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ABSTRACT
The evolution of a population by means of genetic drift and natural selection
operating on a gene regulatory network (GRN) of an individual has not been
scrutinized in depth. Thus, the relative importance of various evolutionary forces and
processes on shaping genetic variability in GRNs is understudied. In this study, we
implemented a simulation framework, called EvoNET, that simulates forward-in-
time the evolution of GRNs in a population. The fitness effect of mutations is not
constant, rather fitness of each individual is evaluated on the phenotypic level, by
measuring its distance from an optimal phenotype. Each individual goes through a
maturation period, where its GRN may reach an equilibrium, thus deciding its
phenotype. Afterwards, individuals compete to produce the next generation.
We examine properties of the GRN evolution, such as robustness against the
deleterious effect of mutations and the role of genetic drift. We are able to confirm
previous hypotheses regarding the effect of mutations and we provide new insights
on the interplay between random genetic drift and natural selection.
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INTRODUCTION
The path from genotype to phenotype is characterized by an immense number of direct
and indirect gene interactions. The relationship between genotype and phenotype has long
been of interest to geneticists, developmental biologists and evolutionary biologists. This is
partially because the relationship between them is ambiguous and non-linearities appear
often. The same phenotype can manifest through a multitude of genetic variations a
phenomenon often referred to as phenotypic plasticity. Conversely, a singular genetic
makeup has the potential to yield diverse phenotypic outcomes, as it interacts with varying
environmental conditions (Sansom & Brandon, 2007). Population genetics processes such
as natural selection and random genetic drift operate on various levels of genomic
organization, from single nucleotides, genes, networks of genes to complex phenotypes.
Phenotypic variation may be directly affected by mutations but also by the interaction of
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mutations at the same or different genes. As Lehner (2007) points out, ‘Probably all
heritable traits, including disease susceptibility, are affected by interactions between
mutations in multiple genes’. Thus, it may seem incomplete that neutrality tests for the
localization of natural selection, use solely genotypic information in models that
incorporate no gene interactions or genotypic-phenotypic relations. In particular, selective
sweeps, the process where a beneficial genetic mutation quickly spreads through a
population, utilize the concept of constant selection coefficient, which can be understood
as a summary of the dynamics of the allele under selection, but lacks a clear biological
meaning (Chevin & Hospital, 2008). The concept of selective sweep theory is attractive for
its straightforwardness, allowing researchers to develop software capable of identifying and
pinpointing genomic areas potentially harboring mutations subject to natural selection.
Consequently, selective sweep software are utilized to investigate whether a gene
underwent recent and intense selection pressure, although they overlook the possibility
that natural selection might occur through mechanisms diverging from a conventional
selective sweep. If a genomic region is identified as the target of positive selection, the next
step usually comprises an extensive literature search in an effort to connect the genotype to
phenotype, and thus build plausible narratives that explain the action of positive selection
(Pavlidis et al., 2012). Yet, if natural selection does not exclusively act on discrete
mutations, identifying the targets of selection becomes challenging due to the (probably
slower or even competing) dynamics of beneficial genotypes. Chevin & Hospital (2008)
extended the theory of positive selection to the context of loci that affect a quantitative
trait, that harbors background genetic variation due to other, unlinked, non-interacting
loci. They assumed a large number of background loci with small effect on the phenotype.
Even though the increase in frequency of a beneficial mutation is slower than the classical
one-locus selective sweep, they showed that under such a model, the signature of a selective
sweeps can still be detected at the focal locus, especially if the genetic variation of the
background is limited. Pavlidis, Metzler & Stephan (2012) showed that when the trait
under selection is controlled by only a few loci (up to eight in their simulations), it is
possible that an equilibrium is reached, resulting in no fixation of a specific allele. Such
equilibrium scenario occurs more frequently when loci have a similar effect on the
phenotype. Contrariwise, if the population is far from the optimum and the focal allele has
a relatively large effect, then it will reach fixation. In general, multi-locus models allow
competition between loci, thus the time of a potential fixation of the selected allele(s)
depends crucially on the initial conditions affecting whether a selective sweep will appear.
This problem is even more pronounced when the phenotype in question is controlled by a
gene-regulatory network, where the expression of a gene is affected by interactions
between multiple genes.

