Effect of exogenous melatonin on growth and antioxidant system of pumpkin seedlings under waterlogging stress (#100164)

First submission

Guidance from your Editor

Please submit by 2 Jun 2024 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

- 11 Figure file(s)
- 1 Raw data file(s)
- 1 Other file(s)

i

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Effect of exogenous melatonin on growth and antioxidant system of pumpkin seedlings under waterlogging stress

Zhenyu Liu 1,2, Li Sun 1,2, Zhenwei Liu Corresp., 1,2, Xinzhen Li 1,2

Corresponding Author: Zhenwei Liu Email address: sunli0001977@126.com

Melatonin regulates defense responses in plants under environmental stress. This study aimed to explore the impact of exogenous melatonin on the phenotype and physiology of 'BM1' pumpkin seedlings subjected to waterlogging stress. Waterlogging stress was induced following foliar spraying of melatonin at various concentrations (0, 50, 100, 150, 200, and 300 μmol·L⁻¹). The growth parameters, malondialdehyde content, antioxidant enzyme activity, osmoregulatory substance levels, and other physiological indicators were

enzyme activity, osmoregulatory substance levels, and other physiological indicators were assessed to elucidate the physiological mechanisms underlying the role of exogenous melatonin in mitigating waterlogging stress in pumpkin seedlings. The results revealed that application of exogenous melatonin significantly increased plant height and root length of BM1 seedlings compared to those only subjected to waterlogging stress. Melatonin also reduced membrane damage caused by oxidative stress and alleviated osmotic imbalance. Exogenous melatonin enhanced the activities of antioxidant enzymes and systems involved in scavenging reactive oxygen species, with 100 μ mol·L⁻¹as the optimal concentration. These findings underscore the crucial role of exogenous melatonin

in alleviating waterlogging stress in pumpkins.

 $^{^{1} \ \, \}text{College of Horticulture and Landscape} \\ \underline{\text{Henan Institute of Science and Technology}}\\ \underline{\text{INSTITUTE}}\\ \underline{\text{Notice of Science and Technology}}\\ \underline{\text{N$

² Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement[]Xinxiang[]Henan 453003[], Xinxiang, China

- 1 Effect of exogenous melatonin on growth and antioxidant system of pumpkin seedlings
- 2 under waterlogging stress
- 3 Zhenyu Liu ^{1,2}, Li Sun ^{1,2}, Zhenwei Liu ^{1,2}, Xinzheng Li ^{1,2}
- 4 1 College of Horticulture and Landscape, Henan Institute of Science and Technology,
- 5 Xinxiang, Henan, 453003, China;
- 6 2 Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and
- 7 Germplasm Enhancement, Xinxiang, Henan 453003, China
- 8 Corresponding Author:
- 9 Zhenwei Liu
- 10 College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang,
- 11 Henan, 453003, China;
- 12 Email address: sunli0001977@126.com
- 13 Abstract:
- 14 Melatonin regulates defense responses in plants under environmental stress. This study aimed to
- explore the impact of exogenous melatonin on the phenotype and physiology of 'BM1' pumpkin
- 16 seedlings subjected to waterlogging stress. Waterlogging stress was induced following foliar
- 17 spraying of melatonin at various concentrations (0, 50, 100, 150, 200, and 300 μmol·L⁻¹). The
- 18 growth parameters, malondialdehyde content, antioxidant enzyme activity, osmoregulatory
- 19 substance levels, and other physiological indicators were assessed to elucidate the physiological
- 20 mechanisms underlying the role of exogenous melatonin in mitigating waterlogging stress in
- 21 pumpkin seedlings. The results revealed that application of exogenous melatonin significantly
- 22 increased plant height and root length of BM1 seedlings compared to those only subjected to
- 23 waterlogging stress. Melatonin also reduced membrane damage caused by oxidative stress and
- 24 alleviated osmotic imbalance. Exogenous melatonin enhanced the activities of antioxidant
- 25 enzymes and systems involved in scavenging reactive oxygen species, with 100 μmol·L⁻¹ as the
- optimal concentration. These findings underscore the crucial role of exogenous melatonin in
- 27 alleviating waterlogging stress in pumpkins.
- 28 **Keywords:** waterlogging stress, pumpkin, melatonin, physiology, biochemistry
- 29 Introduction
- Waterlogging stress is a type of abiotic stress that significantly decreases oxygen levels in the

- soil, leading to adverse effects on plant growth, development, and physiological characteristics.
- Local hypoxia in the root system hinders crop root growth, reduces root vigor, disrupts the root-
- crown ratio, and induces a rapid decline in root dry mass (Zhang et al., 2023). Additionally,
- 34 waterlogging stress damages the integrity of cell membranes, leading to increased intracellular
- 35 malondialdehyde levels. This stress also disrupts the antioxidant systems that minimize the levels
- of reactive oxygen species (ROS), leading to the accumulation of excessive ROS (Huang et al.,
- 37 2017). Elevated ROS levels damage plant cells and disrupt crucial physiological processes,
- 38 ultimately leading to apoptosis. To counteract these effects, plants have a stress defense system
- 39 that regulates the production and elimination of ROS. Antioxidant enzymes such as superoxide
- 40 dismutase (SOD), peroxidase (POD), and catalase (CAT) play a vital role in scavenging ROS
- 41 (Miller et al., 2009; Wang et al., 2016).
- 42 Pumpkin (*Cucurbita* moschata D.) is an annual herbaceous plant in the genus Cucurbita
- 43 (Cucurbitaceae) (Han et al., 2020). Its fruit is visually appealing, characterized by a sweet yet
- 44 non-greasy taste. Pumpkins are rich in nutrients such as vitamin C, β-carotene, proteins, and
- 45 carbohydrates (Wang, Li & Zhang, 2010). In addition, pumpkins have anti-cancer,
- 46 hypoglycemic, and hypolipidemic properties. Pumpkin plants exhibit strong adaptability and
- 47 resilience, thriving in diverse environments. It becomes imperative to explore the mechanisms
- 48 through which pumpkins overcome the effects of waterlogging stress owing to an increase in
- 49 occurrences of waterlogging-related agricultural and economic losses.
- Melatonin is a pleiotropic factor with multiple biological functions in plants, participating in
- 51 physiological processes such as photosynthesis, seed germination, fruit expansion, root
- development, and osmoregulation (Zhao et al., 2022). Previous findings demonstrated that
- 53 melatonin plays an important role in regulating plant growth and development and enhancing
- resistance to abiotic stresses such as drought, high temperature, salinity, heavy metals, and
- bacterial and fungal diseases (Zhang et al., 2021). Chen et al. (2019) observed that soaking rice
- seeds in 100 μmol/L of melatonin significantly alleviated the toxic effect of waterlogging stress.
- 57 Gao et al. (2017) observed that the application of 0.1 umol/L melatonin significantly alleviated
- 58 the damage caused by salt stress on pre-treating kiwifruit seedlings. Zhang et al. (2020) reported
- 59 that foliar spraying with different concentrations of exogenous melatonin alleviated the damage
- on soft date kiwifruit caused by low temperatures at 4 °C. Studies on the effect of exogenous
- 61 melatonin in pumpkins are relatively few. Therefore, in this study, we selected BM1, a flood-
- 62 tolerant pumpkin variety, as the experimental material to explore the regulatory capacity of
- 63 melatonin in alleviating the effect of waterlogging stress in pumpkins. The findings of this study
- 64 will provide a theoretical basis for understanding waterlogging tolerance and the mechanism
- 65 underlying the role of melatonin in enhancing this tolerance in pumpkins.

