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Abstract 27 

Amphibians are experiencing severe population declines, requiring targeted 28 

conservation action for the most threatened species and habitats. Unfortunately, we do 29 

not know the basic demographic traits of most species, which hinders population 30 

recovery efforts. We studied one of Madagascar’s most threatened frog species, the 31 

harlequin mantella (Mantella cowanii), to confirm it is still present at historic localities 32 

and estimate annual survival and population sizes. We surveyed eleven of all thirteen 33 

known localities and were able to detect the species at eight. Using a naïve estimate of 34 

detection probability from sites with confirmed presence, we estimated 1.54 surveys 35 

(95% CI: 1.10–2.37) are needed to infer absence with 95% confidence, suggesting the 36 

three populations where we did not detect M. cowanii are now extirpated. However, we 37 

also discovered two new populations. Repeated annual surveys at three sites showed 38 

population sizes ranged from 13–137 adults over 3–8 years, with the most intensively 39 

surveyed site experiencing a >80% reduction in population size during 2015–2023. 40 

Annual adult survival was moderately high (0.529–0.618) and we recaptured five 41 

individuals in 2022 and one in 2023 first captured as adults in 2015, revealing the 42 

maximum lifespan of the species in nature can reach nine years and beyond. Our 43 

results show M. cowanii is characterized by a slower life history pace than other 44 

Mantella species, putting it at greater extinction risk. Illegal collection for the 45 

international pet trade and continued habitat degradation are the main threats to the 46 

species. We recommend conservation efforts continue monitoring populations and 47 

reassess the IUCN Red List status because it may be Critically Endangered rather than 48 

Endangered based on population size and trends. 49 

 50 

Introduction 51 

Amphibian species are facing extinction rates at least 22 times faster than the 52 

average rate during the 10 millennia before industrialization, resulting in their status as 53 

the most threatened vertebrate class (Ceballos et al., 2015; Luedtke et al., 2023). Many 54 

species are experiencing severe population declines, leading to widespread range 55 

contractions through extirpation (e.g., Beyer and Manica 2020; Granados-Martínez et al. 56 

2021; Patla and Peterson 2022). Habitat loss is the largest threat to amphibians, but 57 

infectious diseases, invasive species, climate change, overexploitation, and pollution 58 

are all responsible for declines and interact in complex ways (Collins, 2010; Campbell 59 

Grant, Miller & Muths, 2020). Such threats and population trends highlight the 60 

immediate need for increased conservation, especially targeted toward the most 61 

threatened species and their habitats.  62 
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The island of Madagascar supports extraordinary amphibian species richness 63 

and endemism, with more than 415 described endemic frog species representing five 64 

anuran clades of independent origin (Crottini et al., 2012; Antonelli et al., 2022; 65 

AmphibiaWeb 2023). Alarmingly, 46.4% of assessed Malagasy frog species are 66 

threatened, owing largely to deforestation (Ralimanana et al., 2022; IUCN, 2023). 67 

Deforestation has eliminated as much as a quarter of the tree cover on the island over 68 

the last 25 years and the rate has only increased since 2005 (Vieilledent et al., 2018; 69 

Suzzi-Simmons, 2023). Consequently, many frog species in Madagascar have patchy 70 

distributions restricted to isolated pockets of forest in an otherwise inhospitable 71 

landscape (Lehtinen & Ramanamanjato, 2006). So far, there have been no documented 72 

modern frog species extinctions in Madagascar (Andreone et al., 2008, 2021), but many 73 

records of species presence are from biological inventories conducted decades ago in 74 

areas with high rates of land use change. Verifying species presence and confirming the 75 

extant distribution of threatened species is some of the most vital information for 76 

informing conservation (Villero et al., 2017). Relatedly, we know little about frog 77 

population trends in Madagascar, even for highly threatened species. The lack of 78 

demographic information is not unique to Madagascar; we do not know survival or 79 

fertility rates for 87.5% of amphibian species globally (Conde et al., 2019). Baseline 80 

estimates of survival, recruitment, and other demographic traits are urgently needed to 81 

improve conservation efforts and inform management decisions (Campbell Grant, Miller 82 

