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Long-term passage impacts human dental pulp stem cell
activities and cell response to drug addition in vitro.
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Background: Dental pulp stem cells (DPSCs) possess mesenchymal stem cell
characteristics and have potential for cell-based therapy. Cell expansion is essential to
achieve suûcient cell numbers. However, continuous cell replication causes cell aging in
vitro, which usually accompanies and potentially aûect DPSC characteristics and activities.
Continuous passaging could alter susceptibility to external factors such as drug treatment.
Therefore, this study sought to investigate potential outcome of in vitro passaging on
DPSC morphology and activities in the absence or presence of external factor. Methods:
Human DPSCs were subcultured until reaching early passages (P5), extended passages
(P10), and late passages (P15). Cells were evaluated and compared for cell and nuclear
morphologies, cell adhesion, proliferative capacity, alkaline phosphatase (ALP) activity,
and gene expressions in the absence or presence of external factor. Alendronate (ALN)
drug treatment was used as an external factor. Results: Continuous passaging of DPSCs
gradually lost their normal spindle shape and increased in cell and nuclear sizes. DPSCs
were vulnerable to ALN. The size and shape were altered, leading to morphological
abnormality and inhomogeneity. Long-term culture and ALN interfered with cell adhesion.
DPSCs were able to proliferate irrespective of cell passages but the rate of cell proliferation
in late passages was slower. ALN at moderate dose inhibited cell growth. ALN caused
reduction of ALP activity in early passage. In contrast, extended passage responded
diûerently to ALN by increasing ALP activity. Late passage showed higher collagen but
lower osteocalcin gene expressions compared with early passage in the presence of ALN.
Conclusion: An increase in passage number played critical role in cell morphology and
activities as well as responses to the addition of an external factor. The eûects of cell
passage should be considered when used in basic science research and clinical
applications.
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24 Abstract

25 Background: Dental pulp stem cells (DPSCs) possess mesenchymal stem cell characteristics 

26 and have potential for cell-based therapy. Cell expansion is essential to achieve sufficient cell 

27 numbers. However, continuous cell replication causes cell aging in vitro, which usually 

28 accompanies and potentially affect DPSC characteristics and activities. Continuous passaging 

29 could alter susceptibility to external factors such as drug treatment. Therefore, this study sought 

30 to investigate potential outcome of in vitro passaging on DPSC morphology and activities in the 

31 absence or presence of external factor.  

32 Methods: Human DPSCs were subcultured until reaching early passages (P5), extended 

33 passages (P10), and late passages (P15). Cells were evaluated and compared for cell and nuclear 

34 morphologies, cell adhesion, proliferative capacity, alkaline phosphatase (ALP) activity, and 

35 gene expressions in the absence or presence of external factor. Alendronate (ALN) drug 

36 treatment was used as an external factor. 

37 Results: Continuous passaging of DPSCs gradually lost their normal spindle shape and increased 

38 in cell and nuclear sizes. DPSCs were vulnerable to ALN. The size and shape were altered, 

39 leading to morphological abnormality and inhomogeneity. Long-term culture and ALN 

40 interfered with cell adhesion. DPSCs were able to proliferate irrespective of cell passages but the 

41 rate of cell proliferation in late passages was slower. ALN at moderate dose inhibited cell 

42 growth. ALN caused reduction of ALP activity in early passage. In contrast, extended passage 

43 responded differently to ALN by increasing ALP activity. Late passage showed higher collagen 

44 but lower osteocalcin gene expressions compared with early passage in the presence of ALN.
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45 Conclusion: An increase in passage number played critical role in cell morphology and activities 

46 as well as responses to the addition of an external factor. The effects of cell passage should be 

47 considered when used in basic science research and clinical applications. 

48

49 Keywords: Cell passage; alendronate; cell morphology; nuclear morphology; proliferation; 

50 alkaline phosphatase activity
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53 Introduction

54 Mesenchymal stem cells (MSCs) are multipotent cells, capable of giving rise to many cell 

55 lineages. Although MSCs were primarily identified in the bone marrow, they can be isolated 

56 from tissues in the oral cavity. Human dental pulp stem cells (DPSCs) are post-natal populations 

57 of MSCs residing in the pulp cavity of permanent teeth (Gronthos, Mankani et al. 2000). DPSCs 

58 are considered feasible and promising source of autologous stem cells because they have MSC 

59 qualities (Gronthos, Mankani et al. 2000, Huang, Gronthos et al. 2009, Awais, Balouch et al. 

60 2020) and are cost-effective. Their isolation procedure is less invasive and can be obtained from 

61 discarded or removed teeth such as premolar and third molar. Isolated ex vivo DPSCs are 

62 characterized as cells with a high level of clonogenicity and proliferation and share a similar 

63 immunophenotype to that of bone marrow MSCs in vitro (Gronthos, Mankani et al. 2000). 

64 DPSCs, when placed under specific conditions, generate different cell lineages: 

65 odonto/osteogenic, chondrogenic, neurogenic, adipogenic, and myogenic (Huang, Gronthos et al. 

66 2009, Mangano, Paino et al. 2011, Kogo, Seto et al. 2020). These cells are capable of forming 

67 mineralized nodule in vitro and regenerate a dentin-like structure in vivo (Gronthos, Mankani et 

68 al. 2000).