66

67

75

1 Materials and Methods

1.1 Experimental materials

- 68 The experimental material in this study was BM1 seedlings (known for strong waterlogging
- 69 tolerance) (Qiao, 2023). The seeds were obtained from the Henan Institute of Science and
- 70 Technology, Henan, China. Melatonin was purchased from Beijing Suolaibao Bio-technology
- 71 Co. Ltd. The ZhuangZhuang seedling substrate obtained from Hebei Peiji Biotechnology Co.
- 72 Ltd. was used to grow the seedlings. The study was conducted in August 2023 in the seedling
- 73 room of the College of Horticulture and Landscape Architecture, Henan Institute of Science and
- 74 Technology.

1.2 Experimental design

- The experiment comprised five distinct melatonin concentrations (0, 10, 100, 200, and 300
- 77 μmol·L⁻¹) and two treatments, no waterlogging and waterlogging. The treatments were as
- 78 follows: (1) CK, waterlogging treatment; (2) T0, waterlogging treatment + 0 μmol·L⁻¹ melatonin;
- 79 (3) T10, waterlogging treatment + 10 μmol·L⁻¹ melatonin; (4) T100, waterlogging treatment
- +100 μmol·L⁻¹ melatonin; (5) T200, waterlogging treatment + 200 μmol·L⁻¹ melatonin; (6) T300,
- 81 waterlogging treatment + 300 μmol·L⁻¹ melatonin. Melatonin leaf spray treatment was
- 82 administered daily to seedlings with one leaf and one heart, ensuring the water droplets
- 83 condensed on the leaf surface without dripping. The spraying was conducted once every other
- day, a total of three times. The waterlogging treatment was implemented using the the double-pot
- 85 method 12 hours after the third melatonin treatment, while maintaining other growth conditions
- 86 (Liu, 2020). After 7 days of waterlogging treatment, growth indices (plant height, stem thickness,
- 87 fresh weight, dry weight) and chlorophyll content of pumpkin seedlings were measured. Leaves
- and roots were collected to assess relevant physiological indices, with six plants sampled from
- 89 each treatment. All experiments were repeated three times.

90 1.3 Test methods

91 **1.3.1 Growth indicators**

- 92 The plant height of pumpkin seedlings was assessed by measuring the distance from the base of
- 93 the cotyledonary node to the top heart leaf following a methodology described by Bai et al.
- 94 (2023). The stem diameter of the seedlings was determined using Vernier calipers by measuring
- 95 the diameter of the cotyledonary node in the direction of the cotyledonary leaf unfolding. To
- determine the fresh weight, the plants were washed with tap water, rinsed three times with
- 97 distilled water, dried with absorbent paper, and weighed using an electronic balance. For dry

- 98 weight determination, the pumpkin seedlings were placed in an oven at 105 °C for 15 minutes,
- 99 dried at 75 °C until a constant weight was attained, and weighed using an electronic balance.

100 **1.3.2 Physiological indicators**

- 101 Malondialdehyde (MDA) content was determined using the thiobarbituric acid method (Wang.
- 102 2012). Activities of CAT, SOD, and POD enzymes were assessed and calculated following a
- protocol outlined by Chen. (2000). Soluble protein content was determined using the Thomas
- Brilliant Blue method (Cao, Jing & Zhao, 2007). Chlorophyll content was evaluated and
- calculated according to the method described by Li. (2000). Root activity was measured using
- the naphthylamine method.

107 **1.4 Data processing**

- Data compilation and generation of graphs were carried out using Excel 2019 and Origin 2019
- software. A one-way ANOVA was performed using DPS software. Duncan's multiple range test
- was conducted to assess whether the differences between groups were significant (p<0.05).

111 2 Results

2.1 Different melatonin concentrations have varying effects on the phenotypic growth of

113 pumpkin seedlings under waterlogging stress

- Waterlogging stress significantly impeded the growth of pumpkin seedlings (Fig. 1-4). Plant
- height, stem thickness, fresh weight, dry weight, and root length of pumpkin seedlings decreased
- by 34.57%, 11.3%, 58.61%, 48.04%, and 22.75%, respectively, compared to the control group
- 117 (CK). External application of different melatonin concentrations exhibited varying effects on the
- growth of pumpkin seedlings under waterlogging stress. Increasing melatonin concentration
- initially enhanced and subsequently reduced the plant height, stem thickness, fresh weight, dry
- weight, and root length of pumpkin seedlings. The optimal growth indexes were recorded at a
- melatonin concentration of 100 μmol·L⁻¹, with a plant height of 13.67 cm, stem thickness of 6.62
- mm, fresh weight of 22.68 g, dry weight of 1.34 g, and root length of 15.83 cm. These values
- represented 45.39%, 23.98%, 126.47%, 76.03%, and 12.83% increase compared to a melatonin
- 124 concentration of 0 µmol·L⁻¹.

125 **2.2** Different concentrations of melatonin enhanced the root vigor of pumpkin seedlings

126 under waterlogging stress

- 127 The results revealed that melatonin significantly reduced the root activity of pumpkin seedlings
- subjected to flooding stress. Interestingly, an initial rise followed by a decrease in the overall

129	impact on root vita	lity was observed	d as the melatonin	concentration increase	 d. The root ac 	tivity
	mipact on root vita	iity was observed	a as the mention		a. 1110 100t ac	

- of the seedlings in the control group (CK) was 1305.835 μmg/(g·h). Notably, at a melatonin
- concentration of 100 μmol·L⁻¹, the root activity of pumpkin seedlings under waterlogging stress
- peaked at 1087.839 μ mg/(g·h). The lowest root activity was 588.989 μ mg/(g·h) observed when a
- 133 0 μmol·L⁻¹ melatonin was used. The root vitality of pumpkin seedlings treated with melatonin at
- all concentrations exceeded that without melatonin treatment, indicating a beneficial effect of
- melatonin in mitigating the negative impact of flooding stress on root vitality(Fig. 5).

