Comparison of the recovery quality between remimazolam and propofol after general anesthesia: systematic review and a meta-analysis of randomized controlled trials (#100073)

First submission

Guidance from your Editor

Please submit by 4 Jun 2024 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the materials page.

- 5 Figure file(s)
- 2 Table file(s)
- 3 Other file(s)

Systematic review or meta analysis

- Have you checked our policies?
- Is the topic of the study relevant and meaningful?
- Are the results robust and believable?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Comparison of the recovery quality between remimazolam and propofol after general anesthesia: systematic review and a meta-analysis of randomized controlled trials

Caiyun Zhu 1, 2, Ran Xie 2, Fang Qin 1, 3, Naiguo Wang 4, Hui Tang Corresp. 1, 5

Corresponding Author: Hui Tang Email address: tanghui1110@163.com

Introduction: To evaluate the recovery quality between remimazolam and propofol after general anesthesia surgery. Methods: Eligible Randomized controlled trials (RCTs) in PubMed, Cochrane Central, Scopus, and Web of Science up to January 15, 2024 for comparison the recovery quality of remimazolam and propofol after general anaesthesia. The primary outcomes were the total C-15 and five dimensions of QoR-15 on postoperative day 1 (POD1). Results: Seven RCTs with a total of 817 patients were included in this meta-analysis. Our statistical analysis showed that remimazolam group had higher QoR-15 score. In the five dimensions of QoR-15, remimazolam group was superior to propofol group in terms of physical independence, and there were no significant difference in terms of emotional status, psychological support, physical comfort and pain. The intraoperative and postoperative time characteristics were similar in the two groups. Remimazolam group was lower than propofol group in incidence of hypotension, bradycardia and injection pain. Conclusions: Our analysis showed that the recovery quality of the remimazolam group after general anaesthesia was more superior. The incidence of adverse events was low in remimazolam group. As a potential anesthetic, we need a larger sample RCTs to verify the benefits of recovery quality in patients treated with remimazolam.

¹ Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China

² Department of Pharmacy, Zibo Integrated Traditional Chinese and Western Medicine Hospital, Zibo, China

³ Department of Pharmacy, Liuzhou People's Hospital, Guangxi, China

⁴ Department of Spinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China

⁵ Stem Cell Clinical Institute, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China

- 1 Comparison of the recovery quality between remimazolam and
- 2 propofol after general anesthesia: Systematic review and A Meta-
- analysis of randomized controlled trials
- 4 Introduction: To evaluate the recovery quality between remimazolam and
- 5 propofol after general anesthesia surgery.
- 6 Methods: Eligible Randomized controlled trials (RCTs) in PubMed, Cochrane
- 7 Central, Scopus, and Web of Science up to January 15, 2024 for comparison the
- 8 recovery quality of remimazolam and propofol after general anaesthesia. The
- 9 primary outcomes were the total Qor-15 and five dimensions of QoR-15 on
- postoperative day 1 (POD1).
- 11 Results: Seven RCTs with a total of 817 patients were included in this meta-
- analysis. Our statistical analysis showed that remimazolam group had higher QoR-
- 13 15 score. In the five dimensions of QoR-15, remimazolam group was superior to
- propofol group in terms of physical independence, and there were no significant
- difference in terms of emotional status, psychological support, physical comfort
- and pain. The intraoperative and postoperative time characteristics were similar in
- the two groups. Remimazolam group was lower than propofol group in incidence
- of hypotension, bradycardia and injection pain.
- 19 **Conclusions:** Our analysis showed that the recovery quality of the remimazolam
- 20 group after general anaesthesia was more superior. The incidence of adverse events
- 21 was low in remimazolam group. As a potential anesthetic, we need a larger sample

- 22 RCTs to verify the benefits of recovery quality in patients treated with
- 23 remimazolam.
- 24 Keywords: general anaesthesia, meta-analysis, propofol, quality of recovery, QoR,
- 25 remimazolam, systematic review

1 Introduction

28	in recent years, surgical technology has unique advantages in clinic treatment
29	and anesthetic plays an important role in surgical techniques. Doctors and patients
30	are increasingly concerned about the quality of recovery (QoR) after general
31	anesthesia, not just the success or failure of surgery [1]. Choosing the right drug
32	among the various anesthetics can be a challenge. Propofol has long been
33	considered a more comfortable administration of general anesthesia than inhalation
34	anesthesia because of its low incidence of nausea and vomiting. However, it also
35	has limitations, such as low blood pressure and a high incidence of injection pain
36	[2]. Remimazolam is a benzodiazepine sedative/anesthesia that can be
37	administered intravenous [3]. Due to rapid metabolism by tissue esterases into
38	inactive metabolites [4], it has the characteristics of rapid onset and offset in vivo,
39	and can be antagonized by flumazenil [5]. Clinical trials have demonstrated the
40	safety and efficacy of general anesthesia [6]. Remimazolam has a similar sedative
41	effect to propofol and is superior to propofol in terms of injection pain and the risk
12	of hypotension. Acturally, propofol may be superior to remimazolam in terms of
43	depth of anesthesia [7].
14	Quality of recovery is a broad concept that assesses recovery from multiple
45	perspectives of the patient[8], at present, QoR-15 is the most widely used to
46	evaluate the quality of postoperative recovery. The QoR-15 was evolved from the
17	larger QoR-40, and they were just equally effective in measuring quality of

- postoperative recovery [9]. A meta-analysis of the hemodynamic effects by Peng et
- al. [10] only included two R that showed no significant difference between
- remimazolam and propofol in total QoR-15 scores on PO. We systematically
- updated this study by collecting 7 RCTs and conducted a comprehensive meta-
- analysis about quality of recovery after general anaesthesia between remimazolam
- and propofol.

