1 Small population size and possible extirpation of the

2 threatened Malagasy poison frog Mantella cowanii

- 3 Devin Edmonds^{1,2}, Raphali R. Andriantsimanarilafy³, Angelica Crottini^{4,5,6}, Michael J.
- 4 Dreslik^{1,2}, Jade Newton-Youens⁷, Andoniana Ramahefason⁸, Christian
- 5 Randrianantoandro⁸, Franco Andreone⁹
- 6 ¹Department of Natural Resources and Environmental Sciences, University of Illinois at
- 7 Urbana-Champaign, Champaign, Illinois, USA
- 8 ²Illinois Natural History Survey, Prairie Research Institute, University of Illinois at
- 9 Urbana-Champaign, Champaign, IL, USA
- 10 ³Madagasikara Voakajy, Antananarivo, Madagascar
- 11 ⁴CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Vairão,
- 12 Portugal
- 13 ⁵Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto,
- 14 Portugal
- 15 ⁶BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de
- 16 Vairão, Vairão, Portugal
- 17 Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
- 18 ⁸Mention Zoologie et Biodiversité Animale, Université d'Antananarivo, Antananarivo,
- 19 Madagascar

21

25

- 20 ⁹Museo Regionale di Scienze Naturali, Torino, Italy
- 22 Corresponding Author:
- 23 Devin Edmonds^{1,2}
- 24 1816 S Oak Street, Champaign, Illinois, 61820, USA
- 26 Email address: dae2@illinois.edu

Abstract

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

52

53

54

55

56

57

58

59

60

61

62

Amphibians are experiencing severe population declines, requiring targeted conservation action for the most threatened species and habitats. Unfortunately, we do not know the basic demographic traits of most species, which hinders population recovery efforts. We studied one of Madagascar's most threatened frog species, the harlequin mantella (Mantella cowanii), to confirm it is still present at historic localities and estimate annual survival and population sizes. We surveyed eleven of all thirteen known localities and were able to detect the species at eight. Using a naïve estimate of detection probability from sites with confirmed presence, we estimated 1.54 surveys (95% CI: 1.10-2.37) are needed to infer absence with 95% confidence, suggesting the three populations where we did not detect M. cowanii are now extirpated. However, we also discovered two new populations. Repeated annual surveys at three sites showed population sizes ranged from 13–137 adults over 3–8 years, with the most intensively surveyed site experiencing a >80% reduction in population size during 2015–2023. Annual adult survival was moderately high (0.529-0.618) and we recaptured five individuals in 2022 and one in 2023 first captured as adults in 2015, revealing the maximum lifespan of the species in nature can reach nine years and beyond. Our results show M. cowanii is characterized by a slower life history pace than other Mantella species, putting it at greater extinction risk. Illegal collection for the international pet trade and continued habitat degradation are the main threats to the species. We recommend conservation efforts continue monitoring populations and reassess the IUCN Red List status because it may be Critically Endangered rather than Endangered based on population size and trends.

51 Introduction

Amphibian species are facing extinction rates at least 22 times faster than the average rate during the 10 millennia before industrialization, resulting in their status as the most threatened vertebrate class (Ceballos et al., 2015; Luedtke et al., 2023). Many species are experiencing severe population declines, leading to widespread range contractions through extirpation (e.g., Beyer and Manica 2020; Granados-Martínez et al. 2021; Patla and Peterson 2022). Habitat loss is the largest threat to amphibians, but infectious diseases, invasive species, climate change, overexploitation, and pollution are all responsible for declines and interact in complex ways (Collins, 2010; Grant, Miller & Muths, 2020). Such threats and population trends highlight the immediate need for increased conservation, especially targeted toward the most threatened species and their habitats.

Deleted: Campbell

The island of Madagascar supports extraordinary amphibian species richness and endemism, with more than 415 described endemic frog species representing five anuran clades of independent origin (Crottini et al., 2012; Antonelli et al., 2022; AmphibiaWeb 2023). Alarmingly, 46.4% of assessed Malagasy frog species are threatened, owing largely to deforestation (Ralimanana et al., 2022; IUCN, 2023). Deforestation has eliminated as much as a quarter of the tree cover on the island over the last 25 years and the rate has only increased since 2005 (Vieilledent et al., 2018; Suzzi-Simmons, 2023). Consequently, many frog species in Madagascar have patchy distributions restricted to isolated pockets of forest in an otherwise inhospitable landscape (Lehtinen & Ramanamanjato, 2006). So far, there have been no documented modern frog species extinctions in Madagascar (Andreone et al., 2008, 2021), but many records of species presence are from biological inventories conducted decades ago in areas with high rates of land use change. Verifying species presence and confirming the extant distribution of threatened species is some of the most vital information for informing conservation (Villero et al., 2017). Relatedly, we know little about frog population trends in Madagascar, even for highly threatened species. The lack of demographic information is not unique to Madagascar; we do not know survival or fertility rates for 87.5% of amphibian species globally (Conde et al., 2019). Baseline estimates of survival, recruitment, and other demographic traits are urgently needed to improve conservation efforts and inform management decisions (Grant, Miller & Muths, 2020).

64

65

66

67

68 69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

Some of the most well-known amphibians in Madagascar are the Malagasy poison frogs in the genus *Mantella*. One species (*M. laevigata*) exhibits parental care and all members of this genus display aposematic coloration to warn predators of their poisonous skin alkaloids sequestered from prey (Vences et al., 2022). As such, they are familiar examples of convergent evolution with Neotropical dendrobatids (Daly, Highet & Myers, 1984; Chiari et al., 2004; Fischer et al., 2019). While several *Mantella* species are widespread and have been found in degraded habitat and agricultural plantations (e.g., *M. betsileo*, *M. ebenaui*, and *M. viridis*, Vences et al., 1999; Andreone et al., 2006; Crottini et al., 2012), most are restricted to small areas, have highly localized populations, show a recent dramatic demographic decline, and are threatened by ongoing habitat degradation (e.g., Crottini et al. 2019). Compounding the threat of habitat loss is overexploitation; thousands of wild poison frogs are exported annually from Madagascar for the international pet trade (Rabemananjara et al., 2007b), though export quotas have been restricted recently to smaller quantities of just six species (CITES, 2022).

The harlequin mantella frog (*M. cowanii*) is one of the most threatened *Mantella* species, with a small and fragmented distribution in the central highlands. This region of Madagascar was formerly a mosaic of grassland, woodland, and subhumid forest,

Deleted: Campbell

Commented [MM1]: All refers to the one sp. of Mantella, but the rest of this sentence is plural.