2.3 Different concentrations of melatonin alleviate the effect of waterlogging stress on

137 chlorophyll contents in pumpkin seedlings

- Pumpkin seedlings subjected to waterlogging stress exhibited significant reductions in
- chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids by 74.8%, 52.8%, 42.2%, and
- 140 77.4%, respectively, compared to the control group (CK). The application of varying
- 141 concentrations of melatonin had a significant impact on the chlorophyll levels in pumpkin
- seedling leaves. The chlorophyll content in the leaves initially increased and then decreased with
- an increase in melatonin concentration. At a melatonin concentration of 100 μmol·L⁻¹, the
- maximum levels of chlorophyll a, chlorophyll b, and total chlorophyll in pumpkin seedling
- leaves were 11.56 μmol·L⁻¹, 5.06 μmol·L⁻¹, and 16.62 μmol·L⁻¹, respectively. At a melatonin
- 146 concentration of 200 μmol·L⁻¹, the highest carotenoid content was 2.18 μmol·L⁻¹. chlorophyll a,
- 147 Chlorophyll b, total chlorophyll, and carotenoid levels in pumpkin seedling leaves increased by
- 148 22.7%, 56.7%, 10.4%, and 14.7%, respectively, compared to the control group. This finding
- indicates that melatonin mitigated the effects of waterlogging stress and increased the
- chlorophyll content in pumpkin seedlings (Fig. 6).

2.4 Different concentrations of melatonin reduce malondial dehyde content in pumpkin

152 seedlings under waterlogging stress

- Waterlogging stress induced a significant increase in malondial dehyde content in both the leaves
- and roots of the seedlings (Fig. 7). However, the application of melatonin significantly reduced
- the MDA content in these plant parts. Varying melatonin concentrations showed distinct effects,
- with the most pronounced reduction in MDA observed in leaves and roots at a concentration of
- 157 100 μmol·L⁻¹, compared with 0μmol·L⁻¹ corresponding to reductions of 24.57% and 28.82%,
- respectively. These findings imply that melatonin can effectively alleviate membrane lipid
- peroxidation in pumpkin seedlings under waterlogging stress.

2.5 Different concentrations of melatonin increase the activity of antioxidant enzymes in

161 pumpkin seedlings under waterlogging stress

174

175

- 162 The activities of SOD, POD, and CAT enzymes in the leaves and roots of pumpkin seedlings were significantly higher under waterlogging stress than the control group (Fig. 8-10). Following 163 foliar spraying with various concentrations of melatonin, the enzyme activities in both leaves and 164 roots were significantly elevated relative to treatment with 0 µmol·L⁻¹ of melatonin. The enzyme 165 166 activities exhibited an increasing trend with melatonin concentration, peaking at 100 µmol·L⁻¹ for SOD, POD, and CAT in roots as well as for POD and CAT in leaves. The activity of SOD in 167 leaves was highest after application of 10 µmol·L⁻¹ melatonin. Notably, the antioxidant enzyme 168 activities in the leaves and roots of pumpkin seedlings were substantially enhanced by 61.41%, 169 170 68.46%, and 39.5%, and 64.03%, 66.36%, and 59.81%, respectively, compared to the treatment with 0 µmol·L⁻¹ melatonin. These findings indicate that an optimal melatonin concentration can 171 effectively increase the antioxidant enzyme activities in pumpkin seedlings under waterlogging 172 stress, thereby improving their resilience to such conditions. The most significant impact on the 173 activities of antioxidant enzymes was observed at a melatonin concentration of 100 umol·L⁻¹.
 - 2.6 Varying concentrations of melatonin increase the content of the soluble proteins in
- 176 pumpkin seedlings under waterlogging stress
- 177 The contents of soluble proteins in pumpkin seedling leaves and root systems were significantly
- higher under waterlogging stress compared to the control (CK) group (Fig. 11). After foliar 178
- spraying with varying concentrations of exogenous melatonin, the contents of soluble proteins in 179
- 180 the seedling leaves and root systems were significantly higher than those treated with 0 µmol·L⁻¹
- melatonin. These levels initially increased and then decreased with increasing melatonin 181
- concentration, peaking at 100 µmol·L⁻¹. The level of soluble protein in the group treated with 182
- 100 μmol·L⁻¹ melatonin was 132.57% and 74.39% higher than the 0 μmol·L⁻¹ melatonin group. 183
- In summary, waterlogging stress increases the content of osmotic molecules in the leaves and 184
- roots of pumpkin seedlings. Moreover, the application of an optimal melatonin concentration 185
- through foliar spraying substantially elevated the levels of osmotic substances in pumpkins under 186
- waterlogging stress, thereby enhancing their resilience to stress. 187

3. Discussion

188

- The response of plants to waterlogging stress is a complex process affecting all stages of plant 189
- 190 growth and involving various physiological activities. Waterlogging stress can result in
- 191 physiological water deficit, the production of reactive oxygen species, disruption of normal plant
- metabolic activities, damage to cell membrane integrity, dysregulation of the osmotic regulatory 192
- mechanism, and ultimately affect plant growth and development (Li et al., 2022). Plant growth 193
- and development status is a key morphological indicator of their exposure to waterlogging stress. 194
- 195 In the present study, waterlogging stress significantly decreased plant height, stem thickness,

