Peer

Genetic investigation of population structure in Atlantic chub mackerel, Scomber colias Gmelin, 1789 along the West African coast

Salah eddine Sbiba^{[1,](#page-0-0)[2](#page-0-1)}, María Quintela^{[3](#page-0-2)}, Johanne Øyro³, Geir Dahle³, Alba Jurado-Ruzafa^{[4](#page-0-3)}, Kashona Iita^{[5](#page-0-4)}, Nikolaos Nikolioudakis^{[3](#page-0-2)}, Hocein Bazairi^{[1,](#page-0-0)[6](#page-0-5)} and Malika Chlaida^{[2](#page-0-1)}

- ¹ Biodiversity, Ecology and Genome Laboratory, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- ² Research and Development Unit on Marine Biology, National Institute of Fisheries Research, Casablanca, Morocco
- ³ Department of Population Genetics, Institute of Marine Research, Bergen, Norway
- ⁴ Oceanographic Centre of the Canary Islands, Spanish Institute of Oceanography (IEO-CSIC), Tenerife, Spain
- ⁵ National Marine Information and Research Centre (NATMIRC), Ministry of Fisheries and Marine Resources, Swakopmund, Namibia
- ⁶ University of Gibraltar, Europa Point Campus, Natural Sciences and Environment Research Hub, Gibraltar, Gibraltar

ABSTRACT

Sustainable management of transboundary fish stocks hinges on accurate delineation of population structure. Genetic analysis offers a powerful tool to identify potential subpopulations within a seemingly homogenous stock, facilitating the development of effective, coordinated management strategies across international borders. Along the West African coast, the Atlantic chub mackerel (Scomber colias) is a commercially important and ecologically significant species, yet little is known about its genetic population structure and connectivity. Currently, the stock is managed as a single unit in West African waters despite new research suggesting morphological and adaptive differences. Here, eight microsatellite loci were genotyped on 1,169 individuals distributed across 33 sampling sites from Morocco $(27.39°N)$ to Namibia (22.21 \degree S). Bayesian clustering analysis depicts one homogeneous population across the studied area with null overall differentiation ($F_{ST} = 0.0001^{ns}$), which suggests panmixia and aligns with the migratory potential of this species. This finding has significant implications for the effective conservation and management of S. colias within a wide scope of its distribution across West African waters from the South of Morocco to the North-Centre of Namibia and underscores the need for increased regional cooperation in fisheries management and conservation.

Subjects Aquaculture, Fisheries and Fish Science, Genetics, Marine Biology, Population Biology Keywords Scomber colias, Microsatellites, West Africa, Stock identification, Management, Food security

Submitted 17 October 2023 Accepted 24 July 2024 Published 5 September 2024

Corresponding author Malika Chlaida, [ma_chlaida@hotmail.com](mailto:ma_chlaida@�hotmail.com)

[Academic editor](https://peerj.com/academic-boards/editors/) [Nicholas Jeffery](https://peerj.com/academic-boards/editors/)

[Additional Information and](#page-15-0) [Declarations can be found on](#page-15-0) [page 16](#page-15-0)

DOI [10.7717/peerj.17928](http://dx.doi.org/10.7717/peerj.17928)

(cc) Copyright 2024 FAO & IMR

[Distributed under](http://www.creativecommons.org/licenses/by/4.0/) [Creative Commons CC-BY 4.0](http://www.creativecommons.org/licenses/by/4.0/)

OPEN ACCESS

INTRODUCTION

Sustainable stock management and conservation of marine resources require knowledge of the species' population variability in a bio-geographical context. Failure to take into consideration the underlying components of the population structure of a species ($e.g.,$ spatio-temporal mixing of populations) can result in differential exploitation patterns and discrepancies between management measures among countries, which can lead to overexploitation of unique spawning components and subsequent resources declines (e.g., [Allendorf et al., 2008](#page-17-0); [Kerr et al., 2017](#page-21-0)). As such, a reliable delineation of the biological units is needed to maintain the sustainability of fisheries, especially as climate change and other human pressures on marine ecosystems continue to intensify ([Gissi et al., 2021](#page-20-0); [IPCC,](#page-20-1) [2022](#page-20-1); [Ramírez et al., 2022](#page-23-0)).

Genetic and genomic tools are commonly used to accurately define stock structure of fish ([Ward, 2000](#page-25-0)) and to assess connectivity among marine populations ([Bekkevold et al.,](#page-17-1) [2015](#page-17-1); [Besnier et al., 2014](#page-18-0); [Dahle et al., 2018b](#page-19-0); [Hemmer-Hansen et al., 2019](#page-20-2); [Henriques et al.,](#page-20-3) [2017](#page-20-3); [Le Moan, Bekkevold & Hemmer-Hansen, 2021](#page-21-1)). Using genetic and genomic tools to identify stock structure has proved useful for a variety of issues such as updating management plans ([Mullins et al., 2018](#page-22-0); [Quintela et al., 2020](#page-23-1); [Saha et al., 2017](#page-24-0); [Westgaard](#page-25-1) [et al., 2017](#page-25-1)), cost-effective fisheries management enforcement ([Glover, 2010](#page-20-4); [Martinsohn](#page-22-1) [et al., 2019](#page-22-1)), "real-time" regulation of harvest ([Dahle et al., 2018a](#page-19-1); [Johansen et al., 2018](#page-21-2)) and harmonizing biological and management units ([Aguirre-Sarabia et al., 2021](#page-17-2); [Leone](#page-21-3) [et al., 2019](#page-21-3); [Rodríguez-Ezpeleta et al., 2019](#page-23-2)), which is particularly important for transboundary stocks of highly migratory and commercial important fish. Microsatellites are one of such tool, which consist of short repeating sequences of DNA found in organisms (O'[Connell & Wright, 1997](#page-22-2); [Ellegren, 2004](#page-19-2)). They are highly variable due to their high mutation rate and are ideal for genetic studies to assess genetic diversity, identify population structure, and conduct parentage analysis ($Ramya \ll Behera$, 2023).

Widely distributed species with shared/transboundary distributions ([Munro, Van](#page-22-3) Houtte \mathfrak{G} Willmann, 2004) such as the Atlantic chub mackerel, Scomber colias Gmelin, 1789, are particularly challenging to manage due to the complexities of their stock structure, but make them a well-suited candidate for genetic analysis. S. colias, a medium-size pelagic schooling species belonging to the Scombridae family, inhabits the continental shelf down to 300 m depth throughout the Atlantic Ocean, the Mediterranean and the Black Seas ([Collette, 1986](#page-18-1); [Collette & Nauen, 1983](#page-19-3); [Scoles, Graves & Collette, 1988](#page-24-1)). In the Northeast Atlantic, the species is distributed from southern European waters (Iberian Peninsula) southwards along the African coast to South of Africa, and is also found in the connected Mediterranean and Black Seas ([Castro Hernández & Santana](#page-18-2) [Ortega, 2000](#page-18-2)). The species is economically valuable and targeted by industrial and artisanal fisheries throughout its geographical distribution ([Castro Hernández & Santana Ortega,](#page-18-2) [2000](#page-18-2)).

Various studies suggested significant differences between Atlantic chub mackerel from the Western and the Eastern Atlantic, supporting the existence of two different populations occurring on either side of the Atlantic Ocean ([Costa et al., 2011](#page-19-4); [Roldán et al.,](#page-23-4) [2000](#page-23-4); [Scoles, Graves & Collette, 1988](#page-24-1)). In the NE Atlantic and surrounding waters, the available genetic evidence suggests significant lack of genetic diversity in S. colias indicating the presence of a large panmictic unit ([Rodríguez-Ezpeleta et al., 2016](#page-23-5)). According to [Zardoya et al. \(2004\)](#page-25-2), the 5' end of the mitochondrial control region indicates that S. colias behaves as a panmictic population in the Mediterranean Sea and the south of Portugal. Based upon microsatellites, [Stroganov et al. \(2023\)](#page-24-2) found that in the southern region of Morocco $(23°N-21°N)$, samples show a high genetic homogeneity, suggesting large degree of connectivity. Congeneric species such as S. scombrus reveal population differentiation only at a transatlantic scale ([Nesbø et al., 2000](#page-22-4)), whereas S. japonicus displays weak genetic structure across the NW Pacific ([Cheng et al., 2015](#page-18-3)), with local genetic differentiation seemingly linked to differences in spawning time and migratory behaviour ([Zeng, Cheng & Chen, 2012](#page-25-3)).

Migration patterns could be potentially impacting population structure. Thus, in both African and European waters, the species would migrate from the wintering areas (mainly located off Mauritania, South Portugal and the inner part of the Bay of Biscay) towards northern areas in summer and, in the case of the Bay of Biscay, also towards the western Iberian Peninsula ([ICES, 2021](#page-20-5)). Recent studies investigating the spatial variability of life-history parameters of S. colias suggested the existence of latitudinal trends with a mixing zone between Atlantic African, Mediterranean and Atlantic Iberian population components (e.g., $Domínguez-Petit et al., 2022$). In the most recent study using otolith shape analysis, *Sbiba et al.* (2024) pointed out the existence of two populations, a northern one in Morocco from Larache (36°N) to Tarfaya (28°N), and a southern one from Tarfaya to Senegal $(14^{\circ}N)$. Thus, two stocks have been outlined according to biological traits: a northern one ranging from North Morocco to Cape Bojador in South Morocco (26°07' 37″N, 1429′57″W), and a southern one between Cape Bojador and the South of Senegal (https://firms.fao.org/fi[rms/resource/10100/en](https://firms.fao.org/firms/resource/10100/en)). However, the lack of both robust evidence of stock identity ([ICES, 2021](#page-20-5)) as well as information on population connectivity led to a joint assessment of both stocks in this area since 2003, thus highlighting the need for stock identity information in the NE Atlantic part of the species range ([FAO, 2020](#page-19-6)). Morphometric differences on S. *colias* were also detected across five sampling sites in Morocco ([Bouzzammit & El Ouizgani, 2019](#page-18-4)) as well as across three different locations in Tunisia ([Allaya et al., 2016](#page-17-3)). Moreover, [Erguden et al. \(2009\)](#page-19-7) used morphometric and meristic analyses to distinguish stocks of S. colias in seven locations throughout the Black, Marmara, Aegean, and Northeastern Mediterranean Seas, revealing the existence of two distinct groups. Overall, these studies also highlight the high potential of phenotypic plasticity of this species.

The migratory behaviour of S. colias, along with the high dispersal potential of its early life stages (eggs and larvae) within the open Atlantic Ocean is expected to favour connectivity and act as a homogenization factor. In addition, the West African coast is affected by several oceanic currents (see [Fig. 1\)](#page-4-0), *i.e.*, the Canary, Guinea, and Benguela Currents that can influence both dispersal and migration patterns, thus amplifying the

homogenization effects (*[White et al., 2010](#page-25-4)*). Consequently, a pattern of genetic panmixia is foreseen on S. colias along the west coast of Africa. To verify this hypothesis, eight microsatellites were used to investigate the population structure of this species sampled from south of Morocco ($\sim 28^{\circ}$ N) to Namibia ($\sim 22^{\circ}$ S) at 33 locations.

