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Abstract

Amphibians are experiencing severe population declines, requiring targeted
conservation action for the most threatened species and habitats. Unfortunately, we do
not know the basic demographic traits of most species, which hinders population
recovery efforts. We studied one of Madagascar’s most threatened frog species, the
harlequin mantella (Mantella cowanii), to confirm it is still present at historic localities
and estimate annual survival and population sizes. We surveyed eleven of all thirteen
known localities and were able to detect the species at eight. Using a naive estimate of
detection probability from sites with confirmed presence, we estimated 1.54 surveys
(95% CI: 1.10-2.37) are needed to infer absence with 95% confidence, suggesting the
three populations where we did not detect M. cowanii are now extirpated. However, we
also discovered two new populations. Repeated annual surveys at three sites showed
population sizes ranged from 13—137 adults over 3-8 years, with the most intensively
surveyed site experiencing a >80% reduction in population size during 2015-2023.
Annual adult survival was moderately high (0.529-0.618) and we recaptured five
individuals in 2022 and one in 2023 first captured as adults in 2015, revealing the
maximum lifespan of the species in nature can reach nine years and beyond. Our
results show M. cowanii is characterized by a slower life history pace than other
Mantella species, putting it at greater extinction risk. lllegal collection for the
international pet trade and continued habitat degradation are the main threats to the
species. We recommend conservation efforts continue monitoring populations and
reassess the IUCN Red List status because it may be Critically Endangered rather than
Endangered based on population size and trends.

Introduction

Amphibian species are facing extinction rates at least 22 times faster than the
average rate during the 10 millennia before industrialization, resulting in their status as
the most threatened vertebrate class (Ceballos et al., 2015; Luedtke et al., 2023). Many
species are experiencing severe population declines, leading to widespread range

contractions through extirpation (e.g., Beyer and Manica 2020; Granados-Martinez et al.

2021; Patla and Peterson 2022). Habitat loss is the largest threat to amphibians, but
infectious diseases, invasive species, climate change, overexploitation, and pollution
are all responsible for declines and interact in complex ways (Collins, 2010; Grant,

(Deleted: Campbell

Miller & Muths, 2020). Such threats and population trends highlight the immediate need
for increased conservation, especially targeted toward the most threatened species and
their habitats.
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The island of Madagascar supports extraordinary amphibian species richness
and endemism, with more than 415 described endemic frog species representing five
anuran clades of independent origin (Crottini et al., 2012; Antonelli et al., 2022;
AmphibiaWeb 2023). Alarmingly, 46.4% of assessed Malagasy frog species are
threatened, owing largely to deforestation (Ralimanana et al., 2022; IUCN, 2023).
Deforestation has eliminated as much as a quarter of the tree cover on the island over
the last 25 years and the rate has only increased since 2005 (Vieilledent et al., 2018;
Suzzi-Simmons, 2023). Consequently, many frog species in Madagascar have patchy
distributions restricted to isolated pockets of forest in an otherwise inhospitable
landscape (Lehtinen & Ramanamanjato, 2006). So far, there have been no documented
modern frog species extinctions in Madagascar (Andreone et al., 2008, 2021), but many
records of species presence are from biological inventories conducted decades ago in
areas with high rates of land use change. Verifying species presence and confirming the
extant distribution of threatened species is some of the most vital information for
informing conservation (Villero et al., 2017). Relatedly, we know little about frog
population trends in Madagascar, even for highly threatened species. The lack of
demographic information is not unique to Madagascar; we do not know survival or
fertility rates for 87.5% of amphibian species globally (Conde et al., 2019). Baseline
estimates of survival, recruitment, and other demographic traits are urgently needed to
improve conservation efforts and inform management decisions (Grant, Miller & Muths,

(
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2020).