Commented [MM2]: Technically referring to Dendrobatids here.

covering the mountainous area between the island's humid east and dryer west (Yoder et al., 2016). Today the central highlands consist mostly of secondary grasses and land converted for subsistence agriculture and cattle grazing, with little humid forest remaining (Andriambeloson et al., 2021; Ranarilalatiana et al., 2022). Thirteen localities of *M. cowanii* are known from the region: six in a cluster around the town of Antoetra, five 80 km northwest on the Itremo Massif, and two isolated localities located >100 km north of all other known populations, one near Betafo and the other east of Antakasina (Rabibisoa, 2008; Rabibisoa et al., 2009). All populations occur along mountainous streams with large boulders and adjacent wet rockfaces. While some sites still have intact gallery forests, others are almost entirely devoid of trees (Fig. 1). Additionally, due to its striking black and orange coloration (Fig. 2), *M. cowanii* was heavily exploited for the international pet trade during the 1990s and early 2000s (Andreone, Mercurio & Mattioli, 2006). From 1994–2003, several thousand frogs recorded as *M. cowanii* were exported from Madagascar for commercial purposes, after which legal trade was halted, and the export quota was set to zero (Rabemananjara et al., 2007b; CITES, 2022).

Despite heavy collection pressure and ongoing habitat loss, the demographic characteristics of the remaining *M. cowanii* populations have not been studied. Additionally, some populations are known from only one or two scientific expeditions carried out decades ago and could already be extirpated. In 2021 the *Mantella cowanii* Action Plan (McAP) was launched to draw attention to the species and develop a blueprint for its conservation (Andreone et al., 2020; Rakotoarison, Ndriantsoa & Rabemananjara, 2022). The McAP builds on the initial conservation strategy by Rabibisoa (2008). We aimed to fill critical research needs in the McAP by 1) confirming the presence of *M. cowanii* at localities across its range and 2) if present, estimating the key demographic traits of survival and population size.

Materials & Methods

unmanaged and without legal protection.

Study Sites

We surveyed 11 of 13 known *M. cowanii* localities, nine in the Amoron'i Mania Region and two in the Vakinankaratra Region (Fig. 3). Sites ranged in elevation ~1380–2120 m asl. We repeatedly surveyed three sites (Ambatofotsy, Soamasaka, and Fohisokina) over 3–8 years for 2–20 days/year to estimate demographic traits (Table 1). The remaining eight sites (Ambinanitelo, Andraholoma, Antakasina, Antsirakambiaty, Bekaraka, Farihimazava, Tsimabeomby, and Vatolampy) were visited up to two times for 1–6 days to confirm species presence. Only two sites have some form of habitat protection: Fohisokina (also known as Vohisokina) is community-managed with an NGO (Nowakowski & Angulo, 2015), and Antsirakambiaty falls within the boundaries of Itremo Massif Protected Area (Alvarado, Silva & Archibald, 2018). The other sites are

Commented [MM3]: Is there a publication associated with these expeditions? Who led them?

Commented [MM4R3]: When is "decades ago"?

Commented [MM5]: To do what?

Commented [MM6]: Where did you get the locations for these 13 sties? Known to who? The scientific community at large? Local communities? Just the McAP group?

Commented [MM7]: Why such a large variation in sample effort?

Commented [MM8]: I want to know how they know there definitely aren't frogs after only 2 sessions of 1-6 days.

Data Collection

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

174

175

177

178

179

Fieldwork was conducted during the onset of the rainy season from late November to mid-January when *M. cowanii* is active and detectable. Surveys were carried out in the morning during 5–8h, but at Fohisokina in 2015, we also surveyed just before dusk during 16–18h. We searched for frogs visually, walking together in teams of 2–7 people along the stream or adjacent wet rockface. If we heard a frog calling, we used the call to help find its location. Stream segment length varied from 38 m at Bekaraka to 690 m at Ambatofotsy. At Fohsiokina, we surveyed along six 50 m-long transects rather than opportunistically throughout the entire site to accomplish additional research objectives (see Newton-Youens 2017).

After capturing a frog, we held it in a plastic bag (or a petri dish in 2015 at Fohisokina), marking the location with a GPS point, flagging tape, and a unique number. We measured snout-to-vent length with digital calipers or a ruler. Individuals <22 mm were recorded as subadults under one-year post-metamorphosis based on Guarino et al. 2008. Weight was recorded with a digital scale to the nearest 0.01 g, and sex was recorded based on whether an individual had been calling before capture and, if not, body size (Tessa et al. 2009). We also took dorsal and ventral photographs, allowing us to identify recaptured individuals because each frog has a unique ventral pattern (Fig. 4). Such photographic capture-mark-recapture techniques can be more accurate and are less invasive than traditional toe-clipping or visual implant elastomers (Caorsi, Santos, and Grant 2012; Davis, VanCompernolle, and Dickens 2020). Initially, we tried using photographic matching software to automate identifying individuals (sensu Edmonds et al. 2019), but photograph angle and quality varied between days, sites, and years, so the process was prone to false negatives. Instead, one of us (D. Edmonds) visually examined all ventral photographs side-by-side and recorded when there was a match. Following photographs and measurements, frogs were released in the location where they were captured.

We followed all applicable international, national, and institutional guidelines for the care and use of animals. The study methods were approved by the Ministère de l'Environnement et du Développement Durable in permits

172 N°173/20/MEDD/SG/DGGGE/DAPRNE/SCBE.Re, N°439/21/

173 MEDD/SG/DGGGE/DAPRNE/SCBE.Re, and N°173/22/

MEDD/SG/DGGGE/DAPRNE/SCBE.Re and by the University of Illinois Urbana-

Champaign Institutional Animal Care and Use Committee in protocol #21180.

176 Analysis

We used a robust design capture-mark-recapture model to estimate population size ($\mathbb N$) and apparent annual survival (φ) at Ambatofotsy, Fohisokina, and Soamasaka. These sites were selected because we had sampled them for at least three years, the

Commented [MM9]: I think there needs to be some caveat/relative term here

Commented [MM10]: Why in the AM? Timing bias detection?

Commented [MM11]: I think to a certain extent...

Commented [MM12]: Again, this contradicts your previous statement

minimum required for estimating annual survival. Our analysis compared 17 models, all incorporating site as a group-level effect. We considered models with either constant or site-specific φ and the temporary emigration parameters γ'' and γ' either constrained to 0 assuming no movement or set equal assuming random emigration. To account for individual heterogeneity in capture probability (p), we included a random effect of individual on p. Additionally, we compared models with capture probability covariates of site, year, number of surveyors, and survey effort calculated as the number of surveyors multiplied by the survey duration in minutes. We could not include environmental covariates that might be associated with capture probability because they were not collected consistently across all sites and years. To compare candidate models, we ranked them using Akaike's Information Criterion adjusted for small sample sizes (AICc; Burnham and Anderson 2002). Models with Δ AICc < 2 were considered to have support. We analyzed capture-mark-recapture data in program MARK through the *RMark* interface (White & Burnham, 1999; Laake, 2013) and assessed the goodness-of-fit with package *R2ucare* in R version 4.2.0 (Gimenez et al., 2018; R Core Team, 2022).