69 Human stem cells can easily be cultivated, expanded, and cryopreserved as well as 

70 produce progeny with strong differentiation capacity. Therefore, use of these cells has become 

71 common for many purposes ranged from scientific studies to tissue engineering in order to 

72 replace damaged cells using autologous transplant in various diseases. DPSCs have also been 

73 increasingly studied and employed in regenerative field including cell-guided regeneration for 

74 correcting of bone defects (d'Aquino, De Rosa et al. 2009, Mangano, Paino et al. 2011, Awais, 

75 Balouch et al. 2020). 
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76 MSC-based therapies and studies demand large scale ex vivo/in vitro expansion to reach 

77 the numbers required for cell therapy. Cell deterioration after prolonged expansion in cell culture 

78 is an unavoidable physiological consequence (Hayflick and Moorhead 1961). Late cell passages 

79 affect cell appearance, proliferative capability, and osteogenic differentiation (Yang, Ogando et 

80 al. 2018, Grotheer, Skrynecki et al. 2021). MSCs gradually lose their typical fibroblast shape and 

81 lack morphological homogeneity (Yang, Ogando et al. 2018). The rate of cell doublings 

82 significantly decreases (Yang, Ogando et al. 2018), which are not suitable for therapeutic 

83 application. DPSCs undergoing many serial passaging also display a reduction in cell 

84 proliferation and viability (Martin-Piedra, Garzon et al. 2014, Yan, Nada et al. 2022). In vivo 

85 transplantation of DPSCs demonstrates a restriction in the differentiation capacity into osteoblast 

86 lineage at high passage (9th) (Yu, He et al. 2010). Cell adhesion and spreading are crucial for cell 

87 proliferation, differentiation, and mineralization  (Simon, Cohen-Bouhacina et al. 2003). Thus, 

88 the success of cell attachment and interaction with the surface of the substrates depend on these 

89 activities. Nevertheless, these cellular aspects as well as cell morphology of long-term cultivated 

90 DPSCs are still unclear. 

91 DPSCs have ability to respond to several influences such as caries and other biochemical 

92 and mechanical factors. DPSCs respond to high dose of lipopolysaccharide by increase in cell 

93 death (Gao, You et al. 2020). On the other hand, ex vivo DPSCs exposure to deep caries still 

94 have proliferative capability and express higher angiogenic marker (Chen, Li et al. 2021). 

95 Activation of K+ channels in DPSCs induces the differentiation of DPSCs into neuron-like cells 

96 (Kogo, Seto et al. 2020). Long-term expansion could be an influence on cell response to an 

97 external factor/chemical factor/inciting factor. Due to the lack of this information, it was thus 

98 essential to determine the influence of in vitro passaging on cellular qualities under an external 
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99 condition. Therefore, the present work sought to investigate 1) DPSC activities at different 

100 passages to determine the optimal passage and 2) cell activities at different passages in the 

101 present of external factor. Alendronate (ALN) is an anti-resorptive drug, which is known to have 

102 inhibitory effects on osteoblasts (Patntirapong, Singhatanadgit et al. 2014, Patntirapong, Korjai 

103 et al. 2021). In this study, ALN drug treatment was served as an external factor added to DPSC 

104 culture. Long-term DPSC subcultures from passage 5-15 under ALN-free and ALN conditions 

105 were evaluated for cell adhesion, cell morphology, cell proliferation, and alkaline phosphatase 

106 activity.

107

108 Materials and methods 

109 Cell culture and treatments

110 The manuscript of this laboratory study has been written according to Preferred 

111 Reporting Items for Laboratory studies in Endodontology (PRILE) 2021 guidelines. Human 

112 DPSCs (PT-5025) were obtained from Lonza (Walkersville, Inc). According to the company�s 

113 data, DPSCs are tested for CD105+, CD166+, CD29+, CD90+, CD73+, CD133-, CD34-, CD45- 

114 using flow cytometry. Cells were continuously passaged until reaching passage 16. Cell passage 

115 4-6, 9-11, and 14-16 were used in the experiments and these passages were referred to as P5 

116 (early passage), P10 (extended passage), and P15 (late passage), respectively. DPSCs were 

117 maintained in standard culture media, which were Dulbecco�s modified Eagle�s medium 

118 (DMEM, Gibco) supplement with 10% fetal bovine serum and 1% penicillin/streptomycin at 

119 37°C and 5% CO2 humidified atmosphere. DPSCs were plated at the density of 7,500 cells/cm2 

120 and then treated with ALN at various concentrations (0, 0.1, 0.5, 5, 10 µM). In this study, 0.1-0.5 

121 µM ALN was considered low concentration and 5-10 µM ALN was moderate concentration. For 
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122 cell differentiation, DPSCs were cultured under osteogenic media (OM), which were standard 

123 culture media supplemented with 50 µg/ml ascorbic acid (BDH), 10 mM ³-glycerophosphate 

124 (Sigma), and 100 nM dexamethasone.

