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ABSTRACT
Sustainable management of transboundary fish stocks hinges on accurate delineation
of population structure. Genetic analysis offers a powerful tool to identify potential
subpopulations within a seemingly homogenous stock, facilitating the development
of effective, coordinated management strategies across international borders. Along
the West African coast, the Atlantic chub mackerel (Scomber colias) is a
commercially important and ecologically significant species, yet little is known about
its genetic population structure and connectivity. Currently, the stock is managed as
a single unit in West African waters despite new research suggesting morphological
and adaptive differences. Here, eight microsatellite loci were genotyped on 1,169
individuals distributed across 33 sampling sites from Morocco (27.39�N) to Namibia
(22.21�S). Bayesian clustering analysis depicts one homogeneous population across
the studied area with null overall differentiation (FST = 0.0001ns), which suggests
panmixia and aligns with the migratory potential of this species. This finding has
significant implications for the effective conservation and management of S. colias
within a wide scope of its distribution across West African waters from the South of
Morocco to the North-Centre of Namibia and underscores the need for increased
regional cooperation in fisheries management and conservation.
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INTRODUCTION
Sustainable stock management and conservation of marine resources require knowledge of
the species’ population variability in a bio-geographical context. Failure to take into
consideration the underlying components of the population structure of a species (e.g.,
spatio-temporal mixing of populations) can result in differential exploitation patterns and
discrepancies between management measures among countries, which can lead to
overexploitation of unique spawning components and subsequent resources declines (e.g.,
Allendorf et al., 2008; Kerr et al., 2017). As such, a reliable delineation of the biological units
is needed to maintain the sustainability of fisheries, especially as climate change and other
human pressures on marine ecosystems continue to intensify (Gissi et al., 2021; IPCC,
2022; Ramírez et al., 2022).

Genetic and genomic tools are commonly used to accurately define stock structure of
fish (Ward, 2000) and to assess connectivity among marine populations (Bekkevold et al.,
2015; Besnier et al., 2014; Dahle et al., 2018b; Hemmer-Hansen et al., 2019;Henriques et al.,
2017; Le Moan, Bekkevold & Hemmer-Hansen, 2021). Using genetic and genomic tools to
identify stock structure has proved useful for a variety of issues such as updating
management plans (Mullins et al., 2018; Quintela et al., 2020; Saha et al., 2017;Westgaard
et al., 2017), cost-effective fisheries management enforcement (Glover, 2010; Martinsohn
et al., 2019), “real-time” regulation of harvest (Dahle et al., 2018a; Johansen et al., 2018)
and harmonizing biological and management units (Aguirre-Sarabia et al., 2021; Leone
et al., 2019; Rodríguez-Ezpeleta et al., 2019), which is particularly important for
transboundary stocks of highly migratory and commercial important fish. Microsatellites
are one of such tool, which consist of short repeating sequences of DNA found in
organisms (O’Connell &Wright, 1997; Ellegren, 2004). They are highly variable due to their
high mutation rate and are ideal for genetic studies to assess genetic diversity, identify
population structure, and conduct parentage analysis (Ramya & Behera, 2023).

Widely distributed species with shared/transboundary distributions (Munro, Van
Houtte & Willmann, 2004) such as the Atlantic chub mackerel, Scomber colias Gmelin,
1789, are particularly challenging to manage due to the complexities of their stock
structure, but make them a well-suited candidate for genetic analysis. S. colias, a
medium-size pelagic schooling species belonging to the Scombridae family, inhabits the
continental shelf down to 300 m depth throughout the Atlantic Ocean, the Mediterranean
and the Black Seas (Collette, 1986; Collette & Nauen, 1983; Scoles, Graves & Collette, 1988).
In the Northeast Atlantic, the species is distributed from southern European waters
(Iberian Peninsula) southwards along the African coast to South of Africa, and is also
found in the connected Mediterranean and Black Seas (Castro Hernández & Santana
Ortega, 2000). The species is economically valuable and targeted by industrial and artisanal
fisheries throughout its geographical distribution (Castro Hernández & Santana Ortega,
2000).

Various studies suggested significant differences between Atlantic chub mackerel
from the Western and the Eastern Atlantic, supporting the existence of two different

Sbiba et al. (2024), PeerJ, DOI 10.7717/peerj.17928 2/26

http://dx.doi.org/10.7717/peerj.17928
https://peerj.com/


populations occurring on either side of the Atlantic Ocean (Costa et al., 2011; Roldán et al.,
2000; Scoles, Graves & Collette, 1988). In the NE Atlantic and surrounding waters, the
available genetic evidence suggests significant lack of genetic diversity in S. colias
indicating the presence of a large panmictic unit (Rodríguez-Ezpeleta et al., 2016).
According to Zardoya et al. (2004), the 5′ end of the mitochondrial control region indicates
that S. colias behaves as a panmictic population in the Mediterranean Sea and the south of
Portugal. Based upon microsatellites, Stroganov et al. (2023) found that in the southern
region of Morocco (23�N–21�N), samples show a high genetic homogeneity, suggesting
large degree of connectivity. Congeneric species such as S. scombrus reveal population
differentiation only at a transatlantic scale (Nesbø et al., 2000), whereas S. japonicus
displays weak genetic structure across the NW Pacific (Cheng et al., 2015), with local
genetic differentiation seemingly linked to differences in spawning time and migratory
behaviour (Zeng, Cheng & Chen, 2012).

Migration patterns could be potentially impacting population structure. Thus, in both
African and European waters, the species would migrate from the wintering areas (mainly
located off Mauritania, South Portugal and the inner part of the Bay of Biscay) towards
northern areas in summer and, in the case of the Bay of Biscay, also towards the western
Iberian Peninsula (ICES, 2021). Recent studies investigating the spatial variability of
life-history parameters of S. colias suggested the existence of latitudinal trends with a
mixing zone between Atlantic African, Mediterranean and Atlantic Iberian population
components (e.g., Domínguez-Petit et al., 2022). In the most recent study using otolith
shape analysis, Sbiba et al. (2024) pointed out the existence of two populations, a northern
one in Morocco from Larache (36�N) to Tarfaya (28�N), and a southern one from Tarfaya
to Senegal (14�N). Thus, two stocks have been outlined according to biological traits: a
northern one ranging from North Morocco to Cape Bojador in South Morocco (26�07′
37″N, 14�29′57″W), and a southern one between Cape Bojador and the South of Senegal
(https://firms.fao.org/firms/resource/10100/en). However, the lack of both robust evidence
of stock identity (ICES, 2021) as well as information on population connectivity led to a
joint assessment of both stocks in this area since 2003, thus highlighting the need for stock
identity information in the NE Atlantic part of the species range (FAO, 2020).
Morphometric differences on S. colias were also detected across five sampling sites in
Morocco (Bouzzammit & El Ouizgani, 2019) as well as across three different locations in
Tunisia (Allaya et al., 2016). Moreover, Erguden et al. (2009) used morphometric and
meristic analyses to distinguish stocks of S. colias in seven locations throughout the Black,
Marmara, Aegean, and Northeastern Mediterranean Seas, revealing the existence of two
distinct groups. Overall, these studies also highlight the high potential of phenotypic
plasticity of this species.

The migratory behaviour of S. colias, along with the high dispersal potential of its early
life stages (eggs and larvae) within the open Atlantic Ocean is expected to favour
connectivity and act as a homogenization factor. In addition, the West African coast is
affected by several oceanic currents (see Fig. 1), i.e., the Canary, Guinea, and Benguela
Currents that can influence both dispersal and migration patterns, thus amplifying the

Sbiba et al. (2024), PeerJ, DOI 10.7717/peerj.17928 3/26

https://firms.fao.org/firms/resource/10100/en
http://dx.doi.org/10.7717/peerj.17928
https://peerj.com/


homogenization effects (White et al., 2010). Consequently, a pattern of genetic panmixia is
foreseen on S. colias along the west coast of Africa. To verify this hypothesis, eight
microsatellites were used to investigate the population structure of this species sampled
from south of Morocco (~28�N) to Namibia (~22�S) at 33 locations.

MATERIALS AND METHODS
Sampling
Fish were collected during the scientific surveys on board the R/V Dr. Fridtjof Nansen
carried out in 2017 and 2019 in the area stretching from Morocco (~28�N) to Namibia
(~22�S) (Fig. 1). Sampling permits were obtained through the “Application of the
Ecosystem Approach to Fisheries management considering climate and pollution impacts”
(GCP/GLO/690/NOR). Pelagic trawl hauls were performed after echosounders target
identification of fish schools and, when possible, 30 individuals were collected per trawling
station (Table 1). The sampling procedure reflected the species’ distribution (Baird, 1977;
Scoles, Graves & Collette, 1988), whose southern limit of highest abundance seems to be
placed at low latitudes in the southern hemisphere. Thus, some 75.5% of the individuals
were collected north to Ghana whereas the southernmost countries such as Angola and
Namibia only accounted for 7.5% of the individuals in line with the species biomass levels
observed in those zones. Fin clips from 1,848 fish were collected and preserved in ethanol
prior to DNA extraction.

DNA isolation and genotyping
DNA was extracted using the Qiagen DNeasy 96 Blood & Tissue Kit in (Qiagen, Hilden,
Germany) 96-well plates; each of which contained two or more negative controls. DNA
concentration was quantified using a NanoDrop 8000 (Thermo Fisher Scientific, Waltham,
MA, USA). The molecular markers used in the current study were initially developed for
both S. colias (one) and S. japonicus (seven) (Catanese et al., 2010; Chen et al., 2017; Zeng &
Cheng, 2012) as microsatellite cross-species amplification has proven a successful tool for
fisheries management and conservation (e.g., Maduna et al., 2014) formerly applied to
Scomber species (Tang et al., 2009; Zeng, Cheng & Chen, 2012). Eight microsatellite loci
isolated from S. colias (Sco2_1) and S. japonicus (SJ78, SJNT19, SJT5, SJT53, SJT122,
SJT182, SJT199), respectively (Table S1 in Supporting Information), were genotyped in
three multiplexed reactions. PCR amplifications were performed in a final volume of 10 mL
containing approximately 20 ng DNA template, 1 × buffer, 2–3 mM MgCl2, 0.2 mM
dNTPs, 0.2–0.5 mM of each primer and 1U GoTaq polymerase in an Applied Biosystems
Gene Amp PCR Systems 2700 thermal cycler. PCR profiles consisted of 15 min
denaturation at 95 �C followed by 27–32 cycles of 30 s denaturation at 94 �C, 90 s at
annealing temperature (Table S1 in Supporting Information) and 90 s extension at 72 �C
with a final step of 7 min at 72 �C. PCR products were analysed on an ABI 3730 Genetic
Analyser and the 500LIZTM size standard (Applied Biosystems, Waltham, MA, USA) was
used to accurately determine the size of the fragments and allelic variation. Scoring was
performed using the software Fragment Profiler 1.2 (Amersham Biosciences,
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Figure 1 Map of sampling locations of Scomber colias in the West coast of Africa. Detailed infor-
mation per sample can be found in Table 1. The arrows, based upon Fig. 1 in Reid et al. (2016), indicate
some of the major currents affecting the area and their relative temperature: Canary Current (CC), North
Equatorial Current (NEC), Equatorial Counter Current (ECC), Guinea Current (GC), Angolan Current
(AnC), and South Equatorial Current (SEC). Full-size DOI: 10.7717/peerj.17928/fig-1
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Table 1 Summary statistics of Scomber colias genotyped at eight microsatellites.

