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Background: Drought is the most significant factor limiting maize production, given
that maize is a crop with a high water demand. Therefore, studies investigating the
mechanisms underlying the drought tolerance of maize are of great importance.
There are no studies comparing drought tolerance among economically important
subspecies of maize. This study aimed to reveal the differences between the physio-
biochemical, enzymatic, and molecular mechanisms of drought tolerance in dent
(Zea mays indentata), popcorn (Zea mays everta), and sugar (Zea mays saccharata)
maize under control (no-stress), moderate, and severe drought stress.

Methods: Three distinct irrigation regimes were employed to assess the impact of
varying levels of drought stress on maize plants at the V14 growth stage. These
included normal irrigation (80% field capacity), moderate drought (50% field
capacity), and severe drought (30% field capacity). All plants were grown under
controlled conditions. The following parameters were analyzed: leaf relative water
content (RWCQC), loss of turgidity (LOT), proline (PRO) and soluble protein (SPR)
contents, membrane durability index (MDI), malondialdehyde (MDA), and
hydrogen peroxide (H,O,) content, the antioxidant enzyme activities of superoxide
dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT). Additionally, the
expression of heat shock proteins (HSPs) was examined at the transcriptional and
translational levels.

Results: The effects of severe drought were more pronounced in sugar maize, which
had a relatively high loss of RWC and turgor, membrane damage, enzyme activities,
and HSP90 gene expression. Dent maize, which is capable of maintaining its RWC
and turgor in both moderate and severe droughts, and employs its defense
mechanism effectively by maintaining antioxidant enzyme activities at a certain level
despite less MDA and H,0O, accumulation, exhibited relatively high drought
tolerance. Despite the high levels of MDA and H,O, in popcorn maize, the
up-regulation of antioxidant enzyme activities and HSP70 gene and protein
expression indicated that the drought coping mechanism is activated. In particular,
the positive correlation of HSP70 with PRO and HSP90 with enzyme activities is a
significant result for studies examining the relationships between HSPs and other
stress response systems. The discrepancies between the transcriptional and
translational findings provide an opportunity for more comprehensive investigations
into the role of HSPs in stress conditions.
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INTRODUCTION

Maize (Zea mays L.) is currently the most produced cereal, with three (dent maize (Zea
mays indentata), popcorn maize (Zea mays everta), and sugar maize (Zea mays
saccharata)) of its seven botanical subspecies being of high economic importance (Pandita
et al., 2023). Maize has long been of significant cultural and economic importance, serving
as a food source for humans and animals, as well as a key ingredient in numerous
industrial products. It is also cultivated on a vast scale. However, climate change causes
abiotic issues such as drought stress, which poses a significant risk to maize production
(Kim & Lee, 2023).

Approximately 15% of global maize yield losses are attributed to drought stress. The
spread of numerous diseases in hot climates and the drying up and warming of maize
production areas will greatly impact maize yield. To maintain maize yield in dry areas and
stabilize predicted yield losses, it is necessary to enhance the drought resistance of maize
(Adewale et al., 2018; Rasheed et al., 2023). Drought tolerance is the result of a plant’s
attempts to survive or recover from stress and allows plants to grow and maintain
relatively high yields even in the face of drought. A plant is considered drought-acclimated
if the tolerance is limited to that specific generation. A plant genotype is considered to be
adapted to drought circumstances if it continues across several generations (Seleiman et al.,
2021). In response to drought stress, plants attempt to maintain their cell water status and
turgor by regulating osmotic pressure as their initial response (Sanders ¢» Arndt, 2012). In
order to accurately assess osmotic adjustment, it is essential to evaluate several key
parameters, including leaf relative water content (RWC), loss of turgidity (LOT), and the
presence of osmotic regulatory solutes such as proline (PRO). Other stress response
mechanisms include membrane damage (MD), lipid peroxidation, accumulation of
reactive oxygen species (ROS), activation of antioxidants, and the expression of certain
genes associated with drought stress.

The RWC is a more consistent indicator across organs, populations, and potentially
even species than other less integrative indicators. This is because it captures the combined
impact of the physiological and morphological changes that plants make to preserve water
balance and avoid turgor loss (Sapes ¢» Sala, 2021). When the RWC reaches the point of
LOT, plants are likely to exhibit an elevated risk of mortality due to the necessity of
maintaining cell turgor through the maintenance of cell water volume above specific
thresholds (Lambers ¢ Oliveira, 2019). Plants utilize the accumulation of PRO to facilitate
osmotic adjustment as a means of defense against drought stress. When a cell experiences
osmotic stress, PRO is transported into the cytoplasm, and the cytoplasmic concentration
is increased, thereby lowering the osmotic potential. This allows the cell to continue
absorbing extracellular water even when its osmotic potential is low, maintaining the
osmotic balance between the cell’s protoplasm and the surrounding environment (Shakeri
et al., 2019). The presence of water molecules on the surface of proteins can facilitate the
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formation of a protective layer that can bind to PRO. This process serves to decrease water
loss and restrict the flow of water to the outside of the cell, thereby creating a protective
membrane. Furthermore, the protective membrane preserves the high structure and
activity of biological macromolecules by providing effective protection for proteins and
other macromolecules. Proline can combine with denatured proteins to increase their
hydrophilicity when the proteins are under stress from adversity (Yang et al., 2021).

Under drought stress, plant cell membranes become more susceptible to rapid damage
and leakage. This leakage in the membrane is caused by an uncontrolled increase of free
radicals, which cause lipid peroxidation. Damage to the fatty acids of the cell membrane
can result in the formation of small hydrocarbons, such as malondialdehyde (MDA). MDA
is the final product of lipid peroxidation and serves as a marker of membrane cellular
damage (Gharibi et al., 2016). It is well established that the production of hydrogen
peroxide (H,O,) and other toxic oxygen species, which cause lipid peroxidation and
oxidative damage, is also triggered by drought stress. Given that H,O, is a powerful
oxidant, it can initiate localized oxidative damage in leaf cells, resulting in impairment of
metabolic function and loss of cellular integrity (Cerny ef al., 2018).