MATERIALS AND METHODS

Sampling

Fish were collected during the scientific surveys on board the R/V Dr. Fridtjof Nansen carried out in 2017 and 2019 in the area stretching from Morocco $(\sim 28^{\circ} N)$ to Namibia $(\sim 22^{\circ}S)$ ([Fig. 1](#page-4-0)). Sampling permits were obtained through the "Application of the Ecosystem Approach to Fisheries management considering climate and pollution impacts" (GCP/GLO/690/NOR). Pelagic trawl hauls were performed after echosounders target identification of fish schools and, when possible, 30 individuals were collected per trawling station [\(Table 1\)](#page-5-0). The sampling procedure reflected the species' distribution ([Baird, 1977](#page-17-4); [Scoles, Graves & Collette, 1988](#page-24-1)), whose southern limit of highest abundance seems to be placed at low latitudes in the southern hemisphere. Thus, some 75.5% of the individuals were collected north to Ghana whereas the southernmost countries such as Angola and Namibia only accounted for 7.5% of the individuals in line with the species biomass levels observed in those zones. Fin clips from 1,848 fish were collected and preserved in ethanol prior to DNA extraction.

DNA isolation and genotyping

DNA was extracted using the Qiagen DNeasy 96 Blood & Tissue Kit in (Qiagen, Hilden, Germany) 96-well plates; each of which contained two or more negative controls. DNA concentration was quantified using a NanoDrop 8000 (Thermo Fisher Scientific, Waltham, MA, USA). The molecular markers used in the current study were initially developed for both S. colias (one) and S. japonicus (seven) ([Catanese et al., 2010](#page-18-5); [Chen et al., 2017](#page-18-6); Zeng $\&$ [Cheng, 2012](#page-25-5)) as microsatellite cross-species amplification has proven a successful tool for fisheries management and conservation (e.g., [Maduna et al., 2014](#page-22-5)) formerly applied to Scomber species ([Tang et al., 2009](#page-24-4); [Zeng, Cheng & Chen, 2012](#page-25-3)). Eight microsatellite loci isolated from S. colias (Sco2_1) and S. japonicus (SJ78, SJNT19, SJT5, SJT53, SJT122, SJT182, SJT199), respectively [\(Table S1](http://dx.doi.org/10.7717/peerj.17928/supp-1) in Supporting Information), were genotyped in three multiplexed reactions. PCR amplifications were performed in a final volume of $10 \mu L$ containing approximately 20 ng DNA template, $1 \times$ buffer, 2–3 mM MgCl₂, 0.2 mM $dNTPs$, 0.2–0.5 μ M of each primer and 1U GoTaq polymerase in an Applied Biosystems Gene Amp PCR Systems 2700 thermal cycler. PCR profiles consisted of 15 min denaturation at 95 °C followed by 27-32 cycles of 30 s denaturation at 94 °C, 90 s at annealing temperature ([Table S1](http://dx.doi.org/10.7717/peerj.17928/supp-1) in Supporting Information) and 90 s extension at 72 °C with a final step of 7 min at 72 °C. PCR products were analysed on an ABI 3730 Genetic Analyser and the $500LLZ^{TM}$ size standard (Applied Biosystems, Waltham, MA, USA) was used to accurately determine the size of the fragments and allelic variation. Scoring was performed using the software Fragment Profiler 1.2 (Amersham Biosciences,

Peer.

Figure 1 Map of sampling locations of Scomber colias in the West coast of Africa. Detailed information per sample can be found in [Table 1.](#page-5-0) The arrows, based upon Fig. 1 in [Reid et al. \(2016\)](#page-23-6), indicate some of the major currents affecting the area and their relative temperature: Canary Current (CC), North Equatorial Current (NEC), Equatorial Counter Current (ECC), Guinea Current (GC), Angolan Current (AnC), and South Equatorial Current (SEC). Full-size [DOI: 10.7717/peerj.17928/](http://dx.doi.org/10.7717/peerj.17928/fig-1)fig-1

Table 1 Summary statistics of Scomber colias genotyped at eight microsatellites.												
Country			Sample Latitude Longitude N No		alleles 20)		Ar $(N > No$ private H_0 alleles		\mathbf{u} H_{e}	F_{IS}	Dev HWE Dev LD (FDR)	(FDR)
Morocco	MOR_1	27.39	-13.38		51 128	12.1	$\mathbf{0}$		0.791 ± 0.023 0.879 ± 0.013 0.090 ± 0.028 3(2)			2(0)
	MOR ₂	25.98	-14.87		58 135	12.4	2		0.803 ± 0.033 0.881 ± 0.015 0.081 ± 0.032 1 (1)			3(1)
	MOR_3	24.71	-15.8		45 130	12.6	$\mathbf{0}$		0.780 ± 0.040 0.885 ± 0.011 0.108 ± 0.047 5 (4)			6(2)
	MOR ₄	24.4	-15.93		41 126	12.5	$\bf{0}$		0.832 ± 0.028 0.885 ± 0.011 0.048 ± 0.029 5 (3)			7(1)
	MOR ₅	24.02	-16.28		44 117	11.8	$\bf{0}$		0.763 ± 0.041 0.878 ± 0.014 0.122 ± 0.045 1 (1)			2(0)
	MOR ₆	23.32	-16.6		40 126	12.4	$\mathbf{1}$		0.794 ± 0.037 0.873 ± 0.016 0.079 ± 0.036 3 (3)			0(0)
	MOR ₇	22.35	-17		51 126	12.4	$\mathbf{1}$		0.823 ± 0.039 0.889 ± 0.009 0.064 ± 0.043 2 (1)			10(3)
	MOR ₈	21.06	-17.31		38 121	12.9	$\mathbf{0}$		0.841 ± 0.031 0.891 ± 0.012 0.043 ± 0.032 4 (4)			3(0)
	MOR_9	21.09	-17.42		39 125	12.7	$\mathbf{1}$		0.811 ± 0.051 0.884 ± 0.013 0.072 ± 0.054 2(2)			1(0)
Mauritania MAU_1		20.22	-17.58		41 124	12.5	$\bf{0}$		0.803 ± 0.037 0.882 ± 0.013 0.078 ± 0.039 3 (1)			3(2)
	MAU_2	19.46	-16.98		41 122	12.4	$\bf{0}$		0.843 ± 0.041 0.884 ± 0.012 0.034 ± 0.043 4 (3)			0(0)
	MAU_3	19.05	-16.66		34 118	12.8	$\boldsymbol{0}$		0.777 ± 0.055 0.881 ± 0.014 0.106 ± 0.056 2(2)			1(0)
	MAU_4	18.08	-16.43		40 123	12.5	$\mathbf{1}$		0.839 ± 0.037 0.879 ± 0.012 0.035 ± 0.034 1 (1)			0(0)
	MAU 5	16.73	-16.66		44 122	11.9	$\bf{0}$		0.812 ± 0.036 0.872 ± 0.016 0.059 ± 0.036 1 (0)			0(0)
	MAU 6	17.41	-16.27		23 101	12.1	$\bf{0}$		0.790 ± 0.041 0.866 ± 0.025 0.062 ± 0.052 2 (0)			1(0)
Senegal	SEN_1	14.56	-17.35		44 129	12.2	4		0.778 ± 0.035 0.869 ± 0.015 0.095 ± 0.033 2(1)			1(0)
	SEN_2	13.16	-17.41		40 124	12.5	$\boldsymbol{0}$		0.831 ± 0.023 0.882 ± 0.013 0.045 ± 0.024 3(2)			2(0)
Gambia	GAM	13.25	-17.47		22 102	12.4	$\mathbf{1}$		0.806 ± 0.052 0.877 ± 0.022 0.061 ± 0.052 2(2)			1(1)
Guinea- Bissau	GUIBIS	10.92	-16.86		5 46	n.a.	$\boldsymbol{0}$		0.725 ± 0.053 0.850 ± 0.023 0.034 ± 0.087 0 (0)			0(0)
Guinea	GU_1	9.38	-15.61		29 106	11.8	$\mathbf{0}$		0.773 ± 0.038 0.869 ± 0.021 0.095 ± 0.036 3(3)			1(0)
	GUI_2	9.51	-15.22		24 102	12.1	$\boldsymbol{0}$		0.802 ± 0.037 0.871 ± 0.014 0.058 ± 0.043 2 (1)			0(0)
Sierra Leone	SIER	8.06	-14.09	11	- 71	n.a.	$\mathbf{1}$		0.839 ± 0.054 0.866 ± 0.019 -0.011 ± 0.0019	0.054	0(0)	0(0)
Liberia	LIB	4.66	-8.74		33 116	12.7	$\boldsymbol{0}$		0.814 ± 0.048 0.894 ± 0.010 0.075 ± 0.053 1 (1)			1(0)
Ivory Coast	IVCO	4.81	-5.13		23 96	11.5	1		0.828 ± 0.027 0.877 ± 0.014 0.034 ± 0.029 3 (2)			3(0)
Ghana	GHA_1	5.19	-0.6		51 142	13.0	$\mathbf{1}$		0.820 ± 0.025 0.886 ± 0.013 0.065 ± 0.025 2(1)			2(0)
	GHA_2	4.59	-2.19		43 124	12.3	$\boldsymbol{0}$		0.806 ± 0.034 0.883 ± 0.012 0.077 ± 0.036 2(1)			0(0)
	GHA_3	4.92	-0.89		30 116	12.9	\overline{c}		0.806 ± 0.032 0.881 ± 0.015 0.070 ± 0.032 2 (1)			0(0)
	GHA_4	4.86	-0.92		35 114	11.9	$\boldsymbol{0}$		0.798 ± 0.041 0.877 ± 0.015 0.076 ± 0.047 0 (0)			0(0)
Gambia	GAB_1	-2.41	9.06		38 137	13.6	$\mathbf{1}$		0.819 ± 0.023 0.884 ± 0.013 0.061 ± 0.019 0 (0)			1(0)
	GAB_2	-3.45	9.87		24 104	12.2	$\boldsymbol{0}$		0.813 ± 0.036 0.879 ± 0.014 0.055 ± 0.042 2(1)			1(0)
Angola	ANG_1 -10.64		13.52		27 111	12.5	$\bf{0}$		0.792 ± 0.041 0.875 ± 0.019 0.077 ± 0.047 2 (1)			0(0)
	ANG _{_2} -15.06		12.02		38 114	12.2	$\boldsymbol{0}$		0.768 ± 0.057 0.873 ± 0.016 0.109 ± 0.061 1 (1)			0(0)
Namibia	$\mathop{\rm NAM}\nolimits$	-22.21	13.17		22 96	11.6	$\bf{0}$		0.733 ± 0.049 0.861 ± 0.019 0.129 ± 0.051 1 (0)			0(0)

Note:

Sampling sites per country, geographic coordinates (decimal degrees), number of individuals (N), total number of alleles, allelic richness based on a minimum sample of
20 diploid individuals, number of private alleles, ob Discovery Rate (FDR) correction.

Buckinghamshire, England). Automatically binned alleles were manually checked by two researchers prior to exporting data for statistical analyses.