Country Sample Latitude Longitude N No
alleles

Ar (N >
20)

No private
alleles

Ho u He FIS Dev HWE
(FDR)

Dev LD
(FDR)

Morocco MOR_1 27.39 −13.38 51 128 12.1 0 0.791 ± 0.023 0.879 ± 0.013 0.090 ± 0.028 3 (2) 2 (0)

MOR_2 25.98 −14.87 58 135 12.4 2 0.803 ± 0.033 0.881 ± 0.015 0.081 ± 0.032 1 (1) 3 (1)

MOR_3 24.71 −15.8 45 130 12.6 0 0.780 ± 0.040 0.885 ± 0.011 0.108 ± 0.047 5 (4) 6 (2)

MOR_4 24.4 −15.93 41 126 12.5 0 0.832 ± 0.028 0.885 ± 0.011 0.048 ± 0.029 5 (3) 7 (1)

MOR_5 24.02 −16.28 44 117 11.8 0 0.763 ± 0.041 0.878 ± 0.014 0.122 ± 0.045 1 (1) 2 (0)

MOR_6 23.32 −16.6 40 126 12.4 1 0.794 ± 0.037 0.873 ± 0.016 0.079 ± 0.036 3 (3) 0 (0)

MOR_7 22.35 −17 51 126 12.4 1 0.823 ± 0.039 0.889 ± 0.009 0.064 ± 0.043 2 (1) 10 (3)

MOR_8 21.06 −17.31 38 121 12.9 0 0.841 ± 0.031 0.891 ± 0.012 0.043 ± 0.032 4 (4) 3 (0)

MOR_9 21.09 −17.42 39 125 12.7 1 0.811 ± 0.051 0.884 ± 0.013 0.072 ± 0.054 2 (2) 1 (0)

Mauritania MAU_1 20.22 −17.58 41 124 12.5 0 0.803 ± 0.037 0.882 ± 0.013 0.078 ± 0.039 3 (1) 3 (2)

MAU_2 19.46 −16.98 41 122 12.4 0 0.843 ± 0.041 0.884 ± 0.012 0.034 ± 0.043 4 (3) 0 (0)

MAU_3 19.05 −16.66 34 118 12.8 0 0.777 ± 0.055 0.881 ± 0.014 0.106 ± 0.056 2 (2) 1 (0)

MAU_4 18.08 −16.43 40 123 12.5 1 0.839 ± 0.037 0.879 ± 0.012 0.035 ± 0.034 1 (1) 0 (0)

MAU_5 16.73 −16.66 44 122 11.9 0 0.812 ± 0.036 0.872 ± 0.016 0.059 ± 0.036 1 (0) 0 (0)

MAU_6 17.41 −16.27 23 101 12.1 0 0.790 ± 0.041 0.866 ± 0.025 0.062 ± 0.052 2 (0) 1 (0)

Senegal SEN_1 14.56 −17.35 44 129 12.2 4 0.778 ± 0.035 0.869 ± 0.015 0.095 ± 0.033 2 (1) 1 (0)

SEN_2 13.16 −17.41 40 124 12.5 0 0.831 ± 0.023 0.882 ± 0.013 0.045 ± 0.024 3 (2) 2 (0)

Gambia GAM 13.25 −17.47 22 102 12.4 1 0.806 ± 0.052 0.877 ± 0.022 0.061 ± 0.052 2 (2) 1 (1)

Guinea-
Bissau

GUIBIS 10.92 −16.86 5 46 n.a. 0 0.725 ± 0.053 0.850 ± 0.023 0.034 ± 0.087 0 (0) 0 (0)

Guinea GUI_1 9.38 −15.61 29 106 11.8 0 0.773 ± 0.038 0.869 ± 0.021 0.095 ± 0.036 3 (3) 1 (0)

GUI_2 9.51 −15.22 24 102 12.1 0 0.802 ± 0.037 0.871 ± 0.014 0.058 ± 0.043 2 (1) 0 (0)

Sierra
Leone

SIER 8.06 −14.09 11 71 n.a. 1 0.839 ± 0.054 0.866 ± 0.019 -0.011 ±
0.054

0 (0) 0 (0)

Liberia LIB 4.66 −8.74 33 116 12.7 0 0.814 ± 0.048 0.894 ± 0.010 0.075 ± 0.053 1 (1) 1 (0)

Ivory
Coast

IVCO 4.81 −5.13 23 96 11.5 1 0.828 ± 0.027 0.877 ± 0.014 0.034 ± 0.029 3 (2) 3 (0)

Ghana GHA_1 5.19 −0.6 51 142 13.0 1 0.820 ± 0.025 0.886 ± 0.013 0.065 ± 0.025 2 (1) 2 (0)

GHA_2 4.59 −2.19 43 124 12.3 0 0.806 ± 0.034 0.883 ± 0.012 0.077 ± 0.036 2 (1) 0 (0)

GHA_3 4.92 −0.89 30 116 12.9 2 0.806 ± 0.032 0.881 ± 0.015 0.070 ± 0.032 2 (1) 0 (0)

GHA_4 4.86 −0.92 35 114 11.9 0 0.798 ± 0.041 0.877 ± 0.015 0.076 ± 0.047 0 (0) 0 (0)

Gambia GAB_1 −2.41 9.06 38 137 13.6 1 0.819 ± 0.023 0.884 ± 0.013 0.061 ± 0.019 0 (0) 1 (0)

GAB_2 −3.45 9.87 24 104 12.2 0 0.813 ± 0.036 0.879 ± 0.014 0.055 ± 0.042 2 (1) 1 (0)

Angola ANG_1 −10.64 13.52 27 111 12.5 0 0.792 ± 0.041 0.875 ± 0.019 0.077 ± 0.047 2 (1) 0 (0)

ANG_2 −15.06 12.02 38 114 12.2 0 0.768 ± 0.057 0.873 ± 0.016 0.109 ± 0.061 1 (1) 0 (0)

Namibia NAM −22.21 13.17 22 96 11.6 0 0.733 ± 0.049 0.861 ± 0.019 0.129 ± 0.051 1 (0) 0 (0)

Note:
Sampling sites per country, geographic coordinates (decimal degrees), number of individuals (N), total number of alleles, allelic richness based on a minimum sample of
20 diploid individuals, number of private alleles, observed heterozygosity Ho (mean ± SE), unbiased expected heterozygosity uHE (mean ± SE), inbreeding coefficient FIS
(mean ± SE), number of deviations from Hardy-Weinberg equilibrium (HWE) at a = 0.05, number of deviations from Linkage Disequilibrium (LD) at a = 0.05 with False
Discovery Rate (FDR) correction.
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Buckinghamshire, England). Automatically binned alleles were manually checked by two
researchers prior to exporting data for statistical analyses.

As it was not always possible to obtain a minimum of thirty good-quality genotyped
individuals per site, nearby sampling sites within countries were merged to achieve
significant sampling sizes (Hale, Burg & Steeves, 2012). Sampling sizes ranged from 22
individuals (GAM in Gambia) to 58 (MOR_2 in Morocco). However, in Sierra Leone
(N = 11), and Guinea-Bissau (N = 5) (Table 1), sampling sizes were too low and therefore
these samples were excluded from some of the analyses.

Statistical analysis
Loci were screened for null alleles, large allele dropouts and potential scoring errors due to
stuttering bands using the software Micro-Checker v.2.2.3 (Van Oosterhout et al., 2004).
The frequency of null allele(s) was estimated with the maximum likelihood method using
the EM algorithm of Dempster, Laird & Rubin (1977) implemented in the software
Genepop 7 (Rousset, 2008). To assess the effect of including loci with possible null allele(s)
on population differentiation estimates, the software FreeNA (Chapuis & Estoup, 2006)
was used to calculated both uncorrected and corrected FST values. Confidence intervals
(95%) of null frequencies were based on 1,000 bootstraps.

The statistical power of this microsatellites set to detect genetic differentiation was
estimated using POWSIM 4.1 (Ryman & Palm, 2006), which uses χ2 and Fisher tests to
assess whether the observed data set carries enough statistical power to detect a Nei’s FST
value significantly larger than zero. The analyses were conducted maintaining effective
population size constant (Ne = 15,000) following Henriques et al. (2017), and changing the
number of generations of drift since divergence (t: 15, 35, 100, 160, 200, 350 and 500
generations) to model different levels of FST (0.0005, 0.0012, 0.0033, 0.0053, 0.0066, 0.0117,
and 0.0165, respectively). The probability of rejecting the null hypotheses of no population
differentiation (type I error) was also estimated (FST = 0, t = 0). Statistical power was
determined as the proportion of tests indicating statistical significance (p < 0.05), with
1,000 replicates. In addition, to assess if this suite of twelve microsatellites would accurately
discriminate between individuals in a population, the genotype accumulation curve was
built using the function genotype curve in the R (R Core Team, 2020) package poppr
(Kamvar, Tabima & Grünwald, 2014) by randomly sampling x loci without replacement
and counting the number of observed multilocus genotypes (MLGs).

The total number of alleles, number of private alleles, and allelic richness per sample was
calculated using MSA 4.05 (Dieringer & Schlötterer, 2003). The observed (Ho) and
unbiased expected heterozygosity (uHE), inbreeding coefficient (FIS) as well as the number
of deviations fromHardy-Weinberg expectations (HWE) were computed per sample using
GenAlEx v6.1 (Peakall & Smouse, 2006). Linkage disequilibrium (LD) between pairwise
loci per sample was computed using the program Genepop (Rousset, 2008). The false
discovery rate (FDR) correction of Benjamini & Hochberg (1995) was applied to p-values
to control for Type I errors.

In marine fish species, loci carrying signatures of locally divergent selection might
function as powerful markers to evaluate spatially explicit genetic structure, as well as to
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outline fisheries stocks for sustainable management (Russello et al., 2012). Thus, two
approaches were combined to identify loci eventually departing from neutrality: BayeScan
2.1 (Foll & Gaggiotti, 2008) and Arlequin v.3.5.1.2 (Excoffier, Laval & Schneider, 2005).
In BayeScan, sample size was set to 10,000 and thinning interval to 50; and loci with a
posterior probability over 0.99, corresponding to a Bayes Factor >2 (i.e., “decisive
selection” (Foll & Gaggiotti, 2006), were retained as outliers. In Arlequin, analysis was
simulated based on 1,000 demes with 50,000 simulations under a hierarchal island model.

