

Potential role of *Manilkara Zapota L* in treating bacterial infection

Ami Febriza^{1,2}, Fityatun Usman¹, Andi Ulfah Magefirah Rasyid¹, Hasta Handayani Idrus² and Mohd Helmy Mokhtar³

¹ Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar, South Sulawesi, Indonesia

² Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Bogor, West Java, Indonesia

³ Departement of Physiology, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia

ABSTRACT

The increasing problem of antibiotic resistance in bacteria leads to an urgent need for new antimicrobial agents. Alternative treatments for bacterial infections need to be explored to tackle this issue. Plant-based substances are emerging as promising options. *Manilkara zapota L* contains compounds with antibiotic activities, and anti-inflammatory, antitumor, antipyretic, and antioxidant properties. It has medicinal properties and contains bioactive compounds, like tannins, flavonoids, and triterpenoids. This review aimed to comprehensively evaluate the existing literature on the potential medicinal and therapeutic benefits of *M. zapota* in bacterial infections by utilizing data from *in vivo* and *in vitro* studies. *M. zapota* has the potential to be a nutritional source of antimicrobial food. Numerous preclinical studies have demonstrated the antibacterial activities of *M. zapota* and its components. The antibacterial mechanisms of this fruit could interact with bacterial cell structures such as cell walls or membranes.

Subjects Biochemistry, Microbiology, Plant Science

Keywords *Manilkara zapota L*, Antibacterial, Infection, Antioxidants

INTRODUCTION

Antibiotic resistance is a growing concern, highlighting the need for new antimicrobial agents (Russell, 2002). Over the past few decades, the surge in drug resistance among Gram-positive bacteria has been attributed to bacterial evolution and the rampant overuse/misuse of antibiotics. This surge has intensified global antibiotic resistance, complicating clinical treatment (Guo et al., 2020). Additionally, there is a growing incidence of infections caused by multidrug-resistant Gram-negative bacteria, contributing to elevated morbidity and mortality rates and prolonged hospitalization (Cerceo et al., 2016).

Addressing antibiotic resistance to clinically essential pathogens involves exploring new treatment options for bacterial infections using plant-based substances emerging as promising alternatives. Studies have indicated that plants harbor antimicrobial compounds capable of augmenting or diminishing antibiotic activity (Chandra et al., 2017; Fankam, Kuiate & Kuete, 2017). Natural products such as herbs provide unique molecular diversity and biological functionality, rendering them valuable for drug discovery (Gootz, 1990).

Submitted 18 April 2024

Accepted 18 July 2024

Published 12 August 2024

Corresponding author

Ami Febriza,
amifebriza@med.unismuh.ac.id

Academic editor

Rogerio Sotelo-Mundo

Additional Information and
Declarations can be found on
page 11

DOI 10.7717/peerj.17890

© Copyright
2024 Febriza et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Manilkara zapota L., a member of the Sapotaceae family, commonly known as sapodilla, produces milky juice; it is also known by various names, including *Manilkara zapotilla*, *Mimusops manilkara*, *Achras zapota*, and *Achras sapota* (Lim, 2013). Extensive evidence supports the medicinal properties of this plant, including its antimicrobial activity (Idrus et al., 2019), anti-inflammatory, antipyretic (Ganguly et al., 2013), antitumor (Khalek et al., 2015), and antioxidant properties (Islam et al., 2011). Bioactive compounds found in *M. zapota* include tannins, flavonoids, and triterpenoids (Fayek et al., 2013). The leaves and seeds also contain triterpenes, tannins, and polyphenols, which have been investigated for their potential medicinal properties (Ngongang et al., 2020).

Rationale of the study

The medicinal potential of *Manilkara zapota* L. is reviewed in relation to combating antibiotic resistance. This plant contains bioactive compounds that have been researched for their antimicrobial properties (Idrus et al., 2019), which can be found in various parts of the plant. These bioactive compounds could provide a natural source for developing new treatment options to fight antibiotic-resistant bacteria. The potential for plant-based substances to address antibiotic resistance is a promising area for discovering new antimicrobial agents. This study aimed to comprehensively review and evaluate the existing literature on the potential medicinal and therapeutic benefits of *M. zapota* against bacterial infections. This review includes data from both *in vivo* and *in vitro* animal studies.

SURVEY METHODOLOGY

A literature search was performed to identify and present relevant articles on the effects of *Manilkara zapota* L on bacterial infections. Electronic databases such as Pubmed, Scopus, and Google Scholar were searched for peer-reviewed full-text articles to identify articles published in English and covering the period from 2013 to 2023. The following keywords were used in the search: (1) “*Manilkara Zapota*” or “*M. Zapota*” or “*M. Zapota Extract*,” (2) “Bacterial Infection,” and (3) “Antimicrobial,” “Antioxidant,” or “Anti-inflammatory.” All studies, encompassing both *in vitro* and *in vivo* studies, examined the effects of *Manilkara zapota* L on infections and focused on its antimicrobial properties. The identified impacts included both quantitative and qualitative evaluations. The quantitative element included the determination of inhibition zones or the reduction of biomarkers. In contrast, the qualitative aspect included evaluating of the antibacterial activities of *M. zapota* and the chemical or natural substances. Studies on *M. zapota* that did not delve into infection-related issues or bioactive properties such as antimicrobial, antioxidant, or anti-inflammatory effects were excluded from the review.

Figure 1 shows the flowchart of article selection. The identification in the database resulted in 2,520 articles, which were reduced to 35 after screening. After the duplicate articles were identified, each was screened according to the exclusion criteria, so that finally 15 full articles reporting *in vivo* and *in vitro* studies were screened for eligibility.