To infer absence if we did not detect *M. cowanii* at a historic locality, we estimated detection probability with a single-season occupancy model in package *unmarked* (Fiske and Chandler 2011). Data from nine localities with confirmed presence and at least three surveys were used to generate a naïve estimate of detection probability assuming constant detection and occupancy. We then followed Pellet and Schmidt (2005) to estimate the number of surveys needed to detect the species as:

$$N_{min} = \frac{\ln(0.05)}{\ln(1-p)}$$

where N_{min} is the minimum number of surveys, p is the detection probability, and 0.05 is the confidence level needed to be 95% certain of absence, assuming independent and comparable surveys. Using the number of surveys, we then calculated the confidence level around an observed absence given N number of surveys as:

$$conf = e^{N*\ln{(p)}}$$

Results

Verifying Species Presence

We confirmed *M. cowanii* presence at 8 of 11 surveyed localities and identified 2 previously unrecorded populations. However, we failed to detect the species at the historical localities of Andraholoma, Tsimabeomby, and Vatolampy. The naïve detection probability from sites with confirmed presence was 0.86 (95% CI: 0.72–0.93), showing it takes 1.54 surveys (95% CI: 1.10–2.37) to be 95% confident a population is extirpated and 2.37 surveys (95% CI: 1.69–3.65) to be 99% confident. With at least two days of

Commented [MM13]: Based on what?

Commented [MM14]: Does this assume random emigration?

Commented [MM15]: They as in the environmental covariates?

Commented [MM16R15]: are there are larger satellite/weather station datasets you can utilize?

Formatted: Highlight

Commented [MM17]: There was only one survey at Tsimabeomby, correct?

Commented [MM18R17]: See comment about Bekaraka

surveys at Andraholoma and Vatolampy, we can be >97.9% (95% CI: 91.9–99.9%) confident the populations are extirpated and 85.7% (95% CI: 71.7–93.4%) confident there are no *M. cowanii* at Tsimabeomby.

Capture Patterns Across Sites

We made 764 captures of 280 individuals across all study sites and years, excluding putative *M. baroni* x *M. cowanii* hybrids. All but 8 frogs were adults. Over half of all captures were at Fohisokina, where we caught 149 individuals 481 times. Six individuals at Fohisokina were recaptured 7 years after initially being caught in 2015 as adults (Fig. 4), one of which was recaptured again in year 8 in 2023. At our second most intensively surveyed site, Soamasaka, we made 137 captures of 40 individuals during annual fieldwork in 2020–2023. Three frogs were recaptured 4 years after their initial encounter in 2020, and 4 were recaptured 3 years apart. At Ambatofotsy, we conducted surveys in 2021, 2022, and 2023 and made 76 captures of 32 individuals, all adults.

Annual Survival and Population Sizes

The most parsimonious capture-mark-recapture model had capture probability p and annual adult survival φ varying by site (Table 2). Models with no movement generally performed better than those with random emigration (Table 2). The top model estimated population sizes (\aleph) ranging from 13–137 adult frogs per site across years (Fig 5). The highest \aleph estimate was from Fohisokina in 2015 (137, 95% CI: 120–170) and the lowest from Soamasaka in 2023 (13, 95% CI: 11–22). Fohisokina showed a decreasing population size during 2015–2023, whereas Soamasaka and Ambatofotsy were relatively stable over a shorter period (Fig. 5). There was strong support for site-varying survival (Table 2), with the estimated annual adult survival more precise for Fohisokina than Soamasaka due to the longer study duration (Fig. 6). For Ambatofotsy, the survival estimate was too imprecise to be informative because the data spanned only three years and only a small number of frogs were captured each year. Overall, the annual survival estimates at Fohisokina and Soamasaka were comparable, although the estimate from Soamasaka was lower than Fohisokina (Fig. 6).

Discussion

Our results demonstrate *M. cowanii* was still present at no less than ten localities in 2022–2023, but the population size is very small for at least three sites (<50 adults per site). Extrapolating across all known localities, in the worst-case scenario, the total adult population size for the species may number <500 individuals. However, frog populations naturally fluctuate in abundance, and a snapshot over several years can easily lead to erroneous conclusions that populations are declining when they are stable (Pechmann et al., 1991; Blaustein, Wake & Sousa, 1994; Meyer, Schmidt &

Commented [MM19]: Again I'm wondering if you controlled for interval length. This is a big part of your discussion.

Commented [MM20R19]: It just seems crazy to me that one year (5 years before any of these others) you detected nearly twice as many frogs as the next sampling period and between 3 and 5 fold as many at either of the other areas you're estimating abundance...

Formatted: Highlight

Commented [MM21]: I think if you're going to take multiple paragraphs to discuss big declines in survival and population growth, this finding needs to be written out in the results.

Formatted: Highlight

Grossenbacher, 1998). Such fluctuations are typical of species with fast life histories, where fecundity is high and generation time short, thus, demographic rates tend to vary (Sæther et al., 2004, 2013). Additionally, amphibian populations fluctuate more for pond breeding species and less for terrestrial and stream breeding species (Green, 2003). Considering *M. cowanii* is a terrestrial stream-breeding frog with comparatively low reproductive output (20–57 eggs per egg mass; Tessa et al. 2009), relatively high annual adult survival, and a maximum lifespan in nature of at least nine years, we believe our results are not an artifact of stochastic fluctuations in population size.

Commented [MM22]: But at what time scales are these population fluctuations occurring? Is 3-4 years enough to capture population stability across natural fluctuations?

We highlight three possible factors contributing to the >80% population decline at Fohisokina between 2015 and 2023. First, fires burnt much of Fohisokina in November 2020 at the start of their breeding season, just before our survey. Though *M. cowanii* presumably is protected from fire while sheltering in moist rock crevices and caves for much of the year, fire can cause mortality in terrestrial frogs when they are active above ground during the breeding season (e.g., Humphries and Sisson 2012; Potvin et al. 2017). Second, according to a European private breeder, in 2017 more than 100 *M. cowanii* were illicitly offered for sale in Germany, and an unknown number were offered again in 2021. As Fohisokina is the most easily accessed *M. cowanii* locality and was historically a collection site for the pet trade (Rabemananjara et al., 2007b), the frogs were possibly poached from Fohisokina. Lastly, although no records of chytridiomycosis have been confirmed in Madagascar and all frogs we sampled appeared healthy, the amphibian chytrid fungus *Batrachochytrium dendrobatidis* has been reported from the island, and in 2014 was detected on a single *M. cowanii* individual at Soamasaka ~5 km south of Fohisokina (Bletz et al., 2015). Therefore, we cannot rule out disease either.