54 2 Methods

- We conducted and reported analyses in accordance with the Preferred Reporting
- 56 Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020. The protocol
- 57 has been listed in PROSPERO International Prospective Register of Systematic
- 58 Reviews (CRD42024497497). From January 15, 2024 to January 22, 2024, we
- screened the articles. Then we took a week to extract the data until January 30,
- 60 2024. Finally we spent a month analyzing the data until February 29, 2024.

61 **2.1 Search strategy**

- We searched PubMed, Scopus, Cochrane Central, and Web of Science databases
- for eligible studies up to January 15, 2024, in unrestricted languages. Checking the
- registration number at Clinical Trials and the database to make sure no data was
- missing. The search strategy is as follows: Title /Abstract "remimazolam" and
- 66 Title/Abstract "propofol" and All Fields "quality of recovery", and we did not
- search grey literature. CZ and FQ independently performed the search strategy and
- resolved their disagreements through discussion.

2.2 Eligibility criteria and study selection

- 70 The two authors completed the selection of articles independently. If there was
- 71 different point of view, they resolved it through discussion. There are no language
- restrictions for articles in this search. We included all RCTs that met the following
- 73 PI study question criteria. 1) Population: patients requiring surgery under
- general anesthesia, no surgical type is considered; 2) Intervention: the study
- experimental group used remimazolam to induce and maintain anesthesia; 3)
- 76 Comparator: the study control group used propofol to induce and maintain
- anesthesia; 4) Outcomes: quality of recovery index, intraoperative and
- 78 postoperative time characteristic indexs and adverse events. We excluded studies
- with the following criteria: duplicate literature, review or meta-analysis artiles,
- studies without using propofol as a control group, data unavailable for analysis,
- and no project data reported.

2.3 Outcome measures

- 83 The primary outcome was the recovery quality of total QoR-15 and five
- dimensions of QoR-15 on POD1 (physical comfort, physical independence,
- emotional state, psychological support, and pain) between remimazolam and
- propofol group. Secondary outcomes were duration of PZU stay (nim), time to
- extubation (min), duration of anesthesia (min), duration of operation (min),
- duration of postoperative hospital stay (day), the QoR-40 and adverse events. The
- 89 QoR-15 consists of 15 items, including physical comfort (5 items), emotional state

- 90 (4 items), psychological support (2 items), physical independence (2 items) and
- pain (2 items), each item is scored on an 11-point scale according to the frequency
- on the scale, the total score range from 0 to 150, the higher the score, the better the
- 93 quality of recovery. The QoR-40 scale ranges from 40 to 200 and the higher the
- score, the better the quality of recovery.

95 2.4 Data extraction

- The extracted data includes first author, year of publication, registration number,
- ountry, sample size, American Society of Anesthesiologists (ASA) physical status,
- body mass index (BMI), gender ratio, type of surgery, specific interventions and
- omparisons methods, scale design and predetermined outcomes. Two independent
- authors used standard tables for data extraction and resolved their disagreements
- through discussion.

102

109

2.5 Risk of bias assessment

- Our two authors independently assessed the risk of bias domains using the
- 104 Cochrane risk of bias assessment tool. The Cochrane risk of bias tool detects the
- 105 following types of bias: random sequence generation, allocation concealment,
- binding of participants and personnel, blinding of outcome assessment, incomplete
- outcome date and selective reporting. Each bias domain was judged as having a
- high, unclear, or low risk of bias.

2.6 Statistical analysis

Review Manager (Rev Man 5.4.1; The Cochrane Collaboration, 2020) was used in 110 this meta-analysis, we pooled continuous outcomes as mean differences (MDs) 111 with 95% 🔁 under the fixed-effect model. Inverse Variance method was utilized 112 to calculate the MDs value. If the results were represented in quartiles, we contact 113 the article author by email or phone to get the original data, and if there was no 114 response, we convert the data to mean and standard deviation when it meets the 115 conversion criteria. Moreover, Mantel-Haenszel odds ratio (OR) and 95% CI were 116 used for the number of events and samples of dichotomous data. We adopted a 2-117 tailed test and P < 0.05 for the overall effect observed was indicated significant 118 differences. Statistical heterogeneity was assessed with the Q test and I-square (I²) 119 statistic test. The random effects model was used to evaluate the stability of the 120 combined results of the fixed effects model. If a strong heterogeneity (I²≥50%) was 121 found, a leave-one-out sensitivity analysis was employed to evaluate the single 122 comparison-driven conclusion, and if no source of heterogeneity was found, a 123 random effects model was put to use. 124

125 3 Results

3.1 Study results

127 A total of 193 relevant literatures were searched in PubMed, Scopus, Cochrane
128 Central, and Web of Science databases (FIGURE 1). 129 articles were removed
129 using the tool, 51 were removed by reading the title and abstract, and 6 were
130 removed after reading the full text. We also checked ClinicaTrials. gov to make

- sure there are no missing articles. Finally, we received 7 unique literatures were
- retrieved for this systematic review and meta-analysis [11-17].

3.2 Demographics and characteristics

- Our analysis included seven studies with a total of 817 patients, of which four were
- conducted in China and three were conducted in Korea. Patients aged from 18 to 86
- years were divided into remimazolam group and propofol group, respectively. The
- doses in the remimazolam group were not exactly the same, induction dose of
- remimazolam: four RCTs used the dosage recommended by the instructions (6
- mg/kg/h), one RCT used larger dose (12 mg/kg/h) and two RCTs used a bolus dose
- 140 (0.2-0.3 mg/kg and 0.3 mg/kg, respectively); maintenance dose of remimazolam:
- six RCTs used the dosage recommended by the instructions, only one RCT used a
- lesser dose (0.3 mg/kg/h). Table 1 shows the baseline summary of the included
- 143 RCTs.