As it was not always possible to obtain a minimum of thirty good-quality genotyped individuals per site, nearby sampling sites within countries were merged to achieve significant sampling sizes (Hale, Burg $\&$ Steeves, 2012). Sampling sizes ranged from 22 individuals (GAM in Gambia) to 58 (MOR_2 in Morocco). However, in Sierra Leone $(N = 11)$, and Guinea-Bissau $(N = 5)$ ([Table 1](#page-5-0)), sampling sizes were too low and therefore these samples were excluded from some of the analyses.

Statistical analysis

Loci were screened for null alleles, large allele dropouts and potential scoring errors due to stuttering bands using the software Micro-Checker v.2.2.3 ([Van Oosterhout et al., 2004](#page-24-5)). The frequency of null allele(s) was estimated with the maximum likelihood method using the EM algorithm of *Dempster*, *Laird* $\&$ *Rubin* (1977) implemented in the software Genepop 7 (*[Rousset, 2008](#page-23-7)*). To assess the effect of including loci with possible null allele(s) on population differentiation estimates, the software FreeNA (Chapuis $\mathcal C$ Estoup, 2006) was used to calculated both uncorrected and corrected F_{ST} values. Confidence intervals (95%) of null frequencies were based on 1,000 bootstraps.

The statistical power of this microsatellites set to detect genetic differentiation was estimated using POWSIM 4.1 ([Ryman & Palm, 2006](#page-24-6)), which uses χ^2 and Fisher tests to assess whether the observed data set carries enough statistical power to detect a Nei's F_{ST} value significantly larger than zero. The analyses were conducted maintaining effective population size constant (N_e = 15,000) following *Henriques et al.* (2017), and changing the number of generations of drift since divergence (t: 15, 35, 100, 160, 200, 350 and 500 generations) to model different levels of F_{ST} (0.0005, 0.0012, 0.0033, 0.0053, 0.0066, 0.0117, and 0.0165, respectively). The probability of rejecting the null hypotheses of no population differentiation (type I error) was also estimated ($F_{ST} = 0$, t = 0). Statistical power was determined as the proportion of tests indicating statistical significance ($p < 0.05$), with 1,000 replicates. In addition, to assess if this suite of twelve microsatellites would accurately discriminate between individuals in a population, the genotype accumulation curve was built using the function genotype curve in the R ([R Core Team, 2020](#page-23-8)) package poppr ([Kamvar, Tabima & Grünwald, 2014](#page-21-4)) by randomly sampling x loci without replacement and counting the number of observed multilocus genotypes (MLGs).

The total number of alleles, number of private alleles, and allelic richness per sample was calculated using MSA 4.05 ([Dieringer & Schlötterer, 2003](#page-19-9)). The observed (H_0) and unbiased expected heterozygosity (uH_E) , inbreeding coefficient (F_{IS}) as well as the number of deviations from Hardy-Weinberg expectations (HWE) were computed per sample using GenAlEx v6.1 ([Peakall & Smouse, 2006](#page-22-6)). Linkage disequilibrium (LD) between pairwise loci per sample was computed using the program Genepop ([Rousset, 2008](#page-23-7)). The false discovery rate (FDR) correction of Benjamini $\mathcal O$ Hochberg (1995) was applied to p-values to control for Type I errors.

In marine fish species, loci carrying signatures of locally divergent selection might function as powerful markers to evaluate spatially explicit genetic structure, as well as to outline fisheries stocks for sustainable management ([Russello et al., 2012](#page-24-7)). Thus, two approaches were combined to identify loci eventually departing from neutrality: BayeScan 2.1 ([Foll & Gaggiotti, 2008](#page-20-7)) and Arlequin v.3.5.1.2 (Excoffi[er, Laval & Schneider, 2005](#page-19-10)). In BayeScan, sample size was set to 10,000 and thinning interval to 50; and loci with a posterior probability over 0.99, corresponding to a Bayes Factor >2 (*i.e.*, "decisive selection" ([Foll & Gaggiotti, 2006](#page-20-8)), were retained as outliers. In Arlequin, analysis was simulated based on 1,000 demes with 50,000 simulations under a hierarchal island model.

Pairwise F_{ST} ([Weir & Cockerham, 1984](#page-25-6)) was computed using GENEPOP 4.0.6 ([Rousset,](#page-23-7) 2008), whereas population differentiation was tested *via* G exact tests calculated using the following Monte Carlo Markov Chain (MCMC) parameters: 10,000 steps of dememorisation, and 5,000 iterations for 100 batches, also with GENEPOP 4.0.6.

The Bayesian clustering approach implemented in STRUCTURE v.2.3.4 ([Pritchard,](#page-23-9) [Stephens & Donnelly, 2000](#page-23-9)), and conducted using the software ParallelStructure ([Besnier &](#page-18-8) [Glover, 2013](#page-18-8)), was used to identify genetic groups under a model assuming admixture and correlated allele frequencies, both using and without using geographic LOCPRIORS to assist the clustering. Ten runs with a burn-in period consisting of 100,000 replications and a run length of 1,000,000 MCMC iterations were performed for $K = 1$ to $K = 10$ clusters. To determine the number of genetic groups, STRUCTURE output was analysed using two approaches: (a) the *ad hoc* summary statistic ΔK of *[Evanno, Regnaut & Goudet \(2005\)](#page-19-11)* and (b) the [Puechmaille \(2016\)](#page-23-10) four statistics (MedMedK, MedMeanK, MaxMedK and MaxMeanK), specially recommended for uneven sampling sizes, both conducted using StructureSelector ([Li & Liu, 2018](#page-21-5)). Finally, the ten runs for the selected Ks were averaged with CLUMPP v.1.1.1 (*[Jakobsson & Rosenberg, 2007](#page-21-6)*) using the FullSearch algorithm and the G′ pairwise matrix similarity statistic, and graphically displayed using barplots. Furthermore, the relationship among samples was also examined using the Discriminant Analysis of Principal Components (DAPC) ([Jombart, Devillard & Balloux, 2010](#page-21-7)) implemented in the R ([R Core Team, 2020](#page-23-8)) package adegenet ([Jombart, 2008](#page-21-8)) in which groups were defined a priori using geographically explicit samples. To avoid overfitting, both the optimal number of principal components and discriminant functions to be retained were determined through cross validation using the xvalDapc function from adegenet ([Jombart & Collins, 2015](#page-21-9); [Miller, Cullingham & Peery, 2020](#page-22-7)).

The relationship between genetic (F_{ST}) and geographic (km) distance was examined to investigate if it followed the expectations of an "Isolation by Distance" pattern (IBD), i.e., increasing genetic differentiation with geographic distance as a result of restricted gene flow and drift ([Rousset, 1997](#page-23-11); [Slatkin, 1993](#page-24-8); [Wright, 1943](#page-25-7)). A two-tailed [Mantel \(1967\)](#page-22-8) test was conducted using PASSaGE v2 (Rosenberg $\&$ Anderson, 2011) and significance was assessed via 10,000 permutations. The matrix of pairwise shortest distance by water was created by calculating least-cost distances via seas (avoiding landmasses) between sampling sites using the *lc.dist* function from the R (R Core Team, 2020) package *marmap* v1.0 ([Pante & Simon-Bouhet, 2013](#page-22-9)).

RESULTS

Quality control

Some 679 individuals out of the 1,848 genotyped ones were discarded due to exceeding the threshold of acceptance of missing genotypic data, which was set at 25% or due to unreliable scoring. From the 1,169 retained individuals, no missing markers were reported for 84% of the fish, whereas only 4% of the individuals displayed the maximum missing data allowed (see distribution of missing data per sample and locus in [Fig. S1](http://dx.doi.org/10.7717/peerj.17928/supp-1) in Supporting Information).

Data validation conducted with Micro-Checker did not find evidence of scoring error due to stuttering or large allelic dropout but suggested the possibility of null alleles in two of the loci, which showed a significant deficit of heterozygotes ($p < 0.0001$) after global Hardy-Weinberg tests. The frequency of null alleles per sample in these loci took a maximum value of 0.216 (locus STJ5 in ANG_2), whereas it was <0.05 in 71% of the cases (see [Table S2](http://dx.doi.org/10.7717/peerj.17928/supp-1) in Supporting information). As global and pairwise divergence calculated with and without using the ENA correction implemented in FreeNA displayed similar values (*i.e.*, a difference of 0.00045 in the overall F_{ST} values); the two loci suggestive of displaying null alleles were retained for further analyses.

The simulation analyses revealed that the dataset carried enough statistical power to detect genetic differentiation as low as $F_{ST} = 0.0066$ in 80% of the cases, whereas only in 11% of the cases when levels of differentiation were five-fold lower (F_{ST} = 0.0012). The probability of rejecting the null hypothesis of panmixia if true (type I error) was estimated at 5% (Fisher test) and thus considered appropriate [\(Fig. S2](http://dx.doi.org/10.7717/peerj.17928/supp-1) in Supporting Information). In addition, the number of microsatellite markers with the capacity of differentiating unique individuals can be inferred from the plateau of the genotype accumulation curve and this was achieved with some 37% of the markers used [\(Fig. S3](http://dx.doi.org/10.7717/peerj.17928/supp-1) in Supporting Information).

Summary statistics

The eight loci showed high rates of amplification success (93–100%) and suitable levels of polymorphism for population genetic analysis (100% polymorphic loci per sample). Allelic richness based on a minimum sample size of 20 diploid individuals took similar values throughout all the geographic range and moved between 11.5 (IVCO) and 13.6 (GAB_1), whereas the number of alleles for the same set of samples ranged between 96 and 137, respectively [\(Table 1](#page-5-0)). A total of 17 private alleles were found; they were distributed across all loci but SJT122 and ranged from 1 (Sco2-1, SJ78) to 4 (SJNT19, SJT199 and SJT53) and across 12 samples ranging from 1 (MOR_6, MOR_7, MOR_9, MAU_4, GAM, SIER, IVCO,GHA_1, GAB_1) to 4 (SEN_1). H_0 and uH_E took similar values across samples and in the range 0.73–0.9. uH_E was consistently higher than H_O in all samples; in consequence, multilocus test detected heterozygote deficit in every sample but SIER (p -val = 0.257). The three loci displaying deviations from HWE in a larger number of samples after correcting for FDR were: SJT5 (in 20 samples), and Sco2-1 and SJ78 (in six). Both SJT5 and Sco2-1 exhibited homozygote excess and likely presence of null alleles.

Genetic differentiation

No locus was found to be deviate from neutral expectations according to Arlequin, whereas BayeScan flagged all of them as putative candidates to balancing selection [\(Table S3](http://dx.doi.org/10.7717/peerj.17928/supp-1) in Supporting Information). Due to the lack of consensus of neutrality between methods, the full set of microsatellites was retained for subsequent analyses.

Overall, no significant population structuring was detected across the study area as indicated by a global F_{ST} of 0.001 (p = 0.587). Pairwise F_{ST} ranged from 0.000 to 0.011 ([Table 2\)](#page-10-0) with no significant differentiation whatsoever across the investigated geographic range.