Pairwise FST (Weir & Cockerham, 1984) was computed using GENEPOP 4.0.6 (Rousset,
2008), whereas population differentiation was tested via G exact tests calculated using the
following Monte Carlo Markov Chain (MCMC) parameters: 10,000 steps of
dememorisation, and 5,000 iterations for 100 batches, also with GENEPOP 4.0.6.

The Bayesian clustering approach implemented in STRUCTURE v.2.3.4 (Pritchard,
Stephens & Donnelly, 2000), and conducted using the software ParallelStructure (Besnier &
Glover, 2013), was used to identify genetic groups under a model assuming admixture and
correlated allele frequencies, both using and without using geographic LOCPRIORS to
assist the clustering. Ten runs with a burn-in period consisting of 100,000 replications and
a run length of 1,000,000 MCMC iterations were performed for K = 1 to K = 10 clusters.
To determine the number of genetic groups, STRUCTURE output was analysed using two
approaches: (a) the ad hoc summary statistic ΔK of Evanno, Regnaut & Goudet (2005) and
(b) the Puechmaille (2016) four statistics (MedMedK, MedMeanK, MaxMedK and
MaxMeanK), specially recommended for uneven sampling sizes, both conducted using
StructureSelector (Li & Liu, 2018). Finally, the ten runs for the selected Ks were averaged
with CLUMPP v.1.1.1 (Jakobsson & Rosenberg, 2007) using the FullSearch algorithm and
the G′ pairwise matrix similarity statistic, and graphically displayed using barplots.
Furthermore, the relationship among samples was also examined using the Discriminant
Analysis of Principal Components (DAPC) (Jombart, Devillard & Balloux, 2010)
implemented in the R (R Core Team, 2020) package adegenet (Jombart, 2008) in which
groups were defined a priori using geographically explicit samples. To avoid overfitting,
both the optimal number of principal components and discriminant functions to be
retained were determined through cross validation using the xvalDapc function from
adegenet (Jombart & Collins, 2015; Miller, Cullingham & Peery, 2020).

The relationship between genetic (FST) and geographic (km) distance was examined to
investigate if it followed the expectations of an “Isolation by Distance” pattern (IBD), i.e.,
increasing genetic differentiation with geographic distance as a result of restricted gene
flow and drift (Rousset, 1997; Slatkin, 1993;Wright, 1943). A two-tailedMantel (1967) test
was conducted using PASSaGE v2 (Rosenberg & Anderson, 2011) and significance was
assessed via 10,000 permutations. The matrix of pairwise shortest distance by water was
created by calculating least-cost distances via seas (avoiding landmasses) between
sampling sites using the lc.dist function from the R (R Core Team, 2020) package marmap
v1.0 (Pante & Simon-Bouhet, 2013).
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RESULTS
Quality control
Some 679 individuals out of the 1,848 genotyped ones were discarded due to exceeding the
threshold of acceptance of missing genotypic data, which was set at 25% or due to
unreliable scoring. From the 1,169 retained individuals, no missing markers were reported
for 84% of the fish, whereas only 4% of the individuals displayed the maximum missing
data allowed (see distribution of missing data per sample and locus in Fig. S1 in Supporting
Information).

Data validation conducted with Micro-Checker did not find evidence of scoring error
due to stuttering or large allelic dropout but suggested the possibility of null alleles in two
of the loci, which showed a significant deficit of heterozygotes (p < 0.0001) after global
Hardy-Weinberg tests. The frequency of null alleles per sample in these loci took a
maximum value of 0.216 (locus STJ5 in ANG_2), whereas it was <0.05 in 71% of the cases
(see Table S2 in Supporting information). As global and pairwise divergence calculated
with and without using the ENA correction implemented in FreeNA displayed similar
values (i.e., a difference of 0.00045 in the overall FST values); the two loci suggestive of
displaying null alleles were retained for further analyses.

The simulation analyses revealed that the dataset carried enough statistical power to
detect genetic differentiation as low as FST = 0.0066 in 80% of the cases, whereas only in
11% of the cases when levels of differentiation were five-fold lower (FST = 0.0012). The
probability of rejecting the null hypothesis of panmixia if true (type I error) was estimated
at 5% (Fisher test) and thus considered appropriate (Fig. S2 in Supporting Information).
In addition, the number of microsatellite markers with the capacity of differentiating
unique individuals can be inferred from the plateau of the genotype accumulation curve
and this was achieved with some 37% of the markers used (Fig. S3 in Supporting
Information).

Summary statistics
The eight loci showed high rates of amplification success (93–100%) and suitable levels of
polymorphism for population genetic analysis (100% polymorphic loci per sample). Allelic
richness based on a minimum sample size of 20 diploid individuals took similar values
throughout all the geographic range and moved between 11.5 (IVCO) and 13.6 (GAB_1),
whereas the number of alleles for the same set of samples ranged between 96 and 137,
respectively (Table 1). A total of 17 private alleles were found; they were distributed across
all loci but SJT122 and ranged from 1 (Sco2-1, SJ78) to 4 (SJNT19, SJT199 and SJT53) and
across 12 samples ranging from 1 (MOR_6, MOR_7, MOR_9, MAU_4, GAM, SIER,
IVCO,GHA_1, GAB_1) to 4 (SEN_1). Ho and uHE took similar values across samples and
in the range 0.73–0.9. uHE was consistently higher than HO in all samples; in consequence,
multilocus test detected heterozygote deficit in every sample but SIER (p-val = 0.257).
The three loci displaying deviations from HWE in a larger number of samples after
correcting for FDR were: SJT5 (in 20 samples), and Sco2-1 and SJ78 (in six). Both SJT5 and
Sco2-1 exhibited homozygote excess and likely presence of null alleles.
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Genetic differentiation
No locus was found to be deviate from neutral expectations according to Arlequin, whereas
BayeScan flagged all of them as putative candidates to balancing selection (Table S3 in
Supporting Information). Due to the lack of consensus of neutrality between methods, the
full set of microsatellites was retained for subsequent analyses.

Overall, no significant population structuring was detected across the study area as
indicated by a global FST of 0.001 (p = 0.587). Pairwise FST ranged from 0.000 to 0.011
(Table 2) with no significant differentiation whatsoever across the investigated geographic
range.

STRUCTURE conducted both with and without LOCPRIORS reported a decreasing
trend of LnP(D) across subsequent values of K with the highest average likelihood at K = 1
(Figs. S4A and S4B in Supporting Information). Evanno test, which by definition cannot
yield K = 1, reported K = 2 (no priors) and K = 5 (LOCPRIORS), respectively but with
extremely little support as both ΔK values were low (ΔK < 7). Puechmaille (2016)’s four
statistics (MedMedK, MedMeanK, MaxMedK and MaxMeanK) implemented in
StructureSelector confirmed one single genetic group in the model using priors, and K = 2
when not using them (Figs. S4A and S4B in Supporting Information). The barplot for
K = 2 for the model without using LOCPRIORS revealed inferred ancestry to cluster
ranging around 0.5 for each individual (Fig. S5 in Supporting Information), which is
consistent with one single genetic unit.

Cross validation determined that 200 was the optimal number of PCs to be retained for
the DAPC analysis using the 33 geographically explicit locations. In agreement with
STRUCTURE, the corresponding DAPC plot revealed a large overlap of the individuals
sampled across all the studied geographic range (Fig. 2) with none of the axes reaching 7%
of the variation. Although some some individuals of SEN_1 partially deviated from the
cloud, SEN_1 was not significantly different from any of the remaining samples according
to pairwise FST.

Mantel test revealed lack of correlation between genetic differentiation (pairwise FST)
and geographic distance along the latitudinal gradient ranging from Morocco to Namibia
(rxy = 0.012, p = 0.401).

DISCUSSION
Investigating transboundary fish stocks with genetics is crucial for sustainable fisheries
management. By identifying population structure in important commercial fish species, we
can prevent overexploitation and allow for coordinated management strategies across
national borders. This is the first attempt to describe the population structure of the
Atlantic chub mackerel over most of its African distribution. The main result of the present
study is the lack of geographically explicit structure in the coastline stretching from
Morocco (27.39�N) to Namibia (22.21�S) based upon eight microsatellite markers.

Genetic diversity
Many marine fishes exhibit high levels of genetic diversity due to historically large effective
population sizes (Hauser et al., 2002; Hauser & Carvalho, 2008). All samples analysed in
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the current study showed high levels of genetic diversity in terms of allelic richness (11.5 to
13.6) and heterozygosity (≥0.7) in agreement with results obtained for other medium and
small pelagic species, e.g., S. australasicus in the western North Pacific (Tzeng et al., 2009),
European sprat Sprattus sprattus (Glover et al., 2011), European anchovy Engraulis
encrasicolus (Zarraonaindia et al., 2009) or European pilchard Sardina pilchardus
(Baibai et al., 2012) in the North-East Atlantic. Overall, all samples (with the exception of
the one from Sierra Leone represented by just eleven individuals) deviated from HWE
expectations showing a deficit of heterozygotes. Heterozygote deficiency is not new to
Scomber literature as it has been shown in microsatellite studies of S. colias in the East
Atlantic Ocean and the Mediterranean Sea (Medina-Alcaraz, 2016) as well as in
S. japonicus along the Chinese coast (Cheng, Zhu & Chen, 2014; Zeng, Cheng & Chen,
2012). Heterozygote deficiency in non-selfing, diploid populations is relatively common
(Waldman & McKinnon, 1993) and in largely outcrossing species, it has commonly been
interpreted as indirect evidence of the mixing of differentiated gene pools (Wahlund
effect). However, selection and the presence of null alleles are common cause of
heterozygote deficiency. In agreement with the latter, in the current study, two out of the
eight genotyped loci were likely to display null alleles according to Micro-Checker
assessment. Finally, and given the S. colias stocks are considered to be overexploited along
West Africa (FAO, 2020), the third hypothesis to explain heterozygote deficiency could be
overexploitation as overfishing reduces population size drastically, leading to genetic
bottlenecks and loss of alleles (Smith, 1994).