125

126 Cell adhesion assay

127 Cells were seeded and treated with ALN for 5 hours. Non-adherent cells were removed 

128 by gently washing with phosphate-buffered saline solution. Adherent cells were fixed with 4% 

129 paraformaldehyde for 15 minutes at room temperature. Cells were stained with 1% crystal violet 

130 (Reag. Ph. Eur.) for 20 minutes and rinsed carefully. Cells were examined under a microscope 

131 (Nikon Eclipse Ti, Nikon Instruments) at 100x magnification. Ninety-six images of cells from 

132 four wells were captured using NIS element AR 4.11.00 software. The numbers of cells ranged 

133 from 190-2084 were recorded and analyzed.

134  

135 Cell and nuclear morphological assay

136 Cells were treated with ALN for 3 days. Cells were fixed with 4% paraformaldehyde for 

137 15 minutes and incubated with 1% crystal violet for 20 minutes. Cell appearance was monitored 

138 at 100x magnification. Forty areas from four wells were recorded and 410-600 cells were 

139 analyzed. Nuclear shape was stained with 42,6-diamidino-2-phenylindole (DAPI) at the dilution 

140 1:1000 for 5 minutes. Nuclei were visualized under a confocal microscope (Nikon Eclipse Ti, 

141 Nikon Instruments) at 200x magnification. The numbers of nuclei ranged from 447-675 were 

142 examined.

143

144 Image analysis
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145 Quantitative data was analyzed by ImageJ software version 1.53k Java 1.8.0 (National 

146 Institute of Health). Images of cells stained with crystal violet were assessed according to 

147 previous report (Patntirapong, Charoensukpatana et al. 2022). In brief, the scale was set in a 

148 micrometer unit. Original images were processed by automated detection mode. The background 

149 of images was eliminated using Subtract Background function. Images were converted to 8-bit 

150 grayscale and were processed by Auto Threshold commands. Cluster cells were optionally 

151 segmented by Watershed function. Cells were identified and analyzed by Analyze Particles 

152 function. Data from isolated cells were collected. In the cell morphological test, the particles 

153 smaller than 200 µm2 were excluded and identified as debris. For nuclear analysis, images of the 

154 nuclei were processed as described in previous report (Patntirapong, Chanruangvanit et al. 2021). 

155 Quantitative data such as area (µm2), perimeter (µm), roundness, aspect ratio (AR), circularity, 

156 solidity, and number were measured.  

157

158 Cell proliferation assay

159 DPSCs treated for 1, 3, and 7 days were incubated with 10 µL of the CCK-8 solution 

160 (Dojindo Laboratories) at 37°C for 3 hours according to company instruction. The plates were 

161 analyzed using a microplate reader (Sunrise) with Megellan software, V6.6 at the absorbance 

162 450 nm.

163

164 Protein measurement and alkaline phosphatase (ALP) activity

165 Cells were cultured in OM and treated with ALN for 7 days. Media were collected for 

166 measuring ALP released in the media. Cells were lysed with Triton X-100 lysis buffer (50 mM 

167 Tris, 150 mM NaCl, and 1% Triton X-100, pH 10). Cell lysates were measured for total proteins 
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168 using the BCA protein assay kit (Pierce). The mixture was read at absorbance 562 nm using a 

169 microplate reader. Total protein was quantified against known BCA protein concentration. The 

170 aliquots with an equal amount of protein content from each sample and media were incubated 

171 with ALP substrate using ALP assay kit (Elabscience) at 37°C for 15 minutes. The optical 

172 density of p-nitrophenol was determined by a spectrophotometer at 520 nm. ALP activity was 

173 calculated relative to standard phenol solution and expressed as ng/ml. 

174

175 Real-time polymerase chain reaction (PCR)

176 mRNA was isolated from OM-induced cells using the Total RNA Mini kit (Geneaid). All 

177 purified mRNA samples were processed into cDNA using oligo dT (TAKARA BIO INC.). 

178 cDNA samples were amplified in a reaction mix containing KAPA SYBR® FAST PCR Kit 

179 Master Mix (Thermo Fisher Science) and the forward and reverse primer pair sequences 

180 (Sigma). The amplification was run in QuantStudio� 3 Real-Time PCR Systems (Thermo 

181 Fisher Scientific). The cycles were set at 50 °C for 2 min initial heating, 95 °C for 1 min, 40 

182 cycles of 95 °C for 30 s, followed by 60 °C for 30 s with 72 °C elongation for 30 s. The 

183 forward/reverse primer pairs were as follows: glyceraldehyde 3-phosphate dehydrogenase 

184 (GAPDH) "CTCATTTCCTGGTATGACACC" and " CTTCCTCCTGTGCTCTTGCT"; 

185 collagen type I (Col I) "TGACCTCAAGATGTGCCACT" and 

186 "ACCAGACATGCCTCTTGTCC"; osteocalcin (OC) "TCACACTCCTCGCCCTATTG" and 

187 "TCGCTGCCCTCCTGCTTG"; Bone sialoprotein (BSP) �AACCTACAACCCCACCACAA� 

188 and �AGGTTCCCCGTTCTCACTTT�; dentin sialophosphoprotein (DSPP) 

189 "AGACGAGGGTTCTGGTGATG" and "TCTTCTTTCCCATGGTCCTG"; dentin matrix acidic 

190 phosphoprotein 1 (DMP1) �GCAGAGTGATGACCCAGAG� and 
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191 �GCTCGCTTCTGTCATCTTCC�. The gene copy number was normalized with GAPDH. Data 

192 were presented in fold changes relative to control of each group. 