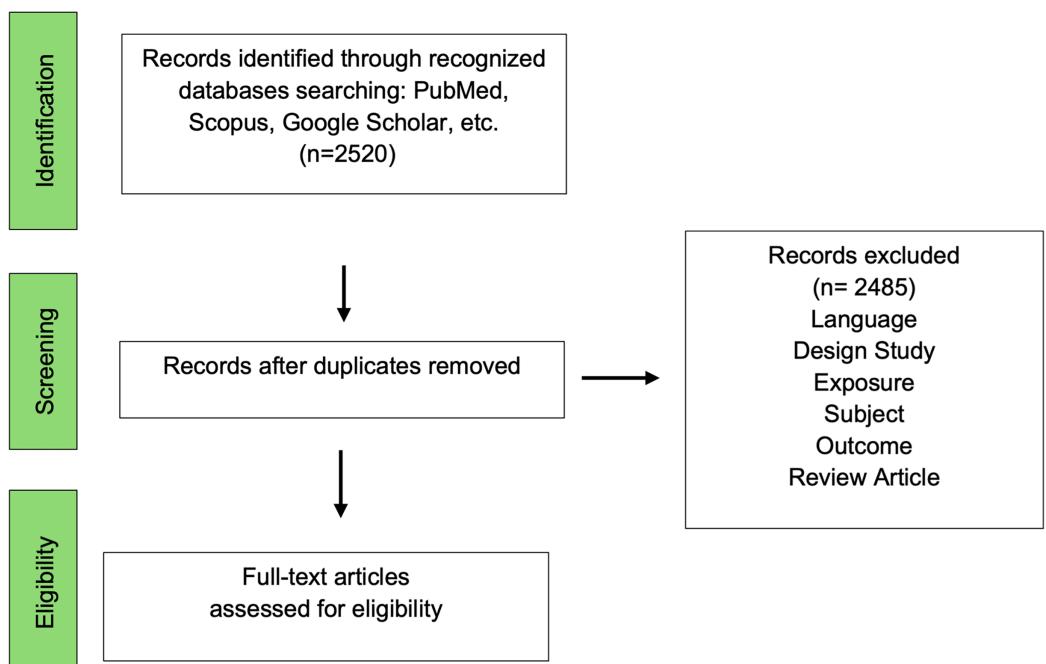


Figure 1 Flowchart article selection.

Full-size DOI: 10.7717/peerj.17890/fig-1

Botanical description of *M. zapota*

The sapodilla fruit, a nearly round brown berry with a width ranging from 5 to 10 cm, transforms its texture as it ripens. When unripe, the fruit is hard and coarse. However, as it ripens, it becomes soft and juicy. It can be either round or egg-shaped, weighing between 75 and 200 g ([Tulloch et al., 2020](#)). The *M. zapota* plants are shown in [Fig. 2](#). The fruit pulp is light brown, soft, easily digestible, and has a gritty texture; it harbors 3–12 black seeds containing phytochemicals such as saponins ([Ahmed et al., 2008](#)). Sapodilla trees have a shallow root system with most roots situated within the top 75 cm of the soil. Approximately 66% of the moisture extracted from the soil is concentrated in the upper layers. The leaves of this evergreen tree are arranged in a spiral and measure 7–12 to 2–4 cm. Initially pinkish-brown when young, they transition to a light green to dark-green hue as they mature ([Mehnaz & Bilal, 2017](#); [Mickelbart, 1996](#)).

Phytochemical composition

Various chemical compounds have been identified in *M. zapota*, and they are rich in phytochemicals and antioxidants ([Lobo et al., 2010](#)). However, it is essential to note that the composition of these compounds varies based on geographical location and isolation methods. The constituents of *M. zapota* include common compounds such as carbohydrates, proteins, fats, fiber, vitamins, and minerals ([Ma et al., 2003](#); [Punia Bangar et al., 2022](#)). Additionally, this plant contains bioactive phytochemicals, such as triterpenes, saponins, tannins, and polyphenols ([Ngongang et al., 2020](#)). [Table 1](#) lists the chemical composition of *M. zapota*.

Figure 2 (A) Fruit and (B) plant of *Manilkara zapota* L. The *M. zapota* plants are shown in Fig. 2. (A) *M. zapota* fruit has a round or oval shape with light brown skin. (B) *M. zapota* has evergreen trees with dark green, leathery leaves (source: documentation of Fityatun Usman).

[Full-size](#) DOI: 10.7717/peerj.17890/fig-2

Table 1 List of the chemical composition of *Manilkara zapota* L.

Component	Composition	References
Carbohydrates	19.9 g	Miranda (2022)
Protein	0.44 g	Miranda (2022)
Fat	1.10 g	Miranda (2022)
Fibre	5.3 g	Miranda (2022)
Vitamin	Vitamin A, Vitamin C, Folate, Niacin	Miranda (2022) and Moo-Huchin et al. (2014)
Minerals	Calcium, potassium, iron, copper, magnesium, zinc	Miranda (2022)
Terpenes and terpenoids	β -amyrin-3-(3'-dimethyl) butyrate	Fayek et al. (2013)
Phenolic	Chlorogenic acid, gallic acid, p-hydroxybenzoic, ellagic acid, quercetin, ferulic acid, catechin, kaempferol, trans cinnamic acid	Ma et al. (2003) , Moo-Huchin et al. (2014) , Nile & Park (2014) and Singh et al., 2016
Flavonoid	Quercetin, apigenin-7-O- β -D-glucuronide methyl ester	Kamalakararao et al. (2018) , Moo-Huchin et al. (2014) and Singh et al. (2016)
Carotenoid	Lycopene	Moo-Huchin et al. (2014) and Da Silva et al. (2014)
Saponin	Manilkoraside	Fernandes et al. (2013) and Linn et al. (2012)
Tannin	Condensed tannin	Hamzah et al. (2020)

The nutritional richness and potential health benefits of *M. zapota* are emphasized by its diverse range of nutrients, including vitamins, minerals, and phytochemicals. This fruit is a valuable source of essential macronutrients in small amounts, including carbohydrates, proteins, and fats, which provide energy and support various bodily functions (Miranda, 2022). It is also a source of important vitamins, such as A, C, folate, and niacin, as well as essential minerals, such as calcium, potassium, iron, copper, magnesium, and zinc, all of which are critical for various physiological processes (Miranda, 2022). A previous study found that *M. zapota* contains 21.43 mg of vitamin C, 1.16 mg of total anthocyanins, 15.35 mg of phenolic compounds, 0.18 mg of quercetin, and 1.69 mg of carotenoids per 100 g (Moo-Huchin *et al.*, 2014).

One noteworthy natural compound isolated from *M. zapota* is β -amyrin-3-(3'-dimethyl) butyrate, a terpenoid identified using spectral methods such as IR, MS, UV, 1H-NMR, 13C-NMR, and 2D-NMR. Together with other compounds, including lupeol-3-acetate and 4-caffeoquinic acid, it is found in alcoholic and aqueous extracts of unripe *M. zapota* fruits (Fayek *et al.*, 2013).