3.3 Quality assessment of included studies

- According to the Cochrane Risk of Bias Assessment Tool, the quality of the
- included randomized controlled trials was estimated to be medium to high. The
- summary and risk of bias for the included studies are shown in FIGURE 2.
- 148 3.4 Comparison of remimazolam with propofol in the term of total QoR-15 on
- the POD1
- The primary outcome was the change in QoR-15 on the POD1. Three studies [11,
- 14, 17] with 304 patients examined QoR-15 on the pre-operation. Our statistical

analysis showed there was no significant difference between the two groups (MD = 152 -0.09; 95% CI, -1.41 to 1.23; $I^2 = 39\%$; P = 0.89) (FIGURE 3A). Four studies [11, 153 14, 15, 17] involving 418 patients investigated QoR-15 on the POD1. Our 154 statistical analysis showed that the score of OoR-15 in remimazolam group was 155 higher than that in propofol group (MD = 3.68; 95% CI, 2.21 to 5.15; $I^2 = 67\%$; P 156 < 0.00001), which indicated that remimazolam group had better quality of 157 recovery on the POD1 (FIGURE 3B). Due to the high heterogeneity, we adopted 158 the leave-one-out method to eliminate the study of Zhao et al., and the analysis still 159 reached the same conclusion, supporting the superiority of remimazolam group 160 $(MD = 2.44; 95\% CI, 0.74 \text{ to } 4.13; I^2 = 0\%; P=0.005)$ (FIGURE 3C). 161 3.5 Comparison of remimazolam with propofol in the term of five dimensions 162 of QoR-15 163 We analyzed five dimensions of QoR-15 scores, emotional status, physical comfort, 164 psychological support, physical independence, pain. Three studies [11, 15, 17] 165 involving 361 patients have reported these five dimensions. In term of physical 166 independence, remimazolam group was better than propofol group, with significant 167 difference and low heterogeneity (MD = 0.79; 95% CI, 0.31 to 1.27; $I^2 = 0\%$; 168 P=0.001) (FIGURE 4D). There was no significant difference in emotional status, 169 physical comfort, psychological support and pain between remimazolam group and 170 propofol group (p>0.05) (FIGURE 4A, 4B, 4C, 4E). 171

3.6 Comparison of remimazolam with propofol in the term of intraoperative

PeerJ

173

and postoperative time characteristics and QoR-40 on POD1

- We also analyzed other factors related to the quality of postoperative recovery. 4
- 175 [11, 15-17], 5 [11, 13, 15-17], 5 [13-17], 5 [11, 14-17], 4 [11, 14, 16, 17], 2 [12, 13]
- studies were involved in time to extubation, duration of anesthesia, duration of
- surgery, duration of PACU, duration of postoperative hospital stay and QoR-40 on
- the POD1, respectively. However, no significant differences were observed in
- these respects (p > 0.05), and the heterogeneity was low to high (FIGURE 5A, 5B,
- 180 5C, 5D, 5E, 5F).

181 3.7 Incidence of adverse events

- Table 2 show adverse events reported by two or more RCTs. The incidence of
- postoperative nausea/vomiting (PONV) in remimazolam group was higher than
- that in propofol group, but there was no significant difference between the two
- groups after statistical analysis (= 1.66; 95% CI, 0.98 to 2.79; $I^2 = 0\%$;
- P=0.06)(Supplementary Figure S1). Remimazolam group was lower than propofol
- group in incidence of hypotension, bradycardia and injection pain.

188 4 Discussion

- In this meta-analysis study, we reviewed seven RCTs analyzing remimazolam for
- the quality of recovery after general anaesthesia. A total of 817 patients in
- remimazolam group and propofol group were included in our report. Our aim was
- to evaluate the recovery quality between remimazolam and propofol after general
- anesthesia surgery.

Remimazolam, used for general anesthesia in surgery, is a benzodiazepine with the 194 basic sedative structure of midazolam and the ester structure of remifentanil. After 195 entering the body, it directly binds to GAEA receptors producing anesthetic effect 196 [18], with an onset time of 1-3 min. Tissue esterases in vivo can break the ester 197 bond and metabolize it into inactive CNS7054 with lose efficacy time of 6.8-9.9 198 min [3]. These pharmacokinetics characteristics enable the remifentanil to reach 199 the operable state quickly, and patient can recover quickly after the surgery with 200 few adverse reactions. Among the RCTs included in our analysis, 4 RCTs used 6 201 mg/kg/h for anesthesia induction and 3 RCTs used 12 mg/kg/h or a bolus dosage. 202 The use of large doses was based on the effectiveness and safety of previous 203 studies[19, 20]. 204 According to our findings, the quality of recovery of remimazolam group was 205 better than that of propofol group, and that incidence of adverse effects, such as 206 hypotension, bradycardia and injection pain, remimazolam group was lower than 207 propofol group. In terms of time to extubation, duration of anesthesia, duration of 208 surgery, duration of PACU and duration of postoperative hospital stay, 209 remimazolam group was similar to propofol group. 210 At present, the scales commonly used to evaluate the quality of postoperative 211 recovery include QoR-15, QoR-40 and the post-operative quality of recovery scale 212 (PostopQRS). 213