Some of the most well-known amphibians in Madagascar are the Malagasy
poison frogs in the genus Mantella. One species (M. laevigata) exhibits parental care
and all members of this genus display aposematic coloration to warn predators of their

poisonous skin alkaloids sequestered from prey (Vences et al., 2022). As such, they are
familiar examples of convergent evolution with Neotropical dendrobatids (Daly, Highet &
Myers, 1984; Chiari et al., 2004; Fischer et al., 2019). While several Mantella species |
are widespread and have been found in degraded habitat and agricultural plantations
(e.g., M. betsileo, M. ebenaui, and M. viridis, Vences et al., 1999; Andreone et al., 2006;
Crottini et al., 2012), most are restricted to small areas, have highly localized
populations, show a recent dramatic demographic decline, and are threatened by
ongoing habitat degradation (e.g., Crottini et al. 2019). Compounding the threat of
habitat loss is overexploitation; thousands of wild poison frogs are exported annually
from Madagascar for the international pet trade (Rabemananjara et al., 2007b), though
export quotas have been restricted recently to smaller quantities of just six species
(CITES, 2022).

The harlequin mantella frog (M. cowanii) is one of the most threatened Mantella
species, with a small and fragmented distribution in the central highlands. This region of
Madagascar was formerly a mosaic of grassland, woodland, and subhumid forest,

{Commented [MM1]: All refers to the one sp. of
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covering the mountainous area between the island’s humid east and dryer west (Yoder
et al., 2016). Today the central highlands consist mostly of secondary grasses and land
converted for subsistence agriculture and cattle grazing, with little humid forest
remaining (Andriambeloson et al., 2021; Ranarilalatiana et al., 2022). Thirteen localities
of M. cowanii are known from the region: six in a cluster around the town of Antoetra,
five 80 km northwest on the ltremo Massif, and two isolated localities located >100 km
north of all other known populations, one near Betafo and the other east of Antakasina
(Rabibisoa, 2008; Rabibisoa et al., 2009). All populations occur along mountainous
streams with large boulders and adjacent wet rockfaces. While some sites still have
intact gallery forests, others are almost entirely devoid of trees (Fig. 1). Additionally, due
to its striking black and orange coloration (Fig. 2), M. cowanii was heavily exploited for
the international pet trade during the 1990s and early 2000s (Andreone, Mercurio &
Mattioli, 2006). From 1994—2003, several thousand frogs recorded as M. cowanii were
exported from Madagascar for commercial purposes, after which legal trade was halted,
and the export quota was set to zero (Rabemananjara et al., 2007b; CITES, 2022).

Despite heavy collection pressure and ongoing habitat loss, the demographic
characteristics of the remaining M. cowanii populations have not been studied.
Additionally, some populations are known from \only one or two scientific expeditions
carried out decades ago|and could already be extirpated. In 2021 the Mantella cowanii

Action Plan (McAP) was launched to draw attention to the species and develop a

Commented [MM3]: Is there a publication associated
with these expeditions? Who led them?

blueprint for its conservation (Andreone et al., 2020; Rakotoarison, Ndriantsoa & ((Commented [MM4RS|: When i “decades ago"? )
Rabemananjara, 2022). The McAP builds on the initial conservation strategy by
Rabibisoa (2008). We aimed to fill critical research needs in the McAP by 1) confirming (Commented [MM5]: To do what? )

the presence of M. cowanii at localities across its range and 2) if present, estimating the
key demographic traits of survival and population size.

Materials & Methods
Study Sites

We surveyed [11 of 13 known M. cowanii localities, nine in the Amoron’i Mania

Region and two in the Vakinankaratra Region (Fig. 3). Sites ranged in elevation ~1380—
2120 m asl. We repeatedly surveyed three sites (Ambatofotsy, Soamasaka, and
Fohisokina) over 3-8 years for [2—20 days/year to estimate demographic traits (Table 1).

The remaining eight sites (Ambinanitelo, Andraholoma, Antakasina, Antsirakambiaty,
Bekaraka, Farihimazava, Tsimabeomby, and Vatolampy) were visited up to two times for
1-6 days to confirm species presence. Only two sites have some form of habitat
protection: Fohisokina (also known as Vohisokina) is community-managed with an NGO
(Nowakowski & Angulo, 2015), and Antsirakambiaty falls within the boundaries of Itremo
Massif Protected Area (Alvarado, Silva & Archibald, 2018). The other sites are
unmanaged and without legal protection.