M. zapota also contains various phenolic compounds, including chlorogenic acid, quercetin, *p*-hydroxybenzoic acid, ellagic acid, ferulic acid, gallic acid, catechin, trans cinnamic acid, and kaempferol. These phenolic compounds significantly enhance the antioxidant capacity of and contribute to the potential health benefits of *M. zapota* (Ma *et al.*, 2003; Singh *et al.*, 2016).

Quercetin is a phenolic compound found in various fruits, including *M. zapota* (Sapodilla). Another bioactive flavonoid compound found in the ethyl acetate leaf extract of *M. zapota* is apigenin-7-O- β -D-glucuronide methyl ester, which exhibits considerable DPPH (1,1-diphenyl-2-picrylhydrazyl) and NO (nitric oxide) free radical scavenging activity, showing its promise as an herbal antioxidant. Both quercetin and apigenin-7-O- β -D-glucuronide methyl ester contribute to the antioxidant activities of *M. zapota*, suggesting their potential for developing therapeutic antioxidants (Singh *et al.*, 2016).

Carotenoids, which give fruits and vegetables bright colors. Sapodilla contains specific carotenoids such as beta-carotene and lycopene, which can be quantified using spectrophotometry (Da Silva *et al.*, 2014). In *M. zapota*, the compound 3-O- β -D-glucopyranosyl-(1 \rightarrow 6)- β -D-glucopyranosyl-28-O- α -L-rhamnopyranosyl-(1 \rightarrow 3)- β -D-xylopyranosyl-(1 \rightarrow 6)-(1 \rightarrow 4)- α -L-rhamnopyranosyl-(1 \rightarrow 2)- α -L-arabinopyranosyl-(1 \rightarrow 3)- β -D-xylopyranosyl-(1 \rightarrow 6)-(1 \rightarrow 6)- β -D-xylopyranosyl-(1 \rightarrow 6)-(1 \rightarrow 6)- β -D-xylopyranosyl-(1 \rightarrow 6)-(1 \rightarrow 6)- β -D-xylopyranosyl-(1 \rightarrow 6) acid is present. This compound, a condensed tannin and polymer of flavonoids. Saponins, another class of plant secondary metabolites, are distributed in different organs and tissues. As antimicrobial plant-protection agents, saponins play a role in plant defense against soil pathogens (Ahmed *et al.*, 2008). Manilkoraside was extracted from the stem bark of *M. zapota* with ethanol. From a previous study, 20 and 48 μ g/ml of manilkoraside could suppress the growth of HL-60 and HT29 cancer cells by cytotoxicity assays measurement (Linn *et al.*, 2012).

Table 2 Phytochemical isolated from part plants of *Manilkara zapota* L.

Plant part	Phytochemical compounds	References
Leaf	myricetin-3-O- α -L-rhamnoside, 2-oleanene-3,28-diol, Chlorogenic acid, myricetin-3-O- β -D-glucopyranoside, mearnsitrin, germanicol and germanicol acetate	Mourão Mulvaney et al. (2021) , Osman et al. (2014) and Rao et al. (2014)
Bark	Stigmasterol, β -sitosterol, lupeol, lupenone, glut-5(6)-en-3 β -acetate, olean-12-en-3 β -acetyl-11-one	Noor et al. (2014)
Fruit	β -amyrin-3-(3'-dimethyl) butyrate, lupeol-3-acetate, 4-Caffeoylquinic acid (Cryptochlorogenic acid)	Fayek et al. (2013)
Seed	Saccharose, D-quercitol	Rao et al. (2014)

In addition, natural compounds found in *M. zapota* exhibit various activities such as antimicrobial, antioxidant, antihyperglycemic, antitumor and hypocholesterolemic activity. The health benefits associated with *M. zapota* are attributed to these compounds ([Ahmed et al., 2008](#); [Fayek et al., 2013](#); [Linn et al., 2012](#); [Da Silva et al., 2014](#); [Singh et al., 2016](#)).

Numerous compounds have been isolated and identified from different parts of *M. zapota*, as shown in [Table 2](#). The anticancer effect of *M. zapota* leaves has been studied and the constituent of the extract, erythrodiol, was found to play a role in reducing the number of live tumor cells ([Osman et al., 2014](#)). In another study examining the leaves of *M. zapota*, they were reported to contain phenolic chemicals and pentacyclic triterpenes, including chlorogenic acid, myricetin-3-O- β -D-glucopyranoside, mearnsitrin, germanicol, and germanicol acetate. These compounds showed notable efficacy against *Candida albicans* and *Staphylococcus aureus* ([Mourão Mulvaney et al., 2021](#)). In addition, myricetin-3-O- α -L-rhamnoside isolated from the leaves had biological activities such as antioxidant, moderate elastase inhibitory, and tyrosinase inhibitory activities ([Rao et al., 2014](#)). A previous study using the methanol-extracted stem bark of *M. zapota* revealed the presence of compounds including stigmasterol, β -sitosterol, lupeol, lupenone, glut-5(6)-en-3 β -acetate, and olean-12-en-3 β -acetyl-11-one ([Noor et al., 2014](#)).

Phytochemical screening of *M. zapota* fruits revealed the presence of β -amyrin-3-(3'-dimethyl) butyrate, lupeol-3-acetate, 4-Caffeoylquinic acid (cryptochlorogenic acid) ([Fayek et al., 2013](#)). In this prior investigation, methanol extracted from the fruit of *M. zapota* showed a significant reduction in cholesterol levels and a moderate improvement in glucose levels ([Fayek et al., 2013](#)). Phytochemical screening of *M. zapota* oil seeds showed the presence of functional groups in alkanes, carbonyl, alkene and methyl ester ([Mehedi et al., 2023](#)). In another study, saccharose and D-quercitol were reported to be isolated from *M. zapota* seeds ([Rao et al., 2014](#)).

Effect of *M. zapota* found in preclinical studies

In vitro studies

Previous studies have demonstrated the antibacterial properties of *M. zapota* extracts against various strains. These studies primarily assessed the effects of the extracts on bacterial growth under laboratory conditions, as summarized in [Table 3](#).

Table 3 Summary of *in vitro* studies of *Manilkara zapota* L. in bacterial infection.