214	QoR-15 was developed from QoR-40, and both were evaluated in five dimensions,
215	including physical comfort, physical independence, emotional state, psychological
216	support, and pain, with the highest scores were 150 and 200, respectively [21, 22].
217	The higher score indicates a better recovery quality of rehabilitation [23]. The RCT
218	of Mao, et al. [24] evaluated QoR-15 after general anesthesia with remimazolam in
219	urological surgery, showing that remimazolam was significantly lower than
220	propofol. The meta-analysis by Peng et al. [10] found no significant difference
221	between remimazolam and propofol including Mao, et al. and an RCT. Our pooled
222	analysis of four RCTs showed the superiority of remimazolam but with high
223	heterogeneity. The high heterogeneity might be due to the inclusion of patients
224	aged 60 to 80 years in Zhao's RCT, remimazolam has a significantly higher
225	superiority in postoperative recovery quality on the POD1, and the advantages of
226	remimazolam in anesthesia in the elderly might be the direction of future research.
227	Excluding the RCT of Zhao et al., the superiority of remimazolam were the same
228	and the heterogeneity was low.
229	We further wanted to validate previous results with QoR-40 on POD1.
230	The RCT of li et al. [16] used QoR-40 to evaluate the recovery quality elderly
231	patients 3 days after surgery, and found that remimazolam was significantly better
232	than propofol. Two RCTs used PostopQRS scale [25, 26] enrolled colonoscopy
233	patients aged 18 to 75 years. One research showed that remimazolam was superior
234	to propofol in the rate of cognitive recovery on POD1 and POD7 and the overall

recovery rate on POD7, while the other research showed that there was no 235 significant difference between remimazolam and propofol in recovery quality on 236 POD1. Due to the lack of original data of PostopQRS scale in literature, we 237 included only two RCTs and reached a simple conclusion that there was no 238 significant difference between remimazolam and propofol in QoR-40 on POD1. 239 We also analyzed other measures related to QoR, which showed no significant 240 differences in PACU residence time, extubation time, anesthesia time, surgical 241 time and postoperative hospital stay between remimazolam and propofol. 242 The adverse reactions of anesthetics should also be paid attention to. According to 243 our statistical results, the incidence of injection pain, hypotension and bradycardia 244 in the remimazolam group was lower than those in the propofol group, which was 245 consistent with the precious literature results [6, 7]. It seems to indicate that 246 remimazolam could be used as anesthesia in clinical surgery to better improve 247 patient comfort. 248 This paper presents the first comprehensive systematic review and meta-analysis of 249 the recovery quality after general anesthesia surgery with remimazolam. There are 250 some limitations to our study. The races included in our analysis were all Asian, so 251 our results may only apply to Asians. The age range of patients included in each 252 RCT is different. It is not possible to determine whether there is a difference in the 253 quality of postoperative recovery between elderly and non-elderly people. In the 254 future, we will need larger sample sizes for subgroup analysis. 255

256 5 Conclusions

- Our systematic review and meta-analysis showed that in patients with general
- 258 anaesthesia surgery, remimazolam treatment was superior to propofol group in
- terms of the total QoR-15 scores, and comparable to propofol group in terms of
- time to extubation, duration of anesthesia, duration of surgery, duration of PACU
- stay, duration of postoperative hospital stay and QoR-40 on the POD1. Additional
- 262 RCTs with larger sample sizes and longer follow-up periods are needed to
- 263 consolidate the benefits of recovery quality in patients treated with remimazolam.

References

- 265 1. Wessels, E., et al., *Quality of recovery in the perioperative setting: A narrative review.* Journal of Clinical Anesthesia, 2022. **78**.
- 267 2. Keam, S.J., Remimazolam: First Approval. Drugs, 2020. 80(6): p. 625-633.
- Kilpatrick, G.J., Remimazolam: Non-Clinical and Clinical Profile of a New Sedative/Anesthetic Agent.
 Frontiers in Pharmacology, 2021. 12.
- 4. Lee, A. and M. Shirley, *Remimazolam: A Review in Procedural Sedation*. Drugs, 2021. **81**(10): p. 1193-1201.
- Ustundag, Y., Z. Karasu, and Y. Yilmaz Urun, Standardized versus nonstandardized pharmacologic
 treatment for hepatorenal syndrome. European Journal of Gastroenterology & Hepatology, 2021. 33(10):
 p. 1334-1335.
- Ko, C.-C., et al., *The use of remimazolam versus propofol for induction and maintenance of general anesthesia: A systematic review and meta-analysis.* Frontiers in Pharmacology, 2023. 14.
- Zhang, J., et al., Remimazolam versus propofol for procedural sedation and anesthesia: a systemic
 review and meta-analysis. Minerva Anestesiologica, 2022. 88(12).
- Royse C, C.S., Satisfaction is not substantially affected by quality of recovery:
 different constructs or are we lost in statistics? Anaesthesia, 2017. 72.
- 9. Myles, P.S., et al., *Measurement of quality of recovery after surgery using the 15-item quality of recovery scale: a systematic review and meta-analysis.* British Journal of Anaesthesia, 2022. **128**(6): p. 1029-1039.
- 284 10. Xilin Peng, M., et al., Hemodynamic Influences of Remimazolam Versus
- 285 Propofol During the Induction Period of General
- 286 Anesthesia: A Systematic Review and
- 287 *Meta-analysis of Randomized Controlled Trials.* Pain Physician, 2023. **26**.

