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Abstract 22 

The activities of microbiomes in river sediments play an important role in 23 

sustaining ecosystem functions by driving many biogeochemical cycles. However, river 24 

ecosystems are frequently affected by anthropogenic activities, which may lead to 25 

microbial biodiversity loss and/or changes in ecosystem functions and related services. 26 

While parts of the Atlantic Forest biome stretching along much of the eastern coast of 27 

South America are protected by governmental conservation efforts, an estimated 89% 28 

of these areas in Brazil are under threat. This adds urgency to the characterization of 29 

prokaryotic communities in this vast and highly diverse biome. Here, we present 30 

prokaryotic sediment communities in the tropical Juliana River system at three sites, an 31 

upstream site near the river source in the mountains (Source) to a site in the middle 32 

reaches (Valley) and an estuarine site near the urban center of Ituberá (Mangrove). The 33 

diversity and composition of the communities were compared at these sites, along with 34 

environmental conditions, the former by using qualitative and quantitative analyses of 35 

16S rRNA gene amplicons. While the communities included distinct populations at each 36 

site, a suite of core taxa accounted for the majority of the populations at all sites. 37 

Prokaryote diversity was highest in the sediments of the Mangrove site and lowest at 38 

the Valley site. The highest number of genera exclusive to a given site was found at the 39 

Source site, followed by the Mangrove site, which contained some archaeal genera not 40 

present at the freshwater sites. Copper (Cu) concentrations were related to differences 41 

in communities among sites, but none of the other environmental factors we determined 42 

was found to have a significant influence. This may be partly due to an urban imprint on 43 

the Mangrove site by providing organic carbon and nutrients via domestic effluents. 44 

 45 



Introduction 46 

River ecosystems are frequently influenced by anthropogenic activities, which 47 

may lead to microbial biodiversity loss and/or changes in ecosystem functions and 48 

related services (Mansfeldt et al., 2020). Therefore, studies have been carried out to 49 

evaluate the significance of microbial community changes and how anthropogenic 50 

activities may influence such changes (Reis et al., 2020; Zhang et al., 2020b; Lee et al., 51 

2021). However, since microbiomes remain unexplored in vast areas of the world, 52 

changes in sediment microbial communities of rivers are largely unknown at present, 53 

including in biomes that are under major threat.  54 

One example is the Atlantic Forest extending along the Atlantic coast of South 55 

America, which is one of the most biologically diverse and most vulnerable biomes in 56 

the world (MDDA, 2010). Human activities have drastically reduced the original cover of 57 

the biome, to only 11% of its pre-Columbian size on Brazilian territory (Ribeiro et al., 58 

2009; Silva & Nolasco, 2015). One of the largest remaining fragments of the Atlantic 59 

Forest is located within the limits of the Pratigi Environmental Protection Area in the 60 

southern part of Bahia State, Brazil (MMA, 2004). Since its creation in 1998, the area 61 

has been subject to various environmental assessments, which have shown the 62 

effectiveness of the conservation efforts in the area (Ditt et al., 2013; Lopes, 2011; 63 

Mascarenhas et al., 2019), with the exception of a few local disturbances (de Santana 64 

et al., 2021b). 65 

The aim of the present study was to determine the diversity and composition of 66 

bacterial and archaeal sediment communities along a tropical river in the Atlantic Forest 67 

of Brazil from the headwaters to the mouth. Given previously observed trends of 68 

decreasing microbial diversity along rivers (Wang et al., 2012; Behera et al., 2019; 69 Deleted: lengths 70 
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Zhang et al., 2020a) and increasing human activity (Statzner & Moss, 2004), we 71 

hypothesized that microbial diversity would be lowest in sediments near the mouth of 72 

our study river in the Atlantic Forest.  73 

 74 

Materials & Methods 75 

Study area 76 

Three sites were chosen along the Juliana River in the southeastern part of 77 

Bahia State, Brazil. The river drains the most important watershed in the region in terms 78 

of size and economic and ecological significance. Currently, the Juliana River is located 79 

entirely within a legally protected area, the Environmental Protection Area of Pratigi 80 