& Muths, 2020).  83 

Some of the most well-known amphibians in Madagascar are the Malagasy 84 

poison frogs in the genus Mantella. One species (M. laevigata) exhibits parental care 85 

and all display aposematic coloration to warn predators of their poisonous skin alkaloids 86 

sequestered from prey (Vences et al., 2022). As such, they are familiar examples of 87 

convergent evolution with Neotropical dendrobatids (Daly, Highet & Myers, 1984; Chiari 88 

et al., 2004; Fischer et al., 2019). While several species are widespread and have been 89 

found in degraded habitat and agricultural plantations (e.g., M. betsileo, M. ebenaui, and 90 

M. viridis, Vences et al., 1999; Andreone et al., 2006; Crottini et al., 2012), most are 91 

restricted to small areas, have highly localized populations, show a recent dramatic 92 

demographic decline, and are threatened by ongoing habitat degradation (e.g., Crottini 93 

et al. 2019). Compounding the threat of habitat loss is overexploitation; thousands of 94 

wild poison frogs are exported annually from Madagascar for the international pet trade 95 

(Rabemananjara et al., 2007b), though export quotas have been restricted recently to 96 

smaller quantities of just six species (CITES, 2022).  97 

The harlequin mantella frog (M. cowanii) is one of the most threatened Mantella 98 

species, with a small and fragmented distribution in the central highlands. This region of 99 

Madagascar was formerly a mosaic of grassland, woodland, and subhumid forest, 100 

covering the mountainous area between the island’s humid east and dryer west (Yoder 101 
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et al., 2016). Today the central highlands consist mostly of secondary grasses and land 102 

converted for subsistence agriculture and cattle grazing, with little humid forest 103 

remaining (Andriambeloson et al., 2021; Ranarilalatiana et al., 2022). Thirteen localities 104 

of M. cowanii are known from the region: six in a cluster around the town of Antoetra, 105 

five 80 km northwest on the Itremo Massif, and two isolated localities located >100 km 106 

north of all other known populations, one near Betafo and the other east of Antakasina 107 

(Rabibisoa, 2008; Rabibisoa et al., 2009). All populations occur along mountainous 108 

streams with large boulders and adjacent wet rockfaces covered wet by moss and 109 

bryophytes. While some sites still have intact gallery forests, others are almost entirely 110 

devoid of trees (Fig. 1). Additionally, due to its striking black and orange coloration (Fig. 111 

2), M. cowanii was heavily exploited for the international pet trade during the 1990s and 112 

early 2000s (Andreone, Mercurio & Mattioli, 2006). From 1994–2003, several thousand 113 

frogs recorded as M. cowanii were exported from Madagascar for commercial purposes, 114 

after which legal trade was halted and the export quota set to zero (Rabemananjara et 115 

al., 2007b; CITES, 2022). 116 

Despite heavy collection pressure and ongoing habitat loss, the demographic 117 

characteristics of the remaining M. cowanii populations have not been studied. 118 

Additionally, some populations are known from only one or two scientific expeditions 119 

carried out decades ago and could already be extirpated. In 2021 the Mantella cowanii 120 

Action Plan (McAP) was launched to draw attention to the species and develop a 121 

blueprint for its conservation (Andreone et al., 2020; Rakotoarison, Ndriantsoa & 122 

Rabemananjara, 2022). The McAP builds on the initial conservation strategy by 123 

Rabibisoa (2008). We aimed to fill critical research needs in the McAP by 1) confirming 124 

the presence of M. cowanii at localities across its range and 2) if present, estimating the 125 

key demographic traits of survival and population size.  126 

Materials & Methods 127 

Study Sites 128 

 We surveyed 11 of 13 known M. cowanii localities, nine in the Amoron’i Mania 129 

Region and two in the Vakinankaratra Region (Fig. 3). Sites ranged in elevation ~1380–130 

2120 m asl. We repeatedly surveyed three sites (Ambatofotsy, Soamasaka, and 131 

Fohisokina) over 3–8 years for 2–20 days/year to estimate demographic traits (Table 1). 132 