- 288 11. Choi, J.Y., et al., *Comparison of remimazolam-based and propofol-based total intravenous*
- 289 *anesthesia on postoperative quality of recovery: A randomized non-inferiority trial.* Journal of Clinical Anesthesia, 2022. **82**.
- 291 12. Huang, Y., et al., Efficacy and safety of remimazolam compared with propofol in hypertensive
- 292 patients undergoing breast cancer surgery: a single-center, randomized, controlled study. BMC
- 293 Anesthesiology, 2023. **23**(1).
- 294 13. Kim, E.-J., et al., Comparison of postoperative nausea and vomiting between Remimazolam and
- 295 Propofol in Patients undergoing oral and maxillofacial surgery: a prospective Randomized Controlled Trial.
- 296 BMC Anesthesiology, 2023. **23**(1).
- 297 14. Lee, H.-J., et al., Comparison of the recovery profile of remimazolam with flumazenil and propofol
- 298 anesthesia for open thyroidectomy. BMC Anesthesiology, 2023. 23(1).
- 299 15. Tang, L., et al., Effect of general anaesthesia with remimazolam versus propofol on postoperative
- quality of recovery in patients undergoing ambulatory arthroscopic meniscus repair: a randomised clinical
- 301 *trial.* BJA Open, 2023. **8**.
- 302 16. Li Huixin, X.F., Zhang Wei, Yang jianjun, Wang Zhongyu, Yuan Jingjing, *Comparison of effects of*
- remimazolam and propofol on quality of postoperative recovery in aged patients with goal-directed
- 304 hemodynamic management strategies. Chin J Aneathesiol, 2021. 41.
- 305 17. Zhao Songya, L.X., Lyu Shuaiguo, Shan Yingying, Miao Changhong, *Effects of remimazolam versus*
- propofol on postoperative recovery quality in elderly patients undergoing thoracoscopic laparoscopic
- 307 radical esophagectomy. Natl Med J China, 2023. **103**.
- 308 18. Brohan, J. and B.G. Goudra, The Role of GABA Receptor Agonists in Anesthesia and Sedation. CNS
- 309 Drugs, 2017. **31**(10): p. 845-856.
- 310 19. Doi, M., et al., Efficacy and safety of remimazolam versus propofol for general anesthesia: a
- 311 multicenter, single-blind, randomized, parallel-group, phase IIb/III trial. Journal of Anesthesia, 2020. **34**(4):
- 312 p. 543-553.
- 20. Chen Yu, C.S., Zhu Xiaogang, Ji Fuhai, Sedative effect of remimazolam for induction of general
- 314 anesthesia in elderly patients. Chin J Aneathesiol, 2020. 8.
- 315 21. Gornall, B.F., et al., Measurement of quality of recovery using the QoR-40: a quantitative systematic
- 316 *review.* British Journal of Anaesthesia, 2013. **111**(2): p. 161-169.
- 317 22. PA. Stark, B.M.S., * Paul S. Myles, M.B., B.S., M.P.H., M.D., F.C.A.R.C.S.I., F.A.N.Z.C.A., F.R.C.A.,†
- Justin A. Burke, M.B., B.S., F.A.N.Z.C.A.‡, Development and Psychometric Evaluation of a Postoperative
- 319 *Quality of Recovery Score.* Anesthesiology, 2013. **118**.
- 320 23. Myles, P.S., Measuring quality of recovery in perioperative clinical trials. Current Opinion in
- 321 Anaesthesiology, 2018. **31**(4): p. 396-401.
- 322 24. Mao, Y., et al., Quality of Recovery After General Anesthesia with Remimazolam in Patients'
- 323 Undergoing Urologic Surgery: A Randomized Controlled Trial Comparing Remimazolam with Propofol.
- Drug Design, Development and Therapy, 2022. Volume 16: p. 1199-1209.
- 325 25. Guo, L., et al., Effect of remimazolam versus propofol sedation on the quality of recovery after
- 326 colonoscopy. European Journal of Anaesthesiology, 2022. **39**(12): p. 953-955.
- 327 26. Luo, W., et al., Efficacy and safety of remimazolam tosilate versus propofol in patients undergoing
- 328 day surgery: a prospective randomized controlled trial. BMC Anesthesiology, 2023. 23(1).

Table 1(on next page)

Baseline summary of the included RCTs

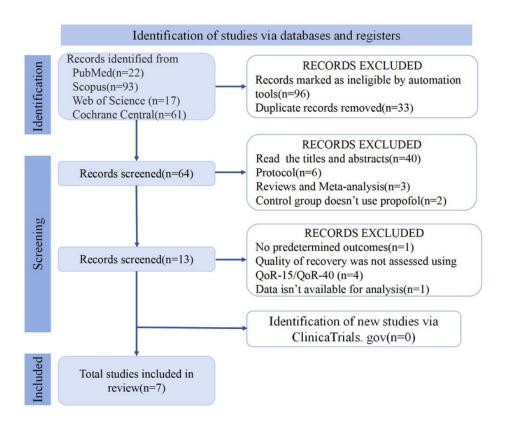
RCT: randomized controlled trials; ASA: American Society of anesthesiologists; BMI: body mass index; IV: intravenous; TCI: target-controlled infusion.