196	root length, and dry fresh weight of pumpkin seedlings and caused leaf wilting and a significant
197	reduction in chlorophyll content. These findings are consistent with previous findings on
198	chrysanthemum reported by Tao et al. (2024). Melatonin, a compound abundantly present in
199	plants, plays a crucial role across various growth and development stages, including enhancing
200	seed germination and delaying leaf senescence, indicating its multifaceted functions in plants
201	(Bawa et al., 2020). The application of melatonin through spraying on horticultural crops
202	subjected to biotic and abiotic stresses improves the resistance against these stresses (He et al.,
203	2022). Previous research has demonstrated that treating soybean plants with 50 µmol/L of
204	exogenous melatonin significantly enhances growth, development, and yield (Wei et al., 2015).
205	Similarly, spraying a 100 mg/L melatonin solution on young grape berries can stimulate fruit
206	growth and expansion (Meng et al., 2022). In this study, exogenous melatonin effectively
207	restored normal growth levels in pumpkin seedlings subjected to waterlogging stress. In addition,
208	this treatment significantly increased accumulation of dry mass, potentially by enhancing
209	photosynthesis by increasing the levels of chlorophyll pigments, enhancing reactive oxygen
210	species scavenging capacity, reducing membrane lipid peroxidation, increasing antioxidant
211	enzyme activity, and increasing the content of organic osmotic regulators. The optimal melatonin
212	concentration for foliar spraying to promote pumpkin growth under waterlogging stress was 100
213	μmol·L ⁻¹ .
214	The growth and vigor of a plant's root system directly influence the growth of above-ground
	The growth and vigor of a plant's root system directly influence the growth of above-ground parts and yield. Waterlogging stress can significantly reduce root vigor, as observed in the
215	
215 216	parts and yield. Waterlogging stress can significantly reduce root vigor, as observed in the
215 216 217	parts and yield. Waterlogging stress can significantly reduce root vigor, as observed in the pumpkin seedlings in this study. However, foliar spraying with various melatonin concentrations
215 216 217 218	parts and yield. Waterlogging stress can significantly reduce root vigor, as observed in the pumpkin seedlings in this study. However, foliar spraying with various melatonin concentrations enhanced root vigor in pumpkin seedlings, with 100 μ mol·L-1 melatonin showing the most
215 216 217 218 219	parts and yield. Waterlogging stress can significantly reduce root vigor, as observed in the pumpkin seedlings in this study. However, foliar spraying with various melatonin concentrations enhanced root vigor in pumpkin seedlings, with 100 μ mol·L ⁻¹ melatonin showing the most significant effect. Research conducted by Yuan et al. (2022). demonstrated that kiwifruit
215 216 217 218 219 220	parts and yield. Waterlogging stress can significantly reduce root vigor, as observed in the pumpkin seedlings in this study. However, foliar spraying with various melatonin concentrations enhanced root vigor in pumpkin seedlings, with $100~\mu mol \cdot L^{-1}$ melatonin showing the most significant effect. Research conducted by Yuan et al. (2022). demonstrated that kiwifruit seedlings exhibited reduced root vigor under waterlogging stress, but the application of
214 215 216 217 218 219 220 221	parts and yield. Waterlogging stress can significantly reduce root vigor, as observed in the pumpkin seedlings in this study. However, foliar spraying with various melatonin concentrations enhanced root vigor in pumpkin seedlings, with $100~\mu mol \cdot L^{-1}$ melatonin showing the most significant effect. Research conducted by Yuan et al. (2022). demonstrated that kiwifruit seedlings exhibited reduced root vigor under waterlogging stress, but the application of exogenous melatonin alleviated the damage. Similarly, Gu et al. (2022). observed reduced root
215 216 217 218 219 220 221	parts and yield. Waterlogging stress can significantly reduce root vigor, as observed in the pumpkin seedlings in this study. However, foliar spraying with various melatonin concentrations enhanced root vigor in pumpkin seedlings, with 100 µmol·L-¹ melatonin showing the most significant effect. Research conducted by Yuan et al. (2022). demonstrated that kiwifruit seedlings exhibited reduced root vigor under waterlogging stress, but the application of exogenous melatonin alleviated the damage. Similarly, Gu et al. (2022). observed reduced root vigor in peach seedlings under waterlogging stress, but application of exogenous melatonin alleviated this reduction and partially mitigated the damage to the root system.
215 216 217 218 219 220 221 222	parts and yield. Waterlogging stress can significantly reduce root vigor, as observed in the pumpkin seedlings in this study. However, foliar spraying with various melatonin concentrations enhanced root vigor in pumpkin seedlings, with 100 µmol·L ⁻¹ melatonin showing the most significant effect. Research conducted by Yuan et al. (2022). demonstrated that kiwifruit seedlings exhibited reduced root vigor under waterlogging stress, but the application of exogenous melatonin alleviated the damage. Similarly, Gu et al. (2022). observed reduced root vigor in peach seedlings under waterlogging stress, but application of exogenous melatonin
215 216 217 218 219 220 221 222 223 224	parts and yield. Waterlogging stress can significantly reduce root vigor, as observed in the pumpkin seedlings in this study. However, foliar spraying with various melatonin concentrations enhanced root vigor in pumpkin seedlings, with 100 µmol·L-¹ melatonin showing the most significant effect. Research conducted by Yuan et al. (2022). demonstrated that kiwifruit seedlings exhibited reduced root vigor under waterlogging stress, but the application of exogenous melatonin alleviated the damage. Similarly, Gu et al. (2022). observed reduced root vigor in peach seedlings under waterlogging stress, but application of exogenous melatonin alleviated this reduction and partially mitigated the damage to the root system. Zhou et al. (2024) observed that waterlogging stress significantly impaired the photosynthetic
215 216 217 218 219 220 221 222 223 224 225	parts and yield. Waterlogging stress can significantly reduce root vigor, as observed in the pumpkin seedlings in this study. However, foliar spraying with various melatonin concentrations enhanced root vigor in pumpkin seedlings, with 100 µmol·L-¹ melatonin showing the most significant effect. Research conducted by Yuan et al. (2022). demonstrated that kiwifruit seedlings exhibited reduced root vigor under waterlogging stress, but the application of exogenous melatonin alleviated the damage. Similarly, Gu et al. (2022). observed reduced root vigor in peach seedlings under waterlogging stress, but application of exogenous melatonin alleviated this reduction and partially mitigated the damage to the root system. Zhou et al. (2024) observed that waterlogging stress significantly impaired the photosynthetic efficiency and chlorophyll levels of kale-type oilseed rape leaves. This effect could be attributed
215 216 217 218 219 220 221 222 223 224 225 226	parts and yield. Waterlogging stress can significantly reduce root vigor, as observed in the pumpkin seedlings in this study. However, foliar spraying with various melatonin concentrations enhanced root vigor in pumpkin seedlings, with 100 µmol·L·l melatonin showing the most significant effect. Research conducted by Yuan et al. (2022). demonstrated that kiwifruit seedlings exhibited reduced root vigor under waterlogging stress, but the application of exogenous melatonin alleviated the damage. Similarly, Gu et al. (2022). observed reduced root vigor in peach seedlings under waterlogging stress, but application of exogenous melatonin alleviated this reduction and partially mitigated the damage to the root system. Zhou et al. (2024) observed that waterlogging stress significantly impaired the photosynthetic efficiency and chlorophyll levels of kale-type oilseed rape leaves. This effect could be attributed to the disruptions in ionic balance, oxidative stress, and metabolic disorders induced by
215 216 217 218 219 220 221	parts and yield. Waterlogging stress can significantly reduce root vigor, as observed in the pumpkin seedlings in this study. However, foliar spraying with various melatonin concentrations enhanced root vigor in pumpkin seedlings, with 100 µmol·L-¹ melatonin showing the most significant effect. Research conducted by Yuan et al. (2022). demonstrated that kiwifruit seedlings exhibited reduced root vigor under waterlogging stress, but the application of exogenous melatonin alleviated the damage. Similarly, Gu et al. (2022). observed reduced root vigor in peach seedlings under waterlogging stress, but application of exogenous melatonin alleviated this reduction and partially mitigated the damage to the root system. Zhou et al. (2024) observed that waterlogging stress significantly impaired the photosynthetic efficiency and chlorophyll levels of kale-type oilseed rape leaves. This effect could be attributed to the disruptions in ionic balance, oxidative stress, and metabolic disorders induced by waterlogging stress. Similarly, Xu et al. (2011) demonstrated that spraying appropriate
215 216 217 218 219 220 221 222 223 224 225 226 227	parts and yield. Waterlogging stress can significantly reduce root vigor, as observed in the pumpkin seedlings in this study. However, foliar spraying with various melatonin concentrations enhanced root vigor in pumpkin seedlings, with 100 µmol·L-¹ melatonin showing the most significant effect. Research conducted by Yuan et al. (2022). demonstrated that kiwifruit seedlings exhibited reduced root vigor under waterlogging stress, but the application of exogenous melatonin alleviated the damage. Similarly, Gu et al. (2022). observed reduced root vigor in peach seedlings under waterlogging stress, but application of exogenous melatonin alleviated this reduction and partially mitigated the damage to the root system. Zhou et al. (2024) observed that waterlogging stress significantly impaired the photosynthetic efficiency and chlorophyll levels of kale-type oilseed rape leaves. This effect could be attributed to the disruptions in ionic balance, oxidative stress, and metabolic disorders induced by waterlogging stress. Similarly, Xu et al. (2011) demonstrated that spraying appropriate concentrations of exogenous melatonin mitigated the damage caused by high-temperature stress