At Vatolampy, we did not detect M. cowanii after six days of surveys and suspect the population is extirpated. Until our work, the site had not been surveyed since 2003-2004, when Andreone et al. (2007) and Rabemananjara et al. (2007a) collected tissue samples and voucher specimens from the population. Similarly, Andraholoma had not been surveyed since 2009 when the site was visited by one of us (C. Randrianantoandro) for one day and 5 individuals observed. Conversely, we question whether Tsimabeomby, the third site where we did not detect M. cowanii, ever supported a population. We believe the locality was possibly published in error by Rabibisoa (2008) because Tsimabeomby consists of a wet meadow, is without rocks or running water, is isolated from the next nearest population by >3 km, and the local people we worked with had never encountered M. cowanii there whereas they knew of the other populations. Nonetheless, M. cowanii could have been present but undetected during our surveys if the detection probability at Andraholoma, Tsimabeomby, and Vatolampy was lower than elsewhere. Additionally, the naïve estimate of detection probability we used to infer absence did not account for observer, environmental, or temporal factors influencing detection. Still, our team detected M. cowanii at other sites on the days we

surveyed Andraholoma, Tsimabeomby, and Vatolampy, illustrating local environmental conditions were favorable for detecting *Mantella*. Re-surveying the three sites in the coming years will confirm if the populations are extirpated.

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320 321

322

323

324

325

326

327

328

Some amphibian species are capable of dispersing long distances to recolonize suitable habitat (Marsh and Trenham 2001; Fonte, Mayer, and Lötters 2019), but we do not expect so for M. cowanii in Madagascar's degraded highland landscape. There are no studies on the movement of Madagascar's poison frogs (but see Andreone et al. 2013), however research on their Neotropical dendrobatid counterparts shows adults rarely move more than a few hundred meters from established territories (e.g., Ringler et al. 2009, Pašukonis et al. 2013; Beck et al. 2017; Pašukonis et al. 2019). Moreover, in a review of the dispersal ability of amphibians, Smith and Green (2005) found nearly half of studied species moved <400m. Historically, adult frogs may have moved between patches when there was more forest in the highlands. However, we suspect Mantella usually passively disperse when tadpoles are flushed between habitat patches during heavy rain. As such, natural recolonization of Vatolampy or Andraholoma is unlikely, especially considering the physiological, movement, and site fidelity constraints amphibians face (Blaustein, Wake & Sousa, 1994). At Vatolampy, the next closest locality is Farihimazava, 1.5 km northeast in a different valley, which supports mostly M. baroni and M. baroni x M. cowanii hybrids (Chiari et al., 2005; Andreone et al. 2007). For Andraholoma, the next closest locality is Andaobatofotsivava >7 km north, though admittedly, the area of the Itremo Massif is poorly explored and there could be additional unrecorded populations between the two. Indeed, we located two new localities during fieldwork.

Previous skeletochronology research estimated the maximum lifespan of M. cowanii at three years (Guarino et al., 2008; Andreone et al., 2011), but we identified individuals at least eight years post-metamorphosis and one individual nine years. Skeletochronology is known to underestimate the ages of older individuals because skeletal growth rings progressively converge with age, and amphibian bone tissue is prone to reabsorption (Eden et al., 2007; Sinsch, 2015). Our results show the advantages of using capture-mark-recapture surveys for estimating demographic traits if resources are available. The long lifespan of M. cowanii is notable when considered together with their reproductive output and body size. The species is one of the largest in the genus, has the largest egg diameter, and has the lowest number of eggs per mass, exemplifying their slow life history compared to other Mantella species (Tessa et al. 2009). All of this aligns with our discovery that M. cowanii has the longest lifespan for the genus. Life history traits often follow altitudinal clines, with slower traits associated with higher altitudes (Hille & Cooper, 2015; Laiolo & Obeso, 2017). Indeed, amphibians tend to live longer and have larger body sizes at higher altitudes (Morrison & Hero, 2003; Andreone et al. 2004); M. cowanii is no exception (Tessa et al. 2009). Such

patterns also occur within species across altitudinal gradients (Zhang & Lu, 2012). Considering the *M. cowanii* from Betafo populations occur ~500m higher than where we recorded ~8–9-year-old individuals, frogs from Betafo may live even longer. Such slow life history traits also have conservation implications because they are associated with higher extinction risk (Webb, Brook & Shine, 2002). Given the relatively long lifespan and low reproductive output of *M. cowanii*, the success of recovery efforts for the species may not be as rapid as in other related amphibian species.

To ensure populations remain extant, we must better identify the causes of declines and the magnitude of threats. Screening populations for Bd and monitoring for illicit M. cowanii in the pet trade are obvious actions, but disentangling the threat of habitat loss is more complicated. The number of trees remaining at sites varies from intact closed-canopy forest to rocky landscapes almost entirely devoid of trees, so the degree to which deforestation is a threat may depend on additional habitat characteristics. Newton-Youens (2017) identified rock caves and refuges as essential habitat features, and speculated they might be used for breeding, though so far, no eggs, tadpoles, or newly metamorphosed individuals have been found in nature. Studies on the microhabitat preferences and activity levels of M. cowanii, like those carried out by Edwards et al. (2019, 2022) for M. aurantiaca, would further help identify the most critical habitat features to protect and the best time to survey sites. Likewise, better information about habitat requirements could be used to locate new sites with unprotected populations we do not know about. All known M. cowanii populations are centered around four isolated sites with likely past connectivity when the highlands were an intact forest-grassland mosaic (Bond, Silander & Ratsirarson, 2023). Fieldwork in the remote areas between the four population centers could uncover additional isolated M. cowanii populations, but time is running out.