Rank	Trails	C	Sector de des	C1i	404	C	Participant c	haracteristics	Remimazolam	D6-1	Scale design
Kank	Iralis	Country	Study design	Sample size	ASA	Surgery type	Remimazolam group	Propofol group	Remimazoiam	Propofol	Scale design
1	Choi 2022 (NCT05016518)	Korea	RCT	139	I,II	Open thyroidectomy	Age (39.5 (33-48)) F/M (70/0)	Age (41.0 (37-47)) F/M (69/0)	(IV) Induction: 6 mg/kg/h Maintenance: 1-2 mg/kg/h	(TCI) Induction: 5 µg/mL Maintenance: 2-6 µg/mL	QoR-15
2	Lee 2023 (NCT05047939)	Korea	RCT	57	I,II	Open thyroidectomy	Age (45±13.4) F/M (21/7) BMI (24.3 (22.8–26.0))	Age (51±12.1) F/M (19/10) BMI (22.6 (20.9–25.3))	(IV) Induction: 6 mg/kg/h Maintenance: 1-2 mg/kg/h	(TCI) Induction: 3 ng/ml Maintenance: 2 ng/ml	QoR-15
3	Tang 2023 (ChiCTR2100053014)	China	RCT	114	I,II	Meniscus repair	Age (48.5 (19-62)) F/M (29/27) BMI (24.73±2.93)	Age (50 (19-64)) F/M (31/27) BMI (23.95±2.85)	(IV) Induction: 6 mg/kg/h Maintenance: 0.4-2 mg/kg/h	(TCI) Induction: 2 µg/mL 3.5 µg/mL after 20 s Maintenance: 1-3 µg/ml	QoR-15
4	Zhao 2023	China	RCT	108	IJ	Esophagectomy	Age (65.4±3.1) F/M (19/35) BMI (21.2±0.8)	Age (64.5±3) F/M (21/33) BMI (21.5±0.8)	(IV) Induction: 0.2-0.3 mg/kg Maintenance: 0.4-1 mg/kg/h	(IV) Induction: 1-2 mg/kg Maintenance: 4-10 mg/kg/h	QoR-15
5	Kim 2023 (KCT0006965)	Korea	RCT	189	Ι,ΙΙ	Oral and maxillofacial surgery	Age (41.7±12.2) F/M (33/61) BMI (23.8±3.3)	Age (43.3±13.2) F/M (36/59) BMI (23.7±2.9)	(IV) Induction: 12 mg/kg/h Maintenance: 1-2 mg/kg/h	(TCI) Induction: 3-5 µg/mL Maintenance: 3-5 µg/mL	QoR-40
6	Li 2021 (ChiCTR2100044570)	China	RCT	90	п,ш	Laparoscopic surgery	Age (74±3) F/M (23/22) BMI (22.4±2.8)	Age (71±4) F/M (26/19) BMI (23.4±3.4)	(IV) Induction: 6 mg/kg/h Maintenance: 0.5-1 mg/kg/h	(IV) Induction: 2 mg/kg Maintenance: 4-12 mg/kg/h	QoR-40
7	Huang 2023 (ChiCTR2000040579)	China	RCT	120	п,ш	Breast cancer surgery	Age (62.6±8.9) BMI (24.3±2.6)	Age (63.8±11) BMI (24.8±2.7)	(IV) Induction: 0.3 mg/kg Maintenance: 0.3 mg/kg/h	(IV) Induction: 2 mg/kg Maintenance: 2 mg/kg/h	QoR-40

Table 2(on next page)

Adverse events

R: remimazolam group; P: propofol group; PONV: postoperative nausea/vomiting



References	Samp	le size	PON	V, n	Injectio	n pain, n	Hypote	nsion, n	Bradycardia, n	
Keterences	R	Р	R	Р	R	Р	R	Р	R	P
Choi 2022	70	69	NA	NA	0	2	1	7	NA	NA
Lee 2023	28	29	3	0	NA	NA	NA	NA	NA	NA
Tang 2023	56	58	6	5	0	3	18	34	3	10
Zhao 2023	54	54	NA	NA	NA	NA	19	34	3	18
Kim 2023	94	95	11	10	NA	NA	NA	NA	NA	NA
Li 2021	45	45	11	4	NA	NA	42	67	4	36
Huang 2023	60	60	2	1	NA	NA	22	35	NA	NA
Total incidence (%)			11.7	7	0	3.9	35.8	61.9	6.5	40.8

Figure 1

PRISMA2020 flow diagram of articles.

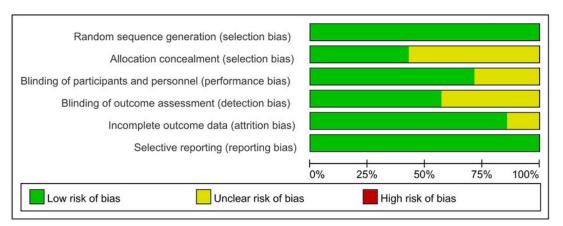


Figure 2

Risk of bias Assessment

- (A) Risk of bias evaluated by the Cocharne Collaboration Risk of Bias Assessment Instrument
- (B) Risk of bias assessment for included articles

A

B

	Random sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)
Choi et al.2022	•	•	•	•	•	•
Huang et al.2023	•	?	•	?	•	•
Kim et al.2023	•	?	•	•	•	•
Lee et al.2023	•	•	•	•	•	•
Li et al.2021	•	?	?	?	?	•
Tang et al.2023	•	•	•	•	•	•
Zhao et al.2023	•	?	?	?	•	•

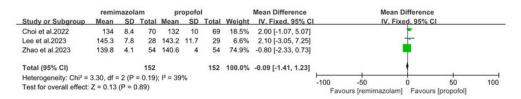


Figure 3

Forest plot comparing between remimazolam group and propofol group.