Water stress results in a cellular redox imbalance due to an increase in the generation
and accumulation of ROS, which disrupts metabolic functions and damages proteins,
RNA, DNA, and cellular membranes (Choudhury et al., 2017). However, ROS damage can
be avoided or attenuated by activating both enzymatic and non-enzymatic antioxidant
defense systems. Superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase
(APX) enzymes are only a few of the unique ROS elimination systems found in plants that
are essential for scavenging ROS. These enzymes can be detected extracellularly in the
apoplast and at the plasma membrane, in addition to being present in several plant cell
compartments (Hasanuzzaman et al., 2020). The initial line of defense against ROS is
SOD, which functions by accelerating the conversion of superoxide radicals (O, ") into
H,0, and molecular oxygen (O,). Since H,0, is also a reactive species, CAT and APX
transform it into O, and H,O (Rajput et al., 2021). SOD and CAT are present in several
subcellular sites because they function in concert as the first line of antioxidant defenses.
Drought tolerance has been linked to an efficient ROS scavenging ability that lessens the
detrimental effects of such molecules. Moreover, alterations in the metabolism of oxidants
and antioxidants brought on by abiotic stressors might operate as biochemical stress
markers in plants (de Aratijo Silva et al., 2021).

Significant alterations in the expression of stress-related genes are typically the result of
molecular reactions that arise during drought stress (Singh et al., 2019). Heat shock
proteins (HSPs) are the most frequently occurring molecular components among
stress-related genes that exhibit upregulation in response to nearly all forms of stress
experienced by plants (Priya et al., 2019). The multigene families HSP70 and HSP90 are
highly conserved and comprise both constitutive and inducible members. These groups of
proteins serve as molecular chaperones in the endoplasmic reticulum, plastids,
mitochondria, and cytoplasm/nuclear membrane. The aforementioned proteins facilitate
intracellular translocation, signal transduction, and protein folding under typical growth
circumstances (Kozeko, 2021). It is well established that a group of signaling and regulatory
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proteins serve as HSP90 substrates. In unfavorable circumstances, inducible chaperones
are added to the cellular pool, where they play a crucial role in halting the aggregation of
damaged proteins and promoting their refolding. In addition, HSPs are involved in a
variety of functions, most notably stomatal closure regulation and autoregulation of the
heat shock response (Augustine, 2016). An increasing body of research has demonstrated
that plants responses to water deficits involve HSPs. Several plant species have been shown
to up-regulate specific HSP70s when dehydrated (Augustine et al., 2015; Chaudhary et al,
2019; Landi et al., 2019). In particular, fewer studies have demonstrated up-regulation of
certain HSP90s during water deficit in Arabidopsis (Swindell, Huebner ¢ Weber, 2007),
rice (Hu, Hu & Han, 2009; Zou et al., 2009), potatoes (Ambrosone et al., 2013), and barley
(Chaudhary et al., 2019). Li ¢ Howell (2021) reported that the expression of HSP90,
HSP70, and small HSPs was induced in order to prevent cellular damage in the
drought-sensitive genotype of maize. In contrast, the expression of small HSPs was found
to be up-regulated in the drought-tolerant genotype under drought stress.

Dent maize, popcorn maize, and sugar maize subspecies differ in their plant
characteristics, growth and development, tolerance to stress conditions, as well as intended
use. Previous studies have only compared different varieties of a single subspecies in terms
of drought tolerance (Anjum et al., 2016; Kamphorst et al., 2019; Ali et al., 2023; Mousavi
et al., 2023; Schmitt, do Amaral Junior & Kamphorst, 2024). There is currently no study
comparing the different subspecies to each other under drought stress. In addition, the role
of heat-inducible HSPs in the protection of cells under dehydration remains poorly
understood. Further investigation is required to elucidate the interplay between HSPs and
other stress response mechanisms in order to ascertain the mechanisms underlying
drought stress tolerance in maize. The objective of this study was to characterize different
maize subspecies in terms of several physio-biochemical parameters, including leaf water
status, PRO content, cell damage, and antioxidant enzyme activities. Additionally,
expression changes in HSPs were evaluated by quantitative reverse transcription
polymerase chain reaction (RT-qPCR) and western blot (WB) analyses. This result may
enhance our comprehension of the molecular basis of drought tolerance and could be
utilized for a prospective breeding program in maize.

MATERIALS AND METHODS

Conducting the experiment
The soil utilized in this study was obtained from the experimental research area of
Eskisehir Osmangazi University at a depth of 0-30 cm. It was prepared by sieving through
a 2 mm filter after allowing it to dry in the open for a week. The soil is free of salt and has a
sandy loam texture. The pH of the soil is 7.99, indicating an alkaline nature. Its organic
matter content is low, at 1.08%. Additionally, the soil is calcareous, with a calcium content
of 1.98%. It contains adequate levels of potassium, copper, and iron, but not enough
phosphorus, manganese, or zinc.

One kilogram of soil was saturated with water and placed in a container with
perforations at the base to ascertain the field capacity of the soil. After a 24-h period, the
water that gravitationally drained was collected, and the field capacity of the soil was
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determined using the difference method, as outlined in the following formula
(Danish et al., 2020).

Field capacity (%) — Water added (ml) —SZ\;afjerigiZil(t;c)lted in 24 hours (ml) < 100

The study employed three distinct subspecies of maize: dent maize (Zea mays
indendata, cv. P0937), popcorn maize (Zea mays everta, cv. Baharcin), and sugar maize
(Zea mays saccharata Sturt, cv. Adapare). The maize varieties utilised in the study are
commonly cultivated in Tiirkiye and are known as drought tolerant.

In order to investigate the drought tolerance of the intersubspecies, the ones of every
subspecies that were drought-tolerant were chosen.