STRUCTURE conducted both with and without LOCPRIORS reported a decreasing trend of $\text{LnP}(D)$ across subsequent values of K with the highest average likelihood at K = 1 ([Figs. S4A](http://dx.doi.org/10.7717/peerj.17928/supp-1) and [S4B](http://dx.doi.org/10.7717/peerj.17928/supp-1) in Supporting Information). Evanno test, which by definition cannot yield $K = 1$, reported $K = 2$ (no priors) and $K = 5$ (LOCPRIORS), respectively but with extremely little support as both ΔK values were low ($\Delta K < 7$). *[Puechmaille \(2016\)](#page-23-10)*'s four statistics (MedMedK, MedMeanK, MaxMedK and MaxMeanK) implemented in StructureSelector confirmed one single genetic group in the model using priors, and $K = 2$ when not using them [\(Figs. S4A](http://dx.doi.org/10.7717/peerj.17928/supp-1) and [S4B](http://dx.doi.org/10.7717/peerj.17928/supp-1) in Supporting Information). The barplot for $K = 2$ for the model without using LOCPRIORS revealed inferred ancestry to cluster ranging around 0.5 for each individual ([Fig. S5](http://dx.doi.org/10.7717/peerj.17928/supp-1) in Supporting Information), which is consistent with one single genetic unit.

Cross validation determined that 200 was the optimal number of PCs to be retained for the DAPC analysis using the 33 geographically explicit locations. In agreement with STRUCTURE, the corresponding DAPC plot revealed a large overlap of the individuals sampled across all the studied geographic range ([Fig. 2](#page-12-0)) with none of the axes reaching 7% of the variation. Although some some individuals of SEN_1 partially deviated from the cloud, SEN_1 was not significantly different from any of the remaining samples according to pairwise F_{ST} .

Mantel test revealed lack of correlation between genetic differentiation (pairwise F_{ST}) and geographic distance along the latitudinal gradient ranging from Morocco to Namibia $(r_{xy} = 0.012, p = 0.401).$

DISCUSSION

Investigating transboundary fish stocks with genetics is crucial for sustainable fisheries management. By identifying population structure in important commercial fish species, we can prevent overexploitation and allow for coordinated management strategies across national borders. This is the first attempt to describe the population structure of the Atlantic chub mackerel over most of its African distribution. The main result of the present study is the lack of geographically explicit structure in the coastline stretching from Morocco (27.39 \textdegree N) to Namibia (22.21 \textdegree S) based upon eight microsatellite markers.

Genetic diversity

Many marine fishes exhibit high levels of genetic diversity due to historically large effective population sizes ([Hauser et al., 2002](#page-20-9); [Hauser & Carvalho, 2008](#page-20-10)). All samples analysed in

(Continued)

the current study showed high levels of genetic diversity in terms of allelic richness (11.5 to 13.6) and heterozygosity (\geq 0.7) in agreement with results obtained for other medium and small pelagic species, e.g., S. australasicus in the western North Pacific (*[Tzeng et al., 2009](#page-24-9)*), European sprat Sprattus sprattus ([Glover et al., 2011](#page-20-11)), European anchovy Engraulis encrasicolus ([Zarraonaindia et al., 2009](#page-25-8)) or European pilchard Sardina pilchardus ([Baibai et al., 2012](#page-17-6)) in the North-East Atlantic. Overall, all samples (with the exception of the one from Sierra Leone represented by just eleven individuals) deviated from HWE expectations showing a deficit of heterozygotes. Heterozygote deficiency is not new to Scomber literature as it has been shown in microsatellite studies of S. colias in the East Atlantic Ocean and the Mediterranean Sea ([Medina-Alcaraz, 2016](#page-22-10)) as well as in S. japonicus along the Chinese coast ([Cheng, Zhu & Chen, 2014](#page-18-9); [Zeng, Cheng & Chen,](#page-25-3) [2012](#page-25-3)). Heterozygote deficiency in non-selfing, diploid populations is relatively common (Waldman $\&$ McKinnon, 1993) and in largely outcrossing species, it has commonly been interpreted as indirect evidence of the mixing of differentiated gene pools (Wahlund effect). However, selection and the presence of null alleles are common cause of heterozygote deficiency. In agreement with the latter, in the current study, two out of the eight genotyped loci were likely to display null alleles according to Micro-Checker assessment. Finally, and given the S. colias stocks are considered to be overexploited along West Africa ([FAO, 2020](#page-19-6)), the third hypothesis to explain heterozygote deficiency could be overexploitation as overfishing reduces population size drastically, leading to genetic bottlenecks and loss of alleles ([Smith, 1994](#page-24-11)).

Genetic population structure

In this study, the lack of genetic differentiation in S. colias revealed by eight microsatellites in the geographic area from Morocco (27.39^oN) to Namibia (22.21^oS) supporting a theory of panmixia would be a foreseen outcome due to pertinent ecological features of pelagic fish, such as high fecundity, large effective population sizes that impose limitations to genetic drift as well as a notable dispersal capacity as planktonic larvae and free-swimming adults that promotes gene flow (e.g., [Carlsson et al., 2004](#page-18-10); [Martínez et al., 2006](#page-22-11); [Waples,](#page-24-12) [1987](#page-24-12), [1998](#page-24-13)). The combination of both features acts as a major homogenizing force hindering genetic differentiation and eventually leading to panmixia (*[Canales-Aguirre](#page-18-11)* [et al., 2018](#page-18-11); [De Bie et al., 2012](#page-19-12); [Roy et al., 2014](#page-23-13); [Weersing & Toonen, 2009](#page-25-9)).

S. colias is a highly migratory species with individuals capable of covering extensive distances during their annual migrations favoured by a body shape well fitted for swift motion and free swimming mode of life (*[Collette, 1999](#page-18-12); [Uriarte et al., 2001](#page-24-14)*). In addition, its planktonic larval stages also display considerable dispersal capabilities as pelagic larvae can be transported over vast distances by ocean currents and eddies ([Hernández-León, Gómez](#page-20-12) $&$ Arístegui, 2007) effectively leading to genetic homogeneity among populations. In agreement, other studies have revealed a notable absence of genetic differentiation on S. colias in the Northeast Atlantic and adjacent waters suggesting a large panmictic unit ([Rodríguez-Ezpeleta et al., 2016](#page-23-5); [Stroganov et al., 2023](#page-24-2); [Zardoya et al., 2004](#page-25-2)). Likewise, congeneric species such as S. scombrus reveal population differentiation only at a transatlantic scale ([Nesbø et al., 2000](#page-22-4)), whereas S. japonicus displays weak genetic structure across the NW Pacific ([Cheng et al., 2015](#page-18-3)).

The hydrological conditions along the West African coast play a crucial role in various ecological processes and are influenced by factors such as ocean currents, eddies, temperature gradients, and upwelling phenomena. The region experiences the influence of several major ocean currents (see [Fig. 1\)](#page-4-0), including the Canary Current, the Guinea Current, and the Benguela Current, which affect the distribution of nutrients and plankton, which in turn impacts the abundance and distribution of marine life, including fish populations and seem to shape genetic differentiation of coastal species in this region ([Alpers et al., 2013](#page-17-7); [Barton, Field & Roy, 2013](#page-17-8); [Mittelstaedt, 1991](#page-22-12); [Nielsen et al., 2018](#page-22-13); [Pelegrí & Peña-Izquierdo, 2015](#page-22-14); [Shannon, 2001](#page-24-15)). In consequence, distant sites may be connected by a strong current between them, so, the absence of the genetic structure that can result from the long-distance dispersal of the early development stages (*Vásquez et al.*, [2013](#page-24-16); [White et al., 2010](#page-25-4)).

However, regional differences in various life-history traits with latitudinal trends have been detected in both European and NW African waters, with the Strait of Gibraltar as changing point ([ICES, 2021](#page-20-5)). Several studies have addressed the delineation of S. colias population structure in the East Atlantic using phenotypic characters, and some latitudinal trends seem to occur in length composition and life-history traits from the Strait of Gibraltar northwards into European waters and southwards, through African waters ([Domínguez-Petit et al., 2022](#page-19-5); [ICES, 2021](#page-20-5); [Landa et al., 2022](#page-21-10); [Perrotta, Carvalho & Isidro,](#page-22-15) [2005](#page-22-15)). Differences include size at first maturity, which seems to be larger in the South of Africa than in the North ([ICES, 2021](#page-20-5)). Likewise, the spawning period, a crucial

evolutionary driver in pelagic species (e.g., [Lamichhaney et al., 2017](#page-21-11); [Petrou et al., 2021](#page-23-14)), corresponds to January-March in the region comprising Morocco to Senegal, in contrast to June-September in the area from Ghana to South Africa ([ICES, 2021](#page-20-5)). Regarding the Atlantic coast of North America, the population structure of the Atlantic chub mackerel has not been extensively studied; however, differences in growth (*[Daley & Leaf, 2019](#page-19-13)*), habitat suitability ([Chen et al., 2009](#page-18-13)), spawning seasons ([Weber & McClatchie, 2011](#page-25-10)), size at maturity ([Cerna & Plaza, 2014](#page-18-14)) and morphology ([Erguden et al., 2009](#page-19-7)) suggest that different sub-stocks might exist. The latitudinal trends observed in the East Atlantic, with the Strait of Gibraltar as inflection point ([ICES, 2021](#page-20-5)), indicate that significant differences might be expected if individuals from the whole East Atlantic distribution of S. colias (including Mediterranean samples) were jointly analysed. This study is lacking samples from North of Morocco as well as from the Iberian Peninsula, which should be included in future genetic assessments.

Management implications

The lack of geographically explicit structure found here suggests the existence of one single putative genetic stock for S. colias inhabiting the West African waters from Morocco $(27.39^{\circ}N)$ to Namibia (22.21 $^{\circ}S$). Panmixia in a transboundary stock can present both opportunities and challenges. First, if a transboundary stock truly acts as a single panmictic population, then a single stock assessment might be sufficient, and the complexity of modelling population dynamics and setting catch quotas becomes simplified. In this case, all countries sharing the stock would benefit from implementing consistent management practices and should work together to set catch quotas and implement regulations that benefit the entire population.

However, a determination of panmixia based on a limited dataset might mask the presence of subtle subpopulations with distinct spawning grounds or migration patterns. In this case, management might need to consider specific population components, which if unnoticed could lead to inadequate management strategies and potential overexploitation of vulnerable subpopulations.

Although the sampling strategy of the present study comprises most of the West African geographical distribution of the species, this did not include the entire NE Atlantic distribution and the seasonal migrations could not be considered in the study. Therefore, although genetic divergences are not noticeable, some kind of local adaptations seem to exist, more when seasonal migration processes of the species have been described in the study area ([García, 1982](#page-20-13)). From this perspective, and considering the current global warming scenario in which the northwards expansion of the species across the East Atlantic Ocean from regions of higher abundance off northwest Africa to the waters of the Atlantic Iberian and the Mediterranean Sea is a fact ([Jurado-Ruzafa et al., 2024](#page-21-12)), fisheries management of Atlantic chub mackerel should account not only with punctual assessment statuses of political-based stocks but consider all the variables mentioned along the present section.