Commented [MMG6]: Where did you get the locations for
these 13 sties? Known to who? The scientific
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Data Collection

Fieldwork was conducted during the onset of the rainy season from late
November to mid-January when M. cowanii is active and detectable. Surveys were

carried out in the morning during 5-8h, but at Fohisokina in 2015, we also surveyed just

before dusk during 16—18h. We searched for frogs visually, walking together in teams of
2—7 people along the stream or adjacent wet rockface. If we heard a frog calling, we
used the call to help find its location. Stream segment length varied from 38 m at
Bekaraka to 690 m at Ambatofotsy. At Fohsiokina, we surveyed along six 50 m-long
transects rather than opportunistically throughout the entire site to accomplish additional
research objectives (see Newton-Youens 2017).

After capturing a frog, we held it in a plastic bag (or a petri dish in 2015 at
Fohisokina), marking the location with a GPS point, flagging tape, and a unique number.
We measured snout-to-vent length with digital calipers or a ruler. Individuals <22 mm
were recorded as subadults under one-year post-metamorphosis based on Guarino et
al. 2008. Weight was recorded with a digital scale to the nearest 0.01 g, and sex was
recorded based on whether an individual had been calling before capture and, if not,
body size (Tessa et al. 2009). We also took dorsal and ventral photographs, allowing us
to identify recaptured individuals because each frog has a unique ventral pattern (Fig.
4). Such photographic capture-mark-recapture techniques can be more accurate and

Commented [MM9]: | think there needs to be some
caveat/relative term here
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are less invasive than traditional toe-clipping or visual implant elastomers (Caorsi,
Santos, and Grant 2012; Davis, VanCompernolle, and Dickens 2020). Initially, we tried
using photographic matching software to automate identifying individuals (sensu
Edmonds et al. 2019), but photograph angle and quality varied between days, sites, and
years, so the process was [prone to false negatives. Instead, one of us (D. Edmonds)

visually examined all ventral photographs side-by-side and recorded when there was a
match. Following photographs and measurements, frogs were released in the location
where they were captured.

We followed all applicable international, national, and institutional guidelines for
the care and use of animals. The study methods were approved by the Ministére de
I'Environnement et du Développement Durable in permits
N°173/20/MEDD/SG/DGGGE/DAPRNE/SCBE.Re, N°439/21/
MEDD/SG/DGGGE/DAPRNE/SCBE.Re, and N°173/22/
MEDD/SG/DGGGE/DAPRNE/SCBE.Re and by the University of lllinois Urbana-
Champaign Institutional Animal Care and Use Committee in protocol #21180.

Analysis

We used a robust design capture-mark-recapture model to estimate population
size (N) and apparent annual survival (¢) at Ambatofotsy, Fohisokina, and Soamasaka.
These sites were selected because we had sampled them for at least three years, the
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minimum required for estimating annual survival, Our analysis compared 17 models, all

incorporating site as a group-level effect. We considered models with either constant or
site-specific ¢ and the temporary emigration parameters y’’ and y’ either constrained to
0 assuming no movement or set equal assuming random emigration. To account for

individual heterogeneity in capture probability (p), we included a random effect of
individual on p. Additionally, we compared models with capture probability covariates of
site, year, number of surveyors, and survey effort calculated as the number of surveyors
multiplied by the survey duration in minutes. We could not include environmental
collected consistently across all sites and years. To compare candidate models, we
ranked them using Akaike’s Information Criterion adjusted for small sample sizes (AIC;
Burnham and Anderson 2002). Models with A AIC. < 2 were considered to have
support. We analyzed capture-mark-recapture data in program MARK through the
RMark interface (White & Burnham, 1999; Laake, 2013) and assessed the goodness-of-
fit with package R2ucare in R version 4.2.0 (Gimenez et al., 2018; R Core Team, 2022).