Ten-liter plastic containers were utilized to cultivate maize seedlings, containing a
mixture of 2:1:1:1 soil, sand, peat, and perlite. A basic solution containing macro- and
micro-elements was used for fertilization of the pots. The solution included 200 mg of
nitrogen (NH,4),SO,, 125 mg of potassium, 100 mg of phosphorus (KH,PO,) per kg of soil,
2.5 mg of iron (Fe-EDTA), and 5 mg of zinc (ZnSO,.7H,0) per kg of soil. A total of
12 maize seeds were planted in each pot for each treatment and replication. Following the
emergence of the plants, the number of plants per pot was reduced to six. The plants were
maintained at a temperature of 25/17 °C, with a light intensity of 800 pmol m™ s, a
humidity of 65%, and a light/dark cycle of 14/10 h throughout the duration of the
experiment. The Hoagland solution was applied once a week until harvest, comprising
5 mM KNOs, 1 mM KH,PO,, 5 mM Ca(NO;),, 2 mM MgSO,, 50 pM H3BO3, 10 uM
MnCl,, 1 uM ZnSOy, 0.4 pM CuSOy,, 0.1 pM H,Mo00,, and 20 uM Fe-EDTA.

The maize plants were grown under standard irrigation conditions, which included
maintaining 80% field capacity for the initial 14 days following germination and
emergence until the V3 stage. Throughout the drought trial, the moderate drought group
was maintained at 50% field capacity, the severe drought group at 30% field capacity, and
the control group was maintained at 80% field capacity. From the time of plant emergence
until the V14 stage, which denotes the end of the vegetative cycle, the plants were subjected
to 50 days of drought treatments. Namely, the maize plants were exposed to drought stress
from V3 to V14. At the conclusion of the designated period, the plants were harvested for
subsequent analysis.

Osmoregulation parameters

In order to determine the RWC and LOT values of the plants, three discs with a diameter
of 2 cm were removed from the leaf samples. The fresh weights (FW) immediately, the
turgor weights (TW) after being kept in pure water for 4 h, and the dry weights (DW) after
being kept at 70 °C for 24 h were recorded. The data obtained were used to calculate the
RWC and LOT values using the following formulas, with the resulting values expressed as
a percentage (Gulen & Eris, 2003).

RWC = (FW — DW)/(TW — DW) x 100

LOT = (TW — FW)/TW x 100
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Proline analysis was conducted in accordance with the methodology described by Bates,
Waldren & Teare (1973). For the analysis, 0.2 g of plant leaves were homogenized with
4 mL of 3% sulfosalicylic acid and centrifuged (Neofuge-13R) at 6,000 rpm for 10 min.
Two milliliters of the supernatant were transferred to glass test tubes and 2 mL of glacial
acetic acid and 2 mL of acid ninhydrin were added. The tubes were covered with aluminum
foil and placed in a water bath at 100 °C for 1 h. The samples were then cooled in an ice
bath for 10 min. Four milliliters of toluene were added to the cooled samples, which were
then shaken gently and left for 5 min. Once two phases were observed in the tubes, samples
were taken from the upper phase and concentrations were determined at 520 nm with a
spectrophotometer (Thermo-Aquamate) on the calibration curve prepared previously
using PRO standards. The amount of PRO was calculated using the formula: [(ug proline/
ml x ml toluene)/115.5 pg/umol]/[(g sample)/5] = pmol proline/g fresh weight.

The soluble protein (SPR) concentrations of leaf samples from all treatments were
determined using a bovine serum albumin (BSA) standard according to the method of
Bradford (1976). The absorbance values of the solution were read at a wavelength of
595 nm in a spectrophotometer (Thermo-Aquamate). The amount of SPR was calculated
against a standard curve generated using BSA standards.

Membrane injury parameters

The MDI in the leaves of the plants was determined according to the methodology
described by Sairam, Shukla ¢» Saxena (1997). For this purpose, the leaves were harvested
at random from the plants in each condition and carefully cut with a scalpel. The leaf
samples were then washed thoroughly with pure water at least six to seven times. This
procedure ensured that cellular fluid contamination from the cut portions of the leaves did
not affect the MDI values. Subsequently, 2 cm leaf sections were carefully excised from the
aforementioned samples, placed in glass tubes, and 20 ml of pure water was added. The
samples were then shaken on a shaker for 4 h, after which the relative ion amount (A)
passing into pure water was measured with an electrical conductivimeter (S230-K; Mettler-
Toledo). Then, the identical samples were maintained in a 100 °C water bath (Nuve,
Turkey) for 30 min, then allowed to cool to room temperature before being subjected to a
second measurement of the relative ion content (B). Finally, the MDI of the leaves was
calculated using the following formula:

MDI = (1 — A/B) x 100

The extent of lipid peroxidation in the leaf tissues of the plants in the control and stress
groups will be quantified by measuring the amount of MDA using the method described by
Hodges et al. (1999). The method entails the homogenization of 0.1 g of fresh leaf samples
taken from the leaves of the control and stress groups in three replicates with 1.5 ml of 5%
trichloroacetic acid (TCA) on ice after being cut into small pieces. The aforementioned
mixture was then centrifuged at 12,000 rpm at 25 °C for 15 min, after which the
supernatant was utilized to ascertain the quantity of MDA. Equal volumes of the
supernatant and a 20% TCA solution containing 0.5% thiobarbituric acid (TBA) were
transferred to new tubes. Subsequently, the tubes were placed in a water bath at 95 °C for
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30 min, after which they were transferred to an ice bath to halt the reactions within the
tubes. Subsequently, the tubes were centrifuged at 1,000 rpm for 5 min, and the absorbance
was measured at 532 and 600 nm wavelengths in a spectrophotometer. A 20% TCA
solution containing 0.5% TBA will be employed as a blind. The MDA content (nmol
gFW™) in leaf tissues will be calculated according to the following formula:

MDA content = [(A532 — A600) X extraction volume]/[155 X sample quantity]

The H,0, levels were determined in accordance with the methodology described by
Velikova, Yordanov ¢ Edreva (2000). For this purpose, leaf tissues (500 mg) were
homogenized with 5 mL of 0.1% TCA. The homogenate was then centrifuged at 12,000 g
for 15 min. A volume of 0.5 mL of the supernatant was combined with 0.5 mL of a 10 mM
potassium phosphate buffer solution (pH 7.0) and 1 mL of 1 M KI. The absorbance of the
supernatant was measured using a spectrophotometer with a wavelength of 390 nm. The
quantity of H,O, was determined by means of a standard curve.

Antioxidant enzyme activities
The antioxidant enzyme activities (SOD, APX, and CAT) were analyzed according to the
method described by Cakmak & Marschner (1992).