Conclusions

We set out to verify the presence and estimate key demographic traits for one of Madagascar's most threatened frog species and found several historical localities are likely extirpated while others are extremely small. Unfortunately, our results are not unique to Madagascar but represent a global trend in amphibian populations (Stuart et al., 2004; Grant et al., 2016). Amphibians are at the forefront of the extinction crisis, and population monitoring is essential to measure responses to conservation actions and detect declines before recovery is impossible. We used capture-mark-recapture methods to estimate abundance at three localities (Ambatofotsy, Soamasaka, and Fohisokina; Fig. 3), but less costly approaches relying on presence-absence data are likely suitable for monitoring *M. cowanii* across its entire range (Joseph et al., 2006; Jones, 2011). When enacted with local people as part of a broader program, monitoring can galvanize conservation efforts by adding value to a threatened species and instilling pride in local communities (Andrianandrasana et al., 2005; Danielsen, Burgess &

Formatted: Highlight

Formatted: Highlight

Balmford, 2005). As we have shown, the causes of declines are often unclear without adequate information on a species' basic ecology and life history. For *M. cowanii*, we recommend further research run concurrently with conservation efforts and focus on determining the relative impact of disease, illegal trade, and habitat loss. We also recommend reassessing the IUCN Red List status of *M. cowanii*. The species was last assessed in 2014 as Endangered but it may qualify for the Critically Endangered status based on our estimates of population sizes and trends.

Acknowledgements

368

369

370

\$71

372

373

374

375

384

376 We are grateful to Chloe Helsey who assisted with fieldwork in 2015, to L'Homme et 377 l'Environnement and V.O.I. FOMISAME for collaborative efforts at Antoetra, and to 378 Tiana Randriamboavoniy of the Kew Madagascar Conservation Centre for logistical support at Itremo. Special thanks go to Association Mitsinjo members Frederic R. 379 380 Razafimahefa, Georges Ramarolahy, Samina S. Sam Edmonds, Edupsie 381 Tsimilaomanana, and Fanirihasimbola J.E. Abraham for providing indispensable field 382 assistance. We thank R. Griffiths, E. Larson, and R. Schooley for offering feedback on 383 an early draft of the manuscript.

Formatted: Highlight

References 385 386 Alvarado ST, Silva TSF, Archibald S. 2018. Management impacts on fire occurrence: A 387 comparison of fire regimes of African and South American tropical savannas in 388 different protected areas. Journal of Environmental Management 218:79-87. DOI: 389 10.1016/j.jenvman.2018.04.004. 390 AmphibiaWeb. 2023. AmphibiaWeb: Information on amphibian biology and 391 conservation. Available at http://www.amphibiaweb.org (accessed March 9, 2023). 392 Andreone F, Andriantsimanarilafy RR, Crottini A, Edmonds D, Garcia G, Hansen-393 Hendrikx CM, Rakotoarison A, Razafimanahaka JH. 2020. Mantella cowanii Action 394 Plan 2021–2025 / Plan d'Action Mantella cowanii 2021–2025. Museo Regionale di 395 Scienze Naturali and the Amphibian Survival Alliance, Turin. 396 Andreone F, Bergò PE, Mercurio V, Rosa GM. 2013. Spatial ecology of Scaphiophryne 397 gottlebei in the canyons of the Isalo Massif, Madagascar. Herpetologica 69:11-21. 398 Andreone F, Carpenter AI, Cox N, Du Preez L, Freeman K, Furrer S, Garcia G, Glaw F, 399 et al. 2008. The challenge of conserving amphibian megadiversity in Madagascar. 400 PLoS Biology 6:943–946. DOI: 10.1371/journal.pbio.0060118. 401 Andreone F, Carpenter AI, Crottini A, D'Cruze N, Dubos N, Edmonds D, Garcia G, 402 Luedtke J, et al. 2021. Amphibian Conservation in Madagascar: Old and Novel 403 Threats to a Peculiar Fauna. In: Heatwole H, Rödel M-O eds. Status and Threats of 404 Afrotropical Amphibians. Frankfurt am Main: Chimaira, 243. 405 Andreone F, Giacoma C, Guarino FM, Mercurio V, Tessa G. 2011. Age profile in nine 406 Mantella poison frogs from Madagascar, as revealed by skeletochronological 407 analyses. Alytes 27:73-84. 408 Andreone F, Mercurio V, Mattioli F. 2006. Between environmental degradation and 409 international pet trade: conservation strategies for the threatened amphibians of 410 Madagascar. Natura - Soc. it. Sci. nat. Museo civ. Stor. nat. Milano 95:81–96. 411 Andreone F, Miaud C, Eusebio Bergò P, Doglio S, Stocco P, Riberon A, Gautier P. 412 2004. Living at high altitude: testing the effects of life history traits upon the 413 conservation of Salamandra lanzai (Amphibia, Salamandridae). The Italian Journal 414 of Zoology 71: 35-43. 415 Andreone F, Vences M, Glaw F, Randrianirina JE. 2007. Remarkable records of 416 amphibians and reptiles on Madagascar's central high plateau. Tropical Zoology 417 20:19-37. 418 Andriambeloson JB, Blanco MB, Andriantsalohimisantatra A, Rivoharison T V., Walker

N, Birkinshaw C, Yoder AD. 2021. Living in tiny fragments: a glimpse at the ecology

419

420	of Goodman's mouse lemurs (Microcebus lehilahytsara) in the relic forest of
421	Ankafobe, Central Highlands, Madagascar. Primates 62:887–896. DOI:
422	10.1007/s10329-021-00947-1.

- Andrianandrasana HT, Randriamahefasoa J, Durbin J, Lewis RE, Ratsimbazafy JH.
 2005. Participatory ecological monitoring of the Alaotra wetlands in Madagascar.
 Biodiversity and Conservation 14:2757–2774. DOI: 10.1007/s10531-005-8413-y.
- Antonelli A, Smith RJ, Perrigo AL, Crottini A, Hackel J, Testo W, Farooq H, Torres
 Jiménez MF, et al. 2022. Madagascar's extraordinary biodiversity: Evolution,
 distribution, and use. Science 378:eaf0869.
- Beck KB, Loretto MC, Ringler M, Hödl W, Pašukonis A. 2017. Relying on known or
 exploring for new? Movement patterns and reproductive resource use in a tadpole transporting frog. *PeerJ*:e3745. DOI: 10.7717/peerj.3745
- Beyer RM, Manica A. 2020. Historical and projected future range sizes of the world's
 mammals, birds, and amphibians. *Nature Communications* 11:1–8. DOI:
 10.1038/s41467-020-19455-9.
- Blaustein AR, Wake DB, Sousa WP. 1994. Amphibian declines: judging stability,
 persistence, and susceptibility of populations to local and global extinctions.
 Conservation Biology 8:60–71. DOI: 10.1046/j.1523-1739.1994.08010060.x.
- Bletz MC, Rosa GM, Andreone F, Courtois EA, Schmeller DS, Rabibisoa NHC,
 Rabemananjara FCE, Raharivololoniaina L, et al. 2015. Widespread presence of
 the pathogenic fungus *Batrachochytrium dendrobatidis* in wild amphibian
 communities in Madagascar. *Scientific Reports* 5:1–10. DOI: 10.1038/srep08633.
- Bond WJ, Silander JA, Ratsirarson J. 2023. Madagascar's grassy biomes are ancient
 and there is much to learn about their ecology and evolution. *Journal of Biogeography* 50:614–621. DOI: 10.1111/jbi.14494.
- Burnham KP, Anderson DR. 2002. Model Selection and Multimodel Inference: A
 Practical Information-Theoretic Approach. New York: Springer-Verlag.
- Campbell Grant EH, Miller DAWW, Muths E. 2020. A Synthesis of evidence of drivers of
 amphibian declines. *Herpetologica* 76:101–107. DOI: 10.1655/0018-0831-76.2.101.
- Caorsi VZ, Santos RR, Grant T. 2012. Clip or snap? An evaluation of toe-clipping and
 photo-identification methods for identifying individual Southern Red-Bellied Toads,
 Melanophryniscus cambaraensis. South American Journal of Herpetology 7(2):79–
 Ab. DOI: 10.2994/057.007.0210.
- Ceballos G, Ehrlich PR, Barnosky AD, Garcia A, Pringle RM, Palmer TM. 2015.
 Accelerated modern human-induced species losses: Entering the sixth mass