Figure 2 Genetic differentiation among Scomber colias sampled in the West African coast and
genotyped at eight microsatellite markers depicted using Discriminant Analysis of Principal
Components (DAPC) after retaining 200 principal components. Individuals from different samples
are represented by coloured dots, and name labels are placed on the centroids of each geo-
graphically-explicit site. Full-size DOI: 10.7717/peerj.17928/fig-2
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Genetic population structure
In this study, the lack of genetic differentiation in S. colias revealed by eight microsatellites
in the geographic area from Morocco (27.39�N) to Namibia (22.21�S) supporting a theory
of panmixia would be a foreseen outcome due to pertinent ecological features of pelagic
fish, such as high fecundity, large effective population sizes that impose limitations to
genetic drift as well as a notable dispersal capacity as planktonic larvae and free-swimming
adults that promotes gene flow (e.g., Carlsson et al., 2004; Martínez et al., 2006; Waples,
1987, 1998). The combination of both features acts as a major homogenizing force
hindering genetic differentiation and eventually leading to panmixia (Canales-Aguirre
et al., 2018; De Bie et al., 2012; Roy et al., 2014; Weersing & Toonen, 2009).

S. colias is a highly migratory species with individuals capable of covering extensive
distances during their annual migrations favoured by a body shape well fitted for swift
motion and free swimming mode of life (Collette, 1999; Uriarte et al., 2001). In addition, its
planktonic larval stages also display considerable dispersal capabilities as pelagic larvae can
be transported over vast distances by ocean currents and eddies (Hernández-León, Gómez
& Arístegui, 2007) effectively leading to genetic homogeneity among populations. In
agreement, other studies have revealed a notable absence of genetic differentiation on
S. colias in the Northeast Atlantic and adjacent waters suggesting a large panmictic unit
(Rodríguez-Ezpeleta et al., 2016; Stroganov et al., 2023; Zardoya et al., 2004). Likewise,
congeneric species such as S. scombrus reveal population differentiation only at a
transatlantic scale (Nesbø et al., 2000), whereas S. japonicus displays weak genetic structure
across the NW Pacific (Cheng et al., 2015).

The hydrological conditions along the West African coast play a crucial role in various
ecological processes and are influenced by factors such as ocean currents, eddies,
temperature gradients, and upwelling phenomena. The region experiences the influence of
several major ocean currents (see Fig. 1), including the Canary Current, the Guinea
Current, and the Benguela Current, which affect the distribution of nutrients and
plankton, which in turn impacts the abundance and distribution of marine life, including
fish populations and seem to shape genetic differentiation of coastal species in this region
(Alpers et al., 2013; Barton, Field & Roy, 2013; Mittelstaedt, 1991; Nielsen et al., 2018;
Pelegrí & Peña-Izquierdo, 2015; Shannon, 2001). In consequence, distant sites may be
connected by a strong current between them, so, the absence of the genetic structure that
can result from the long-distance dispersal of the early development stages (Vásquez et al.,
2013; White et al., 2010).

However, regional differences in various life-history traits with latitudinal trends have
been detected in both European and NW African waters, with the Strait of Gibraltar as
changing point (ICES, 2021). Several studies have addressed the delineation of S. colias
population structure in the East Atlantic using phenotypic characters, and some latitudinal
trends seem to occur in length composition and life-history traits from the Strait of
Gibraltar northwards into European waters and southwards, through African waters
(Domínguez-Petit et al., 2022; ICES, 2021; Landa et al., 2022; Perrotta, Carvalho & Isidro,
2005). Differences include size at first maturity, which seems to be larger in the South of
Africa than in the North (ICES, 2021). Likewise, the spawning period, a crucial
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evolutionary driver in pelagic species (e.g., Lamichhaney et al., 2017; Petrou et al., 2021),
corresponds to January-March in the region comprising Morocco to Senegal, in contrast to
June-September in the area from Ghana to South Africa (ICES, 2021). Regarding the
Atlantic coast of North America, the population structure of the Atlantic chub mackerel
has not been extensively studied; however, differences in growth (Daley & Leaf, 2019),
habitat suitability (Chen et al., 2009), spawning seasons (Weber & McClatchie, 2011), size
at maturity (Cerna & Plaza, 2014) and morphology (Erguden et al., 2009) suggest that
different sub-stocks might exist. The latitudinal trends observed in the East Atlantic, with
the Strait of Gibraltar as inflection point (ICES, 2021), indicate that significant differences
might be expected if individuals from the whole East Atlantic distribution of S. colias
(including Mediterranean samples) were jointly analysed. This study is lacking samples
from North of Morocco as well as from the Iberian Peninsula, which should be included in
future genetic assessments.

Management implications
The lack of geographically explicit structure found here suggests the existence of one single
putative genetic stock for S. colias inhabiting the West African waters from Morocco
(27.39�N) to Namibia (22.21�S). Panmixia in a transboundary stock can present both
opportunities and challenges. First, if a transboundary stock truly acts as a single panmictic
population, then a single stock assessment might be sufficient, and the complexity of
modelling population dynamics and setting catch quotas becomes simplified. In this case,
all countries sharing the stock would benefit from implementing consistent management
practices and should work together to set catch quotas and implement regulations that
benefit the entire population.

However, a determination of panmixia based on a limited dataset might mask the
presence of subtle subpopulations with distinct spawning grounds or migration patterns.
In this case, management might need to consider specific population components, which if
unnoticed could lead to inadequate management strategies and potential overexploitation
of vulnerable subpopulations.

Although the sampling strategy of the present study comprises most of theWest African
geographical distribution of the species, this did not include the entire NE Atlantic
distribution and the seasonal migrations could not be considered in the study. Therefore,
although genetic divergences are not noticeable, some kind of local adaptations seem to
exist, more when seasonal migration processes of the species have been described in the
study area (García, 1982). From this perspective, and considering the current global
warming scenario in which the northwards expansion of the species across the East
Atlantic Ocean from regions of higher abundance off northwest Africa to the waters of the
Atlantic Iberian and the Mediterranean Sea is a fact (Jurado-Ruzafa et al., 2024), fisheries
management of Atlantic chub mackerel should account not only with punctual assessment
statuses of political-based stocks but consider all the variables mentioned along the present
section.

Although our data suggests that a nearly panmictic model is the most plausible scenario
for the genetic population pattern of S. colias, implying high level of genetic connectivity
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across the Western African countries ranging from 28�N to 22�S. However, phenotypic
variability and life history of S. colias, which follows a latitudinal gradient, support the
evidence of regional demographic units as suggested by Sbiba et al. (2024) based upon
otolith shape. Therefore, relying solely on genetic data may not provide a complete
snapshot of the demographic connectivity, especially in wild marine fish populations
characterized by high migration rates and large population sizes. It is crucial to consider
demographic connectivity in addition to genetic connectivity when managing an
important commercial species to ensure effective and sustainable measures. Finally, it
cannot be neglected that genetic differentiation could have eluded the scrutiny of the set of
markers used here as well as the possible impact of ascertainment bias driven by markers
isolated from sampled from the Pacific ocean (Zeng & Cheng, 2012). Future studies would
benefit from the genomic tools currently available such as the genome assembly of this
species recently published (Machado et al., 2022).

CONCLUSIONS
The findings of this study shed light on the population genetics of Scomber colias along the
West African coast. The study indicates that the species has very low genetic population
differentiation and large migratory (dispersal) potential. These results have significant
implications for the management of this crucial pelagic species in this region. The study
emphasizes the need for cooperation efforts and further research to fully comprehend the
underlying mechanisms of population connectivity and genetic homogenization. Advanced
genomic tools, such as whole-genome sequencing in combination with phenotypic and
environmental information could provide a more comprehensive understanding of any
complex population structure or adaptive potential of S. colias. Such an understanding is
important for developing more rational effective management strategies and ensuring the
sustainability of this shared stock. It could also help refine our understanding of this species’
evolutionary trajectories and guide sustainable management approaches at fine scale.

ACKNOWLEDGEMENTS
We thank the captain and crew of R.V. “Dr. Fridtjof Nansen” for their invaluable assistance
and contribution to this study, which made a significant impact on the research’s success.
Likewise, we thank Alejandro Mateos-Rivera for his advice in the laboratory. The authors
would like to extend their gratitude to the INRH for nominating Salah eddine Sbiba to
embark on the R/V Dr. Fridtjof Nansen. This opportunity has significantly contributed to
the success of our research. Disclaimer: The views expressed in this publication are those of
the author(s) and do not necessarily reflect the views or policies of the Food and
Agriculture Organization of the United Nations.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This study was funded by EAF-Nansen project, a collaboration between the Food and
Agriculture Organisation of the United Nations, the Norwegian Agency for Development

Sbiba et al. (2024), PeerJ, DOI 10.7717/peerj.17928 16/26

http://dx.doi.org/10.7717/peerj.17928
https://peerj.com/


Cooperation, and the Institute of Marine Research in Norway. This project also received
support from Global Environmental Facility, as well as the Canary Current Large Marine
Ecosystem project, implemented by the FAO, the United Nations Environment Program,
and seven partner countries: Morocco, Mauritania, Senegal, The Gambia, Cape Verde, and
Guinea Bissau. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Food and Agriculture Organisation of the United Nations.
Norwegian Agency for Development Cooperation.
Institute of Marine Research in Norway.
Global Environmental Facility.
Canary Current Large Marine Ecosystem Project.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Salah eddine Sbiba conceived and designed the experiments, performed the experiments,
analyzed the data, authored or reviewed drafts of the article, and approved the final draft.

. María Quintela analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.

. Johanne Øyro performed the experiments, authored or reviewed drafts of the article, and
approved the final draft.

. Geir Dahle performed the experiments, authored or reviewed drafts of the article, and
approved the final draft.

. Alba Jurado-Ruzafa conceived and designed the experiments, authored or reviewed
drafts of the article, and approved the final draft.

. Kashona Iita conceived and designed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

. Nikolaos Nikolioudakis conceived and designed the experiments, prepared figures and/
or tables, authored or reviewed drafts of the article, and approved the final draft.

. Hocein Bazairi conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.

. Malika Chlaida conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.

Field Study Permissions
The following information was supplied relating to field study approvals (i.e., approving
body and any reference numbers):

The EAF-Nansen Programme approved the study (GCP/GLO/690/NOR).

Sbiba et al. (2024), PeerJ, DOI 10.7717/peerj.17928 17/26

http://dx.doi.org/10.7717/peerj.17928
https://peerj.com/


Data Availability
The following information was supplied regarding data availability:

Genotype data is available at Zenodo and Havforskningsinstituttet:
Sbiba, S. E. (2024). Microsatellite data on Scomber colias in NW Africa [Data set].

Zenodo. https://doi.org/10.5281/zenodo.11518098
https://imr.brage.unit.no/imr-xmlui/handle/11250/3072605

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.17928#supplemental-information.

REFERENCES
Aguirre-Sarabia I, Díaz-Arce N, Pereda-Agirre I, Mendibil I, Urtizberea A, Gerritsen HD,

Burns F, Holmes I, Landa J, Coscia I, Quincoces I, Santurtún M, Zanzi A, Martinsohn JT,
Rodríguez-Ezpeleta N. 2021. Evidence of stock connectivity, hybridization, and
misidentification in white anglerfish supports the need of a genetics-informed fisheries
management framework. Evolutionary Applications 14(9):2221–2230 DOI 10.1111/eva.13278.