193

194 Statistical analysis

195         Four independent experiments were performed. Data was tested for normal distribution 

196 using Kolmogorov-Smirnov test (GraphPad Prism 9.4.0). Data that was normally distributed was 

197 analyzed by ANOVA followed by Dunnett's test. Data that was not normally distributed was 

198 analyzed by Kruskal Wallis test followed by Dunn�s procedure. Significance was assigned as * 

199 p<0.05, ** p<0.01, *** p<0.001 vs P5 in the same ALN treatment group; a p<0.05, aa p<0.01, aaa 

200 p<0.001 vs P5A0 in P5 group; b p<0.05, bb p<0.01, bbb p<0.001 vs P10A0 in P10 group; c p<0.05, 

201 cc p<0.01, ccc p<0.001 vs P15A0 in P15 group.

202

203 Results

204 Alteration of cell morphology in early, extended, and late passages under ALN-free and 

205 ALN conditions

206 Microscopic images of DPSCs at P5, P10, and P15 are depicted in Fig 1A, 1B, and 1C, 

207 respectively. Cells in each condition showed different cell size and shape. Untreated DPSCs at 

208 P5 were small in size and mainly spindle shape (Fig 1Ai), which mostly maintained the shape 

209 and size as observed in P1 cells (Fig 1D). Continuous culture led to morphological alteration. 

210 P10 and P15 cells gradually spread and appeared as polygonal shape. Cells displayed less 

211 homogenous morphologies. DPSCs at P15 noticeably exhibited enlarged cell bodies with 

212 extended cellular processes. Fewer cells were observed for P10 and P15 (Fig 1Bi and 1Ci). 

213 Addition of ALN to P5 cells altered the cell shape to fusiform (Fig 1Aiv) or polygonal with more 
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214 cellular processes (Fig 1Av). However, cell shrinkage from 10 µM ALN (A10) was observed 

215 (Fig 1Av). Addition of A5 and A10 to P10 and P15 also altered cell shape (Fig 1B and 1C). 

216 Cell area and perimeter of P10 and P15 were larger than those of P5 in ALN-free and 

217 ALN-treated groups (Fig 2A and 2B). Treatment with A10 increased cell area in every passage 

218 (Fig 2A).  In P5, treatment with A0.1-A10 enhanced cell perimeter (Fig 2B). 

219 Aspect ratio (AR) describes the proportional relationship between the width of a cell and 

220 its length. P10 in A0-A0.5 groups had lower AR but P10 in A5-A10 groups showed higher AR 

221 compared with P5. P5 treated with A0.5-A10 significantly different from P5A0, whereas P15 

222 treated with A5 notably had higher AR than P15A0 (Fig 2C). Roundness demonstrated the 

223 opposite trend from AR (Fig 2D). 

224 Circularity is a ratio of area and perimeter. The value of one means that the object has a 

225 circular shape. Solidity differentiates the convex and the concave cell area (Hart, Lauer et al. 

226 2017). Alteration in circularity and solidity implies changes in cell deformability and cell shape 

227 (Pasqualato, Lei et al. 2013, Hart, Lauer et al. 2017). P5A0 had the highest values of circularity 

228 and solidity (Fig 2E and 2F). Circularity of most P10 and P15 significantly dropped compared 

229 with P5 in their respective treatment groups. P5 cells incubated with ALN at every concentration 

230 showed lower circularity than P5A0, whereas P10 and P15 cells treated with ALN at moderate 

231 concentrations showed reduction in circularity than P10A0 and P15A0, respectively (Fig 2E). 

232 Solidity showed a similar trend as circularity but in a lesser extent (Fig 2F).

233

234 Alteration of nuclear morphology in early, extended, and late passages under ALN-free 

235 and ALN conditions
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236 Nuclei of the cells presented in bright blue color. The shape and size of P5A0 nuclei were 

237 homogenous and had oval shape (Fig 3Ai). Some nuclei of P10A0 and P15A0 appeared larger 

238 and less consistent (Fig 3Bi and 3Ci). Nuclear fragmentation was observed as shown in inset of 

239 Fig 3Ci. ALN treatment caused uneven nuclear shape and size of some nuclei. Nuclear 

240 fragmentation was also monitored (arrows) (Fig 3).

241 The numbers of nuclei represented the numbers of cells grown on the well plate. P5A0 

242 displayed the highest value of nuclei. P10A0 and P15A0 nuclear numbers drastically declined 

243 compared with P5A0, implying slower growth rate in higher passages. The same pattern was 

244 seen in all ALN-treated groups except for A10 group. Every ALN concentration reduced the 

245 numbers of nuclei in P5 group, while moderate concentrations decreased nuclear numbers in P10 

246 and P15 groups (Fig 4A). 