The remaining eight sites (Ambinanitelo, Andraholoma, Antakasina, Antsirakambiaty, 133 

Bekaraka, Farihimazava, Tsimabeomby, and Vatolampy) were visited up to two times for 134 

1–6 days to confirm species presence. Only two sites have some form of habitat 135 

protection: Fohisokina (also known as Vohisokina) is community-managed with an NGO 136 

(Nowakowski & Angulo, 2015), and Antsirakambiaty falls within the boundaries of Itremo 137 

Massif Protected Area (Alvarado, Silva & Archibald, 2018). The other sites are 138 

unmanaged and without legal protection. 139 
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Data Collection 140 

Fieldwork was conducted during the onset of the rainy season from late 141 

November to mid-January when M. cowanii is active and detectable. Surveys were 142 

carried out in the morning during 5–8h, but at Fohisokina in 2015, we also surveyed just 143 

before dusk during 16–18h. We searched for frogs visually, walking together in teams of 144 

2–7 people along the stream or adjacent wet rockface. If we heard a frog calling, we 145 

used the call to help find its location. Stream segment length varied from 38 m at 146 

Bekaraka to 690 m at Ambatofotsy. At FohsiokinaFohisokina, we surveyed along six 50 147 

m-long transects rather than opportunistically throughout the entire site to accomplish 148 

additional research objectives (see Newton-Youens 2017). 149 

After capturing a frog, we held it in a plastic bag (or a petri dish in 2015 at 150 

Fohisokina), marking the location with a GPS point, flagging tape, and a unique number. 151 

We measured snout-to-vent length with digital calipers or a ruler. Individuals <22 mm 152 

were recorded as subadults under one-year post-metamorphosis based on Guarino et 153 

al. 2008. Weight was recorded with a digital scale to the nearest 0.01 g, and sex was 154 

recorded based on whether an individual had been calling before capture and, if not, 155 

body size (Tessa et al. 2009). We also took dorsal and ventral photographs, allowing us 156 

to identify recaptured individuals because each frog has a unique ventral color pattern 157 

(Fig. 4). Such photographic capture-mark-recapture techniques can be more accurate 158 

and are less invasive than traditional toe-clipping or visual implant elastomers (Caorsi, 159 

Santos, and Grant 2012; Davis, VanCompernolle, and Dickens 2020). Initially, we tried 160 

using photographic matching software to automate identifying individuals (sensu 161 

Edmonds et al. 2019), but photograph angle and quality varied between days, sites, and 162 

years, so the process was prone to false negatives. Instead, one of us (D. Edmonds) 163 

visually examined all ventral photographs side-by-side and recorded when there was a 164 

match. Following photographs and measurements, frogs were released in the location 165 

where they were captured.  166 

We followed all applicable international, national, and institutional guidelines for 167 

the care and use of animals, so the animal ethics are respected. The study methods 168 

were approved by the Ministère de l’Environnement et du Développement Durable in 169 

permits N°173/20/MEDD/SG/DGGGE/DAPRNE/SCBE.Re, N°439/21/ 170 

MEDD/SG/DGGGE/DAPRNE/SCBE.Re, and N°173/22/ 171 

MEDD/SG/DGGGE/DAPRNE/SCBE.Re and by the University of Illinois Urbana-172 

Champaign Institutional Animal Care and Use Committee in protocol #21180. 173 

Analysis 174 

We used a robust design capture-mark-recapture model to estimate population 175 

size (𝑁̂) and apparent annual survival (𝜑) at Ambatofotsy, Fohisokina, and Soamasaka. 176 

These sites were selected because we had sampled them for at least three years, the 177 
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minimum required for estimating annual survival. Our analysis compared 17 models, all 178 

incorporating site as a group-level effect. We considered models with either constant or 179 

site-specific 𝜑 and the temporary emigration parameters 𝛾′′ and 𝛾′ either constrained to 180 