For the extraction of the enzymes, 0.2 g of plant leaves were homogenized in 2 mL of
K-P buffer (pH 7.6) and centrifuged at 15,000 g for 20 min at 4 °C. Subsequently, the
supernatant was removed, and the reactions were prepared for each enzyme activity, as
detailed below. The supernatant obtained from the aforementioned extraction was utilized
for all enzyme activity readings. As enzyme activities were calculated in relation to protein
content, it was first necessary to determine the protein content.

To determine SOD activity, the following solution was prepared: 2.9 mL K-P bufter (pH
7.6), 0.5 mL sodium bicarbonate, 0.5 mL methionine, 0.5 mL nitro blue tetrazolium
chloride (NBT), 0.5 mL riboflavin, and 0.1 mL sample supernatant. This solution was then
placed in glass test tubes. The tubes were gently mixed and then incubated under light for
10-15 min (until the color turned blue). The absorbance at 560 nm was then determined
with a spectrophotometer. The quantity of enzyme was calculated in micromoles per
milligram of protein.

For the determination of APX activity, 0.7 mL of K-P buffer (pH 7.6), 0.1 mL of H,O,,
0.1 mL of the sample supernatant, and 0.1 mL of ascorbic acid were added, and absorbance
readings were taken at 290 nm for 1 min in a spectrophotometer. The enzyme amount was
calculated as micromoles per milligram of protein per minute.

The CAT activity was determined by adding 0.8 mL K-P buffer (pH 7.6), 0.1 mL sample
supernatant, and 0.1 mL H,O,, and absorbance readings were performed at 240 nm for 1
min. The amount of enzyme that decreased the absorbance by umol in 1 min at 25 °C was
calculated as nmol/mg protein/min.

HSP70 and HSP90 gene expression levels
The RNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA) was used to isolate total RNA
from 100 mg of ground-up leaves that had been frozen in liquid nitrogen. Following the
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Table 1 Primer sequences of genes analyzed for expression.

Gene name Forward primer Reverse primer

ZmActinl (accession: J01238) ATCACCATTGGGTCAGAAAGG GTGCTGAGAGAAGCCAAAATAGAG
ZmHSP90 (accession: EE257979) ATCTGGCACTTCAGGAACAGG AACGCCTCCATTGCTTCGTAT
ZmHSP70 (accession: DY307167) TGCTTGACGTCACTCCTCTC CTCGTACACCTGGATCAACACA

isolation of RNA, the purity of the RNA was quantified using a nanodrop device (Thermo
ND2000, Waltham, MA, USA). RNA samples with an A260/A280 ratio of approximately
2.0 were utilized for cDNA synthesis. Total RNA was isolated once more from samples
exhibiting values below the desired threshold, and this process was repeated until the
requisite value was achieved. The measured RNA concentrations were adjusted to 1,000
ng/uL, and cDNA was obtained by reverse transcription polymerase chain reaction (RT-
PCR). The application of RQ1 RNase-free DNase (Promega, Madison, WI, USA)
eliminated any DNA contamination. For cDNA synthesis, Procomcure Biotech, Thalgau,
Austria, provided the VitaScript TM First-strand cDNA Synthesis Kit (PCCSKU1301).
The cDNA samples were then adjusted to 100 ng/pL and the expression levels of the gene
products of interest were determined by RT-qPCR (real-time PCR). RT-qPCR conditions:
95 °C 5 min, followed by 40 cycles of 95 °C 15 s, 60 °C 30 s, and 72 °C 30 s. Following the
synthesis of cDNA from the prepared RNA samples, a RT-qPCR analysis was conducted
using specific primers for the selected genes and maize Actin as a housekeeping gene
(Table 1). The study was conducted using the CFX Connect Real-Time PCR Detection
System (Bio-Rad, Hercules, CA, USA) and the 2X Magic SYBR Kit (Procomcure, Thalgau,
Austria). The 27*4“" technique was employed to calculate the relative expression (Livak ¢
Schmittgen, 2001). Three biological and two technical replicates were employed for each
analysis.

Western blotting for HSP70 and HSP90

The purification of plant samples was conducted in accordance with the methodology
proposed by Abraham-Judrez (2019). The Bradford technique was utilized to quantify the
protein concentration of the samples. Based on the identified protein concentrations, the
sample amounts were adjusted. Subsequently, the samples were subjected to
electrophoresis on a 12% polyacrylamide gel. Subsequently, a PVDF membrane with an
area equivalent to that of the gel was submerged in 10 mL of 100% methanol for 1 min in a
square Petri plate. The transfer procedure was conducted using the ThermoFisher
Scientific iBlot 2 Dry Blotting System. The gel-to-membrane transfer procedure was
conducted using the sandwich-shaped membrane transfer mechanism of the iBlot 2 device
at 20 volts for 7 min. A blocking solution was subsequently formulated following the
completion of the transfer procedure. Later, the gel image was detached from the transfer
paper and immersed in the pre-prepared blocking solution for a period of 5 min. The
blocking solution was then transferred to 2.5 ml tubes, with 2 ml in each tube, which was
equivalent to the quantity of antibodies employed. This was for the antibody application
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procedure. In this investigation, Agrisera UBQI11 (internal control), HSP70, HSP90, and
HRP Goat Anti-Rabbit IgG (H + L) were used as secondary antibodies. Then, the iBind flex
card was attached to the membrane cylinder, after which 10 milliliters of blocking solution
were wetted. The membrane was immersed in the ECL solution for a period of 2.5 h. A
chemiluminescence imaging device was utilized in the imaging procedure. Invitrogen
SeeBlue Plus2 Prestained Standard was used as a ladder. Prior to imaging, the membrane
was incubated in a 1:1 ECL solution for 5 min in the dark. The final band images from the
films were converted to digital media by means of a scanner. A densitometric analysis of
the bands was conducted using the American Institute of Health’s “Image J” tool (http://
rsb.info.NIH.gov/nih-image/).

Statistical analyses

The study data was subjected to an entirely random factorial design in order to examine for
variance using IBM SPSS 26. To identify differences in means, the Duncan multiple
comparison test was utilized. The data is presented in bar graphs and error bars, which
display the mean and standard error of the data. The figures were generated using IBM
SPSS 26. Correlations between the examined parameters were analyzed by Pearson
correlation analysis according to p < 0.05.