To our knowledge, the first attempt to understand the evolution of regulatory networks
was done in the seminal work by Wagner (1996). Wagner formulated the numerical
evolution a network of genes that assumed binary states (either expressed or not
expressed). He studied whether a population of such networks can mitigate (buffer) the
(detrimental) effect of mutations after it evolves to reach its optimum. Indeed, he found
that after evolving a network of genes by means of natural selection (stabilizing selection),
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the effect of mutations is considerably lower than a system where evolution has not
occurred yet. Natural selection, combined with neutral processes, modifies gene expression
and in consequence the properties of GRNs. Ofria, Adami & Collier (2003), using
computer simulations, demonstrated that when mutation rate is present, selection favors
GRN variants that have similar phenotypes. Wagner (2008) showed that neutral variants
with no effect on the phenotype facilitate evolutionary innovation because they allow for
thorough exploration of the genotype space. These ideas can be directly applied to GRNs
by employing the concepts of robustness and redundancy. Robustness refers to the
resilience that GRNs exhibit with respect to mutations. One mechanism for maintaining
robustness is redundancy. Redundancy may be caused by/implemented by gene
duplication or by unrelated genes that perform similar functions (Nowak et al., 1997).

Three deviations from classic selective sweep theory are possible because of positive
selection effects on GRNs: i) variation in selection intensity through time; ii) ‘soft’ sweeps
that start with several favorable alleles; and iii) overlapping sweeps (Hermisson & Pennings,
2005). Since more than one network configuration can give rise to the same phenotype, the
patterns of polymorphisms at the genome level are not necessarily expected to follow
distributions similar to ones that arise by a strong beneficial mutation in just a single gene
(Pavlidis, Metzler & Stephan, 2012). Adaptation may often be based on pre-existing genetic
variation of the population (standing genetic variation), rather than single, new mutations.
Thus, it is expected that the selected allele was once neutral standing variation, which will
in turn weaken the signal of positive selection (Przeworski, Coop & Wall, 2005). Finally, if
hitchhiking dominates the pattern of neutral diversity, the genome may be subject to
multiple overlapping sweeps.

In this work, we study the evolution of a population of GRNs by means of random
genetic drift and selection. For this reason we developed a forward-in-time simulator,
named EvoNET that extends Wagner’s classical model (Wagner, 1996) and subsequent
extensions (e.g., Siegal & Bergman, 2002) by ðiÞ explicitly implementing cis and trans
regulatory regions. cis and trans regions may mutate and interact, thus, affecting gene
interactions and gene expression levels. In contrast, Wagner’s model directly modifies the
values of the interaction matrix without implementing any mutation model. In addition,
ðiiÞ we allow for viable cyclic equilibria during the maturation period in contrast to
Wagner’s model, where cyclic equilibria are considered lethal. We assume that such cyclic
equilibria resemble circadian regulatory or expression alternations. Futhermore, ðiiiÞ we
devised a different recombination model, where a set of genes with their cis and trans
regulatory regions, can recombine in another background, with the subsequent
consequences on their interactions with other genes. We provide results about the
robustness of the network to mutations, and its properties during the traversal of fitness
landscape. Portions of the Methods and Results sections were published as part of a
preprint (Kioukis & Pavlidis, 2019).
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METHODS
The model
Regulatory regions define interactions
We assume a population of N haploid individuals. Individuals may have either a single
parent or two parents. In the later case recombination is allowed (see “Inheritance of
regulation and recombination”). Each individual comprises a set of n genes consisting of
cis and trans binary regulatory regions, each of length L. A cis regulatory region is defined
as the region upstream the gene on which the trans regions of other genes of the GRN can
bind. Let Ri;c be the cis region of the gene i and Rj;t the trans region of gene j. Then, we
define a function IðRi;c;Rj;tÞ that receives as arguments two binary vectors and returns a
float number in the ½�1; 1� representing the interaction type and strength. Negative values
model suppression, positive values activation, and 0 means no interaction. Here, for the
absolute value of interaction, we use Eq. (1):

jIðRi;c;Rj;tÞj ¼
pcðRi;c½1 : L� 1�&Rj;t½1 : L� 1�Þ

L
0 : noregulation

(
(1)

where pc is the popcount function, which counts the number of set bits (i.e., 1’s) that are
common in the two vectors. The occurrence of interaction, as well as, the type (suppression
or activation) is defined by the last bit of the Ri;c and Rj;t vectors as:

0; Ri;c½L� ¼ 0
þ; Ri;c½L� ¼ Rj;t½L� ¼ 1
�; Ri;c½L� ¼ 1 and Rj;t½L� ¼ 0

(2)

In other words, the first L� 1 bits define the strength of the interaction, which is
proportional to the number of common set bits (i.e., common 1’s). The last (Lth) bit in each
vector determines if the interaction is present and if it is suppression or activation. If the
last bit of the cis element is ‘0’ then it does not ‘accept’ any regulation. If it is ‘1’, then
regulation can be either positive or negative, depending on the last bit of the trans element.