0 assuming no movement or set equal assuming random emigration. To account for 181 

individual heterogeneity in capture probability (𝑝), we included a random effect of 182 

individual on 𝑝. Additionally, we compared models with capture probability covariates of 183 

site, year, number of surveyors, and survey effort calculated as the number of surveyors 184 

multiplied by the survey duration in minutes. We could not include environmental 185 

covariates that might be associated with capture probability because they were not 186 

collected consistently across all sites and years. To compare candidate models, we 187 

ranked them using Akaike’s Information Criterion adjusted for small sample sizes (AICc; 188 

Burnham and Anderson 2002). Models with ∆ AICc < 2 were considered to have 189 

support. We analyzed capture-mark-recapture data in program MARK through the 190 

RMark interface (White & Burnham, 1999; Laake, 2013) and assessed the goodness-of-191 

fit with package R2ucare in R version 4.2.0 (Gimenez et al., 2018; R Core Team, 2022). 192 

To infer absence if we did not detect M. cowanii at a historic locality, we 193 

estimated detection probability with a single-season occupancy model in package 194 

unmarked (Fiske and Chandler 2011). Data from nine localities with confirmed presence 195 

and at least three surveys were used to generate a naïve estimate of detection 196 

probability assuming constant detection and occupancy. We then followed Pellet and 197 

Schmidt (2005) to estimate the number of surveys needed to detect the species as: 198 

𝑁𝑚𝑖𝑛 =
ln(0.05)

ln(1 − 𝑝)
 199 

where 𝑁𝑚𝑖𝑛 is the minimum number of surveys, 𝑝 is the detection probability, and 0.05 is 200 

the confidence level needed to be 95% certain of absence, assuming independent and 201 

comparable surveys. Using the number of surveys, we then calculated the confidence 202 

level around an observed absence given 𝑁 number of surveys as: 203 

𝑐𝑜𝑛𝑓 =  𝑒𝑁∗ln (𝑝) 204 

Results 205 

Verifying Species Presence  206 

We confirmed M. cowanii presence at 8 of 11 surveyed localities and identified 2 207 

previously unrecorded populations. However, we failed to detect the species at the 208 

historical localities of Andraholoma, Tsimabeomby, and Vatolampy. The naïve detection 209 

probability from sites with confirmed presence was 0.86 (95% CI: 0.72–0.93), showing it 210 

takes 1.54 surveys (95% CI: 1.10–2.37) to be 95% confident a population is extirpated 211 

and 2.37 surveys (95% CI: 1.69–3.65) to be 99% confident. With at least two days of 212 

Commenté [a16]: It is necessary to underline in the 
materials and methods that these three sites are 
historical localities (why?) and to point out when the last 
time M.c was found there. 

Commenté [a17]: As daily activity rhythm of the frog 
and ectothermic animals in general depend largely on 
daily meteorological conditions, it is important to precise 
that this is the case in optimal condition for biological 
activities. 



surveys at Andraholoma and Vatolampy, we can be >97.9% (95% CI: 91.9–99.9%) 213 

confident the populations are extirpated and 85.7% (95% CI: 71.7–93.4%) confident 214 

there are no M. cowanii at Tsimabeomby. 215 

Capture Patterns Across Sites  216 

We made 764 captures of 280 individuals across all study sites and years, 217 

excluding putative M. baroni x M. cowanii hybrids. All but 8 frogs were adults. Over half 218 

of all captures were at Fohisokina, where we caught 149 individuals 481 times. Six 219 

individuals at Fohisokina were recaptured 7 years after initially being caught in 2015 as 220 

adults (Fig. 4), one of which was recaptured again in year 8 in 2023. At our second most 221 

intensively surveyed site, Soamasaka, we made 137 captures of 40 individuals during 222 

annual fieldwork in 2020–2023. Three frogs were recaptured 4 years after their initial 223 

encounter in 2020, and 4 were recaptured 3 years apart. At Ambatofotsy, we conducted 224 

surveys in 2021, 2022, and 2023 and made 76 captures of 32 individuals, all adults. 225 