231	increased the levels of the chlorophyll pigments. This increase could be attributed to the ability
232	of melatonin to alleviate waterlogging stress, thereby enhancing photosynthesis, promoting the
233	accumulation of dry matter, and increasing plant growth.
234	Osmoregulation is a vital physiological function in plants that aids them in coping with external
235	stress and maintaining normal growth (Hua, Li, 2017). Plants counteract adverse conditions by
236	accumulating osmoregulatory substances. Yang et al. (2023) demonstrated that exogenous
237	melatonin increases chlorophyll, soluble sugar, and soluble protein levels in leaves of auberge
238	seedlings under waterlogging stress. In this study, foliar spraying of 100 μmol·L ⁻¹ melatonin
239	significantly increased soluble protein content in pumpkin seedlings, enhancing their resistance
240	to waterlogging stress. This effect can be attributed to the stimulation of new protein synthesis in
241	pumpkin seedling leaves by melatonin, enhancing osmoregulation and alleviating cell damage.
242	Malondialdehyde levels are negatively correlated with the integrity of cell membrane structure.
243	Elevated MDA levels in plants indicate severe membrane damage due to salt stress. Pumpkin
244	seedlings subjected to waterlogging stress produce high levels of H ₂ O ₂ , leading to oxidative
245	damage, increased membrane permeability, and elevated MDA levels due to membrane lipid
246	peroxidation. In this study, a significant increase in malondialdehyde content was observed in the
247	leaves and roots of pumpkin seedlings under waterlogging stress, consistent with previous
248	findings by He et al. (2022). Melatonin maintains the integrity of the cell membrane, ensuring
249	cell structure stability and enhancing plant tolerance to stress (Zhang et al., 2015). Research has
250	demonstrated that foliar application of 100 µmol/L melatonin can alleviate membrane lipid
251	peroxidation in chrysanthemum seedlings under waterlogging stress, thereby reducing the
252	damage caused by waterlogging (Tao et al., 2024). This study revealed a significant decrease in
253	MDA levels in pumpkin seedlings treated with 100 μmol·L ⁻¹ melatonin foliar spray.
254	Waterlogging stress primarily damages plants by disrupting the integrity of plant cell
255	membranes, leading to the accumulation of reactive oxygen species (ROS). To counteract this
256	stress, plants typically rely on antioxidant enzyme systems, such as superoxide dismutase (SOD)
257	and catalase (CAT), to eliminate excess ROS and protect cells from damage. Melatonin, known
258	for its ability to scavenge free radicals, also functions as an antioxidant by enhancing the activity
259	of various enzymes involved in antioxidant defense (Li et al., 2023). In the present study,
260	pumpkin seedlings exposed to waterlogging stress exhibited increased SOD and CAT activities,

4 Conclusion

261

262

263 Melatonin can effectively enhance the SOD and CAT activities of pumpkin seedlings under

with a further increase observed after application of melatonin.

PeerJ

- 264 flooding stress, improving their ability to scavenge ROS and increase osmotic regulation
- substances. These effects alleviate the damage caused by flooding stress, maintain intracellular
- water levels and membrane system functions, and preserve cell turgor pressure. Additionally,
- 267 melatonin enhances the photosynthetic capacity of pumpkin seedlings by increasing chlorophyll
- levels, enhancing root activity, and improving their overall tolerance to flooding stress. These
- beneficial effects are attributed to melatonin's ability to enhance antioxidant enzyme activity and
- 270 increase the production of antioxidant substances such as ascorbic acid, glutathione, and
- carotenoids, ultimately reducing the ROS levels, to alleviate oxidative damage and enhance the
- 272 resilience of pumpkin seedlings to waterlogging.
- 273 The growth of pumpkin seedlings was impeded under waterlogging stress, leading to a decrease
- in leaf chlorophyll content and root vigor, an increase in MDA content, and the accumulation of
- 275 reactive oxygen species, which triggered higher activities of antioxidant enzymes. The
- application of exogenous melatonin increased chlorophyll content, enhanced the activities of
- 277 antioxidant enzymes such as SOD and CAT, decreased lipid peroxidation, mitigated peroxidative
- damage, and stimulated pumpkin growth under waterlogging stress. Specifically, treatment with
- 279 100 μmol·L⁻¹ melatonin exhibited superior efficacy in enhancing the waterlogging tolerance of
- pumpkins.

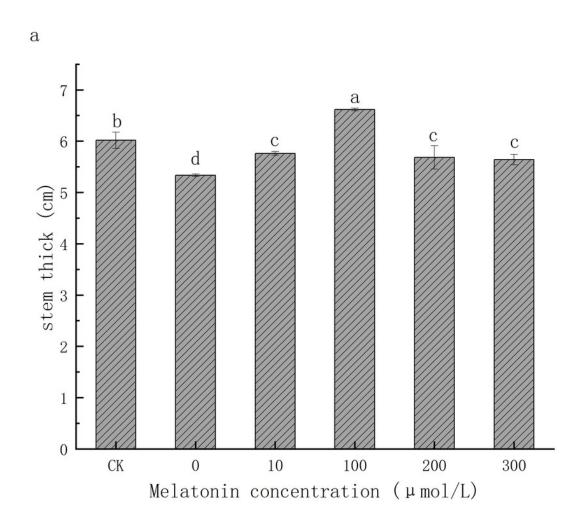
281 Acknowledgments

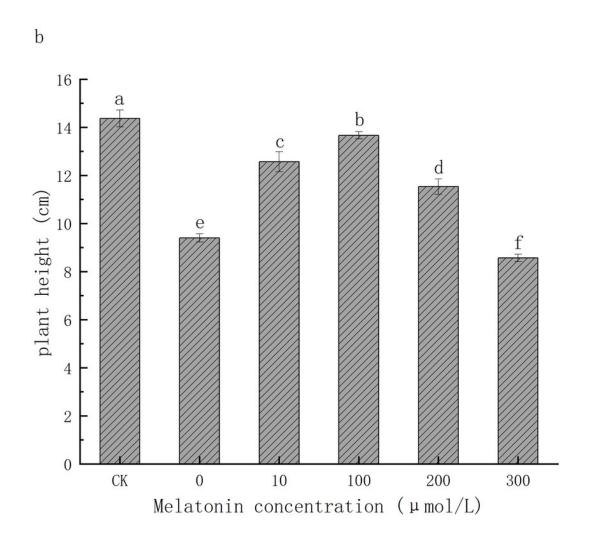
- 282 My deepest gratitude goes first and foremost to Professor Li, for constant encouragement and
- 283 guidance. Without supporting of his project, this thesis could not have reached its present form.
- Second, I would like to express my heartfelt gratitude to my teachers, Liu Zhenwei and Sun Li,
- 285 who gave me their help in my experiment.