Type of study	Parameter	Dose	Outcomes	References
The extract of peel using hexane, ethyl acetate, acetone, methanol and water	% Inhibition of microorganism	Concentration used was 20 mg/ml	Gram positive (36%), gram negative (92%), fungi (70%)	Rakholiya, Kaneria & Sumitra Chanda (2014)
Acetone extract from seed	Agar well diffusion assay; GC-MS and FT-IR methods	(67.15 ± 4.35 mg/g) of total phenolics, 49.93 ± 8.76 mg/g of tannins, and 60.06 ± 6.4 mg/g of flavonoids were found	The highest zone of inhibition was reported for MRSA E-1122, <i>Candida albicans</i> , and <i>Micrococcus luteus</i>	Mohanapriya et al. (2019)
Methanol extract of seed and leaves	Minimal inhibitory concentration (MIC)	256 µg/mL ≤ MIC ≤ 1,024 µg/mL	Increased antibiotics activity up to 16-fold at their MIC/2 and MIC/4	Ngongang et al. (2020)
Ethanol extract of bark and leaves	The disc diffusion method	400 µg/disc for leaves and bark extract	Bark extract (400 µg/disc) was effective against all bacteria tested (7–13.5 mm zone of inhibition)	Islam (2013)
Hydroethanolic extract of leaves	Minimum inhibitory concentration (MIC)	The concentration of plaque ranged from 8–512 µg/mL	Antibacterial activity against the standard <i>Staphylococcus aureus</i> strain was reported using the extract	Freitas et al. (2021)
Water extract of the root	The agar cup plate method	0.5 extract plant powder, 2.5% yield of the powdered plant	Zone inhibition for <i>S. aureus</i> (11 mm) and <i>E. coli</i> (18 mm)	Nama et al. (2013)
Methanol extract of the leaves of <i>M. zapota</i> and <i>P. guajava</i>	The well method	Five ratio of concentration extract <i>M. zapota</i> and <i>P. guajava</i> (2:0, 1, 6:0, 4, 0.6:1, 4, 1:1, 0:2)	Zone inhibition for <i>S. aureus</i> (18 mm), <i>S. typhi</i> (13.8 mm), <i>E. coli</i> (13.8 mm), <i>Bacillus subtilis</i> (20 mm)	Salunkhe et al. (2018)

Note:

GC-MS, Gas chromatography-mass spectrometry; FT-IR, Fourier transform infrared; MRSA, Methicillin resistant *Staphylococcus aureus*; MIC, Minimum inhibitory concentration.

Previous studies have shown that *M. zapota* exhibits antibacterial properties. The ethyl acetate extract derived from the stem bark showed efficacy against all pathogenic bacteria and certain fungi. The ethyl acetate extract from the leaves exhibited modest antibacterial activity against some microorganisms, with minimum inhibitory concentrations (MICs) ranging from 256 to 512 µg/ml (Osman et al., 2011). Another study reported the use of bark and leaf extracts. The bark extract exhibited notable antibacterial efficacy against all tested bacteria, with an average zone of inhibition of 7 to 13.5 mm. In contrast, the leaf extract showed lower efficacy and had no activity against *Staphylococcus aureus* (Islam, 2013).

A study examined the biological activity of *M. zapota* seed extracts. The extract contains various of bioactive components, including phenolics, tannins, and flavonoids. The seed extract demonstrated notable antibacterial activity against human infections and multidrug-resistant methicillin-resistant *S. aureus* (MDR-MRSA) (Mohanapriya et al., 2019). *M. zapota* root extract exhibited MIC values of 25–100 mg/ml against *S. aureus* and *Escherichia coli* (Nama et al., 2013). In another previous study, the hydroethanolic extract of *Manilkara zapota* leaves (HEMZL) contained tannins and phenolic chemicals. It was effective against *Staphylococcus aureus* but had antagonistic effects or showed no significant difference when used with antibiotics (Freitas et al., 2021). Another study using a Sapodilla extract at a dosage of 20 mg/ml revealed promising anti-adhesion properties

that inhibited the adhesion of *H. pylori* to mucosal surfaces. The method of inhibiting adhesion to mucosal surfaces is beneficial for preventing infection and reducing bacterial resistance (Chaichanawongsaroj & Pattiyanthanee, 2014). In another study, nanoparticles were efficient as antimicrobial agents due to their large surface area, chemical reduction characteristics, and surface reactivity (Rai et al., 2021). The copper nanoparticles (Mz-Cu-NPs) of *M. zapota* isolated from aqueous leaves were shown to have antibacterial activity. The nanoparticles showed significant antibacterial efficacy in comparison to the control sample. The degree of inhibition increased with higher doses, with *B. subtilis* showing minimal inhibition of up to 50% (Kiriyanthan et al., 2020). The results of the previous studies add to the growing body of evidence that *M. zapota* has antibacterial activity against resistant strains.

***In vivo* studies**

Animal studies evaluating the antibacterial properties of *M. zapota* provided insights into its effects on living animals (Table 4). In a study involving mice infected with *Salmonella typhi*, the extract from manila sapodilla fruit significantly reduced TNF- α levels. This study aimed to assess the efficacy of *M. zapota* against bacterial infections. All experimental groups exhibited a notable decrease in TNF- α concentration on days 4, 10, and 30 post-treatment. Particularly, the group treated with manila sapodilla fruit extract demonstrated a significant reduction in TNF- α concentration (Idrus et al., 2022). Previous studies identified various bioactive mechanisms, including antioxidant, anti-inflammatory, cytotoxic, antidiabetic, and analgesic effects (Table 4).

Antibacterial properties/mechanisms of action

M. zapota has promising applications in medical and industrial settings because of its antibacterial properties, rendering it adaptable to sectors such as healthcare and food processing to combat bacterial threats (Shahraki, Javar & Rahimi, 2023; Rivas-Gastelum et al., 2023). Numerous studies have highlighted the potential of *M. zapota* as a source of therapeutic agents with antimicrobial properties tested on various plant parts, including leaves, bark, seeds, and roots (Table 2).

M. zapota exhibits a broad antibacterial spectrum against clinically significant Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. Notably, the leaf extracts generally increased activity than the bark and seed extracts (Cerceo et al., 2016; Guo et al., 2020; Shahraki, Javar & Rahimi, 2023). Previous research on the stem bark and leaf extracts revealed the presence of terpenoids, glycosides, and flavonoids. A recent study demonstrated the antimicrobial properties of the extract against various bacteria including *Salmonella typhi*, *Sarcina lutea*, *Bacillus megaterium*, *Bacillus subtilis*, and *E. coli*, with inhibition zones ranging from 8 to 16 mm (Osman et al., 2011). Terpenoids and phenylpropanoids exhibit antimicrobial activity by damaging the bacterial membranes, thereby altering their permeability. This effect was confirmed by assessing salt tolerance, release of cellular constituents, and crystal violet absorption in *E. coli* and *S. aureus* (Nogueira et al., 2021). The flavonoid identified in *M. zapota* exhibits antibacterial activity,

Table 4 Summary of *in vivo* studies of *Manilkara zapota* L.