(Figure 1). Its basin comprises an area of 299.8 km2, through which the river runs 81 

almost linearly over 47 km. The source is in the Papuã Mountains. Several tributaries 82 

join the river along its way to the Serinhaém estuary (Mascarenhas et al., 2019; Ditt et 83 

al., 2013), where the city of Ituberá is located, a small urban area with less than 30,000 84 

people where tourism is the main economic activity (IBGE, 2020). Ituberá has been 85 

constructed within a mangrove forest, which has been retained along urban waterways 86 

and mudflats (de Santana et al., 2021b). In contrast, most of the upstream reaches 87 

enable the observation of minimally impacted environments, because the upper portions 88 

of the watershed are considered to be highly conserved, lending themselves to 89 

ecological, hydrological and biogeochemical research. This includes studies of the 90 

biodiversity and ecology of microbial communities in river sediments (de Santana et al., 91 

2021a).  92 
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The Juliana River basin is subdivided into three administrative sections, I, II and 99 

III. Section I corresponds to the highlands of the Papuã Mountains. A site located there 100 

has been designated the Source site for the purpose of the present study. Section II 101 

corresponds to the downstream Valley region, which is mostly dominated by forest 102 

cover interspersed with a few agroforestry systems. Section III is the lowermost part of 103 

the hydrographic basin, hosting ecosystems ranging from tropical forest fragments to 104 

mangroves (Mascarenhas et al., 2019), including in and near Ituberá City close to 105 

where the sediments were collected. Nevertheless, this area still experiences little direct 106 

impacts by industrial development, and family farming predominates land use (da Silva 107 

Pereira et al. 2022). 108 

The field study presented here was approved by the state government Fundação 109 

de Amparo à Pesquisa do Estado da Bahia (project number: FAPESB/CNPq nº 110 

794014/2013; permit number: 794014/2013). Portions of this text were previously 111 

published as part of a doctoral thesis (de Santana 2020). 112 

 113 

Figure 1. Map of the Juliana River basin and location and aspect of the three 114 

sites where sediment samples were taken. Map data from OSM (2020). Inset 115 

photographs taken by COS (de Santana 2020).  116 

 117 

Sampling and genomic analyses 118 

Sediments were collected in February 2019 at the three sites selected in the 119 

Juliana River (Source, Valley, and Mangrove). At each site, 3 collection points at least 120 

1.5 m apart from one another and free of visual vegetation, contamination or pollution 121 
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were selected at the river margin where water depth exceeded 10 cm. Surface 127 

sediments (top 10 cm) were collected with a cylindrical core sampler, taking precautions 128 

not to disrupt rhizospheres associated with vegetation. Plant litter and other coarse 129 

particulate organic matter was manually removed from the core before placing the 130 

sediment samples in plastic bags on ice in thermal boxes and immediately transporting 131 

them to the laboratory for chemical and genomic analyses.  132 

Physical-chemical parameters such as temperature, pH, conductivity, and 133 

dissolved oxygen in the water column were measured at each site using a 134 

multiparameter probe (YSI model 85, Yellow Spring Instruments Inc., Yellow Springs, 135 

OH, USA). Additional environmental variables such as concentrations of Pb, Zn, Cu and 136 

Cd at each site have been previously reported (Pereira et al. 2022; Mascarenhas et al., 137 

2019; Supplemental Table 1). Since Cd concentrations were below detection limit at all 138 

sites, this variable was not included in the data analysis. In the laboratory, an aliquot of 139 

each sediment core was frozen at -20°C for subsequent DNA extraction, while the 140 

remainder of the sample was used to measure organic matter (O.M.) content.  141 

The total genomic DNA was extracted from 0.25 g of sediment using the 142 

PowerSoil DNA Isolation Kit (Qiagen, Carlsbad, CA, USA) and stored at -80 ºC before 143 

analysis. After DNA extraction, the samples were sent on dry ice to Novogene 144 

Bioinformatics Technology Co. Ltd. for amplification of bacterial 16S rRNA genes, using 145 

the 515F and 806R primers (Supplemental Table 2), followed by Illumina NovaSeq 146 

6000 paired-end (2x250) sequencing (Thompson et al., 2017). Since sequencing of one 147 

of the samples from the Valley site failed, analyses were limited to the two remaining 148 

replicates.  149 
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Trimmomatic (Bolger, Lohse & Usadel, 2014) was used to filter and trim the 156 

demultiplexed sequences (ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:3 157 

TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:100). All reads were subsequently 158 

denoised using DADA2 (Callahan et al., 2016) in QIIME2 (Bolyen et al., 2019), merged 159 

using QIIME2 (Supplemental File 1; Supplemental Table 3), and then clustered into 160 

amplicon sequence variants (ASVs) (Supplemental Table 4). Alpha-rarefaction was 161 

calculated using QIIME2 (Supplemental Figure 1) and set to 41,000 reads for the 162 

purpose of alpha- and beta-diversity analyses (Supplemental Figure 2, 3). All diversity 163 

analyses were performed using QIIME2’s default parameters (Supplemental File 1). 164 

 165 

Statistical analyses 166 

Taxonomic assignment was performed using QIIME2’s naive Bayes scikit-learn 167 

classifier (Bokulich et al., 2018) trained with the 16S rRNA gene sequences in the 168 

SILVA database (SILVA 138-99-515-806) (McDonald et al., 2012). The taxonomic 169 

feature table (Supplemental Table 5) was resolved to the genus level for analysis 170 

(Supplemental Table 6) using QIIME2. For each site, a bar chart was made showing the 171 

phylum and class using the mean percentage of taxa abundance calculated across 172 

replicates (Figure 2A; Supplemental File 2). Classes of high relative abundances (2% of 173 

the total community per site) and phyla were identified, and a heatmap of relative genus 174 

abundances generated for each replicate sample (Supplemental Figure 4; 175 

Supplemental File 3). 176 

Taxa resolved to the genus level were considered common across sites if they 177 

accounted for at least 0.1% of the reads per site, occurred in at least 2 replicates per 178 

Deleted: of 179 

Deleted: was 180 

https://paperpile.com/c/dfpONc/GHNxm
https://paperpile.com/c/dfpONc/snZVg
https://paperpile.com/c/dfpONc/LezpM
https://paperpile.com/c/dfpONc/VxPBP
https://paperpile.com/c/dfpONc/bAXYe


site, or represented at least 1% of the reads in a single replicate. These criteria had to 181 

be met for each of the three sites (Figure 2B; Supplemental File 4; Supplemental Table 182 

7).  183 

To determine how many taxa, resolved to the genus level, were only found at any 184 

given site, we first required each taxon to be minimally present at only one site. Minimal 185 

presence was defined as being greater than 0.001% of the total population per site, or 186 

being, on average, greater than 0.0001% of the population per site per replicate 187 

(Supplemental Figure 5; Supplemental File 5; Supplemental Table 8). 188 

A site-specific analysis of significant differential abundances was performed 189 

using the ANCOM-BC package in QIIME2 (Supplemental Tables 9, 10, 11). We further 190 

subset these taxa to identify those that were distinct to a particular site (ANCOM-BC, q-191 

value < 0.01) and also represented a substantial proportion (>1%) of the total population 192 

at that site (Supplemental File 6; Figure 3D). A Venn diagram was created showing 193 

significantly different taxa distinct to each site or shared between and among sites 194 

(Supplemental Figure 6).  195 

The Vegan package (Dixon, 2003) was used to test correlations between 196 

community structure and environmental variables in R environment (version 4.2.2). 197 

Distances were calculated using metaMDS (distance used was Bray-Curtis) 198 

(Supplemental Figure 7; Supplemental Table 12; Supplemental File 7) and 199 

environmental variables were fit using envfit (Figure 4B; Supplemental Table 13; 200 

Supplemental File 8).  201 

Deleted: significantly 202 

Deleted: single 203 

Deleted: ,204 

Deleted: relative to the other two sites 205 

Deleted: that 206 

Deleted: percentage 207 

Deleted: (> 1% total population), 208 

Deleted: the overlap of 209 

Deleted: at210 

https://paperpile.com/c/dfpONc/N0yHE


The sequencing data is available from NCBI BioProject PRJNA650560. The 211 

entire computational workflow is available in a GitHub repository: 212 

https://github.com/pspealman/Project_Juliana_River_basin. 213 

 214 

Results 215 

Taxonomic composition of sites and predominant groups  216 

After quality filtering and taxonomic assignment, the 879,453 sequences 217 

remaining displayed the following pattern: 91.0% of the reads were associated with the 218 

kingdom Bacteria, 8.3% were associated with the Archaea and 0.6% were not assigned 219 

to either of these prokaryotic kingdoms. In total, ASVs were assigned to 85 phyla, 202 220 

classes, 457 orders, 699 families, 1089 genera and 458 species (Supplemental Table 221 