Allaya H, ben faleh A, Rebaya M, Zrelli S, Hajjej G, Hattour A, Jean-pierre Q, Trabelsi M. 2016.
Identification of Atlantic chub mackerel Scomber colias population through the analysis of body
shape in Tunisian waters. Cahiers de Biologie Marine 57:195–207
DOI 10.21411/CBM.A.6C4E0868.

Allendorf FW, England PR, Luikart G, Ritchie PA, Ryman N. 2008. Genetic effects of harvest on
wild animal populations. Trends in Ecology & Evolution 23(6):327–337
DOI 10.1016/j.tree.2008.02.008.

Alpers W, Brandt P, Lazar A, Dagorne D, Sow B, Faye S, Hansen MW, Rubino A, Poulain PM,
Brehmer P. 2013. A small-scale oceanic eddy off the coast of West Africa studied by
multi-sensor satellite and surface drifter data. Remote Sensing of Environment 129(C8):132–143
DOI 10.1016/j.rse.2012.10.032.

Baibai T, Oukhattar L, Quinteiro JV, Mesfioui A, Rey-Méndez M, soukri A. 2012. First global
approach: morphological and biological variability in a genetically homogeneous population of
the European pilchard, Sardina pilchardus (Walbaum, 1792) in the North Atlantic coast.
Reviews in Fish Biology and Fisheries 22(1):63–80 DOI 10.1007/s11160-011-9223-9.

Baird D. 1977. Age, growth and aspects of reproduction of the mackerel, Scomber japonicus in
South African waters (Pisces: Scombridae). African Zoology 12:347–362
DOI 10.1080/00445096.1977.11447580.

Barton ED, Field DB, Roy C. 2013. Canary current upwelling: more or less? Progress in
Oceanography 116(1):167–178 DOI 10.1016/j.pocean.2013.07.007.

Bekkevold D, Helyar SJ, Limborg MT, Nielsen EE, Hemmer-Hansen J, Clausen LAW,
Carvalho GR, FishPopTrace Consortium. 2015. Gene-associated markers can assign origin in
a weakly structured fish, Atlantic herring. ICES Journal of Marine Science 72(6):1790–1801
DOI 10.1093/icesjms/fsu247.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological)
57(1):289–300 DOI 10.1111/j.2517-6161.1995.tb02031.x.

Sbiba et al. (2024), PeerJ, DOI 10.7717/peerj.17928 18/26

https://doi.org/10.5281/zenodo.11518098
https://imr.brage.unit.no/imr-xmlui/handle/11250/3072605
http://dx.doi.org/10.7717/peerj.17928#supplemental-information
http://dx.doi.org/10.7717/peerj.17928#supplemental-information
http://dx.doi.org/10.1111/eva.13278
http://dx.doi.org/10.21411/CBM.A.6C4E0868
http://dx.doi.org/10.1016/j.tree.2008.02.008
http://dx.doi.org/10.1016/j.rse.2012.10.032
http://dx.doi.org/10.1007/s11160-011-9223-9
http://dx.doi.org/10.1080/00445096.1977.11447580
http://dx.doi.org/10.1016/j.pocean.2013.07.007
http://dx.doi.org/10.1093/icesjms/fsu247
http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://dx.doi.org/10.7717/peerj.17928
https://peerj.com/


Besnier F, Glover KA. 2013. ParallelStructure: a R package to distribute parallel runs of the
population genetics program STRUCTURE on multi-core computers. PLOS ONE 8:e70651
DOI 10.1371/journal.pone.0070651.

Besnier F, Kent M, Skern-Mauritzen R, Lien S, Malde K, Edvardsen RB, Taylor S,
Ljungfeldt LER, Nilsen F, Glover KA. 2014. Human-induced evolution caught in action:
SNP-array reveals rapid amphi-atlantic spread of pesticide resistance in the salmon
ecotoparasite Lepeophtheirus salmonis. BMC Genomics 15(1):937
DOI 10.1186/1471-2164-15-937.

Bouzzammit N, El Ouizgani H. 2019. Morphometric and meristic variation in the Atlantic chub
mackerel Scomber colias Gmelin, 1789 from the Moroccan coast. Indian Journal of Fisheries
66(2):8–15 DOI 10.21077/ijf.2019.66.2.78488-02.

Canales-Aguirre CB, Ferrada-Fuentes S, Galleguillos R, Oyarzun FX, Buratti CC,
Hernández CE. 2018. High genetic diversity and low-population differentiation in the
Patagonian sprat (Sprattus fuegensis) based on mitochondrial DNA.Mitochondrial DNA Part A
29(8):1148–1155 DOI 10.1080/24701394.2018.1424841.

Carlsson J, McDowell JR, Díz-Jaimes P, Carlsson JEL, Boles SB, Gold JR, Graves JE. 2004.
Microsatellite and mitochondrial DNA analyses of Atlantic bluefin tuna (Thunnus thynnus
thynnus) population structure in the Mediterranean Sea. Molecular Ecology 13(11):3345–3356
DOI 10.1111/j.1365-294X.2004.02336.x.

Castro Hernández JJ, Santana Ortega AT. 2000. Synopsis of biological data on the chub mackerel
(Scomber japonicus Houttuyn, 1782). In: Bonfil R, Minow J, eds. FAO Fisheries Synopsis. Rome:
FAO, 77.

Catanese G, Funes V, Perez L, Infante C. 2010. Microsatelites for Scomber colias. Available at
https://www.researchgate.net/publication/281005067.

Cerna F, Plaza G. 2014. Life history parameters of chub mackerel (Scomber japonicus) from two
areas off Chile. Bulletin of Marine Science 90(3):833–848 DOI 10.5343/bms.2013.1077.

Chapuis MP, Estoup A. 2006. Microsatellite null alleles and estimation of population
differentiation. Molecular Biology and Evolution 24(3):621–631 DOI 10.1093/molbev/msl191.

Chen X, Li G, Feng B, Tian S. 2009. Habitat suitability index of chub mackerel (Scomber
japonicus) from July to September in the East China Sea. Journal of Oceanography 65(1):93–102
DOI 10.1007/s10872-009-0009-9.

Chen FF, Ma CY, Yan LP, Zhang H, Wang W, Zhang Y, Ma LB. 2017. Isolation and
characterization of polymorphic microsatellite markers for the chub mackerel (Scomber
japonicus) and cross-species amplification in the blue mackerel (S. australasicus). Genetics and
Molecular Research 16(3):gmr16039712 DOI 10.4238/gmr16039712.

Cheng J, Yanagimoto T, Song N, Gao TX. 2015. Population genetic structure of chub mackerel
Scomber japonicus in the Northwestern Pacific inferred from microsatellite analysis. Molecular
Biology Reports 42(2):373–382 DOI 10.1007/s11033-014-3777-2.

Cheng Q, Zhu Y, Chen X. 2014. High polymorphism and moderate differentiation of chub
mackerel, Scomber japonicus (Perciformes: Scombridae), along the coast of China revealed by
fifteen novel microsatellite markers. Conservation Genetics 15(5):1021–1035
DOI 10.1007/s10592-014-0596-x.

Collette BB. 1986. Scombridae. In: Whitehead PJP, Bauchot ML, Hureau JC, Nielsen J,
Tortonese E, eds. Fishes of the North-Eastern Atlantic and the Mediterranean. Paris, France:
United Nations Educational Scientific and Cultural Organization, 981–997.

Collette B. 1999.Mackerels, molecules, and morphology. In: Séret B, Sire JY, eds. Proceedings of the
5th Indo-Pacific Fish Conference. Nouméa: Soc. Fr. Ichtyol, 149–164.

Sbiba et al. (2024), PeerJ, DOI 10.7717/peerj.17928 19/26

http://dx.doi.org/10.1371/journal.pone.0070651
http://dx.doi.org/10.1186/1471-2164-15-937
http://dx.doi.org/10.21077/ijf.2019.66.2.78488-02
http://dx.doi.org/10.1080/24701394.2018.1424841
http://dx.doi.org/10.1111/j.1365-294X.2004.02336.x
https://www.researchgate.net/publication/281005067
http://dx.doi.org/10.5343/bms.2013.1077
http://dx.doi.org/10.1093/molbev/msl191
http://dx.doi.org/10.1007/s10872-009-0009-9
http://dx.doi.org/10.4238/gmr16039712
http://dx.doi.org/10.1007/s11033-014-3777-2
http://dx.doi.org/10.1007/s10592-014-0596-x
http://dx.doi.org/10.7717/peerj.17928
https://peerj.com/


Collette BB, Nauen CE. 1983. Scombrids of the world: an annotated and illustrated catalogue of
tunas, mackerels, bonitos, and related species known to date. Roma: Food and Agriculture
Organization of the United Nations.

Costa G, Cavallero S, D’Amelio S, Paggi L, Santamaría M, Perera C, Santos M, Khadem M.
2011. Helminth parasites of the Atlantic chub mackerel, Scomber colias Gmelin, 1789 from
Canary Islands, Central North Atlantic, with comments on their relations with other Atlantic
regions. Acta Parasitologica 56(1):98–104 DOI 10.1017/S0022149X17000104.

Dahle G, Johansen T, Westgaard J-I, Aglen A, Glover KA. 2018a. Genetic management of
mixed-stock fisheries real-time: the case of the largest remaining cod fishery operating in the
Atlantic in 2007–2017. Fisheries Research 205(6):77–85 DOI 10.1016/j.fishres.2018.04.006.

Dahle G, Quintela M, Johansen T, Westgaard J-I, Besnier F, Aglen A, Jørstad KE, Glover KA.
2018b. Analysis of coastal cod (Gadus morhua L.) sampled on spawning sites reveals a genetic
gradient throughout Norway’s coastline. BMC Genetics 19(1):42
DOI 10.1186/s12863-018-0625-8.

Daley TT, Leaf RT. 2019. Age and growth of Atlantic chub mackerel (Scomber colias) in the
Northwest Atlantic. Journal of Northwest Atlantic Fishery Science 50:1–12
DOI 10.2960/J.v50.m717.

De Bie T, De Meester L, Brendonck L, Martens K, Goddeeris B, Ercken D, Hampel H, Denys L,
Vanhecke L, Van der Gucht K, Van Wichelen J, Vyverman W, Declerck SAJ. 2012. Body size
and dispersal mode as key traits determining metacommunity structure of aquatic organisms.
Ecology Letters 15(7):740–747 DOI 10.1111/j.1461-0248.2012.01794.x.

Dempster AP, Laird NM, Rubin DB. 1977.Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society Series B (Methodological) 39:1–38
DOI 10.1111/J.2517-6161.1977.TB01600.X.

