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ABSTRACT
Pinus kwangtungensis is an endangered evergreen conifer tree species, and its in situ
conservation has been considered one of the most critical issues. However, relative
protection is limited by the lack of understanding of its community structure and
underlying assembly processes. To study how the species diversity and assembly
processes of Pinus kwangtungensis coniferous forest (CF) differed with regional climax
community, this study established a series forest dynamic plots both inCF and evergreen
deciduous broadleaved mixed forest (EDBM). By performing comparison analysis
and PER-SIMPER approaches, we quantified the differences in species diversity and
community assembly rules. The results showed that the species α-diversity of CF
differed greatly from the EDBM both in species richness and evenness. In addition, the
stochastic process acted a more important role in determining species composition,
indicating the uncertainty in presence of species. The soil phosphorus and changeable
calcium content were the main factors driving the differences in biodiversity, which
the importance of soil nutrient factors in driving species composition. Our study
highlighted that we should consider the community structure and ecological process
when conducting conservation of Pinus kwangtungensis.

Subjects Biodiversity, Ecology, Plant Science, Natural Resource Management, Forestry
Keywords Community assembly rules, Pinus kwangtungensis, Species abundance distribution,
Karst forest

INTRODUCTION
High species extinction rates emphasize the importance of biodiversity conservation
(Chen et al., 2021). However, relative protection is limited due to a lack of understanding
of biodiversity patterns and underlying maintenance mechanisms, especially in those
vegetation types distributed in special habitats (Alder et al., 2002; Feng et al., 2021). Pinus
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kwangtungensis, an endangered evergreen conifer tree species, is unique to the southern
tropical zone of China. Due to its sensitivity to temperature and precipitation, its native
habitat is limited to the southern subtropical zone or the upper part of the tropical northern
edge (Wang & Cui, 2023). P. kwangtungensis coniferous forest (CF) typically comprises one
dominant species, with high species richness in the understory (Cui et al., 2012). How to
perform in situ conservation on such a unique community has been considered an essential
issue in biodiversity conservation.

Understanding the community structure and species composition is the basis of
biodiversity conservation since they are determined by confusing factors such as
interspecific competition or stochastic processes (Feng et al., 2021; Magurran, 2021).
Furthermore, biodiversity patterns encompass not only the number of species but also
species evenness, indicating species distribution among different communities (He,
Legendre & Lafrankie, 2010; McGill, 2011). Previous studies have focused on species
richness while neglecting differences in evenness (Chao, Chiu & Jost, 2014; Ulrich et al.,
2016). Hence, it is necessary to combine richness and evenness to better represent
species diversity patterns, which emphasizes the importance of distinguishing the
species composition (Matthews, Borges & Whittaker, 2014; McGill et al., 2007). The species
abundance distribution (SAD) curve can display both richness and evenness, providing
a visual representation of differences in species diversity patterns among communities
(Chisholm et al., 2014;Xue et al., 2021). Sincemore than onemechanism can shape the SAD
curve, quantifying the differences in SAD components can better display the biodiversity
pattern and underlying processes (Muhic et al., 2023). For instance, a steep slope of the
SAD curve usually alludes to species dominance or commonness, while a long tail of SAD
indicates the species rarity (Magurran, 2021; McGill et al., 2007). Species dominance is to
what extent the common species predominates the community, while the species rarity
reflects the proportion of rare species in community abundance (Simons et al., 2017).
Combining the species dominance and rarity can clearly describe species alpha diversity
(α-diversity) among communities at regional scales.