4).  222 

We identified 18 highly abundant classes with a mean abundance per site of at 223 

least 2% (Figure 2A). These classes constituted 9 bacterial and 2 archaeal phyla. The 224 

two archaeal phyla, Crenarchaeota and Thermoplasmatota (as well Halobacterota, 225 

which was just below the 2% cutoff) were present at all sites, although they were most 226 

frequent in the mangrove sediments. For the Bacteria domain, the three sites shared 227 

similar dominant phyla, with Proteobacteria exceeding 10% and Bacteroidota, Bacillota 228 

(Firmicutes), Chloroflexota, and Desulfobacterota accounting each for >5% at all sites. 229 

Combined, these five phyla and their 11 classes represented the majority of the 230 

prokaryotic populations (50-64%) at each site.  231 

This large overlap prompted us to assess how many of the more abundant 232 

genera were present at all sites (see Methods). We found 87 such taxa, 77 of which 233 
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were resolved to the genus level (Supplemental Table 7; Figure 2B), which together 234 

accounted for 72% (Source) and 61% (Valley and Mangrove), respectively, of the total 235 

abundance and could thus constitute the core microbiome in sediments of the river.  236 

 237 

Figure 2 - Prokaryotic population statistics. (A) Summary showing phyla and 238 

classes of all taxa accounting for an average of at least 2% of the prokaryotic 239 

community at least at one site. (B) Fifteen taxa that were highly abundant at all sites 240 

(>1% total per site). 241 

 242 

Community differences among sites 243 

ANCOM-BC analysis indicated that abundances of numerous taxa significantly 244 

differed between pairs of sites (Figure 3A, B, C; Supplemental File 6). The greatest 245 

difference occurred between the Source and Mangrove sites (Supplemental Figure 6; 246 

Supplemental Tables 9, 10, 11). Genera specific to only one of the study sites 247 

(Supplemental Figure 5) included 87 taxa that were unique to the Source site, 2 to the 248 

Valley site, and 63 to the Mangrove site. However, these taxa represent very small 249 

proportions of the total communities, with 0.65% being unique to the Source site, 0.03% 250 

to the Valley and 1.1% to the Mangrove site (Supplemental Table 8). Resolved to the 251 

genus level, some taxa were significantly more abundant at one site compared to the 252 

two others (ANCOM-BC, q-value < 0.01) and represented a notable percentage of the 253 

total abundance at that site (> 1% total population). We found 9 such taxa at the Source 254 

site and 8 at the Mangrove site (Figure 3D), whereas none were more abundant at the 255 



Valley site, although sediments at that site had more reads that could not be assigned 256 

to any taxon (‘Unassigned’).  257 

 258 

Figure 3 - Results of abundance analyses using ANCOM-BC (A, B, C) to 259 

identify differences in the abundance of taxa (down to the genus level) between pairs of 260 

sites. (D) Subset of taxa at each site (down to the genus level of) that were distinct to 261 

that site and represented a substantial percentage of the total abundance (>1%).  262 

 263 

Community structure, diversity and environmental variables 264 

Prokaryotic diversity expressed as the Shannon entropy index was highest at the 265 

Mangrove and lowest at the Valley site (Figure 4A); however, site differences were only 266 

significant in the omnibus test (p = 0.04). Similarly, differences in community 267 

composition between sites assessed by the Weighted UniFrac distance measure 268 

(Supplementary Figure 3) were only significant in the omnibus PERMANOVA (p = 269 

0.007). Site differences among the prokaryotic communities are also shown in the PCA, 270 

which separated the Source site from the Valley and Mangrove sites along PC1 (Figure 271 

4B), with copper (Cu) concentration as the most influential environmental variable (p = 272 

0.011). Nearly significant differences in the concentration of zinc (Zn) (p = 0.063) were 273 

primarily related to PC2, whereas temperature, dissolved oxygen, organic matter 274 