247 In every ALN group, nuclear area and perimeter of P5 were smaller than those of P10 

248 and P15. Nuclear area and perimeter of P5 were smaller in response to ALN at lower 

249 concentrations, whereas those of P10 and P15 changed at higher concentrations (Fig 4B and 4C). 

250 AR values opposed to roundness values (Fig 4D and 4E). In A0-A0.5 groups, P10 and 

251 P15 had lower AR but higher roundness, suggesting rounder shape nuclei. On the other hand, AR 

252 and roundness of P10 and P15 in A5-A10 groups illustrated less circular shape nuclei compared 

253 with P5. DPSCs at P5 and P15 subjected to ALN treatment showed a reduction in AR and an 

254 increase in roundness (Fig 4D and 4E).

255 In general, circularity and solidity of P15 significantly reduced compared with those of 

256 P5 in every ALN group. Circularity and solidity of P15A10 were the lowest value in all 

257 condition (Fig 4F and 4G). These values were related to the irregular shape of some nuclei and 

258 nuclear breakage (Fig 3). 
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259

260 Comparison of cell adhesion in early, extended, and late passages under ALN-free and 

261 ALN conditions

262 Crystal violet-positive cells after 5 hours of cell seeding were shown in Figure 5. The 

263 numbers of cell adhesion in P5 were significantly greater than P10 and P15 in untreated and 

264 treated groups (Fig 6A). Cell area and perimeter of P15 were larger than those of P5 in ALN 

265 groups. DPSCs responded to ALN treatment by increased cell spreading (Fig 6B and 6C). 

266 In A0-A0.5 groups, higher passages had lower AR compared with P5. In P5 group, 

267 treatment with ALN decreased AR (Fig 6D). Roundness had the opposite trend from AR (Fig 

268 6E). 

269 Cell circularity and solidity of P15 significantly decreased compared with those of P5 in 

270 every ALN condition. ALN treatment increased circularity and solidity of cells in P5 and P10 

271 (Fig 6F and 6G).

272

273 Reduction of DPSC proliferative capability by replicative passaging and ALN addition

274 Figure 7 illustrates the proliferative capacity of DPSCs. Without ALN, cells in each 

275 passage had normal growth curve from day 1 to day 7. In A0 group, P5 cells maintained the 

276 optimal growth rate, whereas P15 had the slowest growth rate in all day tested. Compared with 

277 P5, P15 had the reduction rate approximately 50, 65, 70% for 1, 3, and 7 days, respectively (Fig 

278 7). In ALN treatment groups, the proliferative rate of higher passages gradually reduced from P5. 

279 Low concentration of ALN did not affect cell proliferation. A5 and A10 significantly caused a 

280 considerable reduction in cell proliferation in every passage compared with their respective 
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281 passages. Long-term treatment and moderate dose of ALN almost abolished cell proliferation 

282 (Fig 7).

283

284 Effects of cell passages and ALN on total protein and ALP activity 

285 The total protein of DPSCs cultured in OM for 7 days was extracted and measured. In 

286 general, P5 had higher total protein than P10 and P15 in each ALN group. P10 and P15 

287 significantly had lower total protein compared with P5 in the presence of A5 and A10 (Fig 8A). 

288 ALP activity was obtained from cell lysate and the release into the media. ALP of P10 

289 significantly dropped compared with that of P5 in A0, A0.1, and A0.5 groups, while ALP of P10 

290 increased compared with that of P5 in A10 groups (Fig 8B). ALN affected P5 cells by reducing 

291 ALP activity in a dose-dependent manner. ALP of P10A5 was enhanced compared with that of 

292 P10A0 (Fig 8B). No significant change was observed in ALP release in the media in all 

293 conditions (Fig 8C).  

294

295 Effects of cell passages and ALN on gene expressions 

296 Since DPSCs can differentiate into odontoblastic or osteoblastic cells, genes such as Col 

297 I, OC, BSP, DSPP, and DMP1 were examined. The data set were presented in 2 aspects: within 

298 the same ALN treatment group and within the same passage group. P15 had higher Col I gene 

299 expressions than P5 in A0.5, A5, and A10 groups. On the contrary, P15 and P10 had lower OC 

300 gene expressions than P5 in A0.5 and A10 groups, respectively. There was no change in BSP, 

301 DSPP, and DMP1 genes (Fig 9A). In P10 and P15, only A10 downregulated Col I gene 

302 expressions compared with A0. There was no change in other genes (Fig 9B). 

303
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304 Discussion

305 DPSCs are MSCs that have displayed multi-differentiation potential toward odontoblastic 

306 and osteogenic cells (Gronthos, Mankani et al. 2000, Mangano, Paino et al. 2011, Rodas-Junco 

307 and Villicana 2017, Sushmita, Chethan Kumar et al. 2019). These cells have become valuable 

308 alternative source of cells for the use in MSC-based therapies and studies varied from in vitro to 

309 in vivo (d'Aquino, De Rosa et al. 2009, Sushmita, Chethan Kumar et al. 2019). To obtain 

310 sufficient number of cells, continuously passaging primary cells can gradually lead to genetic 

311 and phenotypic changes, which could affect the use and the results in the experiments. The data 

312 from this study contributed that continuous cell expansion affected the experimental outcomes 

313 such as cell shape, activities as well as the response of cells to the ALN drug treatment 

314 (Summary shown in Figure 10).