To infer absence if we did not detect M. cowanii at a historic locality, we
estimated detection probability with a single-season occupancy model in package
unmarked (Fiske and Chandler 2011). Data from nine localities with confirmed presence
and at least three surveys were used to generate a naive estimate of detection
probability assuming constant detection and occupancy. We then followed Pellet and
Schmidt (2005) to estimate the number of surveys needed to detect the species as:

_ In(0.05)
min — ln(l _ p)

where N,,;,, is the minimum number of surveys, p is the detection probability, and 0.05 is
the confidence level needed to be 95% certain of absence, assuming independent and
comparable surveys. Using the number of surveys, we then calculated the confidence
level around an observed absence given N number of surveys as:

conf = eNIn(®
Results
Verifying Species Presence

We confirmed M. cowanii presence at 8 of 11 surveyed localities and jdentified 2
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previously unrecorded populations. However, we failed to detect the species at the
historical localities of Andraholoma, Tsimabeomby, and Vatolampy. The naive detection

probability from sites with confirmed presence was 0.86 (95% Cl: 0.72-0.93), showing it

takes 1.54 surveys (95% CI: 1.10-2.37) to be 95% confident a population is extirpated
and 2.37 surveys (95% Cl: 1.69-3.65) to be 99% confident. With at least two days of
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surveys at Andraholoma and Vatolampy, we can be >97.9% (95% ClI: 91.9-99.9%)
confident the populations are extirpated and 85.7% (95% CI: 71.7-93.4%) confident
there are no M. cowanii at Tsimabeomby.

Capture Patterns Across Sites

We made 764 captures of 280 individuals across all study sites and years,
excluding putative M. baroni x M. cowanii hybrids. All but 8 frogs were adults. Over half
of all captures were at Fohisokina, where we caught 149 individuals 481 times. Six
individuals at Fohisokina were recaptured 7 years after initially being caught in 2015 as
adults (Fig. 4), one of which was recaptured again in year 8 in 2023. At our second most
intensively surveyed site, Soamasaka, we made 137 captures of 40 individuals during
annual fieldwork in 2020—2023. Three frogs were recaptured 4 years after their initial
encounter in 2020, and 4 were recaptured 3 years apart. At Ambatofotsy, we conducted
surveys in 2021, 2022, and 2023 and made 76 captures of 32 individuals, all adults.

Annual Survival and Population Sizes

The most parsimonious capture-mark-recapture model had capture probability p
and annual adult survival ¢ varying by site (Table 2). Models with no movement
generally performed better than those with random emigration (Table 2). The top model
estimated population sizes (N) ranging from 13—-137 adult frogs per site across years
(Fig 5). The highest N estimate was from Fohisokina in 2015 (137, 95% CI: 120-170)
and the lowest from Soamasaka in 2023 (13, 95% CI: 11-22). [Fohisokina showed a
decreasing population size during 2015-2023, whereas Soamasaka and Ambatofotsy
were relatively stable over a shorter period (Fig. 5). There was strong support for site-

varying survival (Table 2), with the estimated annual adult survival more precise for
Fohisokina than Soamasaka due to the longer study duration (Figl. 6). For Ambatofotsy,

the survival estimate was too imprecise to be informative because the data spanned
only three years and only a small number of frogs were captured each year. Overall, the
annual survival estimates at Fohisokina and Soamasaka were comparable, although the
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estimate from Soamasaka was lower than Fohisokina (Fig. 6).

Discussion

Our results demonstrate M. cowanii was still present at no less than ten localities
in 2022-2023, but the population size is very small for at least three sites (<50 adults
per site). Extrapolating across all known localities, in the worst-case scenario, the total
adult population size for the species may number <500 individuals. However, frog
populations naturally fluctuate in abundance, and a snapshot over several years can
easily lead to erroneous conclusions that populations are declining when they are stable
(Pechmann et al., 1991; Blaustein, Wake & Sousa, 1994; Meyer, Schmidt &
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Grossenbacher, 1998). Such fluctuations are typical of species with fast life histories,
where fecundity is high and generation time short, thus, demographic rates tend to vary |
(Seether et al., 2004, 2013). Additionally, amphibian populations fluctuate more for pond
breeding species and less for terrestrial and stream breeding species (Green, 2003).
Considering M. cowanii is a terrestrial stream-breeding frog with comparatively low
reproductive output (20-57 eggs per egg mass; Tessa et al. 2009), relatively high
annual adult survival, and a maximum lifespan in nature of at least nine years, we
believe our results are not an artifact of stochastic fluctuations in population size.

We highlight three possible factors contributing to the >80% population decline at

Commented [MM22]: But at what time scales are these
population fluctuations occurring? Is 3-4 years enough
to capture population stability across natural
fluctuations?