(O.M.), Ni, salinity, Cr, pH, and Pb had no significant influence.  275 

 276 

Figure 4. Prokaryotic community characteristics. (A) Shannon alpha-diversity 277 

indices of prokaryote communities at the Source, Valley and Mangrove sites. (B) PCA 278 



plot relating sediment prokaryote community composition to environmental variables at 279 

the three sites.  280 

 281 

Discussion 282 

Our results suggest a shift in prokaryote diversity along the river continuum from 283 

the headwaters (Source) to the mouth (Mangrove), with a minimum occurring in the 284 

middle reaches (Valley). One potential reason for the decrease from the headwaters to 285 

the middle reaches could be increasing anthropogenic influences, including 286 

contamination, as seen in previous studies (Berg et al., 2012; Chen et al., 2018). 287 

However, given the conservation status of the Julian River and the limited number of 288 

sites and samples in the present study, this tentative conclusion remains speculative, 289 

since a range of other factors may have influenced the prokaryotic sediment 290 

communities. Moreover, given the differences observed in both communities and 291 

environmental variables at the Mangrove site, it remains unclear to what extent the 292 

increase in diversity at this urban site was due to factors not measured in our study, 293 

including local anthropogenic impacts.  294 

Previous studies of sediment microbial communities along river-estuary continua 295 

have found a decreasing trend of microbiome diversity in the direction of the river flow 296 

(Wang et al., 2012; Behera et al., 2019; Zhang et al., 2020a; Santana 2020). Variables 297 

such as temperature, salinity and trophic state were strongly related to the taxonomic 298 

and functional composition of microbial communities in those studies, in contrast to the 299 

present study where only Cu concentrations were significantly related to differences in 300 

the prokaryotic communities among sites. 301 
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Diversity is expected to decrease with increasing habitat harshness (Statzner & 302 

Moss, 2004), which is frequently associated with environmental disturbances. 303 

Accordingly, we expected the community in our mangrove sediments to be less diverse 304 

than the freshwater sediments, but we observed the opposite trend in that the mangrove 305 

site displayed the highest prokaryotic diversity. Considering that environmental 306 

conditions in mangrove sediments differ fundamentally from characteristics at 307 

freshwater sites, prokaryote diversity is expected also to differ between those sites. 308 

Additionally, wastewater discharge may have an influence by supplying organic matter 309 

and nutrients in readily accessible forms, which may override adverse effects of habitat 310 

harshness on prokaryotic diversity (de Santana et al., 2021a).  311 

Gammaproteobacteria were well represented within the phylum Proteobacteria, 312 

including an uncultured genus in the Steroidobacteraceae that was both common 313 

across sites and frequent. While members of the Steroidobacteraceae family have been 314 

recognized as key taxa in aquifers (Abiriga et al. 2022) and in association with 315 

Rhizobiales in plant rhizospheres (Sakai et al., 2014), the uncultured genus in our study 316 

may occupy a similar, but different, niche. Presence of the phylum Bacteroidota in 317 

sediments has been related to environmental characteristics such as trophic state and 318 

temperature (Huang et al., 2017; Dai et al., 2016), suggesting that resource availability 319 

and environmental conditions were conducive to this group along the river continuum. 320 

Another highly abundant phylum was Sva0485. Recently reported but not well 321 

characterized, this group has often been found as a member of sulfate-reducing 322 

assemblages where it is thought to play an important role in the sulfur cycle of 323 

freshwaters (Chen et al., 2023).  324 
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The prevalence of Proteobacteria and Firmicutes in the sediments of all our study 327 

sites is in general agreement with literature reports from soils and sediments (Tveit et 328 

al., 2013; Jost, 2007; Yadav et al., 2015; Andreote et al., 2012; Imchen et al., 2018; Su 329 

et al., 2018) and has been ascribed mainly to the high morphological and physiological 330 

diversity of these groups that enable the colonization of diverse habitats. However, 331 

aside from the majority of generalists, we also found some level of site-specificity, with 332 

some taxa showing preference and even exclusivity for the Source, Valley or Mangrove 333 

sites. In general, we found preferences for the Mangrove site for groups which are 334 

prevalent in coastal environments, such as the archaeal phyla Thermoplasmata, 335 

Halobacterota, and Crenarchaeota (Thiele et al., 2017). Many of the characterized 336 

groups of Crenarchaeota are not only thermophilic, but also have a preference for 337 

anaerobic environments, such as sediments, and may also be acidophilic (Leigh & 338 