The above representation of regulation enables a more realistic representation than
Wagner’s model (Wagner, 1996) and its more recent extensions (Siegal & Bergman, 2002;
Huerta-Sanchez & Durrett, 2007). A single mutation in the cis region of a gene can affect its
regulation by all other genes, and a mutation in the trans region of a gene can affect the
way it regulates all other genes (see also ‘Mutation model of regulatory regions’).

Interaction matrix and expression levels
Interaction values of each individual are stored in a square Mn�n matrix of real values in
the ½�1; 1� range, where n is the number of genes in the network. A positive Mij value
indicates that gene j activates gene i, a negative value indicates suppression and 0
represents no interaction. Thus, the row Mi: represents the interaction between all trans
regulatory elements and the cis regulatory region of gene i. Gene expressions are
represented by a vector En of n elements. In the general case, the expression level Ej of the
jth gene can be a real positive number. Here, however, E is a binary vector, indicating only if
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a gene is active or not. Such a representation is more efficient computationally. A similar
approach has been used by Wagner (1996) and Siegal & Bergman (2002).

Inheritance of regulation and recombination
Each child inherits from its parents the cis and trans regulatory regions (the model allows
for two parents or a single mother). The initial values of expression levels (at birth) are
initialized to a constant binary vector. If the model allows for two parents, then
recombination is possible. We have implemented two recombination models. The first is
similar to Wagner’s (1996) model that swaps rows of the interaction matrix of parents to
form children. Such a model results effectively in exchanging cis regulatory elements.
Wagner’s model of recombination may be, however, unrealistic because it allows only cis
regulatory regions to be exchanged while trans regions do not recombine (Fig. 1, top
panel). InWagner (1996), the interaction values between genes in the recipient and donor
genomes remain unchanged after recombination (Fig. 1, upper panel A). We implemented
Wagner’s model of recombination, but we re-estimated the interaction values between
genes in the donor and the recipient genomes. This is necessary because cis and trans
interactions are modified after recombination (Fig. 1, upper panel B). We implemented an
additional recombination model that allows cross-over events between parental genomes
as follows: Assuming that the GRN consists of n genes, let j, 0 < j < n be an recombination
breakpoint. Then, the first j genes inherit the cis and the trans regions from one parent, and
the last n� j genes inherit cis and trans regions from the other parent. The interactions
between the first j and the last n� j genes are then re-computed in accordance to the
resulting genome’s regulatory regions (Fig. 1, bottom panel).

Mutations

Mutations take place in the cis and trans regulatory regions during offspring generation.
Since regulatory regions are implemented as binary vectors, a mutation can change a
position in a region by modifying a 0 to 1 and vice versa. On one hand, if a mutation will
affect a cis region, then all interactions between this cis and all trans regions might be
modified (i.e., the row of the interaction matrix will be affected). On the other hand, if a
mutation will change a trans region, all interactions between this trans and all other cis
regions might be modified (i.e., the column of the interaction matrix). For each individual,
the number of mutations is drawn from a Poisson distribution with parameter l (mutation
rate per genome per generation), and then mutations (if any) are placed uniformly among
the cis and trans regulatory regions.

For example, let Ri;cis be the cis regulatory region of gene i that is going to be mutated.
Ri;cis comprises two parts: the ½1 : L� 1� part, which controls the strength of interactions
and the L position that controls the type of interaction as described in Regulatory regions
define interactions. Since mutations in the L position may have a dramatic effect, changing
the type of interaction (e.g., a repressor might become activator or regulation can be
silenced), we implemented two different mutation rates for these two parts of the
regulatory regions. Mutations in the first ½1 : L� 1� part are distributed uniformly.
We model with 1% chance the probability that if a mutation occurs, the trans region
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changes its behavior. This models the biological fact that mutations that change the nature
of an established relationship of two genes are very rare as opposed to changing the
strength of the respective relationship.