Actual communities are formed by complicated ecological processes such as habitat
filtering, limiting similarity, or stochastic processes (Chase, 2010; Franklin et al., 2013).
Each ecological process influences the species composition and biodiversity patterns.
For example, regional species pools can impact community composition, as studies
have demonstrated a significant positive correlation between regional species pools and
community species richness, serving as the foundation for determining community
composition (Zobel, 1997). Interspecific interactions determine the survival and relative
abundance of each given species in a local microhabitat (Burton et al., 2011). Abiotic
factors reflect the strength of habitat filtering and is a crucial limiting factor in determining
species occurrence, which play an important role in shaping community assembly (Su
et al., 2023). The niche-based framework suggested that communities were equilibrium
assemblages in which interspecific competition for limited resources and other biotic
interactions determine the presence of species (Armas, Rodríguez-Echeverría & Pugnaire,
2011;Münkemüller et al., 2020;Ulrich et al., 2016; Zhou &Wang, 2023). On the other hand,
the neutral-based assembly framework emphasized that community structure resulted
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from purely stochastic ecological drift, ultimately leading to ecologically equivalent species
resulting from random dispersal and extinction (Hubbell, 2001; Loke & Chisholm, 2023).
Recent studies preferred combining the two conflicting perspectives by linking stabilization
mechanisms within species and fitness similarities among species after debating for over
20 years (Chesson, 2000; Leibold et al., 2022; Münkemüller et al., 2020). What differed was
thatwhich process acted as the first-order driver in the actual community (Loke & Chisholm,
2023; Münkemüller et al., 2020). Since SAD could well reflect the underlying mechanism
driving the community structure (McGill et al., 2007;Ulrich et al., 2016), SADmodel fitting
became a more popular approach to reveal the underlying community assembly rules of
local taxonomy, and was used to explain why and to what extent the species composition
varied among communities (Gibert & Escarguel, 2019; Magurran, 2021; Matthews et al.,
2019; Zhang et al., 2016).

Previous studies examined the community assembly rules mainly by performing SAD
fitting on each community and comparing the significance of deviation from the null
models to identification of the main first-order driver (i.e., niche- or dispersal-assembly
processes) (Chase & Myers, 2011; Lim, Fine & Mittelbach, 2015; Münkemüller et al., 2020).
However, typical SAD fitting approaches based on α-diversity could not directly examine
which process determined the difference in species composition between two communities.
Gibert & Escarguel (2019) developed the permutation-based algorithm building on Clarke’s
similarity percentage (PER-SIMPER) (Clarke, 1993) to directly examine which first-order
assembly dominates the dissimilarity between communities. An empirical SIMPER profile
is the relative contribution of each taxon to the overall average dissimilarity (OAD)
between two or more groups of taxonomic assemblages, depicting the contribution of
each taxon to the mean inter-group beta diversity (β-diversity) compared with intra-group
β-diversity (Clarke, 1993). The PER-SIMPER, which combined the empirical SIMPER
profile with null SIMPER profiles generated from permutation on the data set, could well
distinguish the first-order assembly driving the dissimilarity between groups of taxonomic
assemblages (Gibert & Escarguel, 2019). The SIMPER profiles were generated based on the
null hypothesis: (1) the taxon distribution was driven only by the number and breadth
of available niche space, indicating the niche-based assembly; (2) the taxon distribution
was dominated by the potential dispersal ability, regardless of the niche breadth under
assemblage, indicating the dispersal-based assembly.Whether the empirical SIMPER results
from niche- or dispersal-assembly processes can be evaluated by comparing the empirical
SIMPER profile with the permutation SIMPER profiles (Gibert & Escarguel, 2019).

Recent studies suggested that CF in Maolan National Nature Reserve is far away from its
native habitats, and the regional climax community of the natural reserve is subtropical karst
evergreen and deciduous broad-leaved mixed forest (EDBM). Therefore, the occurrence
of CF and its differences from EDBM have been an interesting issue for ecologists.
Previous studies on P. kwangtungensis focused on population, community characteristics,
interspecific interactions, limiting habitat factors, and its potential geographical distribution
under global climate change (Cui et al., 2012; Hou-Lin et al., 2007; Wang & Cui, 2023;
Yuan-Zhi et al., 2006). However, no study currently compared the biodiversity pattern and
the underlying community assembly rules between CF and the regional climax community,
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though these served as the crucial theoretical foundation for the situ conservation of
P. kwangtungensis. Therefore, according to the standard manual (Condit, 1998) for the
standard handbook of forest dynamic plot (FDPs) establishment, we established a series
of FDPs to explore the abovementioned issues (Wang & Cui, 2023). By comparing the
species composition and performing SAD fitting, we aimed to solve the questions: (1)
to what extent did the CF differ from the EDBM in biodiversity pattern? (2) Whether
the niche-based assembly processes determined the difference in species composition
between CF and EDBM? (3) Whether the dispersal-based assembly processes determined
the difference in species composition between CF and EDBM?