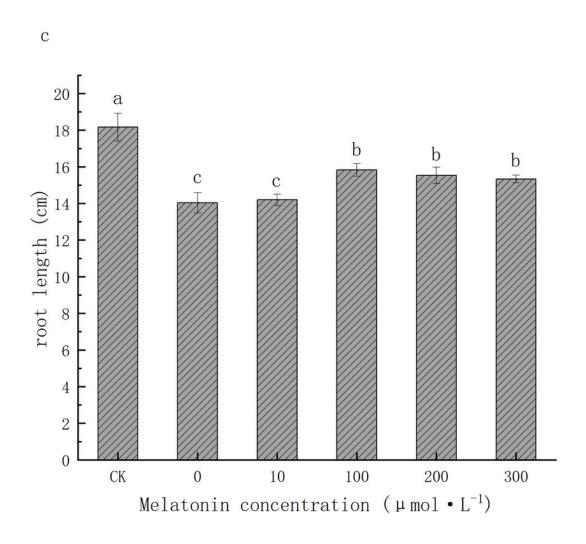
286 References:

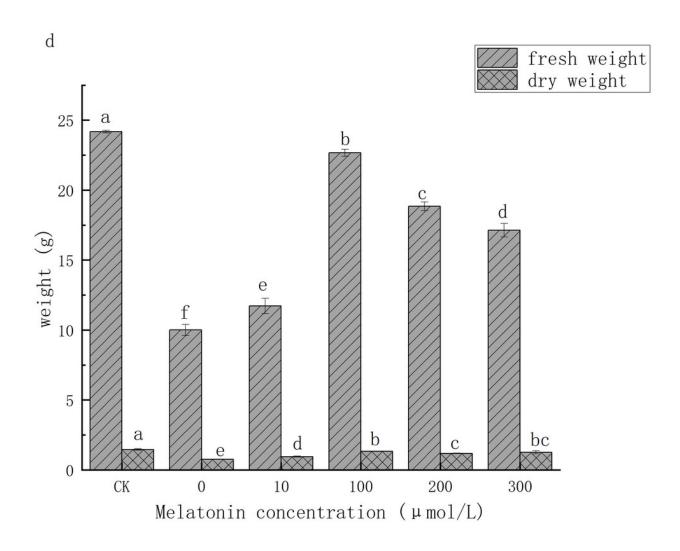
- 287 Bawa G, Feng L, Shi J, Chen G, Cheng Y, Luo J, Wu W, Ngoke B, Cheng P, Tang Z
- 288 , Pu T, Liu J, Liu W, Yong T, Du J, Yang W, Wang X. 2020. Evidence that melatonin
- 289 promotes soybean seedlings growth from low-temperature stress by mediating plant miner
- al elements and genes involved in the antioxidant pathway. Funct Plant Biol. Aug; 47(9):
- 291 815-824. Doi: 10.1071/FP19358.
- 292 Bai RY, Song XM, Shen J, Jia LX, Cheng YG, Ma JX, Zhang Xi. 2023. Effects of foli
- 293 ar spraying of melatonin on the growth and physiological characteristics of pumpkin seed
- 294 lings under low temperature stress. Journal of Northwest Botany (05),805-813.

- 295 Chen JX. 2000. Plant physiology guidance experiment. Beijing: China Agricultural Press.
- 296 Cao JK, Jiang WB, Zhao YM. 2007. Guidance on postharvest physiological and biochem
- 297 ical experiments of fruits and vegetables. Beijing: China Light Industry Press.
- 298 Chen D, Li Q, Peng Y, Wu TH, Zhang XL, Dong JY, Mao BG, Zhao BR. 2019. Effect
- 299 s of melatonin seed soaking on the growth of rice seedlings under flooding stress. Journ
- 300 al of North China Agricultural Sciences (03), 129-136.
- 301 Gao F, Xia H, Yuan XZ, Huang SY, Liu J, Liang D. 2017. Effects of exogenous melat
- 302 onin on phenolic content and antioxidant capacity of kiwifruit seedlings under salt stress.
- 303 Journal of Zhejiang Agricultural Sciences (07),1144-1150.
- 304 Gu XB, Lu LH, Song GH, Xiao JP, Zhang HQ. 2022. Regulatory effect of melatonin pr
- 305 etreatment on waterlogging tolerance of peach. Journal of Zhejiang Agricultural Sciences
- 306 (09), 1911-1924.
- 307 Huang WY, Lu Cheng, Zheng SZ, Wen CC. 2017. Effects of flooding stress on changes
- 308 in antioxidant enzymes of rice plants. Journal of Drainage and Irrigation Mechanical Engi
- 309 neering (11), 1008-1012.
- 310 Hua ZR, Li XL. 2017. Effects of salt-drought cross stress on osmotic adjustment ability
- of wheat seedlings. Shanxi Agricultural Sciences (02), 166-171.
- 312 Han XX, Hu XJ, Li YQ, Min ZY, Yuan ZH, Su JW. 2020. Screening test of pumpkin
- varieties in Changsha. Chili Pepper Journal (02), 35-40. Doi:10.16847/j.cnki.issn.1672-45
- 314 42.2020 .02.009.
- 315 He N, Wang WW, Zhao SJ, Lu XQ, Zhu HJ, Sun XW, Liu WG. 2022. Effects of flood
- 316 ing stress on the physiology of watermelon seedlings of different ploidies. Chinese Melo
- 317 n and Vegetables (05), 51-56. Doi:10.16861/j.cnki.zggc.2022.0108.
- 318 Li HS. 2000. Plant physiological and biochemical experimental principles and techniques.
- 319 Beijing: Higher Education Press.
- 320 Liu CC. 2020. Master's degree in research on the impact of flooding stress on cherry to
- 321 mato seedling stage and its mitigation approaches (dissertation, Hainan University). Mast
- 322 er Doi:10.27073/d.cnki.ghadu.2020.000425.