Annual Survival and Population Sizes 226 

The most parsimonious capture-mark-recapture model had capture probability 𝑝 227 

and annual adult survival 𝜑 varying by site (Table 2). Models with no movement 228 

generally performed better than those with random emigration (Table 2). The top model 229 

estimated population sizes (𝑁̂) ranging from 13–137 adult frogs per site across years 230 

(Fig 5). The highest 𝑁̂ estimate was from Fohisokina in 2015 (137, 95% CI: 120–170) 231 

and the lowest from Soamasaka in 2023 (13, 95% CI: 11–22). Fohisokina showed a 232 

decreasing population size during 2015–2023, whereas Soamasaka and Ambatofotsy 233 

were relatively stable over a shorter period (Fig. 5). There was strong support for site-234 

varying survival (Table 2), with the estimated annual adult survival more precise for 235 

Fohisokina than Soamasaka due to the longer study duration (Fig. 6). For Ambatofotsy, 236 

the survival estimate was too imprecise to be informative because the data spanned 237 

only three years and only a small number of frogs were captured each year. Overall, the 238 

annual survival estimates at Fohisokina and Soamasaka were comparable, although the 239 

estimate from Soamasaka was lower than Fohisokina (Fig. 6).  240 

Discussion 241 

 Our results demonstrate M. cowanii was still present at no less than ten localities 242 

in 2022–2023, but the population size is very small for at least three sites (<50 adults 243 

per site). Extrapolating across all known localities, in the worst-case scenario, the total 244 

adult population size for the species may number <500 individuals. However, frog 245 

populations naturally fluctuate in abundance, and a snapshot over several years can 246 

easily lead to erroneous conclusions that populations are declining when they are stable 247 

(Pechmann et al., 1991; Blaustein, Wake & Sousa, 1994; Meyer, Schmidt & 248 

Commenté [a18]: It is necessary to be prudent in the 
interpretation of such result with a cryptic species with 
biological activity largely influence by environmental 
conditions especially the climatic (P° & T°) conditions.  

Commenté [a19]: Approximately how often an 
individual is recaptured? In the same area? And for how 
many successive days? That may help to understand 
the ecology and the behavior of this species. 

Commenté [a20]: In the same area as before? A kind 
fidelity to?  

Mis en forme : Surlignage

Mis en forme : Surlignage



Grossenbacher, 1998). Such fluctuations are typical of species with fast life histories, 249 

where fecundity is high and generation time short, thus, demographic rates tend to vary 250 

(Sæther et al., 2004, 2013). Additionally, amphibian populations fluctuate more for pond 251 

breeding species and less for terrestrial and stream breeding species (Green, 2003). 252 

Considering M. cowanii is a terrestrial stream-breeding frog with comparatively low 253 

reproductive output (20–57 eggs per egg mass; Tessa et al. 2009), relatively high 254 

annual adult survival, and a maximum lifespan in nature of at least nine years, we 255 

believe our results are not an artifact of stochastic fluctuations in population size.  256 

We highlight three possible factors contributing to the >80% population decline at 257 

Fohisokina between 2015 and 2023. First, fires burnt much of Fohisokina in November 258 

2020 at the start of their breeding season, just before our survey. Though M. cowanii 259 

presumably is protected from fire while sheltering in moist rock crevices and caves for 260 

much of the year, fire can cause mortality in terrestrial frogs when they are active above 261 

ground during the breeding season (e.g., Humphries and Sisson 2012; Potvin et al. 262 

2017). Second, according to a European private breeder, in 2017 more than 100 M. 263 

cowanii were illicitly offered for sale in Germany, and an unknown number were offered 264 

again in 2021. As Fohisokina is the most easily accessed M. cowanii locality and was 265 

historically a collection site for the pet trade (Rabemananjara et al., 2007b), the frogs 266 

were possibly poached from Fohisokina. Lastly, although no records of chytridiomycosis 267 

have been confirmed in Madagascar and all frogs we sampled appeared healthy, the 268 

amphibian chytrid fungus Batrachochytrium dendrobatidis has been reported from the 269 

island, and in 2014 was detected on a single M. cowanii individual at Soamasaka ~5 km 270 

south of Fohisokina (Bletz et al., 2015). Therefore, we cannot rule out disease either.  271 