Selection
The fitness of each individual is ultimately determined by their gene expression profile.
Let Eopt represent the optimal vector of expression values of the GRN. In EvoNET the user
can opt to specify an optimal vector through the command line. The fitness of an
individual i with expression values defined by the Ei

n vector is defined by:

FðEnÞ ¼ e� Ei
n�Eoptk k=r2 (3)

where En � Eopt
�� �� is a norm of the difference between En and Eopt expression vectors (here

the Euclidean distance is used). r2 is identical to the parameter s of Wagner (1996). This
parameter models the ‘strength of selection’, i.e., how pronounced is the effect of the
differences in expression vectors to individuals’ fitness. Parents are chosen proportionally
to their fitness value FðEi

nÞ.

Figure 1 Recombination models implemented by EvoNET. Shaded areas show the gnomic regions that
are exchanged due to the recombination process. At the upper panel, Wagner’s model is illustrated, where
cis regulatory regions can be swapped between individuals of the population. At the bottom panel, our
model is shown. In our model, recombination is implemented via a recombination break-point. All genes
at its left side inherit both the cis and the trans regions from one parent, whereas the genes on the right
inherit cis and trans regions from the other parent. The interaction matrix is re-evaluated after
recombination. Full-size DOI: 10.7717/peerj.17918/fig-1
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Maturation and equilibria
Every ‘new-born individual’ has inherited the regulatory regions from its parents and by
extension the interaction matrix (potentially with mutations) and has acquired an initial
expression vector. Since genes may interact with each other, we have implemented an
additional ‘maturation’ process during which, the expression levels of genes change, as a
result of gene-gene interactions until either an equilibrium point, or a cyclic equilibrium is
reached. At the t þ 1 step of the process a new expression vector Enðt þ 1Þ is obtained
using the expression vector of the tth step and the interaction matrix M:

Enðt þ 1Þ ¼ MEnðtÞ: (4)

Equivalently, the ith element Enðt þ 1Þ½i� ¼ Pn
j¼1 Mi;jEnðtÞ½j�. Depending on the

interaction matrix M and the initial value of the expression vector En, there are three
possible outcomes of this process.

ðiÞ EnðtÞ ¼ Enðt þ 1Þ ¼ Enðt þ 2Þ ¼ . . .
ðiiÞ EnðtÞ ¼ Enðt þ kÞ ¼ Enðt þ 2kÞ ¼ . . . ; k > 1
ðiiiÞ EnðtÞ 6¼ Enðt þ jÞ; 8 t; j

(5)

In Wagner’s model (Wagner, 1996) as well as in Huerta-Sanchez & Durrett (2007), only
case ðiÞ in Eq. (5) is considered viable. Case ðiÞ facilitates fitness evaluation of the individual
using Eq. (3). Individuals with a maturation process that concludes in ðiiÞ or ðiiiÞ were
removed from the population. Here, motivated by Pinho, Borenstein & Feldman (2012)
who suggested that in Wagner’s model most networks are cyclic, we developed a circadian
framework to evaluate the fitness of individuals whose network maturation results in a
cyclic equilibrium. Individuals that conclude in case ðiiiÞ, or individuals that conclude in
case ðiiÞ but the period k is greater than an upper threshold (defined as 10:000 steps in our
simulations) were considered non-viable and were assigned a fitness of 0. If the maturation
process concludes in case ðiiÞ, with EnðtÞ ¼ Enðt þ kÞ ¼ Enðt þ 2kÞ ¼ . . . and k < 10:000,
we evaluated the fitness of the individual as the minimum fitness value during the period of
a cycle.

RESULTS
Comparisons between neutral evolution and selection scenarios
Simulations setup
To explore the gene expression differences between neutral evolution and evolution under
directional selection, we simulated neutral datasets and datasets under selection. All
examples are provided in the Supplementary information. Both models were evolved for
15,000 generations. Each individual network comprises 10 genes, each with 30-bit long cis
and trans regulatory elements. The last bit of each regulatory element is responsible for the
type of regulation (positive or negative; see Methods) and the remaining 29 bits determine
the strength of the interaction. In generation 0, all cis-regulatory elements were set so that
they can not accept any regulation. In contrast, all trans-elements were set to be activators,
thus they can regulate a cis element positively (provided that the last bit of the cis-element
is 1). After maturation (see Methods), the expression vector was converted to binary
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format (the expression value is 1 if the expression is positive and 0 otherwise). Thus,
initially all expression vectors v were equal to 0. The fitness of each individual was
evaluated after maturation. The optimum was set to the state were all genes were expressed
(i.e., state 1 for all genes). For the simulations with selection, the selection intensity 1=r2

(see Methods) was set to 1/5. The population size was set to 100 haploid individuals and
remained constant throughout the entire simulation. Mutation rate was set to 0:005 unless
stated otherwise.