RESULTS

Osmoregulation parameters

A statistical analysis revealed that maize subspecies, drought treatments, and their
interactions were found to be statistically significant at the 1% level in terms of leaf RWC,
LOT, PRO, and SPR content (Table S1).

In the absence of stressors, the RWC of maize subspecies exhibited the highest levels in
sugar maize, reaching 95.20% (Fig. 1A). The water content of popcorn and dent maize was
77.48% and 72.43%, respectively. In the context of the moderate drought, the water content
of dent maize showed the highest level of resilience, despite exposing the lowest water
content under normal conditions. The reduction in water content of dent maize was
approximately 4%, while popcorn maize displayed a 35% decline and sugar maize
displayed a 44% reduction. In response to severe drought conditions, sugar maize had a
70% reduction in water content compared to the control, while popcorn maize
demonstrated a 35% decline in water content at the same rate as moderate drought
severity. However, dent maize lost the content of water by approximately 15% compared to
the control, resulting in a RWC value of 61.82%. The LOT in maize plants under drought
stress was found to be parallel to the RWC. In the dent maize, a 33.42% LOT was observed
under severe drought stress. However, even under moderate drought stress, turgor loss
exceeding 40% was measured in popcorn and sugar maize. Although turgor loss in sugar
maize under severe drought remained at the same level as in moderate drought, LOT in
sugar maize reached 62.93% (Fig. 1B).

As drought stress increased, PRO accumulation increased in dent and popcorn maize,
however decreased in sugar maize (Fig. 1C). Dent maize, which had the lowest PRO
content (12.13 mmol g '"FW) under control conditions, reached a PRO value of
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control, MD: moderate drought, SD: severe drought).  Full-size K&l DOI: 10.7717/peerj.17931/fig-1

35.99 mmol g~ FW when exposed to severe drought. Popcorn had a higher PRO content
than other maize subspecies under both control and moderate drought conditions. In
contrast, PRO content reduced in sugar maize as a response to drought stress, reaching a
minimum of 1.56 mmol g ' FW in severe drought. The SPR content of maize leaves
decreased under drought stress across all maize subspecies. The highest SPR content was
observed in sugar maize under all conditions; however, it was the lowest in dent maize. The
greatest reduction of SPR in maize leaves belonged to dent maize under moderate drought
stress and in sugar maize under severe drought stress in comparison to normal conditions.
The highest SPR content was measured in popcorn maize under severe drought stress, in
comparison to moderate drought stress (Fig. 1D).

Membrane injury parameters

The results of variance analyses of membrane injury parameters (Table S1) indicated that
there were statistically significant changes in membrane damage (MD%), MDI, MDA, and
H,0, content among maize subspecies, as well as in response to drought stress. The
interaction between maize subspecies and drought stress was found to be insignificant for
MD% and MDI. However, significant interactions were observed for MDA and H,0,
content.

The greatest degree (19.36%) of MD%, as indicated by electrolyte leakage, was observed
in sugar maize subjected to severe drought stress. Membrane damage increased with the
severity of drought stress in all maize subspecies. Dent maize indicated the least damage
(1.20%) under moderate drought stress, while popcorn maize exhibited the least damage
(3.60%) under severe drought stress (Fig. 2A). As anticipated, the MDI demonstrated a
decline in accordance with the severity of the applied stress. The MDI calculated a range of
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Figure 2 Changes of membrane injury parameters for the maize subspecies in drought stress.
Full-size ] DOT: 10.7717/peerj.17931/fig-2

values, spanning from 65.44% (sugar maize under severe drought stress) to 81.16% (sugar
maize under control conditions). The MDI values were close in popcorn maize in all
conditions. Notwithstanding the fact that the highest MDI was observed in sugar maize
under control conditions, it was found in popcorn maize under moderate and severe
drought (Fig. 2B).

The MDA values of maize plants under control conditions ranged from 7.89 to
9.21 nmol gFW ™" (Fig. 2C). Popcorn maize had the lowest MDA values, while dent maize
had the highest. When maize plants were exposed to moderate drought stress, the MDA
values increased by 22.34% in dent maize, 85.30% in popcorn maize, and 29.73% in sugar
maize. As the severity of the drought increased, the MDA content increased by 7.42%,
12.95% and 24.63% to 12.03 nmol gFW " in sugar maize, 12.72 nmol gFW " in dent maize,
and 18.22 nmol gFW ™" in popcorn maize, respectively. The highest increase was in
popcorn maize at both stress severities. Since MDA content was high in dent maize under
normal conditions, the increase in stress conditions was lower than in the other subspecies.
Nevertheless, the MDA content of sugar maize was comparatively lower increase when the
drought severity was altered from moderate to severe.

The lowest levels of H,O, were observed in dent maize, while the highest levels were in
popcorn maize under all conditions (Fig. 2D). Even though the levels were low, the
increase in H,O, content was more pronounced in dent maize as drought stress intensified
compared to other subspecies. In the absence of drought stress, the H,O, content of dent
maize was 11.14 nmolg™'FW, that of popcorn maize was 37.59 nmolg 'FW, and that of
sugar maize was 32.44 nmolg ' FW. When moderate drought stress was imposed, the H,0,
content of dent maize increased by 10.65 units. This increase is 4.30 units in sugar maize.
In the case of severe drought conditions, the H,O, content increased by 13 units in
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popcorn maize in comparison to normal conditions. In contrast, it increased by only 3.49
units when the drought changed from moderate to severe, representing the lowest increase
among the subspecies.

Antioxidant enzyme activities

A significant change was observed in the antioxidant enzyme activities of maize plants
exposed to drought stress. The interaction between maize subspecies and drought stress
was not significant for SOD activity (Table S1). The results of the study indicated that all
antioxidant enzymes examined exhibited a parallel increase in the severity of drought
stress in all maize subspecies (Fig. 3). The greatest increase in SOD enzyme activities was
observed in dent maize plants under moderate drought stress. In severe drought
conditions, the highest SOD activity was observed in popcorn and sugar maize. Dent maize
revealed similar SOD activity under both moderate and severe drought conditions.