MATERIALS & METHODS
Study area and plot establishment
This study was conducted in Maolan National Nature Reserve, Yunnan-Guizhou Plateau,
Southwest China. The reserve has a typical subtropical climate, with an annual temperature
of 15.1 ◦C and annual rainfall of 1,374 mm. The highest temperature occurs in July (mean
temperature of 15.1 ◦C), while the lowest is in January (5.2 ◦C). More than 80% of
precipitation concentrates from May to October. Unlike typical subtropical evergreen
broad-leaved forests, the karst area forms a different vegetation type with mixed evergreen
and deciduous broad-leaved species due to its more heterogeneous habitats and poorer
soil conditions. However, the evergreen coniferous forest featured by P. kwangtungensis
usually distributes on the upper slopes due to the relatively less soil.

However, due to the greater than 50 m distance between each plot, which aims to
avoid the confusing impacts of spatial autocorrelation, and P. kwangtungensis is normally
distributed in habitats with higher altitudes or deeper slopes, we only established nine
FDPs for both CF and EDBM.

To explore the difference in species diversity pattern between CF and EDBM and find
out the driving factors of the difference, we received the field survey approval from the
Maolan National Nature Reserve Administration of Guizhou Province and a series of FDPs
were established in each vegetation type from September to November 2021. Since the
least distance between any two sampling plots should be more than 50 m to avoid the
impacts from spatial autocorrelation and ecotone, we established nine 20 m × 20 m FDPs
in centralized distribution area of CF. In addition, to ensure the uniformity of repetition,
we also established nine 20 m × 20 m FDPs in EDBM. Thus, a total of 18 20 m × 20
m FDPs were established in the study area (Table 1). In each FDP, the information of
locations, elevation and soil conditions was recorded. All individuals in the plots were
mapped, tagged, and identified to species, Furthermore, the diameter at breast height was
measured to calculate species importance value (IV) (Eq. (1)), and determine vegetation
community types.

IV= (Rf +Rd+Rdo)/3 (1)

where Rf is the relative frequency, Rd is the relative density, Rdo is the relative significance.
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Table 1 Basic information of the established plots: Pinus kwangtungensis coniferous forest (CF); evergreen deciduous broad-leaved mixed for-
est (EDBM).

Vegetation types Number Area (m2) Elevation (m) Slope Latitude Longitude

CF 9 400 852–950 20◦–60◦ 25◦35′35′′–25◦36′16′′ 107◦42′21′′–107◦42′31′′

EDBM 9 400 743–840 7◦–32◦ 25◦11′46′′–25◦14′03′′ 107◦54′55′′–107◦56′02′′

To explore how the abiotic factors influence the species composition, we collected
the top layer of soil (0–20 cm) without the litter at five points in each FDP, and the soil
samples weremixed to determine the soil physicochemical properties. A total of five indices,
including soil pH value, soil water content, soil total nitrogen content, soil total phosphorus
content, and soil exchangeable calcium content were measured. The soil pH was obtained
by measuring soil suspension through a pH meter (PH500T, INESA, Shanghai, China).
The soil total nitrogen content and soil exchangeable calcium content were determined
through Elemental Analyzers (UNICUBE trace, Elementar, Langenselbold, Germany).
The soil total phosphorus content was determined spectrophotometrically at 700 nm by a
continuous flow automated analyzer (AA3, Bran+Luebbe, Norderstedt, Germany).