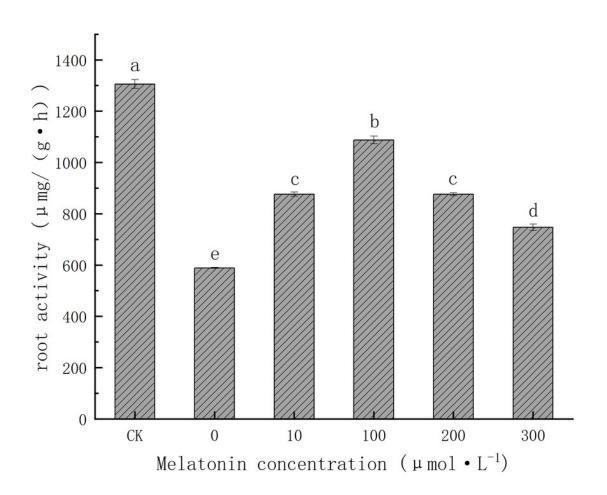

- 323 Li CG, Ma JL, Yang RP, Sun XX. 2022. Alleviating effect of growth regulators on wat
- ermelon flooding stress. Journal of Agricultural Science (10), 30-34.
- Li CQ, Wen GC, Zheng BS, Wang XF. 2023. Research progress on the mechanism of
- melatonin alleviating cadmium stress in plants. Journal of Plant Physiology (09), 1749-17
- 327 59. Doi:10.13592/j.cnki.ppj.300074.
- 328 Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R. 2
- 329 009. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response t
- o diverse stimuli. Sci Signal. Aug 18;2(84):ra45. Doi: 10.1126/scisignal.2000448.
- 331 Meng JF, Xu TF, Song CZ, Yu Y, Hu F, Zhang L, Zhang ZW, Xi ZM. 2015.Melatonin
- 332 treatment of pre-veraison grape berries to increase size and synchronicity of berries and
- modify wine aroma components. Food Chem. Oct 15; 185:127-34. Doi: 10.1016/j.foodche
- 334 m.2015.03.140.
- 335 Qiao DD. 2022. Master's degree in research on botanical traits, nutritional quality and wa
- 336 terlogging tolerance of Baimi series pumpkin varieties (dissertation, Henan University of
- 337 Science and Technology). Master Doi:10.27704/d.cnki.ghnkj.2022.000001.
- 338 Tao L, Li C, Wu S, Li J, Lu XM. 2024. Effects of foliar spraying of melatonin on the
- 339 growth of Gongju seedlings under flooding stress. Modern Agricultural Science and Tech
- 340 nology (01), 87-90.
- Wang Y, Li HY, Zhang SZ. 2010. Research and development of functional ingredients o
- 342 f pumpkin. Tianjin Agricultural Sciences (05), 133-135.
- 343 Wang XX. 2012. Effects of soil moisture stress on malondialdehyde content in leaves of
- 344 different varieties of castor oil. Science and Technology Information, (16): 137-138. DOI:
- 345 10.16661/j.cnki.1672-3791.2012. 16.106.
- 346 Wei W, Li QT, Chu YN, Reiter RJ, Yu XM, Zhu DH, Zhang WK, Ma B, Lin Q, Zhan
- 347 g JS, Chen SY. 2015. Melatonin enhances plant growth and abiotic stress tolerance in so
- 348 ybean plants. J Exp Bot. Feb; 66(3):695-707. Doi: 10.1093/jxb/eru392.
- Wang F, Liu J, Zhou L, Pan G, Li Z, Zaidi SH, Cheng F. 2016. Senescence-specific ch
- ange in ROS scavenging enzyme activities and regulation of various SOD isozymes to R
- OS levels in psf mutant rice leaves. Plant Physiol Biochem. Dec; 109:248-261. Doi: 10.1