At Vatolampy, we did not detect M. cowanii after six days of surveys and suspect 272 

the population is extirpated. Until our work, the site had not been surveyed since 2003–273 

2004, when Andreone et al. (2007) and Rabemananjara et al. (2007a) collected tissue 274 

samples and voucher specimens from the population. Similarly, Andraholoma had not 275 

been surveyed since 2009 when the site was visited by one of us (C. 276 

Randrianantoandro) for one day and 5 individuals observed. Conversely, we question 277 

whether Tsimabeomby, the third site where we did not detect M. cowanii, ever supported 278 

a population. We believe the locality was possibly published in error by Rabibisoa 279 

(2008) because Tsimabeomby consists of a wet meadow, is without rocks or running 280 

water, is isolated from the next nearest population by >3 km, and the local people we 281 

worked with had never encountered M. cowanii there whereas they knew of the other 282 

populations. Nonetheless, M. cowanii could have been present but undetected during 283 

our surveys if the detection probability at Andraholoma, Tsimabeomby, and Vatolampy 284 

was lower than elsewhere. Additionally, the naïve estimate of detection probability we 285 

used to infer absence did not account for observer, environmental, or temporal factors 286 

influencing detection. Still, our team detected M. cowanii at other sites on the days we 287 
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surveyed Andraholoma, Tsimabeomby, and Vatolampy, illustrating local environmental 288 

conditions were favorable for detecting Mantella. Re-surveying the three sites in the 289 

coming years will confirm if the populations are extirpated.  290 

Some amphibian species are capable of dispersing long distances to recolonize 291 

suitable habitat (Marsh and Trenham 2001; Fonte, Mayer, and Lötters 2019), but we do 292 

not expect so for M. cowanii in Madagascar’s degraded highland landscape. There are 293 

no studies on the movement of Madagascar’s poison frogs (but see Andreone et al. 294 

2013), however research on their Neotropical dendrobatid counterparts shows adults 295 

rarely move more than a few hundred meters from established territories (e.g., Ringler 296 

et al. 2009, Pašukonis et al. 2013; Beck et al. 2017; Pašukonis et al. 2019). Moreover, 297 

in a review of the dispersal ability of amphibians, Smith and Green (2005) found nearly 298 

half of studied species moved <400m. Historically, adult frogs may have moved 299 

between patches when there was more forest in the highlands. However, we suspect 300 

Mantella usually passively disperse when tadpoles are flushed between habitat patches 301 

during heavy rain. As such, natural recolonization of Vatolampy or Andraholoma is 302 

unlikely, especially considering the physiological, movement, and site fidelity constraints 303 

amphibians face (Blaustein, Wake & Sousa, 1994). At Vatolampy, the next closest 304 

locality is Farihimazava, 1.5 km northeast in a different valley, which supports mostly M. 305 

baroni and M. baroni x M. cowanii hybrids (Chiari et al., 2005; Andreone et al. 2007). 306 

For Andraholoma, the next closest locality is Andaobatofotsivava >7 km north, though 307 

admittedly, the area of the Itremo Massif is poorly explored and there could be 308 

additional unrecorded populations between the two. Indeed, we located two new 309 

localities during fieldwork. 310 

Previous skeletochronology research estimated the maximum lifespan of M. 311 

cowanii at three years (Guarino et al., 2008; Andreone et al., 2011), but we identified 312 

individuals at least eight years post-metamorphosis and one individual nine years. 313 

Skeletochronology is known to underestimate the ages of older individuals because 314 

skeletal growth rings progressively converge with age, and amphibian bone tissue is 315 

prone to reabsorption (Eden et al., 2007; Sinsch, 2015). Our results show the 316 

advantages of using capture-mark-recapture surveys for estimating demographic traits if 317 

resources are available. The long lifespan of M. cowanii is notable when considered 318 

together with their reproductive output and body size. The species is one of the largest 319 

in the genus, has the largest egg diameter, and has the lowest number of eggs per 320 

mass, exemplifying their slow life history compared to other Mantella species (Tessa et 321 

al. 2009). All of this aligns with our discovery that M. cowanii has the longest lifespan for 322 

the genus. Life history traits often follow altitudinal clines, with slower traits associated 323 

with higher altitudes (Hille & Cooper, 2015; Laiolo & Obeso, 2017). Indeed, amphibians 324 

tend to live longer and have larger body sizes at higher altitudes (Morrison & Hero, 325 