(Formatted: Highlight

Fohisokina between 2015 and 2023. First, fires burnt much of Fohisokina in November
2020 at the start of their breeding season, just before our survey. Though M. cowanii
presumably is protected from fire while sheltering in moist rock crevices and caves for
much of the year, fire can cause mortality in terrestrial frogs when they are active above
ground during the breeding season (e.g., Humphries and Sisson 2012; Potvin et al.
2017). Second, according to a European private breeder, in 2017 more than 100 M.
cowanii were illicitly offered for sale in Germany, and an unknown number were offered
again in 2021. As Fohisokina is the most easily accessed M. cowanii locality and was
historically a collection site for the pet trade (Rabemananjara et al., 2007b), the frogs
were possibly poached from Fohisokina. Lastly, although no records of chytridiomycosis
have been confirmed in Madagascar and all frogs we sampled appeared healthy, the
amphibian chytrid fungus Batrachochytrium dendrobatidis has been reported from the
island, and in 2014 was detected on a single M. cowanii individual at Soamasaka ~5 km
south of Fohisokina (Bletz et al., 2015). Therefore, we cannot rule out disease either.

At Vatolampy, we did not detect M. cowanii after six days of surveys and suspect
the population is extirpated. Until our work, the site had not been surveyed since 2003—
2004, when Andreone et al. (2007) and Rabemananjara et al. (2007a) collected tissue
samples and voucher specimens from the population. Similarly, Andraholoma had not
been surveyed since 2009 when the site was visited by one of us (C.
Randrianantoandro) for one day and 5 individuals observed. Conversely, we question
whether Tsimabeomby, the third site where we did not detect M. cowanii, ever supported
a population. We believe the locality was possibly published in error by Rabibisoa
(2008) because Tsimabeomby consists of a wet meadow, is without rocks or running
water, is isolated from the next nearest population by >3 km, and the local people we
worked with had never encountered M. cowanii there whereas they knew of the other
populations. Nonetheless, M. cowanii could have been present but undetected during
our surveys if the detection probability at Andraholoma, Tsimabeomby, and Vatolampy
was lower than elsewhere. Additionally, the naive estimate of detection probability we
used to infer absence did not account for observer, environmental, or temporal factors
influencing detection. Still, our team detected M. cowanii at other sites on the days we
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surveyed Andraholoma, Tsimabeomby, and Vatolampy, illustrating local environmental
conditions were favorable for detecting Mantella. Re-surveying the three sites in the
coming years will confirm if the populations are extirpated.

Some amphibian species are capable of dispersing long distances to recolonize
suitable habitat (Marsh and Trenham 2001; Fonte, Mayer, and Loétters 2019), but we do
not expect so for M. cowanii in Madagascar’s degraded highland landscape. There are
no studies on the movement of Madagascar’s poison frogs (but see Andreone et al.
2013), however research on their Neotropical dendrobatid counterparts shows adults
rarely move more than a few hundred meters from established territories (e.g., Ringler
et al. 2009, Pasukonis et al. 2013; Beck et al. 2017; PaSukonis et al. 2019). Moreover,
in a review of the dispersal ability of amphibians, Smith and Green (2005) found nearly
half of studied species moved <400m. Historically, adult frogs may have moved
between patches when there was more forest in the highlands. However, we suspect
Mantella usually passively disperse when tadpoles are flushed between habitat patches
during heavy rain. As such, natural recolonization of Vatolampy or Andraholoma is
unlikely, especially considering the physiological, movement, and site fidelity constraints
amphibians face (Blaustein, Wake & Sousa, 1994). At Vatolampy, the next closest
locality is Farihimazava, 1.5 km northeast in a different valley, which supports mostly M.
baroni and M. baroni x M. cowanii hybrids (Chiari et al., 2005; Andreone et al. 2007).
For Andraholoma, the next closest locality is Andaobatofotsivava >7 km north, though
admittedly, the area of the ltremo Massif is poorly explored and there could be

additional unrecorded populations between the two. Indeed, we located two new (Formatted: Highlight

localities during fieldwork.