Type of study	Treatment dosage	Duration of study	Outcomes	References
Ethanol extract of fruit; Salmonella infected mice	<i>Manila sapodilla</i> fruit extract (510 and 750 mg/kg BW)	4, 10, and 30 days	Reducing levels in TNF- α concentration in all experimental groups at observation days 4, and 10 until day 30 after treatment.	Idrus et al. (2022)
Leaf extracts in ethyl acetate and methanol; albino mice; acute and subacute toxicity	Leaf extracts (50, 500, 1,500, and 2,000 mg/kg BW)	28 and 29 days	Hematological and serum biochemical markers showed no significant changes.	Bhattacharya et al. (2014)
Ethanol extract of leaves; albino rats, antidepressant activity with forced swim test, tail suspension test	Extract of leaves (150 and 300 mg/kg BW)	60 min before intervention activity	In the tail suspension and forced swim models of depression, extract significantly reduced immobility.	Kiranmayi & Sai Sureshma (2022)
Ethanol extract of seed; adult Wistar albino rats; Eddy hot plate method	Extract of seed (200 mg/kg BW)	At 0, 30, 60, and 90 min-points reaction times	Extract treatment resulted in less increase in reaction time compared to aspirin treatment at 30 and 60 min.	Ramanna et al. (2023)
Soxhlet extraction of bark; Wistar rats; excision wound model	Extract topical ointment (5% and 10%)	At 4, 8, 12, 16, and 20 days for wound diameter	Contraction of the wound was substantially greater ($p < 0.001$) in rats treated with MZE ointment than in the control group.	Alsareii et al. (2023)
Ethanol extract of leaves; Wistar mice, diabetes mellitus model	Extract of leaves (100 and 300 mg/kg BW)	14 days	LDL levels differed significantly between groups treated with leaf extract (100 and 300 mg) and pioglitazone.	Solikhah et al. (2023)
Water extraction of leaves; mice with hyperuricemia model	Leaf extract (1 and 3 g/kg BW)	28 days	After hyperuricemia induction, there was no significant difference in mean uric acid levels between groups treated with the leaf extract and ascorbic acid.	Cervero et al. (2018)

Note:

BW, Body weight; TNF- α , Tumor necrosis factor alpha; MZE, *M. zapota* bark ethanolic extract; LDL, Low-density lipoprotein.

leading to cell lysis and disruption of the cytoplasmic membrane by increasing its permeability ([Tagousop et al., 2018](#)). The concentration of flavonoids was found to impact bacterial membranes, as observed in scanning electron microscopy images after the application of flavonoid glycosides to *Pseudomonas* ([Selim et al., 2012](#)).

In antimicrobial testing, the stem bark extract demonstrated activity against all tested pathogenic bacteria, whereas the leaf extract was effective against some bacterial strains. Moreover, stem bark extract showed activity against all three fungi, whereas the leaf extract showed no antifungal properties ([Osman et al., 2011](#)). The stem bark extract showed significant antibacterial activity against all bacteria tested, whereas the leaf extract displayed comparatively lower activity. The preliminary phytochemical screening revealed the presence of alkaloids, flavonoids, saponins, and tannins ([Osman et al., 2011; Islam, 2013](#)). This study also revealed that the root extract of *M. zapota* exhibited antibacterial activity against *S. aureus* and *E. coli*. The presence of bioactive constituents, including alkaloids, glycosides, saponins, tannins, and carboxylic acids, in the extract may contribute to its antimicrobial properties ([Nama et al., 2013](#)).

The fruit of *M. zapota* was extracted through maceration and analyzed for tannin content. This study confirmed the presence of tannins, specifically condensed tannins, in this fruit. The tannin content, determined using permanganometry, averaged 0.84%

([Hamzah et al., 2020](#)). Tannins inhibit ruminal microorganisms' growth and protease activity, by targeting bacterial cell walls and potentially disrupting cell membranes if they are sufficiently lipophilic ([Cowan, 1999](#)). Previous studies have highlighted the efficacy of tannic acid in inhibiting biofilm formation by *S. aureus*, which is a major contributor to infections ([Dong et al., 2018](#)). *M. zapota* extract showed significant antibacterial properties due to diverse phytochemical compounds, such as flavonoids and alkaloids, which act synergistically against bacterial infections. The identification of these compounds suggests a multifaceted approach to bacterial inhibition. Comprehensive phytochemical analyses have shed light on the overall chemical composition of plants, paving the way for potential applications beyond antibacterial intervention. In addition to its antibacterial effects, *M. zapota* contains compounds with anti-inflammatory, antioxidant, and anticancer properties.

A previous study revealed that *M. zapota* seeds contain bioactive substances with antimicrobial properties ([Ahmed et al., 2008](#); [Mohanapriya et al., 2019](#)). Examination of *M. zapota* seed extracts revealed significant secondary metabolites with antimicrobial activity, including tannins, flavonoids, and phenolics. GC-MS and FT-IR analyses confirmed the presence of various active compounds such as fatty acids, aliphatic amines, amines, alkanes, and alkenes. The extract exhibited antimicrobial activity against human pathogens, including multidrug-resistant strains ([Mohanapriya et al., 2019](#)). Methanolic seed extract demonstrates a notable MIC against multiple strains of *S. aureus* ranging from 100 to 512 µg/ml ([Ngongang et al., 2020](#)). Phytochemical analyses revealed the presence of steroids ([Ngongang et al., 2020](#)) and saponins ([Ahmed et al., 2008](#)) in seeds. Previous studies have indicated that steroid saponins alter the cell walls of bacteria such as *Prevotella bryantii*, *Ruminobacter amylophilus*, *Streptococcus bovis*, and *Selenomonas ruminantium*, as observed using transmission electron microscopy ([Wang et al., 2000](#)). The continuous use of *M. zapota* in various cultures indicates its well-established reputation as a valuable natural medicinal resource. While this plant's antibacterial and antioxidant properties of this plant have been studied extensively, its traditional use has revealed a wide range of benefits. This versatility makes *M. zapota* more than just a source of specific therapeutic compounds; it is a holistic botanical remedy closely intertwined with cultural practices and traditional knowledge.