Although our data suggests that a nearly panmictic model is the most plausible scenario for the genetic population pattern of S. colias, implying high level of genetic connectivity across the Western African countries ranging from 28° N to 22° S. However, phenotypic variability and life history of S. colias, which follows a latitudinal gradient, support the evidence of regional demographic units as suggested by *Sbiba et al.* (2024) based upon otolith shape. Therefore, relying solely on genetic data may not provide a complete snapshot of the demographic connectivity, especially in wild marine fish populations characterized by high migration rates and large population sizes. It is crucial to consider demographic connectivity in addition to genetic connectivity when managing an important commercial species to ensure effective and sustainable measures. Finally, it cannot be neglected that genetic differentiation could have eluded the scrutiny of the set of markers used here as well as the possible impact of ascertainment bias driven by markers isolated from sampled from the Pacific ocean ([Zeng & Cheng, 2012](#page-25-5)). Future studies would benefit from the genomic tools currently available such as the genome assembly of this species recently published ([Machado et al., 2022](#page-21-13)).

CONCLUSIONS

The findings of this study shed light on the population genetics of Scomber colias along the West African coast. The study indicates that the species has very low genetic population differentiation and large migratory (dispersal) potential. These results have significant implications for the management of this crucial pelagic species in this region. The study emphasizes the need for cooperation efforts and further research to fully comprehend the underlying mechanisms of population connectivity and genetic homogenization. Advanced genomic tools, such as whole-genome sequencing in combination with phenotypic and environmental information could provide a more comprehensive understanding of any complex population structure or adaptive potential of S. colias. Such an understanding is important for developing more rational effective management strategies and ensuring the sustainability of this shared stock. It could also help refine our understanding of this species' evolutionary trajectories and guide sustainable management approaches at fine scale.

ACKNOWLEDGEMENTS

We thank the captain and crew of R.V. "Dr. Fridtjof Nansen" for their invaluable assistance and contribution to this study, which made a significant impact on the research's success. Likewise, we thank Alejandro Mateos-Rivera for his advice in the laboratory. The authors would like to extend their gratitude to the INRH for nominating Salah eddine Sbiba to embark on the R/V Dr. Fridtjof Nansen. This opportunity has significantly contributed to the success of our research. Disclaimer: The views expressed in this publication are those of the author(s) and do not necessarily reflect the views or policies of the Food and Agriculture Organization of the United Nations.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This study was funded by EAF-Nansen project, a collaboration between the Food and Agriculture Organisation of the United Nations, the Norwegian Agency for Development Cooperation, and the Institute of Marine Research in Norway. This project also received support from Global Environmental Facility, as well as the Canary Current Large Marine Ecosystem project, implemented by the FAO, the United Nations Environment Program, and seven partner countries: Morocco, Mauritania, Senegal, The Gambia, Cape Verde, and Guinea Bissau. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors: Food and Agriculture Organisation of the United Nations. Norwegian Agency for Development Cooperation. Institute of Marine Research in Norway. Global Environmental Facility. Canary Current Large Marine Ecosystem Project.

Competing Interests

The authors declare that they have no competing interests.

Author Contributions

- . Salah eddine Sbiba conceived and designed the experiments, performed the experiments, analyzed the data, authored or reviewed drafts of the article, and approved the final draft.
- . María Quintela analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.
- . Johanne Øyro performed the experiments, authored or reviewed drafts of the article, and approved the final draft.
- . Geir Dahle performed the experiments, authored or reviewed drafts of the article, and approved the final draft.
- . Alba Jurado-Ruzafa conceived and designed the experiments, authored or reviewed drafts of the article, and approved the final draft.
- . Kashona Iita conceived and designed the experiments, authored or reviewed drafts of the article, and approved the final draft.
- . Nikolaos Nikolioudakis conceived and designed the experiments, prepared figures and/ or tables, authored or reviewed drafts of the article, and approved the final draft.
- . Hocein Bazairi conceived and designed the experiments, authored or reviewed drafts of the article, and approved the final draft.
- . Malika Chlaida conceived and designed the experiments, authored or reviewed drafts of the article, and approved the final draft.

Field Study Permissions

The following information was supplied relating to field study approvals (i.e., approving body and any reference numbers):

The EAF-Nansen Programme approved the study (GCP/GLO/690/NOR).

Data Availability

The following information was supplied regarding data availability:

Genotype data is available at Zenodo and Havforskningsinstituttet:

Sbiba, S. E. (2024). Microsatellite data on Scomber colias in NW Africa [Data set]. Zenodo. <https://doi.org/10.5281/zenodo.11518098>

<https://imr.brage.unit.no/imr-xmlui/handle/11250/3072605>

Supplemental Information

Supplemental information for this article can be found online at [http://dx.doi.org/10.7717/](http://dx.doi.org/10.7717/peerj.17928#supplemental-information) [peerj.17928#supplemental-information](http://dx.doi.org/10.7717/peerj.17928#supplemental-information).

REFERENCES

- Aguirre-Sarabia I, Díaz-Arce N, Pereda-Agirre I, Mendibil I, Urtizberea A, Gerritsen HD, Burns F, Holmes I, Landa J, Coscia I, Quincoces I, Santurtún M, Zanzi A, Martinsohn JT, Rodríguez-Ezpeleta N. 2021. Evidence of stock connectivity, hybridization, and misidentification in white anglerfish supports the need of a genetics-informed fisheries management framework. Evolutionary Applications 14(9):2221–2230 [DOI 10.1111/eva.13278](http://dx.doi.org/10.1111/eva.13278).
- Allaya H, ben faleh A, Rebaya M, Zrelli S, Hajjej G, Hattour A, Jean-pierre Q, Trabelsi M. 2016. Identification of Atlantic chub mackerel Scomber colias population through the analysis of body shape in Tunisian waters. Cahiers de Biologie Marine 57:195–207 [DOI 10.21411/CBM.A.6C4E0868.](http://dx.doi.org/10.21411/CBM.A.6C4E0868)
- Allendorf FW, England PR, Luikart G, Ritchie PA, Ryman N. 2008. Genetic effects of harvest on wild animal populations. Trends in Ecology & Evolution $23(6)$:327-337 [DOI 10.1016/j.tree.2008.02.008](http://dx.doi.org/10.1016/j.tree.2008.02.008).
- Alpers W, Brandt P, Lazar A, Dagorne D, Sow B, Faye S, Hansen MW, Rubino A, Poulain PM, Brehmer P. 2013. A small-scale oceanic eddy off the coast of West Africa studied by multi-sensor satellite and surface drifter data. Remote Sensing of Environment 129(C8):132–143 [DOI 10.1016/j.rse.2012.10.032.](http://dx.doi.org/10.1016/j.rse.2012.10.032)
- Baibai T, Oukhattar L, Quinteiro JV, Mesfioui A, Rey-Méndez M, soukri A. 2012. First global approach: morphological and biological variability in a genetically homogeneous population of the European pilchard, Sardina pilchardus (Walbaum, 1792) in the North Atlantic coast. Reviews in Fish Biology and Fisheries 22(1):63–80 [DOI 10.1007/s11160-011-9223-9.](http://dx.doi.org/10.1007/s11160-011-9223-9)
- Baird D. 1977. Age, growth and aspects of reproduction of the mackerel, Scomber japonicus in South African waters (Pisces: Scombridae). African Zoology 12:347–362 [DOI 10.1080/00445096.1977.11447580.](http://dx.doi.org/10.1080/00445096.1977.11447580)
- Barton ED, Field DB, Roy C. 2013. Canary current upwelling: more or less? Progress in Oceanography 116(1):167–178 [DOI 10.1016/j.pocean.2013.07.007.](http://dx.doi.org/10.1016/j.pocean.2013.07.007)