Dieringer D, Schlötterer C. 2003. Microsatellite analyser (MSA): a platform independent analysis
tool for large microsatellite data sets. Molecular Ecology Notes 3(1):167–169
DOI 10.1046/j.1471-8286.2003.00351.x.

Domínguez-Petit R, Navarro MR, Cousido-Rocha M, Tornero J, Ramos F, Jurado-Ruzafa A,
Nunes C, Hernández C, Silva AV, Landa J. 2022. Spatial variability of life-history parameters of
the Atlantic chub mackerel (Scomber colias), an expanding species in the northeast Atlantic.
Scientia Marina 86(4):e048 DOI 10.3989/scimar.05296.048.

Ellegren H. 2004. Microsatellites: simple sequences with complex evolution. Nature Reviews
Genetics 5:435–445 DOI 10.1038/nrg1348.

Erguden D, Oztürk B, Erdoğan Z, Turan C. 2009. Morphologic structuring between populations
of chub mackerel Scomber japonicus in the Black, Marmara, Aegean, and northeastern
Mediterranean Seas. Fisheries Science 75(1):129–135 DOI 10.1007/s12562-008-0032-6.

Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the
software STRUCTURE: a simulation study. Molecular Ecology 14:2611–2620
DOI 10.1111/j.1365-294X.2005.02553.x.

Excoffier L, Laval G, Schneider S. 2005. Arlequin ver. 3.0: an integrated software package for
population genetics data analysis. Evolutionary Bioinformatics Online 1:47–50
DOI 10.1177/117693430500100003.

FAO. 2020. Report of the working group on the assessment of small pelagic fish of Northwest
Africa Casablanca, Morocco, 8–13 July 2019. Rapport de groupe de travail sur l’évaluation des
petits pêlagiques au large de l’Afrique Nord-Occidentale Casablanca, Maroc, 8-13 juillet 2019.
Fishery Committee for the Eastern Central Atlantic (CECAF)/Comité des pêches pour

Sbiba et al. (2024), PeerJ, DOI 10.7717/peerj.17928 20/26

http://dx.doi.org/10.1017/S0022149X17000104
http://dx.doi.org/10.1016/j.fishres.2018.04.006
http://dx.doi.org/10.1186/s12863-018-0625-8
http://dx.doi.org/10.2960/J.v50.m717
http://dx.doi.org/10.1111/j.1461-0248.2012.01794.x
http://dx.doi.org/10.1111/J.2517-6161.1977.TB01600.X
http://dx.doi.org/10.1046/j.1471-8286.2003.00351.x
http://dx.doi.org/10.3989/scimar.05296.048
http://dx.doi.org/10.1038/nrg1348
http://dx.doi.org/10.1007/s12562-008-0032-6
http://dx.doi.org/10.1111/j.1365-294X.2005.02553.x
http://dx.doi.org/10.1177/117693430500100003
http://dx.doi.org/10.7717/peerj.17928
https://peerj.com/


l’Atlantique Centre-Est (COPACE). RFAO Fisheries and Aquaculture Report No. 1309/FAO,
Rapport sur les pêches et l’aquaculture no 1309. Rome.

Foll M, Gaggiotti O. 2006. Identifying the environmental factors that determine the genetic
structure of populations. Genetics 174(2):875–891 DOI 10.1534/genetics.106.059451.

Foll M, Gaggiotti O. 2008. A genome-scan method to identify selected loci appropriate for both
dominant and codominant markers: a Bayesian perspective. Genetics 180(2):977–993
DOI 10.1534/genetics.108.092221.

García S. 1982. Distribution, migration and spawning of the main 1982 fish resources in the
northern CECAF area. FAO, CECAF/ECAF Series 82/(E) 9.

Gissi E, Manea E, Mazaris AD, Fraschetti S, Almpanidou V, Bevilacqua S, Coll M, Guarnieri G,
Lloret-Lloret E, Pascual M, Petza D, Rilov G, Schonwald M, Stelzenmüller V, Katsanevakis S.
2021. A review of the combined effects of climate change and other local human stressors on the
marine environment. Science of the Total Environment 755(3):142564
DOI 10.1016/j.scitotenv.2020.142564.

Glover KA. 2010. Forensic identification of fish farm escapees: the Norwegian experience.
Aquaculture Environment Interactions 1:1–10 DOI 10.3354/aei00002.

Glover KA, Skaala Ø, Limborg M, Kvamme C, Torstensen E. 2011. Microsatellite DNA reveals
population genetic differentiation among sprat (Sprattus sprattus) sampled throughout the
Northeast Atlantic, including Norwegian fjords. ICES Journal of Marine Science
68(10):2145–2151 DOI 10.1093/icesjms/fsr153.

Hale ML, Burg TM, Steeves TE. 2012. Sampling for microsatellite-based population genetic
studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies.
PLOS ONE 7(9):e45170 DOI 10.1371/journal.pone.0045170.

Hauser L, Adcock GJ, Smith PJ, Bernal Ramírez JH, Carvalho GR. 2002. Loss of microsatellite
diversity and low effective population size in an overexploited population of New Zealand
snapper (Pagrus auratus). Proceedings of the National Academy of Sciences 99(18):11742–11747
DOI 10.1073/pnas.172242899.

Hauser L, Carvalho GR. 2008. Paradigm shifts in marine fisheries genetics: ugly hypotheses slain
by beautiful facts. Fish and Fisheries 9(4):333–362 DOI 10.1111/j.1467-2979.2008.00299.x.

Hemmer-Hansen J, Hüssy K, Baktoft H, Huwer B, Bekkevold D, Haslob H, Herrmann J-P,
Hinrichsen H-H, Krumme U, Mosegaard H, Nielsen EE, Reusch TBH, Storr-Paulsen M,
Velasco A, von Dewitz B, Dierking J, Eero M. 2019. Genetic analyses reveal complex dynamics
within a marine fish management area. Evolutionary Applications 12:830–844
DOI 10.1111/eva.1276010.1111/eva.12760.

Henriques R, Nielsen ES, Durholtz D, Japp D, von der Heyden S. 2017. Genetic population
sub-structuring of kingklip (Genypterus capensis—Ophidiidiae), a commercially exploited
demersal fish off South Africa. Fisheries Research 187:86–95 DOI 10.1016/j.fishres.2016.11.007.

Hernández-León S, Gómez M, Arístegui J. 2007.Mesozooplankton in the canary current system:
the coastal-ocean transition zone. Progress in Oceanography 74(2–3):397–421
DOI 10.1016/j.pocean.2007.04.010.

ICES. 2021. Second workshop on atlantic chub mackerel (Scomber colias). ICES Scientific Reports
3:236 DOI 10.17895/ices.pub.8142.

IPCC. 2022. Climate change 2022: impacts, adaptation and vulnerability. In: Pörtner HO,
Roberts DC, Tignor MMB, Poloczanska ES, Mintenbeck K, Alegría A, Craig M, Langsdorf S,
Löschke S, Möller V, Okem A, Rama B, eds. Working Group II Contribution to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change. UK and New York, USA:
Cambridge, 3056.

Sbiba et al. (2024), PeerJ, DOI 10.7717/peerj.17928 21/26

http://dx.doi.org/10.1534/genetics.106.059451
http://dx.doi.org/10.1534/genetics.108.092221
http://dx.doi.org/10.1016/j.scitotenv.2020.142564
http://dx.doi.org/10.3354/aei00002
http://dx.doi.org/10.1093/icesjms/fsr153
http://dx.doi.org/10.1371/journal.pone.0045170
http://dx.doi.org/10.1073/pnas.172242899
http://dx.doi.org/10.1111/j.1467-2979.2008.00299.x
http://dx.doi.org/10.1111/eva.1276010.1111/eva.12760
http://dx.doi.org/10.1016/j.fishres.2016.11.007
http://dx.doi.org/10.1016/j.pocean.2007.04.010
http://dx.doi.org/10.17895/ices.pub.8142
http://dx.doi.org/10.7717/peerj.17928
https://peerj.com/


Jakobsson M, Rosenberg NA. 2007. CLUMPP: a cluster matching and permutation program for
dealing with label switching and multimodality in analysis of population structure.
Bioinformatics 23(14):1801–1806 DOI 10.1093/bioinformatics/btm233.

Johansen T, Westgaard J-I, Seliussen BB, Nedreaas K, Dahle G, Glover KA, Kvalsund R,
Aglen A. 2018. Real-time genetic monitoring of a commercial fishery on the doorstep of an
MPA reveals unique insights into the interaction between coastal and migratory forms of the
Atlantic cod. ICES Journal of Marine Science 75(3):1093–1104 DOI 10.1093/icesjms/fsx224.

Jombart T. 2008. adegenet: a R package for the multivariate analysis of genetic markers.
Bioinformatics 24(11):1403–1405 DOI 10.1093/bioinformatics/btn129.

Jombart T, Collins C. 2015. A tutorial for discriminant analysis of principal components (DAPC)
using adegenet 2.0.0. Available at https://adegenet.r-forge.r-project.org/files/tutorial-dapc.pdf.

Jombart T, Devillard S, Balloux F. 2010. Discriminant analysis of principal components: a new
method for the analysis of genetically structured populations. BMC Genetics 11(1):94
DOI 10.1186/1471-2156-11-94.

Jurado-Ruzafa A, Vasconcelos J, Otero-Ferrer JL, Navarro MR, Massaro A, Hernández C,
Tuset VM. 2024. Phenotypic response of a geographically expanding species, Scomber colias:
clues in the fish otolith shape. Estuarine, Coastal and Shelf Science 305(7):108880
DOI 10.1016/j.ecss.2024.108880.

Kamvar ZN, Tabima JF, Grünwald NJ. 2014. Poppr: an R package for genetic analysis of
populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281
DOI 10.7717/peerj.281.

Kerr LA, Hintzen NT, Cadrin SX, Clausen LW, Dickey-Collas M, Goethel DR, Hatfield EMC,
Kritzer JP, Nash RDM. 2017. Lessons learned from practical approaches to reconcile
mismatches between biological population structure and stock units of marine fish. ICES Journal
of Marine Science 74(6):1708–1722 DOI 10.1093/icesjms/fsw188.

Lamichhaney S, Fuentes-Pardo AP, Rafati N, Ryman N, McCracken GR, Bourne C, Singh R,
Ruzzante DE, Andersson L. 2017. Parallel adaptive evolution of geographically distant herring
populations on both sides of the North Atlantic Ocean. Proceedings of the National Academy of
Sciences 114:E3452 DOI 10.1073/pnas.1617728114.

Landa J, Domínguez-Petit R, Navarro R, Silva AV, Tornero J, Parra C, Ramos F, Nunes C,
Jurado-Ruzafa A. 2022. Growth variability and demographic structure of Northeast Atlantic
chub mackerel (Scomber colias) in southern European Atlantic waters. In: ISMS Las Palmas de
Gran Canaria, 6–8 July.