315 After cell seeding, cells adhere to the substrate by making contact with the substrates, 

316 then spreading, and increasing their contact radius. The peak cell radius is observed at 18 h post-

317 incubation (Fritsche, Luethen et al. 2013). The parameters that comprehensively and accurately 

318 reflect the process of cell attachment and spreading include cell number, cell area and area 

319 fraction, relative and accumulative frequency of cell area, cell circularity, perimeter, and Feret�s 

320 diameter (Wang, Guo et al. 2021). We demonstrated for the first time that DPSC adhesion and its 

321 shape were influenced by cell passages and ALN addition. ALN has been shown to affect pre-

322 osteoblast adhesion at high passages by decreasing cell adhering to the titanium surface 

323 (Lilakhunakon, Suwanpateeb et al. 2021). The quantitative assessment of cell shape helps 

324 elucidate the mechanism of initial cell adhesion, thus relatively estimating the direct interaction 

325 between cells and the substrate surface. Changes in cell shape by cell passages and ALN could 
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326 exhibit the alteration of DPSCs and the substrate surface interaction. Hence, the use of cells for 

327 regenerative medicine might be limited to lower passage especially at the presence of ALN.

328 Late passages of DPSCs had larger cell size, heterogenous uniform, and increase in 

329 cytoplasmic granularity as previously observed in DPSCs and another MSCs in vitro and ex vivo 

330 (Madeira, da Silva et al. 2012, Oja, Komulainen et al. 2018, Wang, Zhong et al. 2018, 

331 Mammoto, Torisawa et al. 2019). Cell size of bone marrow MSCs is visibly enlarged resulting in 

332 a 4.8-fold increase at P6�9 as compared to P1 (Oja, Komulainen et al. 2018). Ex vivo endothelial 

333 cells isolated from small blood vessels in adipose tissues show age-dependent increases in cell 

334 size (Mammoto, Torisawa et al. 2019). Furthermore, change in cell area is correlated with 

335 biochemical senescence markers such as p16INK4a expression and senescence-associated ³-

336 galactosidase activity, suggesting a typical characteristic of aging cell (Oja, Komulainen et al. 

337 2018). In this study, moderate dose of ALN also increased cell size of DPSCs. The replicative 

338 aging and ALN cause cell cycle arrest (Patntirapong, Korjai et al. 2021, Sanagawa, Hotta et al. 

339 2022). An accumulation of the cells in the G2/M phase delay cells to enter into mitosis 

340 (Patntirapong, Korjai et al. 2021), thus increasing in the size of cells. Nuclear morphology, 

341 which is served as an indicator of cellular aging, shows a larger size in cultured aging cells and 

342 replicative senescent cells (Heckenbach, Mkrtchyan et al. 2022, Hartmann, Herling et al. 2023). 

343 Nuclear area of DPSCs demonstrated a larger size in serial expansion but was smaller when 

344 receiving ALN. Cell and nuclear area monitoring can be applied to many types of cell culture 

345 systems (Oja, Komulainen et al. 2018) as well as could be used for routine detection and 

346 prediction of mesenchymal cell aging and abnormality under an inverted microscope.

347 Cell shape change can be distinguished by the alteration of cell shape descriptors such as 

348 circularity and solidity parameters (Patntirapong 2023). Circularity and solidity values indicate 
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349 cell deformability and the presence of membrane protrusions including lamellipodia, filopodia, 

350 and blebbing. High values suggest lower cell deformability and fewer protrusions (Patntirapong 

351 2023). The present data exhibited the reduction of cell circularity and solidity in continuous 

352 expansion and ALN treatment, implying higher cell deformability and more cell protrusions. 

353 Furthermore, nuclear shape of replicative senescent cells is irregular (Heckenbach, Mkrtchyan et 

354 al. 2022). Circularity and solidity values of nuclei together with nuclear irregular shape and 

355 nuclear breakage indicated abnormal nuclei after long-term subculture and/or obtaining moderate 

356 dose of ALN. Late passage cells with or without ALN treatment could drive the cells into cell 

357 death.

358 One of the properties of stem cells is an ability to proliferate. DPSC proliferation was 

359 passage dependent, which gradually reduced in increasing passage numbers. Although the rate of 

360 cell growth slowed down significantly compared with their early passage counterpart, late 

361 passage of DPSCs still proliferated. A reduction in the proliferative capacity of P15 did not yet 

362 reach the Hayflick limit but showed sign of replicative aging according to Ogrodnik (Ogrodnik 

363 2021). The optimal proliferative capacity of DPSCs is reported at around P9 (Martin-Piedra, 

364 Garzon et al. 2013) and still have high cell viability,  functionality, and intact membrane integrity 

365 up to P14 (Martin-Piedra, Garzon et al. 2014). The proliferation rate is reduced in late passage 

366 because the population doubling time in the late passage is longer than that in early passage (P9 

367 at 3.42 days vs. P1 at 1.83 days) (Yu, He et al. 2010). Cells beyond P14 show a degree of cell 

368 membrane damage associated with metabolic impairment, suggesting a pre-apoptotic process 

369 (Martin-Piedra, Garzon et al. 2014). The decrease in proliferative ability in vitro was consistent 

370 with decreased proliferative ability in ex vivo aged donors. The stem cells derived from young 

371 donors (up to 25 years) maintain proliferative ability in all cell passages tested. Cells from the 
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372 aged group (up to 67 years) demonstrate a decline in proliferative ability (Bressan, Ferroni et al. 