- Bekkevold D, Helyar SJ, Limborg MT, Nielsen EE, Hemmer-Hansen J, Clausen LAW, Carvalho GR, FishPopTrace Consortium. 2015. Gene-associated markers can assign origin in a weakly structured fish, Atlantic herring. ICES Journal of Marine Science 72(6):1790–1801 [DOI 10.1093/icesjms/fsu247](http://dx.doi.org/10.1093/icesjms/fsu247).
- Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological) 57(1):289–300 [DOI 10.1111/j.2517-6161.1995.tb02031.x](http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x).
- Besnier F, Glover KA. 2013. ParallelStructure: a R package to distribute parallel runs of the population genetics program STRUCTURE on multi-core computers. PLOS ONE 8:e70651 [DOI 10.1371/journal.pone.0070651](http://dx.doi.org/10.1371/journal.pone.0070651).
- Besnier F, Kent M, Skern-Mauritzen R, Lien S, Malde K, Edvardsen RB, Taylor S, Ljungfeldt LER, Nilsen F, Glover KA. 2014. Human-induced evolution caught in action: SNP-array reveals rapid amphi-atlantic spread of pesticide resistance in the salmon ecotoparasite Lepeophtheirus salmonis. BMC Genomics 15(1):937 [DOI 10.1186/1471-2164-15-937.](http://dx.doi.org/10.1186/1471-2164-15-937)
- Bouzzammit N, El Ouizgani H. 2019. Morphometric and meristic variation in the Atlantic chub mackerel Scomber colias Gmelin, 1789 from the Moroccan coast. Indian Journal of Fisheries 66(2):8–15 [DOI 10.21077/ijf.2019.66.2.78488-02](http://dx.doi.org/10.21077/ijf.2019.66.2.78488-02).
- Canales-Aguirre CB, Ferrada-Fuentes S, Galleguillos R, Oyarzun FX, Buratti CC, Hernández CE. 2018. High genetic diversity and low-population differentiation in the Patagonian sprat (Sprattus fuegensis) based on mitochondrial DNA. Mitochondrial DNA Part A 29(8):1148–1155 [DOI 10.1080/24701394.2018.1424841.](http://dx.doi.org/10.1080/24701394.2018.1424841)
- Carlsson J, McDowell JR, Díz-Jaimes P, Carlsson JEL, Boles SB, Gold JR, Graves JE. 2004. Microsatellite and mitochondrial DNA analyses of Atlantic bluefin tuna (Thunnus thynnus thynnus) population structure in the Mediterranean Sea. Molecular Ecology 13(11):3345–3356 [DOI 10.1111/j.1365-294X.2004.02336.x](http://dx.doi.org/10.1111/j.1365-294X.2004.02336.x).
- Castro Hernández JJ, Santana Ortega AT. 2000. Synopsis of biological data on the chub mackerel (Scomber japonicus Houttuyn, 1782). In: Bonfil R, Minow J, eds. FAO Fisheries Synopsis. Rome: FAO, 77.
- Catanese G, Funes V, Perez L, Infante C. 2010. Microsatelites for Scomber colias. Available at <https://www.researchgate.net/publication/281005067>.
- Cerna F, Plaza G. 2014. Life history parameters of chub mackerel (Scomber japonicus) from two areas off Chile. Bulletin of Marine Science 90(3):833–848 [DOI 10.5343/bms.2013.1077.](http://dx.doi.org/10.5343/bms.2013.1077)
- Chapuis MP, Estoup A. 2006. Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution 24(3):621–631 [DOI 10.1093/molbev/msl191.](http://dx.doi.org/10.1093/molbev/msl191)
- Chen X, Li G, Feng B, Tian S. 2009. Habitat suitability index of chub mackerel (Scomber japonicus) from July to September in the East China Sea. Journal of Oceanography 65(1):93–102 [DOI 10.1007/s10872-009-0009-9](http://dx.doi.org/10.1007/s10872-009-0009-9).
- Chen FF, Ma CY, Yan LP, Zhang H, Wang W, Zhang Y, Ma LB. 2017. Isolation and characterization of polymorphic microsatellite markers for the chub mackerel (Scomber japonicus) and cross-species amplification in the blue mackerel (S. australasicus). Genetics and Molecular Research 16(3):gmr16039712 [DOI 10.4238/gmr16039712](http://dx.doi.org/10.4238/gmr16039712).
- Cheng J, Yanagimoto T, Song N, Gao TX. 2015. Population genetic structure of chub mackerel Scomber japonicus in the Northwestern Pacific inferred from microsatellite analysis. Molecular Biology Reports 42(2):373–382 [DOI 10.1007/s11033-014-3777-2](http://dx.doi.org/10.1007/s11033-014-3777-2).
- Cheng Q, Zhu Y, Chen X. 2014. High polymorphism and moderate differentiation of chub mackerel, Scomber japonicus (Perciformes: Scombridae), along the coast of China revealed by fifteen novel microsatellite markers. Conservation Genetics 15(5):1021–1035 [DOI 10.1007/s10592-014-0596-x](http://dx.doi.org/10.1007/s10592-014-0596-x).
- Collette BB. 1986. Scombridae. In: Whitehead PJP, Bauchot ML, Hureau JC, Nielsen J, Tortonese E, eds. Fishes of the North-Eastern Atlantic and the Mediterranean. Paris, France: United Nations Educational Scientific and Cultural Organization, 981–997.
- Collette B. 1999. Mackerels, molecules, and morphology. In: Séret B, Sire JY, eds. Proceedings of the 5th Indo-Pacific Fish Conference. Nouméa: Soc. Fr. Ichtyol, 149–164.
- Collette BB, Nauen CE. 1983. Scombrids of the world: an annotated and illustrated catalogue of tunas, mackerels, bonitos, and related species known to date. Roma: Food and Agriculture Organization of the United Nations.
- Costa G, Cavallero S, D'Amelio S, Paggi L, Santamaría M, Perera C, Santos M, Khadem M. 2011. Helminth parasites of the Atlantic chub mackerel, Scomber colias Gmelin, 1789 from Canary Islands, Central North Atlantic, with comments on their relations with other Atlantic regions. Acta Parasitologica 56(1):98–104 [DOI 10.1017/S0022149X17000104](http://dx.doi.org/10.1017/S0022149X17000104).
- Dahle G, Johansen T, Westgaard J-I, Aglen A, Glover KA. 2018a. Genetic management of mixed-stock fisheries real-time: the case of the largest remaining cod fishery operating in the Atlantic in 2007–2017. Fisheries Research 205(6):77–85 DOI 10.1016/j.fi[shres.2018.04.006.](http://dx.doi.org/10.1016/j.fishres.2018.04.006)
- Dahle G, Quintela M, Johansen T, Westgaard J-I, Besnier F, Aglen A, Jørstad KE, Glover KA. 2018b. Analysis of coastal cod (Gadus morhua L.) sampled on spawning sites reveals a genetic gradient throughout Norway's coastline. BMC Genetics 19(1):42 [DOI 10.1186/s12863-018-0625-8](http://dx.doi.org/10.1186/s12863-018-0625-8).
- Daley TT, Leaf RT. 2019. Age and growth of Atlantic chub mackerel (Scomber colias) in the Northwest Atlantic. Journal of Northwest Atlantic Fishery Science 50:1–12 [DOI 10.2960/J.v50.m717](http://dx.doi.org/10.2960/J.v50.m717).
- De Bie T, De Meester L, Brendonck L, Martens K, Goddeeris B, Ercken D, Hampel H, Denys L, Vanhecke L, Van der Gucht K, Van Wichelen J, Vyverman W, Declerck SAJ. 2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters 15(7):740–747 [DOI 10.1111/j.1461-0248.2012.01794.x](http://dx.doi.org/10.1111/j.1461-0248.2012.01794.x).
- Dempster AP, Laird NM, Rubin DB. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B (Methodological) 39:1–38 [DOI 10.1111/J.2517-6161.1977.TB01600.X](http://dx.doi.org/10.1111/J.2517-6161.1977.TB01600.X).
- Dieringer D, Schlötterer C. 2003. Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Molecular Ecology Notes 3(1):167-169 [DOI 10.1046/j.1471-8286.2003.00351.x.](http://dx.doi.org/10.1046/j.1471-8286.2003.00351.x)
- Domínguez-Petit R, Navarro MR, Cousido-Rocha M, Tornero J, Ramos F, Jurado-Ruzafa A, Nunes C, Hernández C, Silva AV, Landa J. 2022. Spatial variability of life-history parameters of the Atlantic chub mackerel (Scomber colias), an expanding species in the northeast Atlantic. Scientia Marina 86(4):e048 [DOI 10.3989/scimar.05296.048.](http://dx.doi.org/10.3989/scimar.05296.048)
- Ellegren H. 2004. Microsatellites: simple sequences with complex evolution. Nature Reviews Genetics 5:435–445 [DOI 10.1038/nrg1348](http://dx.doi.org/10.1038/nrg1348).
- Erguden D, Oztürk B, Erdoğan Z, Turan C. 2009. Morphologic structuring between populations of chub mackerel Scomber japonicus in the Black, Marmara, Aegean, and northeastern Mediterranean Seas. Fisheries Science 75(1):129–135 [DOI 10.1007/s12562-008-0032-6.](http://dx.doi.org/10.1007/s12562-008-0032-6)
- Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14:2611–2620 [DOI 10.1111/j.1365-294X.2005.02553.x](http://dx.doi.org/10.1111/j.1365-294X.2005.02553.x).
- Excoffier L, Laval G, Schneider S. 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1:47–50 [DOI 10.1177/117693430500100003.](http://dx.doi.org/10.1177/117693430500100003)
- FAO. 2020. Report of the working group on the assessment of small pelagic fish of Northwest Africa Casablanca, Morocco, 8–13 July 2019. Rapport de groupe de travail sur l'évaluation des petits pêlagiques au large de l'Afrique Nord-Occidentale Casablanca, Maroc, 8-13 juillet 2019. Fishery Committee for the Eastern Central Atlantic (CECAF)/Comité des pêches pour