Differences in biodiversity patterns between CF and EDBM
Using the Margalef index, Shannon-Wiener index (Eq. (2)), Pielou’s evenness index
(Eq. (3)), and rarefied richness (sampled 10 individuals), a one-way analysis of variance
(ANOVA) was performed to test the differences in α-diversity between CF and EDBM.
Shannon-Wiener index (H ) can indicate the diversity pattern of a community due to its
sensitivity to variations in species richness and evenness of species abundance. Pielou’s
evenness index (E) is usually used to reflect the evenness of species abundance. Rarefied
richness is used to characterize the species richness by controlling the confusing effects
of sample size (Heck Jr, Van Belle & Simberloff, 1975). Additionally, the skewness of log-
transformed species abundance depicts SAD symmetry and better quantifies the shape
of SAD (Magurran, 2005). Usually, negative skewness refers to a higher proportion of
rare species, while positive skewness reflects strong species dominance compared with a
lognormal SAD (Fig. 1).

Metric multidimensional scaling (MDS) analysis was conducted on obtained SADs
to examine the differences in species composition between communities (Norden et al.,
2009). The similarity in species composition between types of FDPs was evaluated through
the Chao-Jaccard abundance-based estimator (Chao et al., 2005). This approach can find a
stable solution using several random starts, and standardizes the scaling in the result by a
principal components rotation (Oksanen et al., 2013). This analysis was performed by using
the ‘‘metaMDS’’ of the package ‘‘vegan’’ (Oksanen et al., 2013) in R3.4.2 (R Development
Core Team, 2022).

H =−
S∑

i=1

PilnPi (2)

where s is the total number of species in the plot; Pi is the relative abundance of species i.

E =H/Hmax (3)
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Figure 1 Display of skewness of log-transformed species abundance data depicts SAD symmetry.
Full-size DOI: 10.7717/peerj.17899/fig-1

where H is the actual Shannon-Wiener index while Hmax is the maximum of it, calculated
by ln s.

Examination of the first-order assembly process between CF and
EDBM
Following the PER-SIMPER framework proposed by Gibert & Escarguel (2019), this study
examines the first-order assembly process influencing the dissimilarity in SADs between CF
and EDBM. Based on Clarke (1993) SIMPER analysis, Gibert & Escarguel (2019) developed
the PER-SIMPER analysis, which introduces a random permutation-based step. SIMPER
analysis is a distance-based procedure that computes the relative contribution of each
taxon to the OAD among groups of taxonomic assemblages. The Bray–Curtis coefficient
for abundance was employed in SIMPER analysis to quantify the contribution of each
taxon to the dissimilarity among groups of taxonomic assemblages (Clarke, 1993; Legendre
& Legendre, 1998). Utilizing the empirical SIMPER pattern of a taxon locality occurrence
data set, the PER-SIMPER analyzes 1,000 independently randomized occurrence data tables
by fixing column or row to form the null SIMPER profile distribution (95% confidence
intervals) of dispersal- and niche-assembly process. In addition, both sample richness and
taxon uniquity remained unchanged under a maximally constrained null model. A third
null SIMPER profile distribution was generated, corresponding to the null hypothesis
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that both dispersal- and niche-assembly processes dominate the taxonomic assembly. The
null distribution closest to (if not including) the empirical SIMPER profile indicates the
primary driver contributing to the observed taxonomic occurrence structuring among
groups (details about the null permutation can be found in the paper of Gibert & Escarguel
(2019)). For each permutation model, the empirical SIMPER profile is compared with
the null SIMPER profiles by computing the logarithm of the sum of squared deviations
between two profiles (E is as follows):

E = Log10

 i=p∑
i=1

(γ i(null)−γ i(obs))
2


where γ i=

δi
δ
is the contribution of the ratio of δ to themean of δ. Lower E indicates a closer

similarity between the two compared SIMPER profiles. Thus, a PER-SIMPER analysis was
conducted on SADs between CF and EDBM, using the ‘‘PER-SIMPER’’ function in R3.4.2
software (R Development Core Team, 2022).

Determination of abiotic factors on α-diversity
Redundancy analysis (RDA) is a multivariate statistical approach based on principal
component analysis that is used to examine the correlation between explanatory variables
(i.e., environmental factors) and response variables (i.e., species composition). Abiotic
factors could play a crucial various role in shaping community structure (Xu et al., 2018).
Therefore, RDA was used to examine the influence of soil physicochemical properties on
dissimilarities in species composition between CF and EDBM in this study. This analysis
was performed with the ‘‘vegan’’ package in R3.4.2 (R Development Core Team, 2022).