Le Moan A, Bekkevold D, Hemmer-Hansen J. 2021. Evolution at two time frames: ancient
structural variants involved in post-glacial divergence of the European plaice (Pleuronectes
platessa). Heredity 126(6):668–683 DOI 10.1038/s41437-021-00432-x.

Leone A, Álvarez P, García D, Saborido-Rey F, Rodríguez-Ezpeleta N. 2019. Genome-wide SNP
based population structure in European hake reveals the need for harmonizing biological and
management units. ICES Journal of Marine Science 76(7):2260–2266
DOI 10.1093/icesjms/fsz161.

Li YL, Liu JX. 2018. StructureSelector: a web-based software to select and visualize the optimal
number of clusters using multiple methods. Molecular Ecology Resources 18(1):176–177
DOI 10.1111/1755-0998.12719.

Machado AM, Gomes-Dos-Santos A, Fonseca MM, da Fonseca RR, Veríssimo A, Felício M,
Capela R, Alves N, Santos M, Salvador-Caramelo F, Domingues M, Ruivo R, Froufe E,
Castro LFC. 2022. A genome assembly of the Atlantic chub mackerel (Scomber colias): a
valuable teleost fishing resource. GigaByte 2022(3):gigabyte40 DOI 10.46471/gigabyte.40.

Sbiba et al. (2024), PeerJ, DOI 10.7717/peerj.17928 22/26

http://dx.doi.org/10.1093/bioinformatics/btm233
http://dx.doi.org/10.1093/icesjms/fsx224
http://dx.doi.org/10.1093/bioinformatics/btn129
https://adegenet.r-forge.r-project.org/files/tutorial-dapc.pdf
http://dx.doi.org/10.1186/1471-2156-11-94
http://dx.doi.org/10.1016/j.ecss.2024.108880
http://dx.doi.org/10.7717/peerj.281
http://dx.doi.org/10.1093/icesjms/fsw188
http://dx.doi.org/10.1073/pnas.1617728114
http://dx.doi.org/10.1038/s41437-021-00432-x
http://dx.doi.org/10.1093/icesjms/fsz161
http://dx.doi.org/10.1111/1755-0998.12719
http://dx.doi.org/10.46471/gigabyte.40
http://dx.doi.org/10.7717/peerj.17928
https://peerj.com/


Maduna SN, Rossouw C, Roodt-Wilding R, Bester-van der Merwe AE. 2014. Microsatellite
cross-species amplification and utility in southern African elasmobranchs: a valuable resource
for fisheries management and conservation. BMC Research Notes 7(1):352
DOI 10.1186/1756-0500-7-352.

Mantel N. 1967. The detection of disease of clustering and a generalized regression approach.
Cancer Research 27:209–220.

Martinsohn JT, Raymond P, Knott T, Glover KA, Nielsen EE, Eriksen LB, Ogden R, Casey J,
Guillen J. 2019. DNA-analysis to monitor fisheries and aquaculture: too costly? Fish and
Fisheries 20(2):391–401 DOI 10.1111/faf.12343.

Martínez P, González EG, Castilho R, Zardoya R. 2006. Genetic diversity and historical
demography of Atlantic bigeye tuna (Thunnus obesus). Molecular Phylogenetics and Evolution
39(2):404–416 DOI 10.1016/j.ympev.2005.07.022.

Medina-Alcaraz C. 2016. Diversidad genética y estructura poblacional de caballa (Scomber colias,
Gmelin, 1789) en aguas del Atlántico y del Mediterráneo PhD thesis. Universidad de Las Palmas
de Gran Canaria.

Miller JM, Cullingham CI, Peery RM. 2020. The influence of a priori grouping on inference of
genetic clusters: simulation study and literature review of the DAPC method. Heredity
125(5):269–280 DOI 10.1038/s41437-020-0348-2.

Mittelstaedt E. 1991. The ocean boundary along the northwest African coast: circulation and
oceanographic properties at the sea surface. Progress in Oceanography 26(4):307–355
DOI 10.1016/0079-6611(91)90011-A.

Mullins RB, McKeown NJ, Sauer WHH, Shaw PW. 2018. Genomic analysis reveals multiple
mismatches between biological and management units in yellowfin tuna (Thunnus albacares).
ICES Journal of Marine Science 75(6):2145–2152 DOI 10.1093/icesjms/fsy102.

Munro G, Van Houtte A, Willmann R. 2004. The conservation and management of shared fish
stocks: legal and economic aspects. In: FAO, editor. Rome: FAO Fisheries Technical Paper, 69.

Nesbø CL, Rueness EK, Iversen SA, Skagen DW, Jakobsen KS. 2000. Phylogeography and
population history of Atlantic mackerel (Scomber scombrus L.): a genealogical approach reveals
genetic structuring among the eastern Atlantic stocks. Proceedings Biological Sciences
267(1440):281–292 DOI 10.1098/rspb.2000.0998.

Nielsen ES, Henriques R, Toonen RJ, Knapp ISS, Guo B, von der Heyden S. 2018. Complex
signatures of genomic variation of two non-model marine species in a homogeneous
environment. BMC Genomics 19(1):347 DOI 10.1186/s12864-018-4721-y.

O’Connell M,Wright JM. 1997.Microsatellite DNA in fishes. Reviews in Fish Biology and Fisheries
7:331–363 DOI 10.1023/A:1018443912945.

Pante E, Simon-Bouhet B. 2013. marmap: a package for importing, plotting and analyzing
bathymetric and topographic data in R. PLOS ONE 8(9):e73051
DOI 10.1371/journal.pone.0073051.

Peakall R, Smouse PE. 2006. GenAlEx 6: genetic analysis in excel. Population genetic software for
teaching and research. Molecular Ecology Notes 6(1):288–295
DOI 10.1111/j.1471-8286.2005.01155.x.

Pelegrí JL, Peña-Izquierdo J. 2015. Eastern boundary currents off North-West Africa.
Oceanographic and biological features in the Canary Current Large Marine Ecosystem. In:
Technical Series: 115. Paris, France: IOC-UNESCO.

Perrotta RG, Carvalho N, Isidro E. 2005. Comparative study on growth of chub mackerel
(Scomber japonicus Houttuyn, 1782) from three different regions: NW Mediterranean, NE and
SW Atlantic. Revista de Investigación y Desarrollo Pesquero 17:67–79.

Sbiba et al. (2024), PeerJ, DOI 10.7717/peerj.17928 23/26

http://dx.doi.org/10.1186/1756-0500-7-352
http://dx.doi.org/10.1111/faf.12343
http://dx.doi.org/10.1016/j.ympev.2005.07.022
http://dx.doi.org/10.1038/s41437-020-0348-2
http://dx.doi.org/10.1016/0079-6611(91)90011-A
http://dx.doi.org/10.1093/icesjms/fsy102
http://dx.doi.org/10.1098/rspb.2000.0998
http://dx.doi.org/10.1186/s12864-018-4721-y
http://dx.doi.org/10.1023/A:1018443912945
http://dx.doi.org/10.1371/journal.pone.0073051
http://dx.doi.org/10.1111/j.1471-8286.2005.01155.x
http://dx.doi.org/10.7717/peerj.17928
https://peerj.com/


Petrou EL, Fuentes-Pardo AP, Rogers LA, Orobko M, Tarpey C, Jiménez-Hidalgo I, Moss ML,
Yang D, Pitcher TJ, Sandell T, Lowry D, Ruzzante DE, Hauser L. 2021. Functional genetic
diversity in an exploited marine species and its relevance to fisheries management. Proceedings of
the Royal Society B: Biological Sciences 288(1945):20202398 DOI 10.1098/rspb.2020.2398.

Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus
genotype data. Genetics 155(2):945–959 DOI 10.1093/genetics/155.2.945.

Puechmaille SJ. 2016. The program structure does not reliably recover the correct population
structure when sampling is uneven: subsampling and new estimators alleviate the problem.
Molecular Ecology Resources 16(3):608–627 DOI 10.1111/1755-0998.12512.

Quintela M, Kvamme C, Bekkevold D, Nash RDM, Jansson E, Sørvik AG, Taggart JB, Skaala Ø,
Dahle G, Glover KA. 2020. Genetic analysis redraws the management boundaries for the
European sprat. Evolutionary Applications 13(8):1906–1922 DOI 10.1111/eva.12942.

Ramírez F, Shannon LJ, van der Lingen CD, Julià L, Steenbeek J, Coll M. 2022. Climate and
fishing simultaneously impact small pelagic fish in the oceans around the southernmost tip of
Africa. Frontiers in Marine Science 9:45 DOI 10.3389/fmars.2022.1031784.

Ramya VL, Behera BK. 2023. Molecular markers and their application in fisheries and
aquaculture. In: Behera BK, ed. Biotechnological Tools in Fisheries and Aquatic Health
Management. Singapore: Springer Nature Singapore, 115–150.

R Core Team. 2020. R: a language and environment for statistical computing. Vienna: R
Foundation for Statistical Computing. Available at http://www.R-project.org/.

Reid K, Hoareau TB, Graves JE, Potts WM, dos Santos SMR, Klopper AW, Bloomer P. 2016.
Secondary contact and asymmetrical gene flow in a cosmopolitan marine fish across the
Benguela upwelling zone. Heredity 117(5):307–315 DOI 10.1038/hdy.2016.51.

Rodríguez-Ezpeleta N, Bradbury IR, Mendibil I, Álvarez P, Cotano U, Irigoien X. 2016.
Population structure of Atlantic mackerel inferred from RAD-seq-derived SNP markers: effects
of sequence clustering parameters and hierarchical SNP selection. Molecular Ecology Resources
16(4):991–1001 DOI 10.1111/1755-0998.12518.

Rodríguez-Ezpeleta N, Díaz-Arce N, Walter Iii JF, Richardson DE, Rooker JR, Nøttestad L,
Hanke AR, Franks JS, Deguara S, Lauretta MV, Addis P, Varela JL, Fraile I, Goñi N, Abid N,
Alemany F, Oray IK, Quattro JM, Sow FN, Itoh T, Karakulak FS, Pascual-Alayón PJ,
Santos MN, Tsukahara Y, Lutcavage M, Fromentin J-M, Arrizabalaga H. 2019. Determining
natal origin for improved management of Atlantic bluefin tuna. Frontiers in Ecology and the
Environment 17(8):439–444 DOI 10.1002/fee.2090.

Roldán MI, Perrotta RG, Cortey M, Pla C. 2000. Molecular and morphologic approaches to
discrimination of variability patterns in chub mackerel, Scomber japonicus. Journal of
Experimental Marine Biology and Ecology 253(1):63–74 DOI 10.1016/S0022-0981(00)00244-6.