Whitman, 2013; Shakir et al., 2023). While mangrove sediments are often characterized 339 

as alkaline (Caldeira and Wickett 2003), pH can also be well below 7, consistent with 340 

both the isolation of acidophilic fungi from mangroves (Gao et al. 2020) and the 341 

presence of acidophilic Crenarchaeota at the Mangrove site in our study. 342 

Halobacteridota are known to succeed in environments with high salt concentrations 343 

and the genera we found exclusively at the Mangrove site are closely associated with 344 

methanogenesis (Yang et al., 2022). While possibly a result of urban runoff (Li et al. 345 

2019), this finding is also consistent with our increasing recognition of the role of 346 

methanogenesis in mangroves (Hu et al. 2024). Overall, these results suggest that 347 

while some taxa are broadly distributed in sediments along the river continuum, many of 348 

the taxa we identified survive in specific environmental conditions. 349 
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The majority of the 88 taxa unique to the Source site belonged to the Bacteria 358 

domain, with two genera of the methanogenic archaeal phylum Halobacteridota. From 359 

the bacterial groups, we found taxa with varied importance in ecological, 360 

biotechnological and in human health contexts, such as Methylocystis, a methane-361 

oxidizing genus that has been studied for the purpose of mitigating methane emissions, 362 

and Anaerococcus, which are anaerobic species commonly found in human microbiota 363 

(Dedysh, Knief & Dunfield, 2005; Murphy & Frick, 2013). The family 364 

Sporolactobacillaceae and the genus Microbacterium were exclusively found in the 365 

sediments from the Valley. While Microbacterium is known to be quite widespread and 366 

common in a variety of environments (Evtushenko & Takeuchi, 2006), the endospore-367 

forming Sporolactobacillaceae are primarily known from food spoilage and 368 

biotechnological systems (Harirchi et al., 2022). 369 

Several taxa were associated with anaerobic biodigestion, including vadinHA17 370 

in the Bacteroidetes (Zhou & Xu, 2020), ADurb.Bin063-1 in the Pedosphaeraceae (Gaio 371 

et al., 2023), and Anaerolineaceae (Yamada & Sekiguchi, 2018), consistent with the 372 

observation that dissolved oxygen concentrations were lowest in water at the Source 373 

site (Supplemental Table 1). While several taxa we found are considered sensitive to 374 

heavy metals, including 4-29-1 which belongs to the Nitrospirota (Wang et al., 2022a) 375 

and ADurb.Bin063-1 (Chun et al., 2021), we also found taxa resistant to trace metals, 376 

such as Syntrophorhabdus (Da Costa et al., 2023) and Subgroup 2 (GP2) of the 377 

Acidobacteriota (Wang et al., 2022b). Notably, GP2 has previously been found to be 378 

significantly associated with undisturbed tracts of the western Amazon rainforest 379 
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(Navarrete et al., 2015) and the Atlantic Forest (Catão et al., 2014), consistent with the 383 

conservation status of the Juliana river basin. 384 

 Conversely, we found the Mangrove site to be enriched in several genera 385 

associated with disturbed ecosystems. These include GIF3 (Dehalococcoidia) observed 386 

to rapidly arise in sediments of disturbed riverbanks (López-Lozano et al., 2013), and 387 

Desulfatiglans, a potential polycyclic aromatic hydrocarbon (PAH) degrader in urban 388 

rivers (Li et al., 2022b). Furthermore, both Desulfatiglans and SEEP-SRB1 389 

(Desulfobacterota) are associated with urban mangroves with high sulfate (SO4
2-) and 390 

iron (Fe) concentrations and low nitrate (NO3
-) and P (Li et al., 2022a) concentrations. 391 

SEEP-SRB1 is also a syntrophic sulfate-reducing bacterium (SRB) capable of 392 

anaerobic methane oxidation (AOM) in obligate partnership with anaerobic 393 

methanotrophic archaea (ANME) (Murali et al., 2023). This could suggest a potential 394 

relationship with some of the unassigned Archaea observed at the site. However, many 395 

distinct environmental factors may contribute to the investigated mangrove being the 396 

most different site in the present study, especially because of the coastal tidal 397 

environment, in addition to its urbanization. 398 
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