RESULTS
Difference in α-diversity between CF and EDBM
CF had a total of 46 species and was dominated by P. kwangtungensis, with an IV of
0.43. EDBM had a total of 128 species and was dominated by Boniodendron minus,
with an IV of 0.06 (File S2). By comparing species diversity between CF and EDBM,
significant differences were found in the Shannon-Wiener index, Margalef richness, Pielou
evenness, rarefied richness, and skewness (Fig. 2), indicating significant differences in
both components (species richness and evenness) of α-diversity between CF and EDBM.
Even after controlling the impacts of abundance, the species richness of EDBM was still
significantly higher than that of CF (Fig. 2D). In addition, the EDBM showed higher species
dominance compared to CF (Fig. 2E). MDS result also showed that the species composition
of CF was significantly different from that of EDBM (Fig. 2F).

First-order assembly processes driving dissimilarity in species com-
position between CF and EDBM
Results of PER-SIMPER analysis showed that the lowest E-values for dispersal- and niche-
assembly profile, indicating that both niche-assembly and dispersal-assembly processes
drove the dissimilarity in species composition betweenCF and EDBM (Fig. 3). Additionally,
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Figure 2 α-diversity between CF and EDBM. (A) The Shannon–Weiner index; (B) the Margalef
richness; (C) the Pielou Evenness; (D) the rarefied species richness; (E) the skewness between
communities; (F) the species composition between communities. The red box reflected the Pinus
kwangtungensis. coniferous forest (CF), while the blue box indicated the subtropical karst evergreen and
deciduous broad-leaved mixed forest (EDBM). Significant differences were marked by different letters.

Full-size DOI: 10.7717/peerj.17899/fig-2

compared with niche-assembly process, the dispersal-assembly process had a lower E-
values, indicating a more contribution of dispersal-assembly process to the dissimilarity in
species composition.

Abiotic factors influencing the α-diversity
Results of RDA showed that the soil physicochemical properties determined the difference
in α-diversity between CF and EDBM (Fig. 4). Additionally, the soil exchangeable calcium
content, soil total phosphorus content, soil water content, and soil pH value had influence
on the difference inα-diversity. Specifically, soil exchangeable calcium content and soil total
phosphorus content showed a positive relationship with Margalef index, and a negative
relationship with the other α-diversity indices. Soil total nitrogen had a relatively minor
impact on the community composition.