The increases in APX activities of maize plants were close between dent and popcorn
maize under moderate drought conditions in comparison to control conditions. However,
the increase was twice as great in sugar maize. Severe drought resulted in a 2.6-fold
increase in APX activity in sugar maize in comparison to control conditions, while it
increased 1.8-fold in popcorn maize and 1.4-fold in dent maize (Fig. 3). The activity of
CAT increased rapidly in dent and sugar maize under moderate drought conditions, while
it increased more slowly in popcorn maize. In the case of severe drought, the highest CAT
activity was observed in sugar maize. In severe drought, CAT activity increased by more
than fourfold in sugar and popcorn maize compared to the control. In the transition from
moderate to severe drought stress, CAT activity increased by a factor of 2.7 in popcorn
maize. Although the magnitude of the increase was considerable, CAT activity was the
lowest in popcorn maize (Fig. 3).

HSP70 and HSP90 gene expression levels

The expression of the HSP70 gene differed among maize subspecies, however was not
significant for drought stress or the maize subspecies x drought stress interaction. In
contrast, the expression of the HSP90 gene was statistically significant for all experimental
variants (Table S1).

The expression levels of the HSP70 gene indicated notable differences among maize
subspecies under conditions of drought stress (Fig. 4). In dent maize, the expression level
increased from 1.00 to 1.52 under moderate drought stress and decreased to 1.31 under
severe drought. In popcorn maize, there was a gradual increase in gene expression levels
with increasing drought severity, with levels being slightly higher than those observed in
other maize subspecies under all conditions. In contrast, the level of HSP70 gene
expression in sugar maize showed a decrease with increasing drought severity, reaching a
highly low level.

The level of gene expression of HSP90 was significantly elevated and overexpressed in
sugar maize under conditions of severe drought. In dent maize, the gene expression level
decreased from approximately 1.00 under normal conditions and moderate drought to
0.71 under severe drought. In popcorn maize, the expression of HSP90 increased by a
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Figure 3 Changes of antioxidant enzyme activities for the maize subspecies in drought stress.
Full-size K&l DOT: 10.7717/peerj.17931/fig-3

factor of 1.5 in the presence of moderate drought in comparison to normal conditions and
decreased by a factor of 0.8 in the presence of severe drought. In sugar maize, expression
levels demonstrated a marked increase with the progression of drought severity. The
HSP90 gene in sugar maize expressed a 3.4-fold increase under moderate drought
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conditions and a 17.7-fold increase under severe drought conditions relative to normal

conditions.

Western blotting for HSP70 and HSP90

Western blot analysis revealed that the band intensity of the HSP70 protein was highest in
dent maize under normal conditions (Fig. 5). The next highest level of HSP70 protein was
observed in sugar maize, although this was considerably lower in popcorn. Under the
moderate drought, the band intensity of HSP70 was found to be relatively similar in dent
and popcorn maize, while exhibiting a higher level in sugar maize. In severe drought, the
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Table 2 Pearson correlation coefficients between the characteristics analyzed in the study.

MDI RWC LOT MDA PRO PRT H,0, SOD APX CAT HSP70  HSP90
MD% —-0.97*"  -0.64™  0.64"" 0.19 -0.12 —-0.51%* 0.16 0.41* 0.74* 0.60"* -0.21 0.61%
MDI 0.61% -0.61%*  -0.20 0.03 0.58*"  —0.02 -0.35 -0.65%"  -0.64™* 0.16 —0.54*
RWC -0.99%*  -0.56"* 0.14 0.65%"  -0.47* -0.68%*  -0.71"*  —0.66"" 0.08 -0.61%*
LOT 0.56™  —0.14 -0.63%* 0.48* 0.70"*  0.69"* 0.64" -0.07 0.65"
MDA 0.42%  -0.62" 0.54" 0.61°*  0.16 0.50"* 0.29 0.02
PRO -0.35 0.06 0.00 -0.41% 0.13 050" —0.56"*
PRT -0.21 -0.63**  -0.50"*  -0.93"*  -0.17 -0.29
H,0, 0.60**  0.22 0.09 0.21 0.21
SOD 0.58* 0.60"* 0.09 0.61%
APX 0.70"* -0.41% 0.79*
CAT -0.07 0.44*
HSP70 —-0.44*

Notes:
p <0.05.

“ p <0.001, insignificant ones are not marked.

band intensity of HSP70 was ranked from largest to smallest in dent, sugar, and popcorn
maize. The manifestation of changes in HSP70 protein expression under drought stress
differed between maize subspecies. HSP70 expression indicated a gradual increase with
drought in popcorn maize, however a decline in sugar maize.

The intensity of the HSP90 protein band, which is typically high in dent maize, was
found to be equivalent in popcorn and sugar maize and approximately half that observed
in dent maize. Moderate drought stress resulted in a reduction in the quantity of HSP90
protein in dent and popcorn maize in comparison to the control conditions, whereas an
increase was observed in sugar maize. In response to severe drought stress, HSP90 protein
expression in dent maize increased gradually, although it remained below the levels
observed under normal conditions. However, a notable decline was observed in popcorn
and sugar maize (Fig. 5).

The aforementioned changes are also evident in plant morphology. As illustrated in
Fig. 6, there was a notable shortened plant height, decrease in leaf area as the drought
intensified, as well as a decline green color intensity due to the decrease in chlorophyll
content.