373 2012). Addition of ALN alone reduced cell proliferation in every cell passage tested. The 

374 presence of ALN stimuli might cause some cells to undergo premature programmed cell death 

375 earlier than others since ALN can trigger cell cycle arrest and cell damage (Patntirapong, Korjai 

376 et al. 2021). Combined effects of drug treatment and cell aging synergistically inhibited cell 

377 growth.

378 Differentiating DPSCs at different passages responded to stimuli differently. ALP is one 

379 of osteogenic/odontogenic markers. DPSCs at P5 and P10 responded in a different direction 

380 under ALN stimuli. P5 cells reacted to ALN treatment by reducing ALP levels in a dose-

381 dependent manner, while P10 enhanced ALP level under ALN treatment. P10 had lower ALP 

382 activity in untreated and low dose ALN conditions but produced more ALP activity after 

383 receiving moderate dose ALN. DPSCs at P9 under OM present a higher ALP level than DPSC at 

384 P1, suggesting that a more advanced passage DPSCs are more inclined toward 

385 osteogenic/odontogenic lineage (Yu, He et al. 2010). This study did not show the same trend as 

386 previous report (Yu, He et al. 2010). Different responses of cells to cell passages and ALN were 

387 also observed at the gene levels. In ALN-free condition, osteogenic/odontogenic genes did not 

388 change by cell passage. Under ALN, Col I gene expressions increased, whereas OC gene 

389 expressions decreased in P15. However, Col I gene expressions were reduced by ALN. It has 

390 been shown that late passage of DPSCs exhibits lower osteogenic genes (Wang, Zhong et al. 

391 2018). The passage used, genes tested, and the experimental settings might play a role in the 

392 different results. Since the results are inconsistent, more research may be essential.

393 MSC populations including DPSCs are able to expand ex vivo/in vitro for several 

394 passages. Nevertheless, cells cultured over a long period will eventually lose their fitness to the 
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395 point where cells are compromised and insufficient to support long-term use. Late passage 

396 underwent alteration from its original characteristics at earlier passages, as observed by changes 

397 in all parameter tested. These data were in accordance with previous reports (Martin-Piedra, 

398 Garzon et al. 2013, Martin-Piedra, Garzon et al. 2014, Wang, Zhong et al. 2018, Abdik, Av_ar 

399 Abdik et al. 2019, Mammoto, Torisawa et al. 2019, Heckenbach, Mkrtchyan et al. 2022). It has 

400 been suggested that primary cells at a passage of less than 10 might be optimal for studies and 

401 tissue engineering purpose because these cells still have adequate qualities (Martin-Piedra, 

402 Garzon et al. 2013, Liao, He et al. 2014). Cells higher than P14 do not fulfill the quality control 

403 requirements and is recommended to be discarded (Martin-Piedra, Garzon et al. 2014) to 

404 minimize the risk of losing their stemness capacity (Lizier, Kerkis et al. 2012) and avoid the 

405 changes in phenotypic and genetic properties (Liao, He et al. 2014, Martin-Piedra, Garzon et al. 

406 2014, Wang, Zhong et al. 2018) as well as to avoid susceptibility to the microbial contamination. 

407 Replicative passaging demonstrates changes in the function of transporters in cells, thus 

408 altering cellular uptake of the substrate (Sanagawa, Hotta et al. 2022). Difference in cellular 

409 uptake could direct cell response to external factor differently and caused variable cell 

410 impairment in the presence of external factor. Based on the results, cells at lowest passage 

411 possible might be better suit for the study under the presence of external factor. Late passage 

412 would correspond to the studies of aged-related condition. The data in this study might provide 

413 guidance for the selection of appropriate and effective expanded DPSCs for distinctive study and 

414 therapeutic purposes. 

415

416 Conclusion
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417 Long-term subculture and ALN addition modulated DPSC behaviors at different extent in 

418 vitro. Without ALN condition, continuous cell expansion negatively affected number of cell 

419 adhesion, proliferation, and differentiation markers. Late passage cells were heterogeneity and 

420 displayed one of antagonistic aging markers, which is morphological changes of cells. Early, 

421 extended, and late passages responded to ALN differently in most aspects of cell behaviors. It is 

422 necessary to understand several biological aspects of these dental stem cell populations. This is 

423 to ensure the potential and the extent of their efficacy to guarantee the success in each scientific 

424 purpose. 
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552

553 Figure legends

554 Fig 1 Dental pulp stem cell morphology. Every DPSC passage appeared in violet color except 

555 the image of P1 cells was shown in bright field. (A) P5 (B) P10 (C) P15 (D) P1. (i) A0 (ii) A0.1 

556 (iii) A0.5 (iv) A5 (v) A10. Bar = 200 µm

557 Fig 2 Measurement of cell morphology. (A) Cell area (µm2) (B) Cell perimeter (µm) (C) Aspect 

558 Ratio (D) Roundness (E) Circularity (F) Solidity.

559 Fig 3 Nuclear morphology of dental pulp stem cells. Nuclei stained in bright blue color. (A) P5 

560 (B) P10 (C) P15. (i) A0 (ii) A0.1 (iii) A0.5 (iv) A5 (v) A10. Dashed box presents magnified view 

561 of fragmented nucleus. Arrows indicate nuclear fragmentation. Bar = 100 µm

562 Fig 4 Measurement of nuclear morphology. (A) Number of nuclei (B) Cell area (µm2) (C) Cell 

563 perimeter (µm) (D) Aspect Ratio (E) Roundness (F) Circularity (G) Solidity.