Rosenberg MS, Anderson CD. 2011. PASSaGE: pattern analysis, spatial statistics and geographic
exegesis. Version 2. Methods in Ecology and Evolution 2(3):229–232
DOI 10.1111/j.2041-210X.2010.00081.x.

Rousset F. 1997. Genetic differentiation and estimation of gene flow from F-statistics under
isolation by distance. Genetics 145:1219–1228 DOI 10.1093/genetics/145.4.1219.

Rousset F. 2008. GENEPOP′007: a complete re-implementation of the genepop software for
windows and Linux. Molecular Ecology Resources 8(1):103–106
DOI 10.1111/j.1471-8286.2007.01931.x.

Roy D, Hardie DC, Treble MA, Reist JD, Ruzzante DE. 2014. Evidence supporting panmixia in
Greenland halibut (Reinhardtius hippoglossoides) in the Northwest Atlantic. Canadian Journal
of Fisheries and Aquatic Sciences 71(5):763–774 DOI 10.1139/cjfas-2014-0004.

Sbiba et al. (2024), PeerJ, DOI 10.7717/peerj.17928 24/26

http://dx.doi.org/10.1098/rspb.2020.2398
http://dx.doi.org/10.1093/genetics/155.2.945
http://dx.doi.org/10.1111/1755-0998.12512
http://dx.doi.org/10.1111/eva.12942
http://dx.doi.org/10.3389/fmars.2022.1031784
http://www.R-project.org/
http://dx.doi.org/10.1038/hdy.2016.51
http://dx.doi.org/10.1111/1755-0998.12518
http://dx.doi.org/10.1002/fee.2090
http://dx.doi.org/10.1016/S0022-0981(00)00244-6
http://dx.doi.org/10.1111/j.2041-210X.2010.00081.x
http://dx.doi.org/10.1093/genetics/145.4.1219
http://dx.doi.org/10.1111/j.1471-8286.2007.01931.x
http://dx.doi.org/10.1139/cjfas-2014-0004
http://dx.doi.org/10.7717/peerj.17928
https://peerj.com/


Russello MA, Kirk SL, Frazer KK, Askey PJ. 2012. Detection of outlier loci and their utility for
fisheries management. Evolutionary Applications 5(1):39–52
DOI 10.1111/j.1752-4571.2011.00206.x.

Ryman N, Palm S. 2006. POWSIM: a computer program for assessing statistical power when
testing for genetic differentiation. Molecular Ecology Notes 6(3):600–602
DOI 10.1111/j.1471-8286.2006.01378.x.

Saha A, Johansen T, Hedeholm R, Nielsen EE, Westgaard J-I, Hauser L, Planque B, Cadrin SX,
Boje J. 2017. Geographic extent of introgression in Sebastes mentella and its effect on genetic
population structure. Evolutionary Applications 10(1):77–90 DOI 10.1111/eva.12429.

Sbiba SE, Correia AT, Nikolioudakis N, Bazairi H, Chlaida M. 2024. Insights into the stock
structure of Scomber colias Gmelin, 1789 along the Northwest African coast inferred from
otolith shape analysis. Fisheries Research 272:106955 DOI 10.1016/j.fishres.2024.106955.

Scoles D, Graves J, Collette B. 1988. Global phylogeography of mackerels of the genus Scomber.
Fishery Bulletin- National Oceanic and Atmospheric Administration 96:823–842.

Shannon LV. 2001. Benguela current. In: Steele JH, ed. Encyclopedia of Ocean Sciences. Oxford:
Academic Press, 255–267.

Slatkin M. 1993. Isolation by distance in equilibrium and non-equilibrium populations. Evolution
Education and Outreach 47(1):264–279 DOI 10.1111/j.1558-5646.1993.tb01215.x.

Smith PJ. 1994. Genetic diversity of marine fisheries resources: possible impacts of fishing. In: FAO
Fisheries Technical Paper. Rome: FAO, 53.

Stroganov AN, Nikitenko AI, Rakitskaya TA, Belyaev VA. 2023. Study of population genetic
structure of Atlantic mackerel Scomber colias Gmelin, 1789 (Scombridae) in the Central East
Atlantic. Russian Journal of Genetics 59(1):66–72 DOI 10.1134/S1022795423010118.

Tang CY, Tzeng CH, Chen CS, Chiu TS. 2009. Microsatellite DNA markers for
population-genetic studies of blue mackerel (Scomber australasicus) and cross-specific
amplification in S. japonicus. Molecular Ecology Resources 9(3):824–827
DOI 10.1111/j.1755-0998.2008.02278.x.

Tzeng CH, Chen CS, Tang PC, Chiu TS. 2009. Microsatellite and mitochondrial haplotype
differentiation in blue mackerel (Scomber australasicus) from the western North Pacific. ICES
Journal of Marine Science 66(5):816–825 DOI 10.1093/icesjms/fsp120.

Uriarte A, Alvarez P, Iversen SA, Molloy J, Villamor B, Martíns MM, Myklevoll S. 2001. Spatial
pattern of migration and recruitment of North East Atlantic mackerel. In: ICES Annual Science
Conference Session O: Application of Mark Recapture Experiments to Stock Assessment.

Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. 2004.MICRO-CHECKER: software
for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes
4(3):535–538 DOI 10.1111/j.1471-8286.2004.00684.x.

Vásquez S, Correa-Ramírez M, Parada C, Sepúlveda A. 2013. The influence of oceanographic
processes on jack mackerel (Trachurus murphyi) larval distribution and population structure in
the southeastern Pacific Ocean. ICES Journal of Marine Science 70(6):1097–1107
DOI 10.1093/icesjms/fst065.

Waldman B, McKinnon J. 1993. Inbreeding and outbreeding in fishes, amphibians and reptiles.
In: Thornhill N, ed. The Natural History of Inbreeding and Outbreeding. Chicago: University of
Chicago Press, 250–282.

Waples RS. 1987. A multispecies approach to the analysis of gene flow in marine shore fishes.
Evolution Education and Outreach 41(2):385–400 DOI 10.1111/j.1558-5646.1987.tb05805.x.

Waples RS. 1998. Separating the wheat from the chaff: patterns of genetic differentiation in high
gene flow species. Journal of Heredity 89(5):438–450 DOI 10.1093/jhered/89.5.438.

Sbiba et al. (2024), PeerJ, DOI 10.7717/peerj.17928 25/26

http://dx.doi.org/10.1111/j.1752-4571.2011.00206.x
http://dx.doi.org/10.1111/j.1471-8286.2006.01378.x
http://dx.doi.org/10.1111/eva.12429
http://dx.doi.org/10.1016/j.fishres.2024.106955
http://dx.doi.org/10.1111/j.1558-5646.1993.tb01215.x
http://dx.doi.org/10.1134/S1022795423010118
http://dx.doi.org/10.1111/j.1755-0998.2008.02278.x
http://dx.doi.org/10.1093/icesjms/fsp120
http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x
http://dx.doi.org/10.1093/icesjms/fst065
http://dx.doi.org/10.1111/j.1558-5646.1987.tb05805.x
http://dx.doi.org/10.1093/jhered/89.5.438
http://dx.doi.org/10.7717/peerj.17928
https://peerj.com/


Ward RD. 2000. Genetics in fisheries management. Hydrobiologia 420:191–201
DOI 10.1007/978-94-017-2184-4_18.

Weber E, McClatchie S. 2011. Effect of environmental conditions on the distribution of Pacific
mackerel (Scomber japonicus) larvae in the California Current system. Fishery Bulletin
110:85–97.

Weersing K, Toonen RJ. 2009. Population genetics, larval dispersal, and demographic connectivity
in marine systems. Marine Ecology Progress Series 393:1–12 DOI 10.3354/meps08287.

Weir BS, Cockerham C. 1984. Estimating F-statistics for the analysis of population structure.
Evolution 38(6):1358–1370 DOI 10.2307/2408641.

Westgaard J-I, Saha A, Kent M, Hansen HH, Knutsen H, Hauser L, Cadrin SX, Albert OT,
Johansen T. 2017. Genetic population structure in Greenland halibut (Reinhardtius
hippoglossoides) and its relevance to fishery management. Canadian Journal of Fisheries and
Aquatic Sciences 74(4):475–485 DOI 10.1139/cjfas-2015-0430.

White C, Selkoe KA, Watson J, Siegel DA, Zacherl DC, Toonen RJ. 2010. Ocean currents help
explain population genetic structure. Proceedings of the Royal Society B: Biological Sciences
277(1688):1685–1694 DOI 10.1098/rspb.2009.2214.

Wright S. 1943. Isolation by distance. Genetics 28:114–138 DOI 10.1093/genetics/28.2.114.

Zardoya R, Castilho R, Grande C, Favre-Krey L, Caetano S, Marcato S, Krey G, Patarnello T.
2004. Differential population structuring of two closely related fish species, the mackerel
(Scomber scombrus) and the chub mackerel (Scomber japonicus), in the Mediterranean Sea.
Molecular Ecology 13(7):1785–1798 DOI 10.1111/j.1365-294X.2004.02198.x.

Zarraonaindia I, Pardo MA, Iriondo M, Manzano C, Estonba A. 2009. Microsatellite variability
in European anchovy (Engraulis encrasicolus) calls for further investigation of its genetic
structure and biogeography. ICES Journal of Marine Science 66(10):2176–2182
DOI 10.1093/icesjms/fsp187.

Zeng L, Cheng Q. 2012. Thirty novel microsatellite markers for the coastal pelagic fish, Scomber
japonicus (Scombridae). Journal of Genetics 91(S1):64–68 DOI 10.1007/s12041-012-0153-7.

Zeng L, Cheng Q, Chen X. 2012. Microsatellite analysis reveals the population structure and
migration patterns of Scomber japonicus (Scombridae) with continuous distribution in the East
and South China Seas. Biochemical Systematics and Ecology 42:83–93
DOI 10.1016/j.bse.2012.02.014.

Sbiba et al. (2024), PeerJ, DOI 10.7717/peerj.17928 26/26

http://dx.doi.org/10.1007/978-94-017-2184-4_18
http://dx.doi.org/10.3354/meps08287
http://dx.doi.org/10.2307/2408641
http://dx.doi.org/10.1139/cjfas-2015-0430
http://dx.doi.org/10.1098/rspb.2009.2214
http://dx.doi.org/10.1093/genetics/28.2.114
http://dx.doi.org/10.1111/j.1365-294X.2004.02198.x
http://dx.doi.org/10.1093/icesjms/fsp187
http://dx.doi.org/10.1007/s12041-012-0153-7
http://dx.doi.org/10.1016/j.bse.2012.02.014
http://dx.doi.org/10.7717/peerj.17928
https://peerj.com/

	Genetic investigation of population structure in Atlantic chub mackerel, Scomber colias Gmelin, 1789 along the West African coast ...
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