Correlation analyses for studied parameters

The results of the two-tailed Pearson correlation analysis conducted to determine the
relationships between the parameters examined in the study are presented in Table 2. In
particular, there was a positive and highly significant correlation between HSP70 gene
expression and PRO content, while there was a negative and significant correlation
between HSP70 gene expression and APX activity. The expression of the HSP90 gene was
found to be positively and significantly correlated with MD%, LOT, SOD, APX, and CAT
activities. Conversely, it was negatively and significantly correlated with MDI, RWC, and
PRO.
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DISCUSSION

One of the primary abiotic factors influencing agricultural productivity is a scarcity of
water. Drought stress, which is the consequence of water scarcity, can give rise to a
multitude of factors that can be detrimental to plants. However, plants have evolved a
multitude of physiological, biochemical, and molecular adaptation mechanisms in
response to the intricate process of tolerance to drought stress (Ren et al., 2022; Schmitt, do
Amaral Junior & Kamphorst, 2024). Water loss due to drought stress is manifested by a
decrease in RWC in plants. It was observed that the RWC values of the maize
genotypes studied in this research decreased when exposed to drought (Fig. 1A). The
drought-induced reduction in RWC of dent maize, which already has a low RWC under
normal conditions, was significantly lower than that of popcorn and sugar maize. This
suggests that dent maize is better at maintaining leaf water coverage during water scarcity.
Popcorn maize had similar water content in both moderate and severe droughts compared
to normal conditions. On the other hand, sugar maize lost a significant amount of water as
the drought intensified. Jain et al. (2019) suggested that the maintenance of high RWC
represents a mechanism for drought resistance rather than drought escape and that it
results from adaptive traits such as osmotic adaptation. Under drought conditions, the
classical control system involves stomatal closure as a consequence of guard cell turgor.
Differences in the stomatal response to water stress help determine the relative ability of
species to cope with drought conditions. The decrease in stomatal conductance can be
attributed to the decrease in RWC resulting in the LOT (Badr ¢ Briiggemann, 2020). The
decrease in RWC also indicates a decrease in plant turgor, and in our study, Fig. 1B shows
that maize genotypes lost turgor in parallel with the decrease in RWC.

In water-stressed plants, compatible solutes act as osmoprotectants and mediate
osmotic correction (Mukarram et al., 2021). Of these, free proline is the most abundant
osmolyte found in plants grown under water deficit conditions. As a result, high levels of
proline can improve water-holding capacity (Frimpong et al., 2021). In this study, water
deficit increased PRO content in the leaves of dent and popcorn maize (Fig. 1C). The RWC
and turgor capacity of these subspecies were also high. This information is supported by
the fact that the PRO content of sugar maize, whose water and turgor loss increased with
drought stress, decreased with drought stress. Abdul Mohsin ¢» Farhood (2023) reported
that proline helps plants maintain water cover by acting as an adhesive water shell that
shows strong resistance to changes caused by water stress conditions. Drought stress can
cause both qualitative and quantitative changes in plant proteins. Plants grown under
environmental changes are subjected to changes in protein content, which in many cases
leads to a decrease in protein content due to an increase in proline content. Basically,
proline accumulation has been reported as a result of stress-induced protein hydrolysis or
oxidative inhibition of protein synthesis in plants (Mansour & Salama, 2020). In this study,
drought stress caused a decrease in SPR content in all maize genotypes. The decrease in
SPR content was less in dent maize, where PRO accumulation was high (Fig. 1D). Under
abiotic stress conditions, plants that survive the damaging effects tend to increase osmotic
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potential at the cellular level by accumulating solutes such as proline (Ozturk et al., 2021).
However, it has been reported that under drought stress, the total amount of soluble
proteins decreases while the levels of proline and antioxidant enzymes increase (Kosar
et al, 2020).

The most straightforward and quantifiable indicator of the impact of drought on plants
is the MDI, which is calculated based on electrolyte leakage (Rudolphi-Szydlo et al., 2022).
A high value of this index indicates that electrolyte leakage in plants is low, membrane
damage does not occur, and genotypes with high MDI may indicate high drought tolerance
(Guizani et al., 2023; Yin et al., 2024). In this study, it was observed that the MD% of maize
genotypes was higher under severe drought conditions than in the control (Fig. 2A).
However, the MDI values were found to be close to the control in all maize subspecies
under moderate drought conditions (Fig. 2B). In severe drought conditions, only sugar
maize exhibited a reduction in MDI values that was comparable to the control. However, it
still did not reach a very low value compared to other genotypes. The greater reduction in
MDI of sugar maize under severe drought was due to the it’s higher values under control
conditions.

Another factor that contributes to a reduction in membrane integrity and cellular
structure when plants are subjected to drought is the presence of ROS, which results in an
increase in lipid peroxidation (Ru et al., 2023). The levels of lipid peroxidation (MDA
content) were approximately 8-9 nmol g~' FW at control in all maize genotypes (Fig. 2C),
however following the severe drought treatment, they rose to above 18 nmol g~ FW in
popcorn maize and above 12 nmol g~' FW in dent and sugar maize. The MDA content of
popcorn was found to be higher than that of others in both drought-stress conditions.

Despite its involvement in numerous signaling pathways, H,O, becomes toxic and
causes cellular damage when it is not removed to maintain its concentration below the
threshold for toxicity (Wang et al., 2024). The concentration of H,O, was found to
increase in all maize genotypes under conditions of drought stress (Fig. 2D). Higher levels
of H,O, were observed in popcorn. Although the lowest H,O, content was observed in
dent maize under all conditions, a low level of H,O, accumulation was apparent in sugar
maize when it transitioned from normal to drought conditions. As the concentration of
H,0, increases, it reacts with lipids and proteins, resulting in the oxidation of lipids and
damage to the cell membrane. As with MDA content, it indicates the level of lipid
peroxidation and membrane damage. However, MDA content is more positively related to
water loss under drought conditions (Singh et al., 2022).

In this study, antioxidant enzyme activities (SOD, APX, and CAT) increased as a
response to increasing MDA and H,0, content (Fig. 3). All antioxidant enzyme activities
examined in the study showed the highest increase in sugar maize. However, its SOD and
APX activities were also high under normal conditions. All antioxidant enzymes reached
the highest level in all maize genotypes under severe drought stress. The antioxidant
system needs to be activated immediately upon the onset of drought stress. These
antioxidant enzymes protect plants from oxidative damage caused by ROS and maintain
the balance between ROS production and scavenging under stressful conditions (Rajput
et al., 2021). Furthermore, there is a strong correlation between the level of oxidative
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damage caused by ROS in cells and the activity of antioxidants. However, the resistance or
susceptibility of the genotype to drought stress is determined by the correlation between
antioxidants and ROS generation (Anjum et al., 2016).