Optimum is gradually reached in a ladder-like fashion
We evaluated whether, and how, the population reaches the optimum state. Given that the
initial state was 00000000 (i.e., all genes inactive) and the optimum state was 11111111
(i.e., all genes active), the population had to experience the appropriate changes in its cis-
and trans- regulatory elements, and consequently the GRN, to achieve the activation of all
genes. When mutation and recombination rates were sufficiently low, we observed a
ladder-like behavior for the average fitness (Fig. 2); that is, networks were successively
replaced by fitter networks in discrete steps.

At every step of the ‘ladder’, the average population fitness remains approximately
constant. After reaching each fitness step, the population starts exploring different GRN
topologies until a fitter genotype establishes in the population. While exploring candidate
topologies, genetic drift acts and it is therefore possible that the population will not
incorporate every novel beneficial network topology that it will encounter. If a beneficial
topology overcomes drift, its frequency increases and the population average follows.
Finally, when the new topology reaches fixation, the population has reached the next step
in the fitness ‘ladder’ (Fig. 3).

Mutations and recombination are the driving force behind the exploration of the
topology space, since they may result in a novel network topology. By increasing the
mutation rate, the number of novel explored topologies increases and the time between
each step decreases (Fig. S1). Recombination rates also affect the time required for each
step. Recombination allows the parental networks to be combined resulting in
enhancement of the network variability in the population, thus the optimum can be
reached faster. In our simulations our proposed model R1R2 swapping reaches optimum
faster than the row-swapping model proposed by Wagner (1996) (Fig. S4).

Size of the regulatory space in neutrality and selection
We assessed how the population explores the state space of regulatory networks during its
evolution, by evaluating the number of different genotypes present throughout the run.
We studied whether neutrality or selection explores the space more efficiently, i.e., which
of the two processes allow the population to explore a higher number of genotypes on
average. Under neutrality the genotype frequency was affected solely by genetic drift. In the
limited amount of generations (15,000), and due to the small population size (100
individuals) the population explored a small fraction of the genetic landscape centered
around the initial state. Namely populations on average harbored 5,105 distinct GRNs over
the course of the simulation. In contrast, for scenarios involving selection, populations
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encountered on average 17,110 distinct networks. We illustrate that the interplay between
selection and drift is vital in this increase. After initialization, selection drives genotypes to
local optima. It is plausible that more than one genotypes with similar fitness values are
simultaneously present in the population at different frequencies (Fig. 3). Subsequently,
neighbouring genotypes of similar fitness are explored solely by drift until a fitter one is
found, whose frequency is increased and eventually it replaces the present genotypes.
The process is then repeated until the optimal genotype appears. These “transitioning”
genotypes are most likely located in local optima (of the landscape) and thus act as
exploration hubs for the population. Since these peaks cannot be escaped swiftly, an
increase of distinct GRNs will be observed (Fig. 3).

Robustness of gene regulatory network
Robustness to the (phenotypic) effect of mutations has been studied in the framework of
GRNs (Wagner, 1996), demonstrating that GRNs which reached the phenotypic optimum
are less sensitive to mutations-a phenomenon named epigenetic stability. Thus, epigenetic
stability was attributed to the evolution of GRNs via the selection process. In order to study
this phenomenon, We developed a framework inside EvoNET that allows the simulated
population to follow multiple trajectories. Specifically, at discrete time-points EvoNET
clones the evolving population (‘core’ population) creating a ‘branch’ population. Each

Figure 2 The increment in average fitness of the population is taking place in discrete steps, in a
ladder-like fashion. This figure is one such example that demonstrates the fitness trajectory of the
population. Full-size DOI: 10.7717/peerj.17918/fig-2
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‘core’ individual has an interactions matrix Mi shared with its ‘clone’. The ‘branch’
population is subject to a user defined number of mutations and then both populations
start the maturation progress. The interaction matrices are then discretized (positive values
are transformed to 1, negative to −1 and 0 values remain 0) in order to compare the
network topologies of the branch and the core population.