CONCLUSIONS

In summary, *M. zapota* has the potential as a food source for antimicrobials. Numerous preclinical studies have highlighted the antimicrobial properties of *M. zapota* and its compounds. The antibacterial mechanisms of this fruit involve potential interactions with bacterial cell structures such as cell walls or membranes. Moreover, animal models treated with *M. zapota* extract revealed antimicrobial effects and other bioactive mechanisms. These include antioxidant, anti-inflammatory, cytotoxic, anti-diabetic, and analgesic effects. The multifaceted properties of this plant, particularly its antimicrobial properties, make it a noteworthy candidate for medicinal applications to combat infections. However, a comprehensive understanding of the mechanisms of action requires further research.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received no funding for this work.

Competing Interests

Mohd Helmy Mokhtar is an Academic Editor for PeerJ.

Author Contributions

- Ami Febriza conceived and designed the experiments, analyzed the data, authored or reviewed drafts of the article, and approved the final draft.
- Fityatun Usman conceived and designed the experiments, performed the experiments, prepared figures and/or tables, and approved the final draft.
- Andi Ulfah Magefirah Rasyid conceived and designed the experiments, prepared figures and/or tables, and approved the final draft.
- Hasta Handayani Idrus analyzed the data, authored or reviewed drafts of the article, and approved the final draft.
- Mohd Helmy Mokhtar performed the experiments, analyzed the data, authored or reviewed drafts of the article, and approved the final draft.

Data Availability

The following information was supplied regarding data availability:

This is a literature review, hence it did not utilize raw data/code.

Supplemental Information

Supplemental information for this article can be found online at <http://dx.doi.org/10.7717/peerj.17890#supplemental-information>.

REFERENCES

Ahmed R, Rashid F, Ahmed V, Mohammad F, Noorwala M, Bibi N, Kazmi SU. 2008. Saponins from the seeds of *Achras sapota*. *Journal of Asian Natural Products Research* **10**(1):7–16 DOI [10.1080/10286020701276026](https://doi.org/10.1080/10286020701276026).

Alsareii S, Alzerwi N, Alasmari M, Alamri A, Mahnashi M, Shaikh I, Savant C, Kulkarni P, Shettar A, Hoskeri J, Kumbar V. 2023. *Manilkara zapota* L. extract topical ointment application to skin wounds in rats speeds up the healing process. *Frontiers in Pharmacology* **14**:1206438 DOI [10.3389/fphar.2023.1206438](https://doi.org/10.3389/fphar.2023.1206438).

Bhattacharya S, Bhowal S, Mukhopadhyay R, Biswas M. 2014. Acute and sub-chronic toxicity study of *Manilkara zapota* leaf extracts in mice. *Journal of Toxicological Sciences* **6**(3):58–61 DOI [10.5829/idosi.ajts.2014.6.3.85175](https://doi.org/10.5829/idosi.ajts.2014.6.3.85175).

Cerceo E, Deitelzweig SB, Sherman BM, Amin AN. 2016. Multidrug-resistant gram-negative bacterial infections in the hospital setting: overview, implications for clinical practice, and emerging treatment options. *Microbial Drug Resistance* **22**(5):412–431 DOI [10.1089/mdr.2015.0220](https://doi.org/10.1089/mdr.2015.0220).

Cervero M, Sy J, Ples MB, Vitor IIRJ. 2018. Urate-lowering effect of *Manilkara zapota* aqueous leaf extracts in a murine model of hyperuricemia. *National Journal of Physiology, Pharmacy and Pharmacology* 8(3):426 DOI 10.5455/NJPPP.2017.7.1039309112017.

Chaichanawongsaroj N, Pattiyyathanee P. 2014. Effect of Thai fruit mesocarp extracts on growth of *Helicobacter pylori* and their anti-adhesion activities to HEp-2 Cells. *Journal of Chemical and Pharmaceutical Research* 6(7):2435–2440.

Chandra H, Bishnoi P, Yadav A, Patni B, Mishra AP, Nautiyal AR. 2017. Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials-a review. *Plants* 6(2):457–462 DOI 10.3390/PLANTS6020016.

Cowan MM. 1999. Plant products as antimicrobial agents. *Clinical Microbiology Reviews* 12(4):564–582 DOI 10.1128/CMR.12.4.564.

Da Silva L, De Figueiredo EAT, Ricardo NM, Vieira IG, De Figueiredo RW, Brasil IM, Gomes CL. 2014. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. *Food Chemistry* 143(4):398–404 DOI 10.1016/J.FOODCHEM.2013.08.001.

Dong G, Liu H, Yu X, Zhang X, Lu H, Zhou T, Cao J. 2018. Antimicrobial and anti-biofilm activity of tannic acid against *Staphylococcus aureus*. *Natural Product Research* 32(18):2225–2228 DOI 10.1080/14786419.2017.1366485.

Fankam AG, Kuiate JR, Kuete V. 2017. Antibacterial and antibiotic resistance modulatory activities of leaves and bark extracts of *Recinodindron heudeletii* (euphorbiaceae) against multidrug-resistant gram-negative bacteria. *BMC Complementary and Alternative Medicine* 17:168 DOI 10.1186/S12906-017-1687-2.

Fayek N, Monem AA, Mossa M, Meselhy M. 2013. nNw triterpenoid acyl derivatives and biological study of *Manilkara zapota* (L.) Van Royen fruits. *Pharmacognosy Research* 5(2):55 DOI 10.4103/0974-8490.110505.

Fernandes C, Xavier A, Pacheco JP, Santos MG, Mexas R, Ratcliffe NA, Gonzalez MS, Mello CB, Rocha L, Feder D. 2013. Laboratory evaluation of the effects of *Manilkara subsericea* (mart.) dubard extracts and triterpenes on the development of *Dysdercus peruvianus* and *Oncopeltus fasciatus*. *Pest Management Science* 69(2):292–301 DOI 10.1002/PS.3388.

Freitas TS, Campina F, Costa MS, Rocha JE, Cruz RP, Pinheiro JCA, Pereira-Júnior FN, Lima MA, de Sá M, Teixeira AMR, Coutinho HDM. 2021. UPLC-QTOF-MS/MS analysis and antibacterial activity of the *Manilkara zapota* (L.) P. Royen against *Escherichia coli* and other MDR bacteria. *Cellular and Molecular Biology* 67(1):116–124 DOI 10.14715/CMB/2021.67.1.18.