Previous skeletochronology research estimated the maximum lifespan of M.
cowanii at three years (Guarino et al., 2008; Andreone et al., 2011), but we identified
individuals at least eight years post-metamorphosis and one individual nine years.
Skeletochronology is known to underestimate the ages of older individuals because
skeletal growth rings progressively converge with age, and amphibian bone tissue is
prone to reabsorption (Eden et al., 2007; Sinsch, 2015). Our results show the
advantages of using capture-mark-recapture surveys for estimating demographic traits if
resources are available. The long lifespan of M. cowanii is notable when considered
together with their reproductive output and body size. The species is one of the largest
in the genus, has the largest egg diameter, and has the lowest number of eggs per
mass, exemplifying their slow life history compared to other Mantella species (Tessa et
al. 2009). All of this aligns with our discovery that M. cowanii has the longest lifespan for
the genus. Life history traits often follow altitudinal clines, with slower traits associated
with higher altitudes (Hille & Cooper, 2015; Laiolo & Obeso, 2017). Indeed, amphibians
tend to live longer and have larger body sizes at higher altitudes (Morrison & Hero,
2003; Andreone et al. 2004); M. cowanii is no exception (Tessa et al. 2009). Such
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patterns also occur within species across altitudinal gradients (Zhang & Lu, 2012).
Considering the M. cowanii from Betafo populations occur ~500m higher than where we
recorded ~8-9-year-old individuals, frogs from Betafo may live even longer. Such slow
life history traits also have conservation implications because they are associated with
higher extinction risk (Webb, Brook & Shine, 2002). Given the relatively long lifespan
and low reproductive output of M. cowanii, the success of recovery efforts for the
species may not be as rapid as in other related amphibian species.

To ensure populations remain extant, we must better identify the causes of
declines and the magnitude of threats. Screening populations for Bd and monitoring for

illicit M. cowanii in the pet trade are obvious actions, but disentangling the threat of (Formaned: Highlight

habitat loss is more complicated. The number of trees remaining at sites varies from
intact closed-canopy forest to rocky landscapes almost entirely devoid of trees, so the
degree to which deforestation is a threat may depend on additional habitat
characteristics. Newton-Youens (2017) identified rock caves and refuges as essential
habitat features, and speculated they might be used for breeding, though so far, no
eggs, tadpoles, or newly metamorphosed individuals have been found in nature.
Studies on the microhabitat preferences and activity levels of M. cowanii, like those
carried out by Edwards et al. (2019, 2022) for M. aurantiaca, would further help identify
the most critical habitat features to protect and the best time to survey sites. Likewise,
better information about habitat requirements could be used to locate new sites with
unprotected populations we do not know about. All known M. cowanii populations are
centered around four isolated sites with likely past connectivity when the highlands were
an intact forest-grassland mosaic (Bond, Silander & Ratsirarson, 2023). Fieldwork in the
remote areas between the four population centers could uncover additional isolated M.
cowanii populations, but time is running out.

Conclusions

We set out to verify the presence and estimate key demographic traits for one of

Madagascar's most threatened frog species and found several historical localities are (Formatted: Highlight

likely extirpated while others are extremely small. Unfortunately, our results are not
unique to Madagascar but represent a global trend in amphibian populations (Stuart et
al., 2004; Grant et al., 2016). Amphibians are at the forefront of the extinction crisis, and
population monitoring is essential to measure responses to conservation actions and
detect declines before recovery is impossible. We used capture-mark-recapture
methods to estimate abundance at three localities (Ambatofotsy, Soamasaka, and
Fohisokina; Fig. 3), but less costly approaches relying on presence-absence data are
likely suitable for monitoring M. cowanii across its entire range (Joseph et al., 2006;

Jones, 2011). When enacted with local people as part of a broader program, monitoring (Formaned: Highlight

can galvanize conservation efforts by adding value to a threatened species and instilling
pride in local communities (Andrianandrasana et al., 2005; Danielsen, Burgess &
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Balmford, 2005). As we have shown, the causes of declines are often unclear without [Formatted: Highlight

adequate information on a species' basic ecology and life history. For M. cowanii, we
recommend further research run concurrently with conservation efforts and focus on

determining the relative impact of disease, illegal trade, and habitat loss. We also (Formaned: Highlight

recommend reassessing the IUCN Red List status of M. cowanii. The species was last
assessed in 2014 as Endangered but it may qualify for the Critically Endangered status
based on our estimates of population sizes and trends.
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