We assess the GRN robustness at two levels, topology and phenotype. Each GRN has a
unique network topology characterizing the strength and effect of all gene interactions.
In EvoNET, the topologies are modelled by the interaction matrix, so the additional
mutations occurring in the ‘branch’ population have the potential to change the network’s
topology. Robustness is calculated as the identity between the ‘core‘ and ‘branch‘
interaction matrices after the incorporation of the additional mutations on the ‘branch’
population. Expression (or phenotypic) robustness measures the identity of the (binary)
expression vector between the two populations after every branching (Fig. 4). The
robustness of the expression vector is very high in the start of the simulation as the
initialization of genotypes does not allow for interactions. Robustness falls dramatically
after the initialization step and increases as fitness increases. The maximum robustness is
achieved when the optimum has been reached, on average. The topology is less robust than

Figure 3 Alternating frequency-trajectories of the various regulatory networks at a certain fitness
level (0.5679; black horizontal line). Each color represents a distinct GRN haplotype. During this
time period the population has a constant fitness (around 0.5679, black line). Here, we show only net-
works that reach a frequency of at least 50%. There are 14 different networks. This is the result over one
simulation that displayed the ‘ladder like’ behaviour described in Fig. 2.

Full-size DOI: 10.7717/peerj.17918/fig-3
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then expression vector. However, robustness of topology also increases when the
population has reached the maximum fitness level.

Effect of neutral genes
All genes in a GRN are not subject to the same evolutionary pressure. Often, a subset of the
GRN is evolving under neutrality while other parts are under selection. In EvoNET a gene
is under selection if its state directly affects the fitness of the individual (i.e., the fitness is
different if the gene is active or inactive). In contrast, the state of a neutral gene does not
directly affect the fitness. It might affect the expression of a “selected” gene, thus having an
indirect effect on fitness. We calculated that the number of interactions between neutrally
evolving genes and selected genes increase, until the population reaches the optimum
(Fig. 5). While fitness increases, there are multiple interactions between the two parts
(neutral and selected), due to the fact that a mutation in the neutral part of the GRN may
have an indirect positive effect on the GRN, probably because it regulates the genes of the
GRN that are under selection. In contrast, when the population is at the optimum (Fig. 5,
right box), mutations are rather deleterious resulting in disadvantageous interactions.
Since mutations happen with the same rate across both the neutral and selected part of the
GRN, the greater the GRN, the larger the probability of deleterious mutations. Thus,
interactions that can be eliminated are eventually discarded (Fig. 5).

Mutational buffering
In traditional evolutionary theory mutations are often modeled to have a set effect on
individuals’ fitness. In a model with regulation, the relationship between genotype and
fitness becomes considerably obscure. On one hand, mutations on “neutrally” evolving
genes may change the regulation of genes that affect the phenotype, thus having an indirect

Figure 4 Robustness of the (binary) expression vector and network topology. Each box represents a
discrete time point at with the population was split into ‘core’ and ‘branch’. The latter ones were subject to
15 random mutations, followed by the maturation step and fitness calculation. “Expression Robustness”
is measured as the identity of the resulting expression matrices, while “Topology obustness” is measured
as the identity of the populations’ interaction matrices. Full-size DOI: 10.7717/peerj.17918/fig-4
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effect on fitness. In contrast, mutations on “selected” genes may not change the overall
phenotype, thus having no effect in fitness (Krishnan, Tomita & Giuliani, 2008).

In order to access the role this effect has on the time that optimal fitness is reached, we
compared EvoNET with a simpler algorithm that omits the GRN and directly switches the
expression of genes on and off. We demonstrate that the existence of the GRN gives rise to
mutational robustness and therefore reaching the fitness optimum faster at high mutation
rates. We observe that as mutation rate increases, the two strategies display different
behaviour (Fig. 6). For small mutation rates the fitness optimum is reached substantially
slower by the GRN because robustness and the resulting buffering of the mutation effects
hinders the traversal of the fitness landscape. When the mutational load increases,
however, the traditional model shows a sharp increase in the time required to reach the
optimum. Individuals that have reached a higher fitness will pass potentially different
genomes to their offspring. This effect is mitigated in the case of GRNs because of their
robustness (Fig. 6).