l'Atlantique Centre-Est (COPACE). RFAO Fisheries and Aquaculture Report No. 1309/FAO, Rapport sur les pêches et l'aquaculture no 1309. Rome.

- Foll M, Gaggiotti O. 2006. Identifying the environmental factors that determine the genetic structure of populations. Genetics 174(2):875–891 [DOI 10.1534/genetics.106.059451](http://dx.doi.org/10.1534/genetics.106.059451).
- Foll M, Gaggiotti O. 2008. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180(2):977–993 [DOI 10.1534/genetics.108.092221](http://dx.doi.org/10.1534/genetics.108.092221).
- García S. 1982. Distribution, migration and spawning of the main 1982 fish resources in the northern CECAF area. FAO, CECAF/ECAF Series 82/(E) 9.
- Gissi E, Manea E, Mazaris AD, Fraschetti S, Almpanidou V, Bevilacqua S, Coll M, Guarnieri G, Lloret-Lloret E, Pascual M, Petza D, Rilov G, Schonwald M, Stelzenmüller V, Katsanevakis S. 2021. A review of the combined effects of climate change and other local human stressors on the marine environment. Science of the Total Environment 755(3):142564 [DOI 10.1016/j.scitotenv.2020.142564](http://dx.doi.org/10.1016/j.scitotenv.2020.142564).
- Glover KA. 2010. Forensic identification of fish farm escapees: the Norwegian experience. Aquaculture Environment Interactions 1:1–10 [DOI 10.3354/aei00002.](http://dx.doi.org/10.3354/aei00002)
- Glover KA, Skaala Ø, Limborg M, Kvamme C, Torstensen E. 2011. Microsatellite DNA reveals population genetic differentiation among sprat (Sprattus sprattus) sampled throughout the Northeast Atlantic, including Norwegian fjords. ICES Journal of Marine Science 68(10):2145–2151 [DOI 10.1093/icesjms/fsr153.](http://dx.doi.org/10.1093/icesjms/fsr153)
- Hale ML, Burg TM, Steeves TE. 2012. Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLOS ONE 7(9):e45170 [DOI 10.1371/journal.pone.0045170](http://dx.doi.org/10.1371/journal.pone.0045170).
- Hauser L, Adcock GJ, Smith PJ, Bernal Ramírez JH, Carvalho GR. 2002. Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus). Proceedings of the National Academy of Sciences 99(18):11742–11747 [DOI 10.1073/pnas.172242899.](http://dx.doi.org/10.1073/pnas.172242899)
- Hauser L, Carvalho GR. 2008. Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish and Fisheries 9(4):333–362 [DOI 10.1111/j.1467-2979.2008.00299.x.](http://dx.doi.org/10.1111/j.1467-2979.2008.00299.x)
- Hemmer-Hansen J, Hüssy K, Baktoft H, Huwer B, Bekkevold D, Haslob H, Herrmann J-P, Hinrichsen H-H, Krumme U, Mosegaard H, Nielsen EE, Reusch TBH, Storr-Paulsen M, Velasco A, von Dewitz B, Dierking J, Eero M. 2019. Genetic analyses reveal complex dynamics within a marine fish management area. Evolutionary Applications 12:830–844 [DOI 10.1111/eva.1276010.1111/eva.12760](http://dx.doi.org/10.1111/eva.1276010.1111/eva.12760).
- Henriques R, Nielsen ES, Durholtz D, Japp D, von der Heyden S. 2017. Genetic population sub-structuring of kingklip (Genypterus capensis—Ophidiidiae), a commercially exploited demersal fish off South Africa. Fisheries Research 187:86–95 DOI 10.1016/j.fi[shres.2016.11.007.](http://dx.doi.org/10.1016/j.fishres.2016.11.007)
- Hernández-León S, Gómez M, Arístegui J. 2007. Mesozooplankton in the canary current system: the coastal-ocean transition zone. Progress in Oceanography 74(2–3):397–421 [DOI 10.1016/j.pocean.2007.04.010](http://dx.doi.org/10.1016/j.pocean.2007.04.010).
- ICES. 2021. Second workshop on atlantic chub mackerel (Scomber colias). ICES Scientific Reports 3:236 [DOI 10.17895/ices.pub.8142.](http://dx.doi.org/10.17895/ices.pub.8142)
- IPCC. 2022. Climate change 2022: impacts, adaptation and vulnerability. In: Pörtner HO, Roberts DC, Tignor MMB, Poloczanska ES, Mintenbeck K, Alegría A, Craig M, Langsdorf S, Löschke S, Möller V, Okem A, Rama B, eds. Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. UK and New York, USA: Cambridge, 3056.
- Jakobsson M, Rosenberg NA. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14):1801–1806 [DOI 10.1093/bioinformatics/btm233.](http://dx.doi.org/10.1093/bioinformatics/btm233)
- Johansen T, Westgaard J-I, Seliussen BB, Nedreaas K, Dahle G, Glover KA, Kvalsund R, Aglen A. 2018. Real-time genetic monitoring of a commercial fishery on the doorstep of an MPA reveals unique insights into the interaction between coastal and migratory forms of the Atlantic cod. ICES Journal of Marine Science 75(3):1093–1104 [DOI 10.1093/icesjms/fsx224.](http://dx.doi.org/10.1093/icesjms/fsx224)
- Jombart T. 2008. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24(11):1403–1405 [DOI 10.1093/bioinformatics/btn129.](http://dx.doi.org/10.1093/bioinformatics/btn129)
- Jombart T, Collins C. 2015. A tutorial for discriminant analysis of principal components (DAPC) using adegenet 2.0.0. Available at [https://adegenet.r-forge.r-project.org/](https://adegenet.r-forge.r-project.org/files/tutorial-dapc.pdf)files/tutorial-dapc.pdf.
- Jombart T, Devillard S, Balloux F. 2010. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics 11(1):94 [DOI 10.1186/1471-2156-11-94.](http://dx.doi.org/10.1186/1471-2156-11-94)
- Jurado-Ruzafa A, Vasconcelos J, Otero-Ferrer JL, Navarro MR, Massaro A, Hernández C, Tuset VM. 2024. Phenotypic response of a geographically expanding species, Scomber colias: clues in the fish otolith shape. Estuarine, Coastal and Shelf Science 305(7):108880 [DOI 10.1016/j.ecss.2024.108880](http://dx.doi.org/10.1016/j.ecss.2024.108880).
- Kamvar ZN, Tabima JF, Grünwald NJ. 2014. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281 [DOI 10.7717/peerj.281](http://dx.doi.org/10.7717/peerj.281).
- Kerr LA, Hintzen NT, Cadrin SX, Clausen LW, Dickey-Collas M, Goethel DR, Hatfield EMC, Kritzer JP, Nash RDM. 2017. Lessons learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish. ICES Journal of Marine Science 74(6):1708–1722 [DOI 10.1093/icesjms/fsw188.](http://dx.doi.org/10.1093/icesjms/fsw188)
- Lamichhaney S, Fuentes-Pardo AP, Rafati N, Ryman N, McCracken GR, Bourne C, Singh R, Ruzzante DE, Andersson L. 2017. Parallel adaptive evolution of geographically distant herring populations on both sides of the North Atlantic Ocean. Proceedings of the National Academy of Sciences 114:E3452 [DOI 10.1073/pnas.1617728114.](http://dx.doi.org/10.1073/pnas.1617728114)
- Landa J, Domínguez-Petit R, Navarro R, Silva AV, Tornero J, Parra C, Ramos F, Nunes C, Jurado-Ruzafa A. 2022. Growth variability and demographic structure of Northeast Atlantic chub mackerel (Scomber colias) in southern European Atlantic waters. In: ISMS Las Palmas de Gran Canaria, 6–8 July.
- Le Moan A, Bekkevold D, Hemmer-Hansen J. 2021. Evolution at two time frames: ancient structural variants involved in post-glacial divergence of the European plaice (Pleuronectes platessa). Heredity 126(6):668–683 [DOI 10.1038/s41437-021-00432-x.](http://dx.doi.org/10.1038/s41437-021-00432-x)
- Leone A, Álvarez P, García D, Saborido-Rey F, Rodríguez-Ezpeleta N. 2019. Genome-wide SNP based population structure in European hake reveals the need for harmonizing biological and management units. ICES Journal of Marine Science 76(7):2260–2266 [DOI 10.1093/icesjms/fsz161](http://dx.doi.org/10.1093/icesjms/fsz161).
- Li YL, Liu JX. 2018. StructureSelector: a web-based software to select and visualize the optimal number of clusters using multiple methods. Molecular Ecology Resources 18(1):176–177 [DOI 10.1111/1755-0998.12719.](http://dx.doi.org/10.1111/1755-0998.12719)
- Machado AM, Gomes-Dos-Santos A, Fonseca MM, da Fonseca RR, Veríssimo A, Felício M, Capela R, Alves N, Santos M, Salvador-Caramelo F, Domingues M, Ruivo R, Froufe E, Castro LFC. 2022. A genome assembly of the Atlantic chub mackerel (Scomber colias): a valuable teleost fishing resource. GigaByte 2022(3):gigabyte40 [DOI 10.46471/gigabyte.40.](http://dx.doi.org/10.46471/gigabyte.40)
- Maduna SN, Rossouw C, Roodt-Wilding R, Bester-van der Merwe AE. 2014. Microsatellite cross-species amplification and utility in southern African elasmobranchs: a valuable resource for fisheries management and conservation. BMC Research Notes 7(1):352 [DOI 10.1186/1756-0500-7-352.](http://dx.doi.org/10.1186/1756-0500-7-352)
- Mantel N. 1967. The detection of disease of clustering and a generalized regression approach. Cancer Research 27:209–220.
- Martinsohn JT, Raymond P, Knott T, Glover KA, Nielsen EE, Eriksen LB, Ogden R, Casey J, Guillen J. 2019. DNA-analysis to monitor fisheries and aquaculture: too costly? Fish and Fisheries 20(2):391–401 [DOI 10.1111/faf.12343.](http://dx.doi.org/10.1111/faf.12343)
- Martínez P, González EG, Castilho R, Zardoya R. 2006. Genetic diversity and historical demography of Atlantic bigeye tuna (Thunnus obesus). Molecular Phylogenetics and Evolution 39(2):404–416 [DOI 10.1016/j.ympev.2005.07.022.](http://dx.doi.org/10.1016/j.ympev.2005.07.022)
- Medina-Alcaraz C. 2016. Diversidad genética y estructura poblacional de caballa (Scomber colias, Gmelin, 1789) en aguas del Atlántico y del Mediterráneo PhD thesis. Universidad de Las Palmas de Gran Canaria.
- Miller JM, Cullingham CI, Peery RM. 2020. The influence of a priori grouping on inference of genetic clusters: simulation study and literature review of the DAPC method. Heredity 125(5):269–280 [DOI 10.1038/s41437-020-0348-2](http://dx.doi.org/10.1038/s41437-020-0348-2).
- Mittelstaedt E. 1991. The ocean boundary along the northwest African coast: circulation and oceanographic properties at the sea surface. Progress in Oceanography 26(4):307–355 [DOI 10.1016/0079-6611\(91\)90011-A](http://dx.doi.org/10.1016/0079-6611(91)90011-A).
- Mullins RB, McKeown NJ, Sauer WHH, Shaw PW. 2018. Genomic analysis reveals multiple mismatches between biological and management units in yellowfin tuna (Thunnus albacares). ICES Journal of Marine Science 75(6):2145–2152 [DOI 10.1093/icesjms/fsy102](http://dx.doi.org/10.1093/icesjms/fsy102).
- Munro G, Van Houtte A, Willmann R. 2004. The conservation and management of shared fish stocks: legal and economic aspects. In: FAO, editor. Rome: FAO Fisheries Technical Paper, 69.
- Nesbø CL, Rueness EK, Iversen SA, Skagen DW, Jakobsen KS. 2000. Phylogeography and population history of Atlantic mackerel (Scomber scombrus L.): a genealogical approach reveals genetic structuring among the eastern Atlantic stocks. Proceedings Biological Sciences 267(1440):281–292 [DOI 10.1098/rspb.2000.0998.](http://dx.doi.org/10.1098/rspb.2000.0998)
- Nielsen ES, Henriques R, Toonen RJ, Knapp ISS, Guo B, von der Heyden S. 2018. Complex signatures of genomic variation of two non-model marine species in a homogeneous environment. BMC Genomics 19(1):347 [DOI 10.1186/s12864-018-4721-y](http://dx.doi.org/10.1186/s12864-018-4721-y).
- O'Connell M, Wright JM. 1997. Microsatellite DNA in fishes. Reviews in Fish Biology and Fisheries 7:331–363 [DOI 10.1023/A:1018443912945](http://dx.doi.org/10.1023/A:1018443912945).
- Pante E, Simon-Bouhet B. 2013. marmap: a package for importing, plotting and analyzing bathymetric and topographic data in R. PLOS ONE 8(9):e73051 [DOI 10.1371/journal.pone.0073051](http://dx.doi.org/10.1371/journal.pone.0073051).
- Peakall R, Smouse PE. 2006. GenAlEx 6: genetic analysis in excel. Population genetic software for teaching and research. Molecular Ecology Notes 6(1):288–295 [DOI 10.1111/j.1471-8286.2005.01155.x.](http://dx.doi.org/10.1111/j.1471-8286.2005.01155.x)
- Pelegrí JL, Peña-Izquierdo J. 2015. Eastern boundary currents off North-West Africa. Oceanographic and biological features in the Canary Current Large Marine Ecosystem. In: Technical Series: 115. Paris, France: IOC-UNESCO.
- Perrotta RG, Carvalho N, Isidro E. 2005. Comparative study on growth of chub mackerel (Scomber japonicus Houttuyn, 1782) from three different regions: NW Mediterranean, NE and SW Atlantic. Revista de Investigación y Desarrollo Pesquero 17:67–79.
- Petrou EL, Fuentes-Pardo AP, Rogers LA, Orobko M, Tarpey C, Jiménez-Hidalgo I, Moss ML, Yang D, Pitcher TJ, Sandell T, Lowry D, Ruzzante DE, Hauser L. 2021. Functional genetic diversity in an exploited marine species and its relevance to fisheries management. Proceedings of the Royal Society B: Biological Sciences 288(1945):20202398 [DOI 10.1098/rspb.2020.2398.](http://dx.doi.org/10.1098/rspb.2020.2398)
- Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155(2):945–959 [DOI 10.1093/genetics/155.2.945](http://dx.doi.org/10.1093/genetics/155.2.945).