564 Fig 5. Cell adhesion. (A) P5 (B) P10 (C) P15. (i) A0 (ii) A0.1 (iii) A0.5 (iv) A5 (v) A10. Bar = 

565 200 µm

566 Fig 6 Measurement of cell adhesion. (A) Number of cells (B) Cell area (µm2) (C) Cell perimeter 

567 (µm) (D) Aspect Ratio (E) Roundness (F) Circularity (G) Solidity.

568 Fig 7 Cell proliferation. DPSCs at early, extended, and late passages were grown in the absence 

569 or presence of ALN for 1, 3, and 7 days. Cells in every passage were able to proliferate at a 

570 different rate. Continuous passaging and ALN drastically reduced cell proliferation.

571 Fig 8 Total protein and alkaline phosphatase activity. (A) Total protein of differentiating dental 

572 pulp cells (B) ALP in cells (C) ALP released in the media.
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573 Fig 9 Gene expressions. (A) Genes were expressed and compared within ALN treatment groups. 

574 (B) Genes were expressed and compared within the passage groups.

575 Fig 10 A schematic diagram summarizes the effects of continuous cell passaging and ALN on 

576 cell morphology, nuclear morphology, cell adhesion, cell proliferation, and ALP activity. Cell 

577 morphology presented in violet color, while nuclear morphology presented in blue color. Cell 

578 adhesion and cell proliferation were reduced by continuous cell passaging and ALN (Triangular). 

579 ALP activity showed no particular pattern (Rectangle). 
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Figure 1
Figure 1

Dental pulp stem cell morphology. Every DPSC passage appeared in violet color except the
image of P1 cells was shown in bright ûeld. (A) P5 (B) P10 (C) P15 (D) P1. (i) A0 (ii) A0.1 (iii)
A0.5 (iv) A5 (v) A10. Bar = 200 µm
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Figure 2
Figure 2

Measurement of cell morphology. (A) Cell area (µm2) (B) Cell perimeter (µm) (C) Aspect Ratio
(D) Roundness (E) Circularity (F) Solidity.
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Figure 3
Figure 3

Nuclear morphology of dental pulp stem cells. Nuclei stained in bright blue color. (A) P5 (B)
P10 (C) P15. (i) A0 (ii) A0.1 (iii) A0.5 (iv) A5 (v) A10. Dashed box presents magniûed view of
fragmented nucleus. Arrows indicate nuclear fragmentation. Bar = 100 µm
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Figure 4
Figure 4

Measurement of nuclear morphology. (A) Number of nuclei (B) Cell area (µm2) (C) Cell
perimeter (µm) (D) Aspect Ratio (E) Roundness (F) Circularity (G) Solidity.
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Figure 5
Figure 5

Cell adhesion. (A) P5 (B) P10 (C) P15. (i) A0 (ii) A0.1 (iii) A0.5 (iv) A5 (v) A10. Bar = 200 µm
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Figure 6
Figure 6

Measurement of cell adhesion. (A) Number of cells (B) Cell area (µm2) (C) Cell perimeter (µm)
(D) Aspect Ratio (E) Roundness (F) Circularity (G) Solidity.
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Figure 7
Figure 7

Cell proliferation. DPSCs at early, extended, and late passages were grown in the absence or
presence of ALN for 1, 3, and 7 days. Cells in every passage were able to proliferate at a
diûerent rate. Continuous passaging and ALN drastically reduced cell proliferation.
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Figure 8
Figure 8

Total protein and alkaline phosphatase activity. (A) Total protein of diûerentiating dental pulp
cells (B) ALP in cells (C) ALP released in the media.
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Figure 9
Figure 9

Gene expressions. (A) Genes were expressed and compared within ALN treatment groups.
(B) Genes were expressed and compared within the passage groups.

PeerJ reviewing PDF | (2024:05:100444:0:0:CHECK 2 May 2024)

Manuscript to be reviewed



PeerJ reviewing PDF | (2024:05:100444:0:0:CHECK 2 May 2024)

Manuscript to be reviewed



Figure 10
Figure 10

A schematic diagram summarizes the eûects of continuous cell passaging and ALN on cell
morphology, nuclear morphology, cell adhesion, cell proliferation, and ALP activity. Cell
morphology presented in violet color, while nuclear morphology presented in blue color. Cell
adhesion and cell proliferation were reduced by continuous cell passaging and ALN
(Triangular). ALP activity showed no particular pattern (Rectangle).
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