(A) QoR-15 on the pre-operation; (B) QoR-15 on the POD1; (C) QoR-15 after leave-one-out on the POD1 (CI, confidence interval; IV, inverse variance)

A

B

	remir	mazola	am	propofol				Mean Difference	Mean Difference				
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI		IV.	Fixed, 959	6 CI	
Choi et al.2022	111.2	18.8	70	109.1	18.9	69	5.5%	2.10 [-4.17, 8.37]			-		
Lee et al.2023	123.2	19.5	28	125.8	22.6	29	1.8%	-2.60 [-13.55, 8.35]			-		
Tang et al.2023	124.1	5.7	56	121.5	3.8	58	67.7%	2.60 [0.82, 4.38]					
Zhao et al.2023	113.8	7.1	54	106.4	8.4	54	25.0%	7.40 [4.47, 10.33]					
Total (95% CI)			208			210	100.0%	3.68 [2.21, 5.15]			•	•	
Heterogeneity: Chi ² =	9.09, df =	= 3 (P	= 0.03)	$I^2 = 67$	%				100	-10		10	1
Test for overall effect:	Z = 4.91	(P < 0	.00001)					-20 Favou	-10 irs [remimazo	lam] Favo	10 ours (propofo	20

C

	remi	mazol	am	pr	opofo	1		Mean Difference		Me	an Differen	ce	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV. Fixed, 95% CI		IV.	Fixed, 95%	CI	
Choi et al.2022	111.2	18.8	70	109.1	18.9	69	7.3%	2.10 [-4.17, 8.37]					
Lee et al.2023	123.2	19.5	28	125.8	22.6	29	2.4%	-2.60 [-13.55, 8.35]			-		
Tang et al.2023	124.1	5.7	56	121.5	3.8	58	90.3%	2.60 [0.82, 4.38]					
Total (95% CI)			154			156	100.0%	2.44 [0.74, 4.13]			•		
Heterogeneity: Chi ² =	0.86, df	= 2 (P	= 0.65)	$ I^2 = 09 $	6				-20	-10	-	10	20
Test for overall effect:	Z = 2.82	(P = 0	0.005)							irs [remimazo	am] Favo	urs [propofol	

Figure 4

Forest plot comparing between remimazolam group and propofol group.

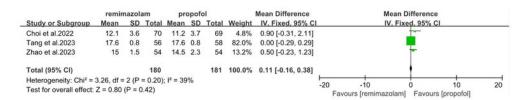
(A) Emotional status (B) physical comfort (C) psychological support (D) physical independence (E) pain (CI, confidence interval; IV, inverse variance)

A

	remin	am	propofol				Mean Difference	Mean Difference					
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV. Random, 95% C		IV.	Random, 95%	6 CI	
Choi et al.2022	32	6.3	70	30.8	7.2	69	29.0%	1.20 [-1.05, 3.45]			-		
Tang et al.2023	36.5	1.9	56	37	1.5	58	35.9%	-0.50 [-1.13, 0.13]			-		
Zhao et al.2023	32.6	2.3	54	29.6	2.4	54	35.2%	3.00 [2.11, 3.89]					
Total (95% CI)			180			181	100.0%	1.22 [-1.43, 3.87]			-		
Heterogeneity: Tau ² =	4.99; Ch	j ² = 39	9.99, df	= 2 (P ·	< 0.0	0001); [$^{2} = 95\%$		20	10	-	10	20
Test for overall effect:	Z = 0.91	(P = ().37)						-20 Fav	-10 ours [remimaze	olam] Favou	10 rs [propofol]	20

В

	remin	nazola	am	propofol				Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Choi et al.2022	36.6	8.4	70	37	8.2	69	26.0%	-0.40 [-3.16, 2.36]	
Tang et al.2023	46.6	2.3	56	46	1.5	58	43.6%	0.60 [-0.12, 1.32]	• • • • • • • • • • • • • • • • • • •
Zhao et al.2023	40	5.7	54	36.2	6.2	54	30.4%	3.80 [1.55, 6.05]	-
Total (95% CI)			180			181	100.0%	1.31 [-0.83, 3.46]	•
Heterogeneity: Tau ² =	2.61; Chi	$j^2 = 7.5$	87, df =	2 (P =	0.02)	; I ² = 75	5%		-20 -10 0 10 20
Test for overall effect:	Z = 1.20	(P = 0).23)						-20 -10 0 10 20 Favours [remimazolam] Favours [propofol]


C

	remin	nazola	am	propofol				Mean Difference	Mean Difference			9	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV. I	Random, 95%	CI	
Choi et al.2022	16	2.7	70	15.9	2.9	69	32.1%	0.10 [-0.83, 1.03]			+		
Tang et al.2023	15.6	3	56	12.9	1.5	58	32.5%	2.70 [1.82, 3.58]			-		
Zhao et al.2023	17.6	0.8	54	17.6	8.0	54	35.5%	0.00 [-0.30, 0.30]			•		
Total (95% CI)			180			181	100.0%	0.91 [-0.71, 2.52]			•		
Heterogeneity: Tau ² =	1.89; Ch	$i^2 = 32$.80, df	= 2 (P ·	< 0.00	0001); [$^{2} = 94\%$		-20	-10		10	20
Test for overall effect:	Z = 1.10	(P = 0).27)							ours (remimazo	olam) Favour	s [propofol]	20

D

	remin	am	propofol				Mean Difference	Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% C	I IV, Fixed, 95% CI
Choi et al.2022	14.5	3.1	70	14	3.7	69	17.8%	0.50 [-0.64, 1.64]	<u>+</u>
Tang et al.2023	8.9	1.5	56	8	1.5	58	75.8%	0.90 [0.35, 1.45]	
Zhao et al.2023	8.6	5.3	54	8.3	4.8	54	6.3%	0.30 [-1.61, 2.21]	_
Total (95% CI)			180			181	100.0%	0.79 [0.31, 1.27]	♦
Heterogeneity: Chi2 =	0.66, df =	2 (P	= 0.72)						
Test for overall effect:	Z = 3.23	(P = 0	0.001)		-20 -10 0 10 2 Favours [remimazolam] Favours [propofol]				

E

Figure 5

Forest plot comparing between remimazolam group and propofol group.