Puechmaille SJ. 2016. The program structure does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Molecular Ecology Resources 16(3):608–627 [DOI 10.1111/1755-0998.12512.](http://dx.doi.org/10.1111/1755-0998.12512)

- Quintela M, Kvamme C, Bekkevold D, Nash RDM, Jansson E, Sørvik AG, Taggart JB, Skaala Ø, Dahle G, Glover KA. 2020. Genetic analysis redraws the management boundaries for the European sprat. Evolutionary Applications 13(8):1906–1922 [DOI 10.1111/eva.12942.](http://dx.doi.org/10.1111/eva.12942)
- Ramírez F, Shannon LJ, van der Lingen CD, Julià L, Steenbeek J, Coll M. 2022. Climate and fishing simultaneously impact small pelagic fish in the oceans around the southernmost tip of Africa. Frontiers in Marine Science 9:45 [DOI 10.3389/fmars.2022.1031784.](http://dx.doi.org/10.3389/fmars.2022.1031784)
- Ramya VL, Behera BK. 2023. Molecular markers and their application in fisheries and aquaculture. In: Behera BK, ed. Biotechnological Tools in Fisheries and Aquatic Health Management. Singapore: Springer Nature Singapore, 115–150.
- R Core Team. 2020. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available at <http://www.R-project.org/>.
- Reid K, Hoareau TB, Graves JE, Potts WM, dos Santos SMR, Klopper AW, Bloomer P. 2016. Secondary contact and asymmetrical gene flow in a cosmopolitan marine fish across the Benguela upwelling zone. Heredity 117(5):307–315 [DOI 10.1038/hdy.2016.51.](http://dx.doi.org/10.1038/hdy.2016.51)
- Rodríguez-Ezpeleta N, Bradbury IR, Mendibil I, Álvarez P, Cotano U, Irigoien X. 2016. Population structure of Atlantic mackerel inferred from RAD-seq-derived SNP markers: effects of sequence clustering parameters and hierarchical SNP selection. Molecular Ecology Resources 16(4):991–1001 [DOI 10.1111/1755-0998.12518](http://dx.doi.org/10.1111/1755-0998.12518).
- Rodríguez-Ezpeleta N, Díaz-Arce N, Walter Iii JF, Richardson DE, Rooker JR, Nøttestad L, Hanke AR, Franks JS, Deguara S, Lauretta MV, Addis P, Varela JL, Fraile I, Goñi N, Abid N, Alemany F, Oray IK, Quattro JM, Sow FN, Itoh T, Karakulak FS, Pascual-Alayón PJ, Santos MN, Tsukahara Y, Lutcavage M, Fromentin J-M, Arrizabalaga H. 2019. Determining natal origin for improved management of Atlantic bluefin tuna. Frontiers in Ecology and the Environment 17(8):439–444 [DOI 10.1002/fee.2090.](http://dx.doi.org/10.1002/fee.2090)
- Roldán MI, Perrotta RG, Cortey M, Pla C. 2000. Molecular and morphologic approaches to discrimination of variability patterns in chub mackerel, Scomber japonicus. Journal of Experimental Marine Biology and Ecology 253(1):63–74 [DOI 10.1016/S0022-0981\(00\)00244-6](http://dx.doi.org/10.1016/S0022-0981(00)00244-6).
- Rosenberg MS, Anderson CD. 2011. PASSaGE: pattern analysis, spatial statistics and geographic exegesis. Version 2. Methods in Ecology and Evolution 2(3):229–232 [DOI 10.1111/j.2041-210X.2010.00081.x](http://dx.doi.org/10.1111/j.2041-210X.2010.00081.x).
- Rousset F. 1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228 [DOI 10.1093/genetics/145.4.1219](http://dx.doi.org/10.1093/genetics/145.4.1219).
- Rousset F. 2008. GENEPOP′007: a complete re-implementation of the genepop software for windows and Linux. Molecular Ecology Resources 8(1):103–106 [DOI 10.1111/j.1471-8286.2007.01931.x.](http://dx.doi.org/10.1111/j.1471-8286.2007.01931.x)
- Roy D, Hardie DC, Treble MA, Reist JD, Ruzzante DE. 2014. Evidence supporting panmixia in Greenland halibut (Reinhardtius hippoglossoides) in the Northwest Atlantic. Canadian Journal of Fisheries and Aquatic Sciences 71(5):763–774 [DOI 10.1139/cjfas-2014-0004](http://dx.doi.org/10.1139/cjfas-2014-0004).
- Russello MA, Kirk SL, Frazer KK, Askey PJ. 2012. Detection of outlier loci and their utility for fisheries management. Evolutionary Applications 5(1):39–52 [DOI 10.1111/j.1752-4571.2011.00206.x.](http://dx.doi.org/10.1111/j.1752-4571.2011.00206.x)
- Ryman N, Palm S. 2006. POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Molecular Ecology Notes 6(3):600–602 [DOI 10.1111/j.1471-8286.2006.01378.x.](http://dx.doi.org/10.1111/j.1471-8286.2006.01378.x)
- Saha A, Johansen T, Hedeholm R, Nielsen EE, Westgaard J-I, Hauser L, Planque B, Cadrin SX, Boje J. 2017. Geographic extent of introgression in Sebastes mentella and its effect on genetic population structure. Evolutionary Applications 10(1):77–90 [DOI 10.1111/eva.12429](http://dx.doi.org/10.1111/eva.12429).
- Sbiba SE, Correia AT, Nikolioudakis N, Bazairi H, Chlaida M. 2024. Insights into the stock structure of Scomber colias Gmelin, 1789 along the Northwest African coast inferred from otolith shape analysis. Fisheries Research 272:106955 DOI 10.1016/j.fi[shres.2024.106955](http://dx.doi.org/10.1016/j.fishres.2024.106955).
- Scoles D, Graves J, Collette B. 1988. Global phylogeography of mackerels of the genus Scomber. Fishery Bulletin- National Oceanic and Atmospheric Administration 96:823–842.
- Shannon LV. 2001. Benguela current. In: Steele JH, ed. Encyclopedia of Ocean Sciences. Oxford: Academic Press, 255–267.
- Slatkin M. 1993. Isolation by distance in equilibrium and non-equilibrium populations. Evolution Education and Outreach 47(1):264–279 [DOI 10.1111/j.1558-5646.1993.tb01215.x](http://dx.doi.org/10.1111/j.1558-5646.1993.tb01215.x).
- Smith PJ. 1994. Genetic diversity of marine fisheries resources: possible impacts of fishing. In: FAO Fisheries Technical Paper. Rome: FAO, 53.
- Stroganov AN, Nikitenko AI, Rakitskaya TA, Belyaev VA. 2023. Study of population genetic structure of Atlantic mackerel Scomber colias Gmelin, 1789 (Scombridae) in the Central East Atlantic. Russian Journal of Genetics 59(1):66–72 [DOI 10.1134/S1022795423010118.](http://dx.doi.org/10.1134/S1022795423010118)
- Tang CY, Tzeng CH, Chen CS, Chiu TS. 2009. Microsatellite DNA markers for population-genetic studies of blue mackerel (Scomber australasicus) and cross-specific amplification in S. japonicus. Molecular Ecology Resources 9(3):824–827 [DOI 10.1111/j.1755-0998.2008.02278.x.](http://dx.doi.org/10.1111/j.1755-0998.2008.02278.x)
- Tzeng CH, Chen CS, Tang PC, Chiu TS. 2009. Microsatellite and mitochondrial haplotype differentiation in blue mackerel (Scomber australasicus) from the western North Pacific. ICES Journal of Marine Science 66(5):816–825 [DOI 10.1093/icesjms/fsp120.](http://dx.doi.org/10.1093/icesjms/fsp120)
- Uriarte A, Alvarez P, Iversen SA, Molloy J, Villamor B, Martíns MM, Myklevoll S. 2001. Spatial pattern of migration and recruitment of North East Atlantic mackerel. In: ICES Annual Science Conference Session O: Application of Mark Recapture Experiments to Stock Assessment.
- Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4(3):535–538 [DOI 10.1111/j.1471-8286.2004.00684.x.](http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x)
- Vásquez S, Correa-Ramírez M, Parada C, Sepúlveda A. 2013. The influence of oceanographic processes on jack mackerel (Trachurus murphyi) larval distribution and population structure in the southeastern Pacific Ocean. ICES Journal of Marine Science 70(6):1097–1107 [DOI 10.1093/icesjms/fst065.](http://dx.doi.org/10.1093/icesjms/fst065)
- Waldman B, McKinnon J. 1993. Inbreeding and outbreeding in fishes, amphibians and reptiles. In: Thornhill N, ed. The Natural History of Inbreeding and Outbreeding. Chicago: University of Chicago Press, 250–282.
- Waples RS. 1987. A multispecies approach to the analysis of gene flow in marine shore fishes. Evolution Education and Outreach 41(2):385–400 [DOI 10.1111/j.1558-5646.1987.tb05805.x](http://dx.doi.org/10.1111/j.1558-5646.1987.tb05805.x).
- Waples RS. 1998. Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. Journal of Heredity 89(5):438-450 [DOI 10.1093/jhered/89.5.438.](http://dx.doi.org/10.1093/jhered/89.5.438)
- Ward RD. 2000. Genetics in fisheries management. Hydrobiologia 420:191–201 [DOI 10.1007/978-94-017-2184-4_18.](http://dx.doi.org/10.1007/978-94-017-2184-4_18)
- Weber E, McClatchie S. 2011. Effect of environmental conditions on the distribution of Pacific mackerel (Scomber japonicus) larvae in the California Current system. Fishery Bulletin 110:85–97.
- Weersing K, Toonen RJ. 2009. Population genetics, larval dispersal, and demographic connectivity in marine systems. Marine Ecology Progress Series 393:1–12 [DOI 10.3354/meps08287.](http://dx.doi.org/10.3354/meps08287)
- Weir BS, Cockerham C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38(6):1358–1370 [DOI 10.2307/2408641.](http://dx.doi.org/10.2307/2408641)
- Westgaard J-I, Saha A, Kent M, Hansen HH, Knutsen H, Hauser L, Cadrin SX, Albert OT, Johansen T. 2017. Genetic population structure in Greenland halibut (Reinhardtius hippoglossoides) and its relevance to fishery management. Canadian Journal of Fisheries and Aquatic Sciences 74(4):475–485 [DOI 10.1139/cjfas-2015-0430.](http://dx.doi.org/10.1139/cjfas-2015-0430)
- White C, Selkoe KA, Watson J, Siegel DA, Zacherl DC, Toonen RJ. 2010. Ocean currents help explain population genetic structure. Proceedings of the Royal Society B: Biological Sciences 277(1688):1685–1694 [DOI 10.1098/rspb.2009.2214](http://dx.doi.org/10.1098/rspb.2009.2214).
- Wright S. 1943. Isolation by distance. Genetics 28:114–138 [DOI 10.1093/genetics/28.2.114.](http://dx.doi.org/10.1093/genetics/28.2.114)
- Zardoya R, Castilho R, Grande C, Favre-Krey L, Caetano S, Marcato S, Krey G, Patarnello T. 2004. Differential population structuring of two closely related fish species, the mackerel (Scomber scombrus) and the chub mackerel (Scomber japonicus), in the Mediterranean Sea. Molecular Ecology 13(7):1785–1798 [DOI 10.1111/j.1365-294X.2004.02198.x.](http://dx.doi.org/10.1111/j.1365-294X.2004.02198.x)
- Zarraonaindia I, Pardo MA, Iriondo M, Manzano C, Estonba A. 2009. Microsatellite variability in European anchovy (Engraulis encrasicolus) calls for further investigation of its genetic structure and biogeography. ICES Journal of Marine Science 66(10):2176–2182 [DOI 10.1093/icesjms/fsp187](http://dx.doi.org/10.1093/icesjms/fsp187).
- Zeng L, Cheng Q. 2012. Thirty novel microsatellite markers for the coastal pelagic fish, Scomber japonicus (Scombridae). Journal of Genetics 91(S1):64-68 [DOI 10.1007/s12041-012-0153-7](http://dx.doi.org/10.1007/s12041-012-0153-7).
- Zeng L, Cheng Q, Chen X. 2012. Microsatellite analysis reveals the population structure and migration patterns of Scomber japonicus (Scombridae) with continuous distribution in the East and South China Seas. Biochemical Systematics and Ecology 42:83–93 [DOI 10.1016/j.bse.2012.02.014.](http://dx.doi.org/10.1016/j.bse.2012.02.014)