2003; Andreone et al. 2004); M. cowanii is no exception (Tessa et al. 2009). Such 326 
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patterns also occur within species across altitudinal gradients (Zhang & Lu, 2012). 327 

Considering the M. cowanii from Betafo populations occur ~500m higher than where we 328 

recorded ~8–9-year-old individuals, frogs from Betafo may live even longer. Such slow 329 

life history traits also have conservation implications because they are associated with 330 

higher extinction risk (Webb, Brook & Shine, 2002). Given the relatively long lifespan 331 

and low reproductive output of M. cowanii, the success of recovery efforts for the 332 

species may not be as rapid as in other related amphibian species. 333 

To ensure populations remain extant, we must better identify the causes of 334 

declines and the magnitude of threats. Screening populations for Bd and monitoring for 335 

illicit M. cowanii in the pet trade are obvious actions, but disentangling the threat of 336 

habitat loss is more complicated. The number of trees remaining at sites varies from 337 

intact closed-canopy forest to rocky landscapes almost entirely devoid of trees, so the 338 

degree to which deforestation is a threat may depend on additional habitat 339 

characteristics. Newton-Youens (2017) identified rock caves and refuges as essential 340 

habitat features, and speculated they might be used for breeding, though so far, no 341 

eggs, tadpoles, or newly metamorphosed individuals have been found in nature. 342 

Studies on the microhabitat preferences and activity levels of M. cowanii, like those 343 

carried out by Edwards et al. (2019, 2022) for M. aurantiaca, would further help identify 344 

the most critical habitat features to protect and the best time to survey sites. Likewise, 345 

better information about habitat requirements could be used to locate new sites with 346 

unprotected populations we do not know about. All known M. cowanii populations are 347 

centered around four isolated sites with likely past connectivity when the highlands were 348 

an intact forest-grassland mosaic (Bond, Silander & Ratsirarson, 2023). Fieldwork in the 349 

remote areas between the four population centers could uncover additional isolated M. 350 

cowanii populations, but time is running out. 351 

Conclusions 352 

We set out to verify the presence and estimate key demographic traits for one of 353 

Madagascar's most threatened frog species and found several historical localities are 354 

likely extirpated while others are extremely small. Unfortunately, our results are not 355 

unique to Madagascar but represent a global trend in amphibian populations (Stuart et 356 

al., 2004; Grant et al., 2016). Amphibians are at the forefront of the extinction crisis, and 357 

population monitoring is essential to measure responses to conservation actions and 358 

detect declines before recovery is impossible. We used capture-mark-recapture 359 

methods to estimate abundance at three localities (Ambatofotsy, Soamasaka, and 360 

Fohisokina; Fig. 3), but less costly approaches relying on presence-absence data are 361 

likely suitable for monitoring M. cowanii across its entire range (Joseph et al., 2006; 362 

Jones, 2011). When enacted with local people as part of a broader program, monitoring 363 

can galvanize conservation efforts by adding value to a threatened species and instilling 364 

pride in local communities (Andrianandrasana et al., 2005; Danielsen, Burgess & 365 
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Balmford, 2005). As we have shown, the causes of declines are often unclear without 366 

adequate information on a species' basic ecology and life history. For M. cowanii, we 367 

recommend further research run concurrently with conservation efforts and focus on 368 

determining the relative impact of disease, illegal trade, and habitat loss. We also 369 

recommend reassessing the IUCN Red List status of M. cowanii. The species was last 370 

assessed in 2014 as Endangered but it may qualify for the Critically Endangered status 371 

based on our estimates of population sizes and trends. 372 
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