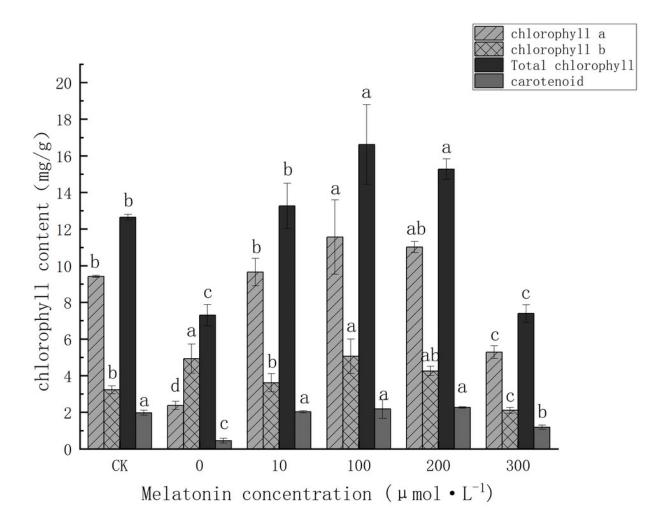


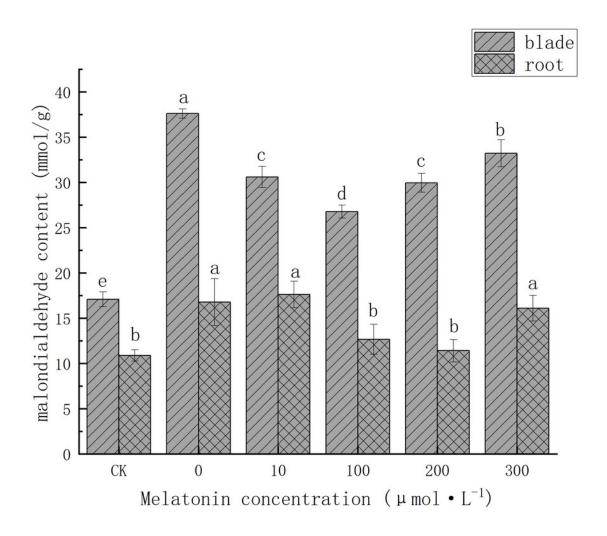

- 352 016/j.plaphy.2016.10.005.
- 353 Xu XD, Sun Y, Guo XQ, Sun B, Zhang J. 2011. Effects of exogenous melatonin on ph
- 354 otosynthesis and chlorophyll fluorescence of cucumber seedlings under high temperature s
- 355 tress. Journal of Nuclear Agriculture (01), 179-184.
- 356 Yuan XZ, Peng YT, Tu MeY, Liang D, Xu ZH, Wang LL, Xia H. 2022. Effect of exo
- 357 genous melatonin on waterlogging tolerance of kiwifruit seedlings. Journal of Sichuan Ag
- 358 ricultural University (06), 862-871. Doi:10.16036/j.issn.1000-2650.202204139.
- 359 Yang J, Qu F, Zhao XY, Jiang FF, Wen LH, Wang TW. 2023. Physiological response o
- 360 f eggplant stressed by waterlogging at seedling stage to leaf spraying of exogenous nitro
- 361 gen and melatonin. Northern Horticulture (15),17-23.
- 362 Zhang N, Sun Q, Zhang H, Cao Y, Weeda S, Ren S, Guo YD. 2015. Roles of melatoni
- n in abiotic stress resistance in plants. J Exp Bot. Feb; 66(3):647-56. Doi: 10.1093/jxb/er
- 364 u336.
- 365 Zhang JC, Ma L, Wu SQ, Wang Y, Chen XS, Zang DK, Wang YL. 2020. The alleviati
- 366 ng effect of exogenous melatonin on low-temperature damage in jujube kiwifruit. Acta P
- 367 hysiologica Sinica (05), 1081 -1087. Doi:10.13592/j.cnki.ppj.2019.0201.
- 368 Zhang RX, Sun Yue, Su JP, Wang SJ, Tong H, Liu YQ Sun LJ. 2021. Research progre
- ss on plant melatonin. Progress in Biotechnology (03), 297-303. Doi:10.19586/j.2095 -234
- 370 1.2020.0148.
- Zhao LL, Zhao DY, Yan S, Hu Q, Xu K, Zhang SY, Hou GX, Li X. 2022. Effects of
- 372 exogenous melatonin on the mineral nutrition of pear leaves and fruits. Chinese Fruit Tre
- e (09) ,23-28. Doi:10.16626/j.cnki.issn1000-8047.2022.09.006.
- 374 Zhang WY, Zhao QW, Liu YY, Yang X, Hou M. 2023. Effects of waterlogging stress o
- 375 n root systems and soil enzyme activities of different crops. China Rural Water Conserva
- 376 ney and Hydropower (06), 209-214+221.
- 377 Zhou XY, Xu JS, Xie LL, Xu BB, Zhang XK. 2024. Physiological regulation mechanism
- of Brassica napus seedlings in response to waterlogging stress. Journal of Crop Science (

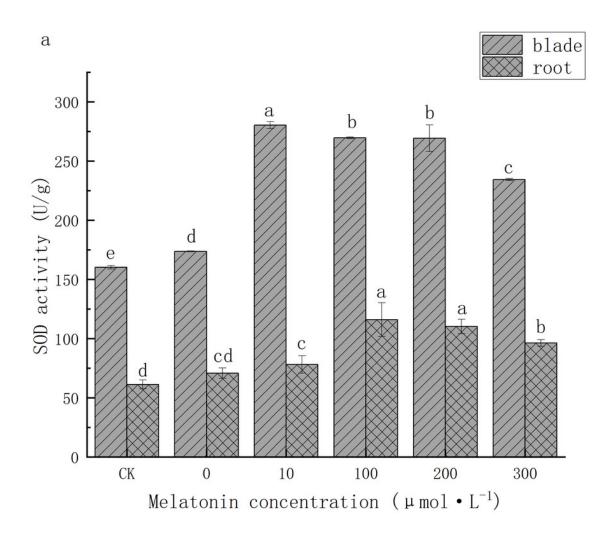


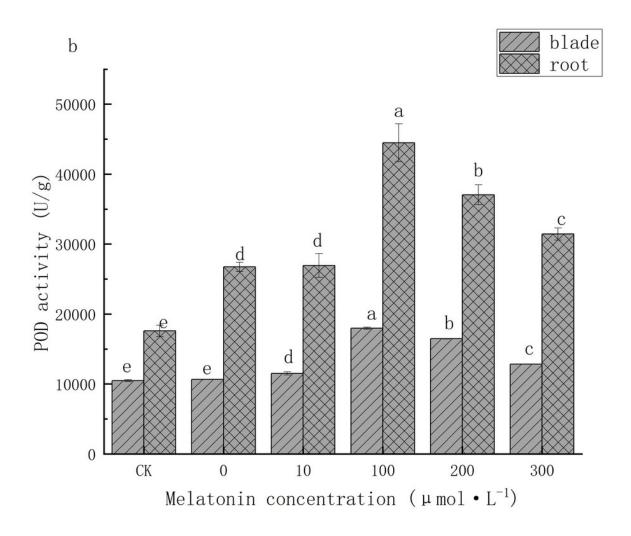
379 04), 1015-1029.

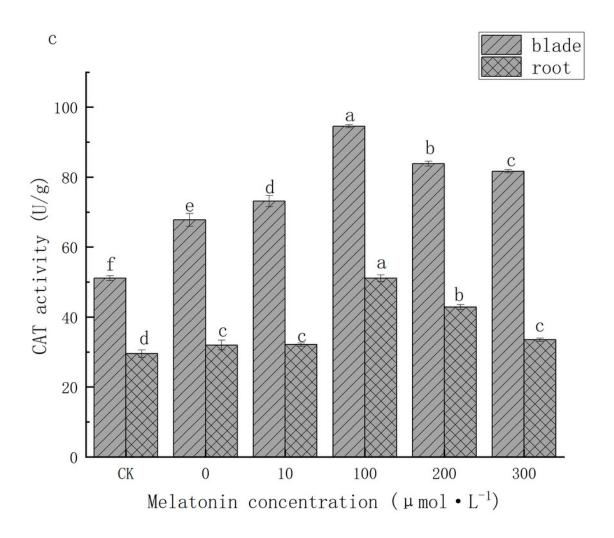


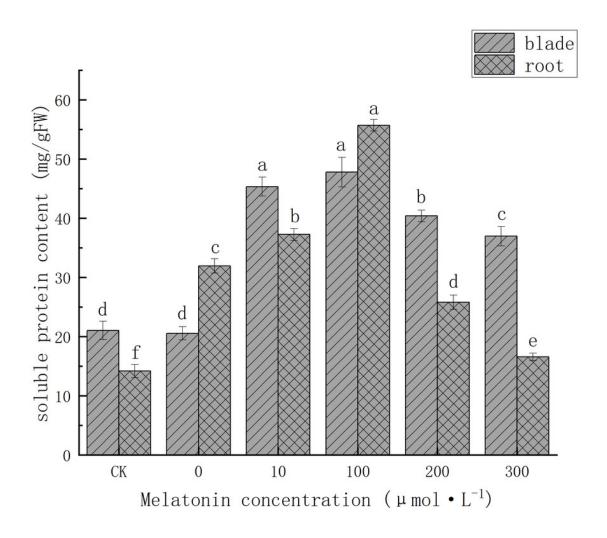



Different concentrations of melatonin enhanced the root vigor of pumpkin seedlings under waterlogging stress


Different concentrations of melatonin alleviate the effect of waterlogging stress on chlorophyll contents in pumpkin seedlings


Different concentrations of melatonin reduce malondialdehyde content in pumpkin seedlings under waterlogging stress


Different concentrations of melatonin increase the activity of antioxidant enzymes in pumpkin seedlings under waterlogging stress


Different concentrations of melatonin increase the activity of antioxidant enzymes in pumpkin seedlings under waterlogging stress

Different concentrations of melatonin increase the activity of antioxidant enzymes in pumpkin seedlings under waterlogging stress

Varying concentrations of melatonin increase the content of the soluble proteins in pumpkin seedlings under waterlogging stress