- (A) time to extubation (B) duration of anesthesia (C) duration of surgery (D) duration of PACU
- (E) duration of postoperative hospital stay (F) QoR-40 on the POD1 (CI, confidence interval;
- IV, inverse variance)

A

	remin	am	propofol				Mean Difference	Mean Difference	
Study or Subgroup	Mean SD Total			Mean SD T		Total	Weight IV, Random, 95% C		IV. Random, 95% CI
Choi et al.2022	10.9	4.5	70	11	3	69	25.9%	-0.10 [-1.37, 1.17]	•
Li et al.2021	26	14	45	22	7	45	23.0%	4.00 [-0.57, 8.57]	•
Tang et al.2023	16	6.1	56	13	3	58	25.6%	3.00 [1.23, 4.77]	•
Zhao et al.2023	16.6	4.7	54	27.8	5.8	54	25.5%	-11.20 [-13.19, -9.21]	•
Total (95% CI)			225			226	100.0%	-1.19 [-7.56, 5.18]	•
Heterogeneity: Tau ² =	40.43; C	hi² = 1	126.06,	df = 3 (P < 0	.00001); I2 = 989	6	-100 -50 0 50 100
Test for overall effect:	Z = 0.37	(P = (0.71)						-100 -50 0 50 100 Favours [remimazolam] Favours [propofol]

В

	remi	imazola	ım	propofol				Mean Difference		Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% C		IV	/, Fixed, 95% (
Choi et al.2022	52.7	22.8	70	58.8	22	69	20.3%	-6.10 [-13.55, 1.35]			-		
Kim et al.2023	71.8	26.1	94	75	22.4	95	23.4%	-3.20 [-10.14, 3.74]			-		
Li et al.2021	209	24	45	206	21	45	13.0%	3.00 [-6.32, 12.32]			-		
Tang et al.2023	77.91	19.05	56	76.67	16.92	58	25.7%	1.24 [-5.38, 7.86]			-		
Zhao et al.2023	311.3	21.2	54	309.5	21.4	54	17.5%	1.80 [-6.23, 9.83]			_		
Total (95% CI)			319			321	100.0%	-0.97 [-4.33, 2.39]			•		
Heterogeneity: Chi2 =	3.80, df	= 4 (P =	0.43);	$I^2 = 0\%$					100				400
Test for overall effect:	Z = 0.56	(P = 0.	57)			-100 Favo	-50 ours [remimaz	olam] Favour	50 s [propofol]	100			

C

	remi	imazola	ım	propofol				Mean Difference	Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean SD	Total	Weight	IV, Random, 95% CI	CI IV. Random, 95% CI				
Kim et al.2023	42.8	24.5	94	46.4	22.9	95	23.3%	-3.60 [-10.36, 3.16]	3]			
Lee et al.2023	84.3	21.9	28	88.6	23.4	29	12.6%	-4.30 [-16.06, 7.46]	3			
Li et al.2021	197	22	45	186	20	45	18.3%	11.00 [2.31, 19.69]	9]			
Tang et al.2023	47.32	17.88	56	46.64	16.33	58	24.7%	0.68 [-5.61, 6.97]	nj +			
Zhao et al.2023	285.7	20	54	282	20.2	54	21.0%	3.70 [-3.88, 11.28]	31			
Total (95% CI)			277			281	100.0%	1.58 [-3.44, 6.60]	ı •			
Heterogeneity: Tau ² =	16.25; C	chi ² = 8.	10, df =	4 (P =	0.09); F	= 51%	6		100 50 0 50 10			
Test for overall effect:	Z = 0.62	(P = 0.	54)	-100 -50 0 50 10 Favours [remimazolam] Favours [propofol]								

D

	remi	mazola	am	propofol				Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% C	CI IV, Fixed, 95% CI
Choi et al.2022	41.1	11.4	70	40.4	16	69	11.1%	0.70 [-3.92, 5.32]	t) +
Lee et al.2023	31.6	3.5	28	33.2	7	29	29.0%	-1.60 [-4.46, 1.26]	•]
Li et al.2021	68	19	45	72	13	45	5.2%	-4.00 [-10.73, 2.73]	i -
Tang et al.2023	36.2	5	56	34.6	7.6	58	42.8%	1.60 [-0.75, 3.95]	•
Zhao et al.2023	77	11.6	54	77.4	12.1	54	11.9%	-0.40 [-4.87, 4.07]	i †
Total (95% CI)			253			255	100.0%	0.04 [-1.50, 1.58]	1
Heterogeneity: Chi2 =	4.45, df	= 4 (P	= 0.35)	I2 = 10	%				100 50 100
Test for overall effect:	Z = 0.05	(P = 0	0.96)						-100 -50 0 50 100 Favours [remimazolam] Favours [propofol]

E

	remi	am	propofol				Mean Difference	Mean Difference					
Study or Subgroup	Mean SD T		Total	Mean	SD	Total	Weight	IV. Random, 95% C		IV. R	andom, 95%	CI	
Choi et al.2022	1.65	0.76	70	1.65	0.76	69	28.3%	0.00 [-0.25, 0.25]					
Lee et al.2023	4.36	0.78	28	4.36	0.78	29	25.8%	0.00 [-0.41, 0.41]					
Li et al.2021	11.9	1.6	45	12.6	1.2	45	22.2%	-0.70 [-1.28, -0.12]			•		
Zhao et al.2023	12.6	1.3	54	11.6	1.4	54	23.7%	1.00 [0.49, 1.51]			•		
Total (95% CI)			197			197	100.0%	0.08 [-0.45, 0.62]			1		
Heterogeneity: Tau2 =	0.25; Ch	ni² = 19	.87, df	= 3 (P =	0.000)2); I ² =	85%		100	+		+	401
Test for overall effect:	Z = 0.30	(P = 0	.76)						-100 Favo	-50 urs [remimazol	am] Favour	50 rs [propofol]	10