Drought stress has been found to affect the normal amount and quality of plant protein
(Fig. 1D). Drought-induced dehydration triggers stress-related proteins, including HSPs.
The primary regulators of plant stress responses are genes encoding HSPs, just like
antioxidants. HSPs have been characterized as proteins whose concentration increases
significantly at higher temperatures for plant growth; however, recent reports suggest that
HSPs are proteins that help fold newly formed proteins or stop misfolding proteins (Khan
& Shahwar, 2020). Li et al. (2021a) reported that most of the HSPs in maize, including the
HSP70, the HSP90, and the small HSP family, increased under severe drought stress. In
this study, HSP70 and HSP90, whose importance is emphasized in many stress conditions,
were determined at the transcriptional level by real-time PCR and at the translational level
by Western blotting. The expression of the HSP70 gene was found to be upregulated by
drought stress in dent and popcorn maize, while it was downregulated in sugar maize.
With regard to the HSP90 gene, there was not much change in its expression level with
drought stress in dent and popcorn maize. However, it has been observed to be
overexpressed in sugar maize, especially in severe droughts (Fig. 4). The results of the WB
analysis produced disparate outcomes when compared to those of the real-time PCR
analysis in dent maize (Fig. 5). The expression of HSP70 and HSP90 was found to be
higher in control conditions than in drought conditions. HSP70 and HSP90 have also been
demonstrated to play a pivotal role in the normal development of plants. These proteins
are present at significant levels in normal, unstressed cells, maintained in the cytoplasm at
specific stages of the cell cycle, or during development in the absence of stress (Li ¢ Howell,
2021). The high expression of HSP70 and HSP90 at the translational level in the absence of
stress can be attributed to the aforementioned information.

The expression of HSP70 in popcorn and sugar maize was found to be similar in both
assays, with the results supporting each other. HSP70 was upregulated in popcorn in
response to stress, whereas in sugar maize, it was downregulated. HSP70s are classified as
chaperones and fulfill a number of vital functions. These include promoting the
functioning of the antioxidant system, eliminating excess ROS or damaged proteins under
stress, and assisting newly generated proteins in folding correctly (Ul Hagq et al., 2019). In
previous studies, the upregulation of HSP70 has been associated with drought tolerance in
rice, Arabidopsis, and maize (Hu et al., 2010; Pulido, Llamas & Rodriguez-Concepcion,
2017; Devarajan et al., 2021; Li et al., 2021b). Similar to the findings for HSP70 in dent
maize, which demonstrated a reduction in expression levels in response to drought stress,
the expression of HSP90 was found to be upregulated in severe drought conditions relative
to moderate drought. In contrast to popcorn maize, which exhibited a downregulation in
drought stress, sugar maize displayed an upregulation in moderate drought and a
downregulation in severe drought. Previous studies have demonstrated a positive
correlation between the HSP90 gene and drought tolerance in maize plants (Li ¢ Howell,
20215 Li et al., 2021a, 2021b; Liu et al., 2021). It is well established that the expression of
HSP genes is subject to control at both the transcriptional (mRNA) and translational
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(protein) levels. Consequently, it is important to recognize that the disparate outcomes
observed in the two methods may be attributable to post-transcriptional regulatory
mechanisms.

The physiological and molecular mechanisms that occur as a consequence of drought
stress in the maize plant serve to determine its degree of exposure to and tolerance to stress,
and these are interrelated. The positive correlation between MD%, LOT, and MDA
content with antioxidant enzyme activities and HSP90 gene expression (Table 2) indicates
that the plant’s defense mechanism is activated in response to the negative impacts of
stress. It has been demonstrated that an increase in lipid peroxidation can also alter a cell’s
transcriptional profile, despite the conventional understanding that an elevation in MDA
levels is indicative of stress-related damage (Zhang et al., 2024). Moreover, recent research
suggests that MDA may function as a stress-signaling molecule in plants, activating genes
associated with heat shock/dehydration and antioxidant machinery (Morales & Munné-
Bosch, 2019). The expression of the HSP70 gene was found to be correlated with the PRO
content and the activity of the APX enzyme. In contrast, the expression of the HSP90 gene
was correlated with all properties except for the MDA, H,0,, and SPR content. It is also
noteworthy that a negative correlation was identified between the expression of the HSP90
gene and the HSP70 gene in this study. Every HSP class comprises members with distinct
roles. Nevertheless, a fundamental component of the integrated HSP machinery is
collaboration throughout different HSP networks (Wang et al., 2004). In response to
stressful circumstances, HSPs utilize ROS as signaling molecules, thereby preventing the
aggregation of proteins. Earlier research has indicated intricate relationships between HSPs
and plant responses to ROS (Ding, Li ¢» Zhang, 2022; Singh et al., 2019). In order to clarify
stress tolerance in maize, Li ¢ Howell (2021) proposed that future studies should examine
the interactions between HSPs and other stress response systems. The results of this
research may provide new answers for the interactions that are still under investigation.

The traits analyzed in this study are not independent of each other; rather, their
combined and cumulative effects are responsible for the drought tolerance of the plant.
Ultimately, this also affects the morphological characteristics and yield of the plant,
providing precise information about its drought tolerance. In our previous study, when we
evaluated the morphological characteristics and chlorophyll content of maize plants, we
found that they decreased the most in sugar maize (Eskikoy & Kutlu, 2024). It can be
concluded that dent corn is the most drought-tolerant subspecies and sugar maize is the
most sensitive. This study has demonstrated the importance of HSPs in determining
drought tolerance, with HSP90 being more effective in selecting sensitive genotypes.

CONCLUSIONS

Drought stress represents one of the most deleterious environmental disturbances in maize
cultivation. This study has revealed that moderate to severe drought stress alters physio-
biochemical, enzymatic, and molecular traits in dent, popcorn, and sugar maize subspecies.
The higher tolerance of dent maize to drought stress is associated with its conserved water
content, high proline accumulation, increased antioxidant activities, and lower lipid
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peroxidation compared to other subspecies. The high membrane damage, water and turgor
loss, increased enzyme activities, and HSP90 gene expression in response to increases in
MDA and H,0, content in sugar maize, especially under severe drought, indicate that it is
heavily affected by stress. Popcorn maize showed a tolerance in the middle of the other two
subspecies. The results revealed that different physiological, biochemical, enzymatic and
molecular responses of maize subspecies were dependent on the severity of drought.
Furthermore, our findings indicate that distinct transcriptional and translational systems
exist between moderate and severe drought stress.
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