status of M. cowanii. The species was last assessed in 2014 as Endangered, 422 
but it may qualify for the Critically Endangered status based on our estimates of 423 
population sizes and trends. 424 
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