DISCUSSION
This study compared the α-diversity, identified the first-order assembly process, and
revealed the strong uniqueness in CF. However, both niche-assembly and dispersal-
assembly process drove the dissimilarity in species composition between CF and EDBM,
with the dispersal-assembly process making a greater contribution. The results indicate that
there is a high degree of uncertainty in the occurrence of species within the CF community,
particularly for rare species.
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Difference in α-diversity between CF and regional climax community
By comparing the CF with a typical regional climax community (EDBM), it was found
that both the species richness and evenness of the CF were significantly lower (Fig. 2).
The average individual density of the CF (0.297 individuals/m2) was also lower than
that of the EDBM (0.377 individuals/m2). According to the species–energy hypothesis
(Akatov et al., 2023), more individuals would increase species accumulation within the
same regional scope, which might be one possible reason for the higher species richness
of EDBM compared to CF (Chu et al., 2019; McGill, 2011). However, the rarefied richness
of the EDBM was notably higher than that of the CF, indicating that the species richness
of the CF remained lower even after controlling the cumulative effects of individuals.
The biotic and abiotic filtering frameworks may play an important role (Münkemüller
et al., 2020). The dominance of the CF was markedly lower than that of the EDBM,
showing a high dominance of the EDBM (Fig. 3). The higher abundance and larger
size of individuals compressed the ecological niche space of other species, indicating a
much higher competitive ability of P. kwangtungensis compared to others, which limited
colonization and survival of other species and formed monodominant species pattern
(Stanley Harpole & Tilman, 2006; Wang & Cui, 2023). Similar patterns have been found in
many evergreen coniferous forests, such as naturally occurring Pinus roxburghii forests in
tropical regions, as well as artificially planted forests such as Pinus massoniana, Cryptomeria
japonica, and Cunninghamia lanceolata, where evergreen coniferous species dominate and
exhibit low species richness patterns (Sloan, Zimmerman & Sabat, 2007; Wang & Cui,
2023; Zang et al., 2021b). Meanwhile, the lack of subdominant species in CF allowed the
colonization of rare species, contributing more to the difference in species composition
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(Lamanna et al., 2017; Zhang et al., 2014). This phenomenon could also be a primary factor
leading to the scarcity of species under such biotic conditions. Some researchers have
pointed out that evergreen coniferous species commonly exhibit allelopathy, which could
inhibit the establishment of other tree species, thereby reducing species richness (Ehlers,
Charpentier & Grøndahl, 2013). Other studies also showed that poor light resources and
soil conditions in evergreen coniferous forests could also be limiting factors for species
diversity patterns. For example, low light resource quality in evergreen coniferous forests
limits the establishment of shade-tolerant tree species (Loke & Chisholm, 2023; Wang &
Cui, 2023). This study showed that the CF had almost no shade-tolerant pioneer tree
species, which supported the view to some extent. In addition, the CF is shade-intolerant,
similar to deciduous broad-leaved tree species in eco-strategy. Therefore, the presence of
CF somewhat restricts the ecological niche space of deciduous broad-leaved tree species,
reducing species richness (especially in broad-leaved tree species (Cui et al., 2012;Wang &
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Cui, 2023)). In contrast, the EDBM is mixed with both evergreen and deciduous broad-
leaved tree species. More deciduous broad-leaved tree species can increase species richness
and evenness, resulting in a higher level of species diversity. Such diversity patterns
also emphasized the importance of considering reducing deciduous tree species when
performing P. kwangtungensis conservation to reduce the severe competition for lights.
High habitat heterogeneity can also change species diversity patterns (Bar-Massada, Kent
& Carmel, 2014; Brown et al., 2013). The habitat heterogeneity hypothesis suggests that
increasing heterogeneity leads to an increase in small habitat types that can support plant
growth and survival. The differing quality of small habitats can support the survival of
different life forms, thereby maintaining a higher level of diversity (Bar-Massada, Kent &
Carmel, 2014; Franklin et al., 2013). This study found that although both the CF and the
EDBM were formed on limestone (as the parent rock), the microhabitat of the CF was
relatively homogeneous without the presence of gullies, exposed rocks, or surface patterns.
The EDBM exhibited higher levels of horizontal habitat heterogeneity, which provided a
non-biological environmental foundation for maintaining diversity patterns and further
promoted greater species diversity (Bar-Massada, Kent & Carmel, 2014; Brown et al., 2013;
Franklin et al., 2013;Wang & Cui, 2023).

First-order assembly process driving the dissimilarity in species
composition
The results showed that both the CF and the EDBM were primarily driven by dispersal-
and niche-assembly processes, with the stochastic process playing a slightly larger role in
determining species composition differences (Fig. 3). This indicated that the community
assembly of CF may be mainly controlled by stochastic processes relative to deterministic
processes. The CF community exhibited monodominance with a sharp decline in the
number of individuals of other species (Fig. 2E). Both results indicated that apart from
P. kwangtungensis, the number of individuals of other tree species was extremely few, with
a significant variation in presence between plots (Fig. 2F). This reflected the uncertainty
of companion species in the CF, indicating strong stochasticity on the occurrence of other
species (Matthews et al., 2019; McGill, 2011). From the perspective of species occurrence,
neutral processes dominate the probability of occurrence of most species, especially the rare
species. These results could also be driven by demographic, phylogenetic and biogeographic
histories of individuals, populations and species. In contrast, the EDBMaremostly common
species sharing the same regional species pool (Chen et al., 2019). Functional traits adapt
to variations in abiotic factors, while convergence of a trait value suggests co-occurring
species often appeared in similar abiotic conditions, leading to stronger habitat filtering
(Pappas, Fatichi & Burlando, 2016; Xu et al., 2018). Therefore, changes in functional traits
and abiotic factors may by one of the factors in community assembly process. Maolan
National Nature Reserve is a typical karst area where strong habitat filtering effects and
habitat heterogeneity restrict the dispersal and colonization of most species (Gu et al.,
2019; Wang et al., 2023). When species disperse into this region, which species become
companion species is largely randomized in CF. Thus, although the α-diversity of CF is
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totally different from that of the EDBM, no certain evidence was found to support the
necessity of such patterns.