455 456	extinction. <i>Science Advances</i> 1:e1400253–e1400253. DOI: 10.1126/sciadv.1400253.	Formatted: Spanish
457 458 459 460	Chiari Y, Andreone F, Vences M, Meyer A. 2005. Genetic variation of an endangered Malagasy frog, <i>Mantella cowani</i> , and its phylogeographic relationship to the widespread <i>M. baroni</i> . <i>Conservation Genetics</i> 6:1041–1047. DOI: 10.1007/s10592-005-9085-6.	Formatted: Spanish
461 462 463 464	Chiari Y, Vences M, Vieites DR, Rabemananjara F, Bora P, Ramilijaona Ravoahangimalala O, Meyer A. 2004. New evidence for parallel evolution of colour patterns in Malagasy poison frogs (<i>Mantella</i>). <i>Molecular Ecology</i> 13:3763–3774. DOI: 10.1111/j.1365-294X.2004.02367.x.	
465 466	CITES. 2022. CITES Trade Database version 2022.1. Available at https://trade.cites.org/	
467 468	Collins JP. 2010. Amphibian decline and extinction: What we know and what we need to learn. <i>Diseases of Aquatic Organisms</i> 92:93–99. DOI: 10.3354/dao02307.	
469 470 471 472	Conde DA, Staerk J, Colchero F, da Silva R, Schöley J, Maria Baden H, Jouvet L, Fa JE, et al. 2019. Data gaps and opportunities for comparative and conservation biology. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 116:9658–9664. DOI: 10.1073/pnas.1816367116.	
473 474 475 476	Crottini A., Brown JL, Mercurio V, Glaw F, Vences M, Andreone F. 2012. Phylogeography of the poison frog <i>Mantella viridis</i> (Amphibia: Mantellidae) reveals chromatic and genetic differentiation across ecotones in northern Madagascar. <i>Journal of Zoological Systematics and Evolutionary Research</i> 50:305–314.	
477 478 479 480	Crottini A, Madsen O, Poux C, Strauß A, Vieites DR, Vences M. 2012. Vertebrate time-tree elucidates the biogeographic pattern of a major biotic change around the K-T boundary in Madagascar. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 109:5358–5363. DOI: 10.1073/pnas.1112487109.	Formatted: Spanish
481 482 483 484	Crottini A, Orozco-terWengel P, Rabemananjara FCE, Hauswaldt JS, Vences M. 2019. Mitochondrial introgression, color pattern variation and severe demographic bottlenecks in three species of Malagasy poison frogs, genus <i>Mantella</i> . <i>Genes</i> 10:317. DOI:10.3390/genes10040317.	
485 486 487	Daly JW, Highet RJ, Myers CW. 1984. Occurrence of skin alkaloids in non-dendrobatid frogs from Brazil (Bufonidae), Australia (Myobatrachidae) and Madagascar (Mantellinae). <i>Toxicon</i> 22:905–919. DOI: 10.1016/0041-0101(84)90182-X.	
488 489	Danielsen F, Burgess ND, Balmford A. 2005. Monitoring matters: Examining the potential of locally-based approaches. <i>Biodiversity and Conservation</i> 14:2507–	

490	2542. DOI: 10.1007/s10531-005-8375-0.
491 492 493	Davis HP, VanCompernolle M, Dickens J. 2020. Effectiveness and reliability of photographic identification methods for identifying individuals of a crypitically patterned toad. <i>Herpetological Conservation and Biology</i> 15(1):204–211.
494 495 496	Eden CJ, Whiteman HH, Duobinis-Gray L, Wissinger SA. 2007. Accuracy assessment of skeletochronology in the Arizona Tiger Salamander (<i>Ambystoma tigrinum nebulosum</i>). Copeia 2007:471–477.
497 498 499	Edmonds D, Kessler E, Bolte L. 2019. How common is common? Rapidly assessing population size and structure of the frog <i>Mantidactylus betsileanus</i> at a site in east-central Madagascar. <i>Austral Ecology</i> 44:1196–1203. DOI: 10.1111/aec.12797.
500 501 502	Edwards WM, Bungard MJ, Griffiths RA. 2022. Daily activity profile of the golden mantella in the "Froggotron"—A replicated behavioral monitoring system for amphibians. <i>Zoo Biology</i> 41:3–9. DOI: 10.1002/zoo.21650.
503 504 505 506	Edwards WM, Griffiths RA, Bungard MJ, Rakotondrasoa EF, Razafimanahaka JH, Razafindraibe P, Andriantsimanarilafy RR, Randrianantoandro JC. 2019. Microhabitat preference of the critically endangered golden mantella frog in Madagascar. <i>Herpetological Journal</i> 29:207–213.
507 508 509	Fischer EK, Roland AB, Moskowitz NA, Vidoudez C, Ranaivorazo N, Tapia EE, Trauger SA, Vences M, et al. 2019. Mechanisms of convergent egg provisioning in poison frogs. <i>Current Biology</i> 29:4145-4151.e3. DOI: 10.1016/j.cub.2019.10.032.
510 511	Fonte LFM, Mayer M, Lötters S. 2019. Long-distance dispersal in amphibians. <i>Frontiers of Biogeography</i> 11(4):e44577. DOI: 10.21425/F5FBG44577.
512 513 514	Gimenez O, Lebreton JD, Choquet R, Pradel R. 2018. R2ucare: An R package to perform goodness-of-fit tests for capture–recapture models. <i>Methods in Ecology and Evolution</i> 9:1749–1754. DOI: 10.1111/2041-210X.13014.
515 516 517	Granados-Martínez S, Zumbado-Ulate H, Searle CL, Oliveira BF, García-Rodríguez A. 2021. Niche contraction of an endangered frog driven by the amphibian chytrid fungus. <i>EcoHealth</i> 18:134–144. DOI: 10.1007/s10393-021-01525-z.
518 519	Grant EHC, Miller DAW, Schmidt BR, Adams MJ, Amburgey SM, Chambert T, Cruickshank SS, Fisher RN, et al. 2016. Quantitative evidence for the effects of

multiple drivers on continental-scale amphibian declines. Scientific Reports 6:1-9.