Key

Figure 5 It is beneficial for the GRN to interact with neutrally evolving genes when the population is
ascending the fitness landscape (boxes; red points represent the means). Upon reaching optimum
fitness those interactions tend to be discarded. Boxplots depict averages of 100 simulations, where the
majority reached each fitness step. Full-size DOI: 10.7717/peerj.17918/fig-5
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DISCUSSION
In recent years, we have witnessed progress on the discovery of GRNs, especially cis-
regulatory modules (CRMs). In addition, with the assistance of machine learning tools, the
importance of GRNs in our understanding of phenotype formation has been highlighted
(Kantorovitz, Robinson & Sinha, 2007; Kantorovitz et al., 2009; Kazemian et al., 2011).
There is a gap though, in our understanding of the effect of the biological organization
(from genes to GRNs and eventually to phenotypes) on the fitness of individuals.

For this reason we created EvoNET. EvoNET creates a detailed model of regulation of a
phenotype by implementing and extending Wagner’s model of regulation. By
implementing cis and trans regulatory regions as part of the network, we are able to
simulate populations and link their individuals’ GRNs with a fitness effect. We also offer
considerable improvement upon previous models by implementing a more realistic
recombination model and also by not discarding but handling cyclic equilibria in the
maturation process, contrary to previous studies. We introduced a new recombination
model (R1R2) that is more realistic than the previously used row-swapping model by
Wagner (1996). The R1R2 model has a similar behaviour with Wagner’s row swapping
model regarding the average time needed for every fitness level (Fig. S4).

Figure 6 Comparison between the time (in generations) needed to reach the fitness optimum
between EvoNET (white) and a simple model with a non-interactive set of genes. For lower muta-
tion rates, the model without interactions needs less time to reach the fitness optimum. The opposite
trend is observed for high mutation rate values. A total of 100 simulations were performed for each
mutation rate value and each scenario. Full-size DOI: 10.7717/peerj.17918/fig-6
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As with any simulation study, it is imperative to acknowledge and address a series of
underlying assumptions inherent in its developmental stages. A pivotal decision in this
regard was the discretization of expression vectors, where the phenotype of a gene is
divided into either expressed or non-expressed states. While this binary representation
simplifies the computational framework, it disregards the nuanced and quantitative
expression patterns observed in certain biological networks. The rationale behind this
approach was to streamline the maturation process computationally. Furthermore, a
noteworthy constraint lies in the model of interaction between cis and trans regions.
The current implementation assumes an equal amount of interaction points within these
regions, exclusively influenced by their individual states. Consequently, this framework
precludes the consideration of non-genetic factors, such as methylation events, in shaping
phenotypic outcomes. In addition, aligning simulation parameters, such as mutation and
recombination rates, with empirically derived values becomes ambiguous, given the
inherent simplifications in the model. Another possible point of scrutiny is also our
decision to simulate haploid individuals. Wagner (1996) does provide some insight that
informed such decision: “It is not clear a priori whether diploidy would further increase the
magnitude of the effects observed here, because evolution of specific dominance relations
among alleles seems possible in a model like this. However, it is unlikely that diploidy
would diminish these effects.” Apart from dominance effects, incorporating diploidy
would add only double the number of genes, but the number of interactions would increase
exponentially skyrocketing the computational cost of EvoNET.

In our simulations, with moderate values of mutation and recombination rate, the
exploration of fitness landscape follows a ladder-like behaviour, implying that adequate
amount of time is needed until certain mutations will bring the population to the next
fitness level (Fig. 2). At first glance, this observation may point to a saltatory model of
evolution. Saltatory evolution (SE) hypothesizes periods of rapid increase in mutation
rate—often linked with the development of beneficial traits (Theißen, 2009). What we
observe in simulations that display this ladder-like change in population fitness however, is
that variability doesn’t lead into rapid changes of populations’ fitness (Fig. 3) but if such a
change occurs, the population quickly adopts this ‘fitter’ genotype. During this ‘adoption
phase’ it is safe to assume that variability in the population will drop and will steadily
increase as the populations traverses the next ‘step’ of the ladder. In contrast, SE suggests
that most of the variability will be generated rapidly and lead to an increase in the
development of beneficial traits. Moreover, since EvoNET does not support intermediate
expression levels, shifting the state of a gene towards the phenotypic optimum will cause a
jump in fitness that might imply saltation. Conclusively, we believe that our results cannot
be received as evidence for the SE model, firstly because in the phenotypic level, the
binary-expression model forces a jump and secondly, on the genotypic level, we do not
observe a saltation.