Abiotic factors driving the difference in α-diversity
The results of this study showed that the soil exchangeable calcium content and soil total
phosphorus content were the main factors driving the difference in α-diversity between
the CF and EDBM. Previous studies showed that the phosphorus content of soils was the
limiting factor on species diversity in tropical or subtropical forests (Wang et al., 2023; Zang
et al., 2021a). However, our results indicated that the soil total nitrogen content had no
effect on the regional difference in species diversity among different vegetation types (Fig. 4).
The varied speeds of biological cycles in different soil nutrients might be one possible
reason (Alvarez-Clare, Mack & Brooks, 2013; Wang et al., 2023). The view of phosphorus
limitation was mainly due to the relatively slow phosphorus cycle (Alvarez-Clare, Mack &
Brooks, 2013). Previous studies showed that the soil available phosphorus came from rock
decay, which was relatively slow and limited the speed of phosphorus cycling (Laliberté
et al., 2015; Zotz & Asshoff, 2010). More phosphorus was fixed in the plant tissue with
increasing biomass, decreasing the available phosphorus content (Alvarez-Clare, Mack &
Brooks, 2013). Additional studies suggested that the H2PO2−

4 tended to form insoluble
complexes with Al3+ or Fe3+ under acidic soils (Laliberté et al., 2015; Zang et al., 2021a).
However, our previous studies on karst restoration showed no significant phosphorus
limitation, as nitrogen cycling may be more limiting to nutrient content than phosphorus
cycling (Laliberté et al., 2015; Turner, Brenes-Arguedas & Condit, 2018; Wang et al., 2023).
Such nitrogen limitation also supported the idea that the EDBM still performed potential
succession compared with subtropical evergreen broad-leaved forests. Thus, the soil
nitrogen content might dominate the soil fertility, driving the species diversity patterns.
In addition, higher calcium content has been one key component of soil physicochemical
properties in karst areas. A growing body of studies showed that diversity had a higher
dependence on the soil calcium content (Batalha et al., 2015; Guo et al., 2019; Guo et al.,
2017; Guo et al., 2015), which is also clearly demonstrated in this study.

CONCLUSIONS
P. kwangtungensis is an endangered species which has a narrow distribution. This study
quantified the differences in species diversity and community assembly between the
P. kwangtungensis coniferous forest and the evergreen and deciduous broadleaved forest
within the Maolan National Nature Reserve, and found that the P. kwangtungensis
coniferous forest had a lower species richness and evenness compared with the evergreen
and deciduous broadleaved forest in the same reserve. However, such difference
resulted possibly from both stochastic processes and deterministic processes with
stochastic processes contributing more. Thus, our study suggested that the stochastic
processes dominated the difference in species composition between the two vegetation
types, indicating to a certain extent, the auxiliary species contributing less in shaping
P. kwangtungensis community structure. Such patterns emphasized the importance of tree
species selection in P. kwangtungensis conservation. In addition, our study suggested that
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soil calcium and phosphorus contents played more important roles in driving species
diversity pattern of P. kwangtungensis coniferous forest in local scales, emphasizing
the importance of soil fertile in driving the species pattern and community assembly
rules, as well as its growth, development and distribution. Therefore, we should consider
more whether the soil nutrient conditions could well meet the requirements of Pinus
kwangtungensis when conducting conservation projects.

Plant functional traits could be another effective perspective in determining community
assembly rules, due to it ismore sustainable to changes in environments.However, our study
quantified the community assembly rules based on the species abundance distribution,
which might lack of the information of how the traits respond to the various habitats.
Further analysis should perform the verification both from the phylogenic and functional
perspective.
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