Ganguly A, Mahmud ZA, Uddin MMA, Rahman SMA. 2013. In-vivo anti-Inflammatory and anti-pyretic activities of *Manilkara zapota* leaves in albino wistar rats. *Asian Pacific Journal of Tropical Disease* 3(4):301–307 DOI 10.1016/S2222-1808(13)60073-0.

Gootz TD. 1990. Discovery and development of new antimicrobial agents. *Clinical Microbiology Reviews* 3(1):13–31 DOI 10.1128/CMR.3.1.13.

Guo Y, Song G, Sun M, Wang J, Wang Y. 2020. Prevalence and therapies of antibiotic-resistance in *Staphylococcus aureus*. *Frontiers in Cellular and Infection Microbiology* 10:107 DOI 10.3389/FCIMB.2020.00107.

Hamzah B, Rahmawati S, Suwena WS, Hardani MF, Hardani R. 2020. Analysis of tannin in sapodilla fruit (*Manilkara Zapota* (L) Van Royen). *Rasayan Journal of Chemistry* 13(4):2243–2248 DOI 10.31788/RJC.2020.1345753.

Idrus HH, Febriza A, Kasim VN, As'ad S, Hatta M, Hadju V, Arsal AF, Nasruddin H, Mangerangi Y, Rasfayanah. 2022. *Achras zapota* L extract reduces levels of soluble tumor necrosis alpha (TNF-a) in *Salmonella typhi* infected animals. *International Journal of BioLife Sciences (IJBLS)* 1:35–41 DOI 10.22034/JBS.2019.154891.

Idrus HH, Hatta M, Febriza A, Kasim VNA. 2019. Antibacterial activities of sapodilla fruit extract inhibiting *Salmonella typhi* on mice BALB/c. *International Journal of Applied Pharmaceutics* 5:121–126 DOI [10.22159/ijap.2019.v11s5.T0095](https://doi.org/10.22159/ijap.2019.v11s5.T0095).

Islam R. 2013. Antibacterial and phytochemical screening of ethanol extracts of *Manilkara zapota* leaves and bark. *International Journal of Pharma Sciences* 3(6):394–397.

Islam M, Parvin M, Islam M, Islam MS, Hasan SMR. 2011. Antioxidant activity of the ethanol extract of *Manilkara zapota* leaf. *Journal of Scientific Research* 4(1):193 DOI [10.3329/jsr.v4i1.7148](https://doi.org/10.3329/jsr.v4i1.7148).

Kamalakararao K, Gopalakrishnan VK, Hagos Z, Satyaprasad Y, Karri KC. 2018. In vitro antioxidant activities of isolated bioactive flavonoid apigenin-7-O- β -D-Glucuronide methyl ester from ethyl acetate leaf extract of *Manilkara zapota*. *Drug Intervention Today* 10(7):1142–1146.

Khalek M, Khatun Z, Habib MR, Karim MR. 2015. Antitumor activity of *Manilkara zapota* (L.) fruits against ehrlich ascites carcinoma in mice. *Biologija* 61(3–4):145–152 DOI [10.6001/BIOLOGIJA.V61I3-4.3206](https://doi.org/10.6001/BIOLOGIJA.V61I3-4.3206).

Kiriyanthan R, Sharmili SA, Balaji R, Jayashree S, Mahboob S, Al-Ghanim K, Al-Misned F, Ahmed Z, Govindarajan M, Vaseeharan B. 2020. Photocatalytic, antiproliferative and antimicrobial properties of copper nanoparticles synthesized using *Manilkara zapota* leaf extract: a photodynamic approach. *Photodiagnosis and Photodynamic Therapy* 32:102058 DOI [10.1016/J.PDPDT.2020.102058](https://doi.org/10.1016/J.PDPDT.2020.102058).

Lim TK. 2013. *Edible medicinal and non-medicinal plants*. Dordrecht: Springer.

Linn, Awasare S, Bhujbal S, Nanda R. 2012. In vitro cytotoxic activity of novel oleanane type of triterpenoid saponin from stem bark of *Manilkara zapota*. *Asian Journal of Pharmaceutical and Clinical Research* 5:183–188.

Lobo V, Patil A, Phatak A, Chandra N. 2010. Free radicals, antioxidants and functional foods: impact on human health. *Pharmacognosy Reviews* 4(8):118–126 DOI [10.4103/0973-7847.70902](https://doi.org/10.4103/0973-7847.70902).

Ma J, Luo XD, Protiva P, Yang H, Ma C, Basile MJ, Weinstein IB, Kennelly EJ. 2003. Bioactive novel polyphenols from the fruit of *Manilkara zapota* (Sapodilla). *Journal of Natural Products* 66(7):983–986 DOI [10.1021/NP020576X](https://doi.org/10.1021/NP020576X).

Mehedi M, Arabi I, Islam Z, Das S, Mannan MA. 2023. Extraction, physico-chemical characterization and antimicrobial studies of seed oil of sofeda (*Manilkara zapota*). *Journal of Siberian Federal University Chemistry* 16(4):485–497.

Mehnaz B, Bilal A. 2017. *Manilkara zapota* (L.) P. Royen (Sapodilla): a review. *IJARIIT* 3(6):1364–1371.

Mickelbart MV. 1996. Sapodilla: a potential crop for subtropical climates. In: *Progress in New Crops*. Alexandria, VA: ASHS Press, 439–446.

Miranda J. 2022. Nutrition and pharmacological effects of *Manilkara zapota*. *Journal of Innovation and Social Science* 9(7):10–14 DOI [10.53469/jissr.2022.09\(07\).03](https://doi.org/10.53469/jissr.2022.09(07).03).

Mohanapriya C, Uma S, Nithyalakshmi V, Rajmohan KS, Vijay P, Pulla RH, Muthukumaran C, Gopinath M. 2019. In vitro evaluation of secondary metabolites: characterization and antimicrobial activity of *Manilkara zapota* L. seed extract. *Proceedings of the National Academy of Sciences India Section B - Biological Sciences* 89(2):729–738 DOI [10.1007/s40011-018-0989-6](https://doi.org/10.1007/s40011-018-0989-6).