Green DM. 2003. The ecology of extinction: Population fluctuation and decline in

amphibians. Biological Conservation 111:331-343. DOI: 10.1016/S0006-

520

521

522

523

524

DOI: 10.1038/srep25625.

3207(02)00302-6.

525	Guarino FM, Sacco M, Tessa G, Andreone F. 2008. Short life span of two charismatic
526	Mantella species: age-structure in the critically endangered M. cowani and in the
527	syntopic M. baroni. In: Androne F ed. A Conservation Strategy for the Amphibians
528	of Madagascar. Torino: Museo Regionale di Scienze Naturali, 265–276.

- Hille SM, Cooper CB. 2015. Elevational trends in life histories: revising the pace-of-life framework. *Biological Reviews* 90:204–2013.
- Humphries WJ, Sisson MA. 2012. Long distance migrations, landscape use, and vulnerability to prescribed fire of the Gopher Frog (*Lithobates capito*). *Journal of Herpetology* 46:665–670. DOI: 10.1670/11-124.
- 534 IUCN. 2023. The IUCN Red List of Threatened Species. Version 2022-2. *Available at http://www.iucnredlist.org* (accessed March 15, 2023).
- Jones JPG. 2011. Monitoring species abundance and distribution at the landscape scale. *Journal of Applied Ecology* 48:9–13. DOI: 10.1111/j.1365-2664.2010.01917.x.
- Joseph LN, Field SA, Wilcox C, Possingham HP. 2006. Presence-absence versus
 abundance data for monitoring threatened species. *Conservation Biology* 20:1679–
 1687. DOI: 10.1111/j.1523-1739.2006.00529.x.
- Laake JL. 2013. RMark: An R Interface for analysis of capture-recapture data with
 MARK. AFSC Processed Rep. 2013-1. Alaska Fish. Sci. Cent., NOAA, Seattle,
 WA.
- Laiolo P, Obeso JR. 2017. *Life-History Responses to the Altitudinal Gradient*. Cham,
 Switzerland: Springer Nature. DOI: 10.1007/978-3-319-55982-7 11.
- Lehtinen R, Ramanamanjato J-B. 2006. Effects of rainforest fragmentation and
 correlates of local extinction in a herpetofauna from Madagascar. *Applied Herpetology* 3:95–110. DOI: 10.1163/157075406776984248.
- Luedtke JA, Chanson J, Neam K, Hobin L, Maciel AO, Catenazzi A, Borzée A, Hamidy
 A, et al. 2023. Ongoing declines for the world's amphibians in the face of emerging
 threats. *Nature* 622:308–314. DOI: 10.1038/s41586-023-06578-4.
- 553 Marsh DM, Trenham PC. 2001. Metapopulation dynamics and amphibian conservation.
 554 *Conservation Biology* 15(1):40–49. DOI: 10.1111/j.1523-1739.2001.00129.x.
- Meyer AH, Schmidt BR, Grossenbacher K. 1998. Analysis of three amphibian
 populations with quarter-century long time-series. *Proceedings of the Royal Society B: Biological Sciences* 265:523–528. DOI: 10.1098/rspb.1998.0326.
- 558 Morrison C, Hero J-M. 2003. Geographic variation in life-history characteristics of

559	amphibians: a review. Journal of Animal Ecology 72:270–279.
560 561	Newton-Youens J. 2017. The importance of microclimates in the ex situ management of amphibians. MS Thesis. University of Manchester.
562 563	Nowakowski J, Angulo A. 2015. Targeted habitat protection and its effects on the extinction risk of threatened amphibians. <i>FrogLog</i> 23:8–10.
564 565 566 567	Patla DA, Peterson CR. 2022. The slow decline of a Columbia Spotted Frog population in Yellowstone National Park: A cautionary tale from a developed zone within a large protected area. <i>Ecological Indicators</i> 136:108606. DOI: 10.1016/j.ecolind.2022.108606.
568 569 570	Pašukonis A, Ringler M, Brandl HB, Mangione R, Ringler E, Hödl W. 2013. The homing frog: high homing performance in a territorial dendrobatid frog <i>Allobates femoralis</i> (Dendrobatidae). <i>Ethology</i> 119(9):762–768. DOI: 10.1111/eth.12116.
571 572 573	Pašukonis A, Loretto MC, Rojas B. 2019. How far do tadpoles travel in the rainforest? Parent-assisted dispersal in poison frogs. <i>Evolutionary Ecology</i> 33(4):613–623. DOI: 10.1007/s10682-019-09994-z.
574 575 576	Pechmann JHK, Scott DE, Semlitsch RD, Caldwell JP, Vitt LJ, Gibbons JW. 1991. Declining amphibian populations: The problem of separating human impacts from natural fluctuations. <i>Science</i> 253:892–895. DOI: 10.1126/science.253.5022.892.
577 578 579	Pellet J, Schmidt BR. 2005. Monitoring distributions using call surveys: Estimating site occupancy, detection probabilities and inferring absence. <i>Biological Conservation</i> 123:27–35. DOI: 10.1016/j.biocon.2004.10.005.
580 581 582 583	Potvin DA, Parris KM, Smith Date KL, Keely CC, Bray RD, Hale J, Hunjan S, Austin JJ, et al. 2017. Genetic erosion and escalating extinction risk in frogs with increasing wildfire frequency. <i>Journal of Applied Ecology</i> 54:945–954. DOI: 10.1111/1365-2664.12809.
584 585	R Core Team. 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computer, Vienna, Austria. https://www.R-project.org/.
\$86 587 588	Rabemananjara FCE, Chiari Y, Ramilijaona OR, Vences M. 2007a. Evidence for recent gene flow between north-eastern and south-eastern Madagascan poison frogs from a phylogeography of the <i>Mantella cowani</i> group. <i>Frontiers in Zoology</i> 4:1. DOI:

Rabemananjara FCE, Raminosoa NR, Ravoahangimalala OR, Rakotondravony D,

Andreone F, Bora P, Carpenter Al, Glaw F, et al. 2007b. Malagasy poison frogs in

the pet trade: a survey of levels of exploitation of species in the genus *Mantella*.