We explored the role of robustness of the GRNs while they undergo selection.
Robustness implies the existence of phenotypically neutral mutations and allows for
complex biological structures that are resistant to the detrimental effects of mutations.
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There are two layers that provide robustness to the network, the network topology and the
phenotype. The phenotype is more robust to mutations than network topologies, since
topology is directly related to the regions affected by mutations. By comparing EvoNET
with a GRN-less simulation (Fig. 6) we conclude that these robustness layers permit the
GRN to increase its fitness even under high mutation rate. In lower mutation rates,
robustness acts as a barrier on the effect of all mutations driving the population to a flat
network space thus avoiding perturbations (Lenski, Barrick & Ofria, 2006). In contrast,
when the mutation rate increases, the GRN robustness limit is overcome and deleterious
mutations, eventually affect the fitness of the population. Thus, at least up to some
threshold, GRNs are able to buffer the detrimental effect of mutations, highlighting their
biological significance.

A similar phenomenon was also noted byWagner (1996), who postulates that although
certain states may exhibit equivalent fitness levels, natural selection could operate
indirectly. He theorizes that if there exist gene regulatory networks within populations
whose mutants consistently yield lower fitness, such networks would gradually be phased
out through selective pressure. This proposition, however, arises inquiries into the
nuanced understanding of fitness, not solely within the realm of computational
simulations but more expansively, as a biological attribute of organisms. Consider a
scenario wherein two individuals exhibit identical rates of reproductive success, yet their
offspring consistently vary in fitness owing to the susceptibility of their genetic makeup to
mutations. Were fitness interpreted solely as the reproductive likelihood of individuals (as
is implemented in EvoNET), it would appear that these individuals possess equivalent
fitness; nonetheless, it is evident that one genome would substantially outperform the other
in the long term. This scenario underscores the intricacies of fitness determination and
prompts exploration into the heritability of fitness traits. Furthermore, it beckons the
investigation of whether such phenomena are inherent components of biological processes
or mere artifacts resulting from the constraints imposed by simulation frameworks.
Resolving these inquiries is pivotal for a comprehensive understanding of the interplay
between genotype, phenotype, and evolutionary dynamics.

In EvoNET we can allow for genes that do not affect the fitness of an individual directly
(neutral genes); however, they may interact with genes that directly affect fitness. These
dispensable genes, which are not critical for an organism’s basic survival but may provide
benefits under certain conditions, can play a useful role in steering a population towards an
optimal adaptation more swiftly. The main benefit of having dispensable genes is their role
in adaptive flexibility. Thus, a hypothesis that needs to be tested more thoroughly and our
simulations provide evidence for its validity (Fig. 5), is that dispensable genes may help
populations climb adaptive peaks faster by offering multiple genetic pathways to explore
and exploit, speeding up the evolutionary process and helping organisms adapt more
quickly than they might with a less diverse genetic toolkit. In addition, when the
population is very close or has reached the optimum, we observe a reduction in gene
interactions. Dispensable genes introduce a layer of genetic diversity that can be especially
advantageous when environmental or even genomic conditions change. In a stable
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environment, these genes might remain neutral, not providing any significant advantage or
disadvantage. However, when conditions shift these genes can suddenly become beneficial.
A study by Gerdol et al. (2020), suggested that in mussels, dispensable genes usually belong
to young and recently expanded gene families enriched in survival functions, which might
be the key to explain the resilience and invasiveness of this species.

CONCLUSIONS
Gene regulatory networks play an intermediate role between the genotype and the
phenotype. In order to study their role on the evolution of populations, we developed
EvoNET, a versatile simulator for the evolution of GRNs through means of genetic drift
and selection. We improved upon previous models of recombination and introduced a
novel method for dealing with cyclic equilibria. Thus, we were able to demonstrate the
effects of GRNs on the genetic robustness as populations traverse the fitness landscape, as
well as verify previous findings. Lastly we discuss a series of limitation that underlying
model assumptions impose and provide areas that require further understanding. The
source code for EvoNET can be found at https://doi.org/10.5281/zenodo.11215048.
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