Amphibian and Reptile Conservation 5:3–16. DOI: 10.1514/journal.arc.0050020.

589

590

591 592

593

10.1186/1742-9994-4-1.

594 595	Rabibisoa N. 2008. <i>Plan d'Action de Conservation de Mantella cowani (PACM)</i> . Conservation International and the Amphibian Specialist Group of Madagascar.
596 597 598 599	Rabibisoa N, Randrianasolo H, Anjeriniaina M, Mackinnon J, Andriamamonjisoa A, Randrianantoandro C, Andreone F. 2009. New findings of harlequin mantella improve the conservation status of Madagascar's most threatened frog. <i>Froglog</i> 92:5–8.
600 601 602 603	Rakotoarison A, Ndriantsoa S, Rabemananjara F., Rabibisoa NHC, Rakotonanahary TF, Randriamahazo H, Andreone F. 2022. More than 15 years of amphibian conservation in Madagascar under the flag of IUCN SSC Amphibian Specialist Group. In: Biaggini M., Corti C., Giacobbe D., Lo Cascio P. eds. <i>Herpetologia</i>
604 605	Siciliae - XIII Congresso della Societas Herpetologica Italica (Lipari 22-26 settembre 2021). Naturalista Siciliano 46:305–312.
606 607 608	Ralimanana H, Perrigo AL, Smith RJ, Borrell JS, Faurby S, Rajaonah MT, Randriamboavonjy T, Vorontsova MS, et al. (2022): Madagascar's extraordinary biodiversity: Threats and opportunities. <i>Science</i> 378:eadf1466.
609 610 611 612 613	Ranarilalatiana T, Razafindraleva HA, Granath G, Bukontaite Malm R, Rakotonirina JC, Razafindranaivo V, Ravaomanarivo LHR, Johansson F, et al. 2022. Remaining forests on the Central Highlands of Madagascar—Endemic and endangered aquatic beetle fauna uncovered. <i>Ecology and Evolution</i> 12:1–26. DOI: 10.1002/ece3.9580.
614 615 616 617	Ringler M, Ursprung E, Hödl W. 2009. Site fidelity and patterns of short- and long-term movement in the brilliant thighed poison frog <i>Allobates femoralis</i> (Aromobatidae). <i>Behavioral Ecology and Sociobiology</i> 63:1281–1293. DOI: 10.1163/156853891X00329.
618 619 620	Sæther BE, Coulson T, Grøtan V, Engen S, Altwegg R, Armitage KB, Barbraud C, Becker PH, et al. 2013. How life history influences population dynamics in fluctuating environments. <i>American Naturalist</i> 182:743–759. DOI: 10.1086/673497.
621 622 623 624	Sæther BE, Engen S, Møller AP, Weimerskirch H, Visser ME, Fiedler W, Matthysen E, Lambrechts MM, et al. 2004. Life-history variation predicts the effects of demographic stochasticity on avian population dynamics. <i>American Naturalist</i> 164:793–802. DOI: 10.1086/425371.
625 626	Sinsch U. 2015. Review: skeletochronological assessment of demographic life-history traits in amphibians. <i>Herpetological Journal</i> 25:5–13.
627 628	Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASLL, Fischman DL, Waller RW. 2004. Status and trends of amphibian declines and extinctions worldwide.

Science 306:1783-1786. DOI: 10.1126/science.1103538.

629

630 631	Suzzi-Simmons A. 2023. Status of deforestation of Madagascar. <i>Global Ecology and Conservation</i> 42:e02389. DOI: 10.1016/j.gecco.2023.e02389.
632 633 634 635	Tessa G, Mattioli F, Vincenzo M, Andreone F. 2009. Egg numbers and fecundity traits in nine species of <i>Mantella</i> poison frogs from arid grasslands and rainforests of Madagascar (Anura: Mantellidae). <i>Madagascar Conservation & Development</i> 4:113–119.
636 637 638	Vences M, Glaw F, Bohme W. 1999. A review of the genus <i>Mantella</i> (Anura, Ranidae, Mantellinae): taxonomy, distribution and conservation of Malagasy poison frogs. <i>Alytes</i> 17:3–72.
639 640 641	Vences M, Crottini A, Rabemananjara FCE, Randrianantoandro C, Tsiorisoa GA. 2022. Mantellidae, Mantellinae: <i>Mantella</i> and <i>Wakea</i> . In: Goodman SM, ed. <i>The New Natural History of Madagascar</i> . Princeton: Pinceton University Press, 1360–1365.
642 643 644 645	Vieilledent G, Grinand C, Rakotomalala FA, Ranaivosoa R, Rakotoarijaona J-R, Allnutt TF, Achard F. 2018. Combining global tree cover loss data with historical national forest-cover maps to look at six decades of deforestation and forest fragmentation in Madagascar. <i>Biological Conservation</i> 222:189–197. DOI: 10.1101/147827.
646 647 648	Villero D, Pla M, Camps D, Ruiz-Olmo J, Brotons L. 2017. Integrating species distribution modelling into decision-making to inform conservation actions. Biodiversity and Conservation 26:251–271. DOI: 10.1007/s10531-016-1243-2.
649 650 651	Webb JK, Brook BW, Shine R. 2002. What makes a species vulnerable to extinction? Comparative life-history traits of two sympatric snakes. <i>Ecological Research</i> 17:59–67. DOI: 10.1046/j.1440-1703.2002.00463.x.

White GC, Burnham KP. 1999. Program MARK: Survival estimation from populations of

Yoder AD, Campbell CR, Blanco MB, Dos Reis M, Ganzhorn JU, Goodman SM,

Zhang L, Lu X. 2012. Amphibians live longer at higher altitudes but not at higher latitudes. *Biological Journal of the Linnean Society* 106:623–632. DOI:

marked animals. Bird Study 46:S120-S139. DOI: 10.1080/00063659909477239.

Hunnicutt KE, Larsen PA, Kappeler PM, Rasoloarison RM, Ralison JM, Swofford

reveal the ghosts of Madagascar's forests past. Proceedings of the National

Academy of Sciences of the United States of America 113:8049–8056. DOI:

DL, Weisrock DW. 2016. Geogenetic patterns in mouse lemurs (genus Microcebus)

651 652

653

654

655

656

657

658

659

660

661 662

663

10.1073/pnas.1601081113.

10.1111/j.1095-8312.2012.01876.x.