Moo-Huchin V, Iván Estrada-Mota I, Estrada-León R, Cuevas-Glory L, Ortiz-Vázquez E, De Lourdes Vargas Y, Vargas M, Betancur-Ancona D, Sauri-Duch E. 2014. Determination of some physicochemical characteristics, bioactive compounds and antioxidant activity of tropical fruits from Yucatan, Mexico. *Food Chemistry* 152:508–515 DOI [10.1016/J.FOODCHEM.2013.12.013](https://doi.org/10.1016/J.FOODCHEM.2013.12.013).

Mourão Mulvaney L, Xavier-Júnior FH, Rodrigues AMS, Stien D, Allegretti SM, Garcia VL. 2021. Antimicrobial and anthelmintic activities of the ethanolic extract, fractions and isolated compounds from *Manilkara zapota* L. P. Royen (Sapotaceae). *Journal of Pharmacy and Pharmacology* 73(3):377–387 DOI [10.1093/JPP/RGAA030](https://doi.org/10.1093/JPP/RGAA030).

Kiranmayi GN, Sai Sureshma M. 2022. Antioxidant and antidepressant activities of ethanolic leaf extract of *Manilkara zapota*. *International Journal of Pharmaceutical Sciences and Research* 13(4):1581 DOI [10.13040/IJPSR.0975-8232.13\(4\).1581-90](https://doi.org/10.13040/IJPSR.0975-8232.13(4).1581-90).

Nama S, Bhargavi S, Kanakaiah B, Sowmya DK, Ravi B. 2013. An evaluation of the antibacterial activity of root extracts of *Manilkara zapota* against *Staphylococcus aureus* and *Escherichia coli*. *International Journal of Phytopharmacology* 4(3):171–173.

Ngongang F, Fankam A, Mbaveng AT, Wamba B, Nayim P, Beng VP, Kuete V. 2020. Methanol extracts from *Manilkara zapota* with moderate antibacterial activity displayed strong antibiotic-modulating effects against multidrug-resistant phenotypes. *Investigational Medicinal Chemistry and Pharmacology* 3(1):37 DOI [10.31183/imcp.2020.00037](https://doi.org/10.31183/imcp.2020.00037).

Nile S, Park SW. 2014. Edible berries: bioactive components and their effect on human health. *Nutrition* 30(2):134–144 DOI [10.1016/j.nut.2013.04.007](https://doi.org/10.1016/j.nut.2013.04.007).

Nogueira JOE, Campolina GA, Batista LR, Alves E, Caetano ARS, Brandão RM, Nelson DL, Cardoso MDG. 2021. Mechanism of action of various terpenes and phenylpropanoids against *Escherichia coli* and *Staphylococcus aureus*. *FEMS Microbiology Letters* 368(9):fnab052 DOI [10.1093/FEMSLE/FNAB052](https://doi.org/10.1093/FEMSLE/FNAB052).

Noor S, Prodhan A, Zohora FT, Tareq FS, Ahsan M, Hasan CM, Islam SN. 2014. Phytochemical, antioxidant, antimicrobial, thrombolytic as well as cytotoxic studies on the stem bark of *Manilkara zapota* (sapotaceae). *Asian Journal of Chemistry* 26(18):6138–6142 DOI [10.14233/ajchem.2014.16872](https://doi.org/10.14233/ajchem.2014.16872).

Osman A, Aziz A, Habib MR, Karim R, Rashid MM, Hossain MI, Osman MA, Aziz MA, Habib MR, Karim MR. 2014. Evaluation of antitumor activity of *Manilkara zapota* leaves against ehrlich ascites carcinoma in mice. *Environmental and Experimental Biology* 12:131–135.

Osman MA, Aziz MA, Habib MR, Karim MR, Rezaul M, Karim MR. 2011. Antimicrobial Investigation on *Manilkara zapota* (L.) P. Royen. *International Journal of Drug Development and Research* 3(1):185–190.

Punia Bangar S, Sharma N, Kaur H, Kaur M, Sandhu KS, Maqsood S, Ozogul F. 2022. A review of sapodilla (*Manilkara zapota*) in human nutrition, health, and industrial applications. *Trends in Food Science & Technology* 127(7):319–334 DOI [10.1016/J.TIFS.2022.05.016](https://doi.org/10.1016/J.TIFS.2022.05.016).

Rai M, Ingle AP, Nska-Wencel JT, Wypij M, Bonde S, Yadav A, Kratošová G, Nska PG, Placha D, Pestryakov A. 2021. Biogenic silver nanoparticles: what we know and what do we need to know? *Nanomaterials* 11(11):2901 DOI [10.3390/nano1112901](https://doi.org/10.3390/nano1112901).

Rakholiya K, Kaneria M, Sumitra Chanda S. 2014. Inhibition of microbial pathogens using fruit and vegetable peel extracts. *International Journal of Food Sciences and Nutrition* 65(6):733–739 DOI [10.3109/09637486.2014.908167](https://doi.org/10.3109/09637486.2014.908167).

Ramanna M, Priyadarsini KS, Janti SS, Annamalai M, Eerike M, Sri MNS. 2023. Evaluation of the analgesic activity of ethanolic extract of *Manilkara zapota* seeds in experimental animal model. *Biomedical and Pharmacology Journal* 16(3):1797–1803 DOI [10.13005/BPJ/2759](https://doi.org/10.13005/BPJ/2759).

Rao G, Sahoo MR, Madhavi L, Mukhopadhyay T. 2014. Phytoconstituents from the leaves and seeds of *Manilkara zapota* Linn. *Scholars Research Library Der Pharmacia Lettre* 6(2):69–73.

Rivas-Gastelum M, Fernanda M, Garcia-Amezquita LE, Garcia-Varela R, Lizeth Sánchez-López A. 2023. *Manilkara zapota* ‘chicozapote’ as a fruit source of health-beneficial bioactive

compounds and its effects on chronic degenerative and infectious diseases, a review. *Frontiers in Nutrition* **10**:1194283 DOI [10.3389/FNUT.2023.1194283](https://doi.org/10.3389/FNUT.2023.1194283).

Russell A. 2002. Antibiotic and biocide resistance in bacteria: introduction. *Journal of Applied Microbiology Symposium Supplement* **92**(1):1S–3S DOI [10.1046/j.1365-2672.92.5s1.14.x](https://doi.org/10.1046/j.1365-2672.92.5s1.14.x).

Salunkhe A, Ghumre S, Shirke S, Nikam S, Kadam V. 2018. Antimicrobial activity of *Psidium guajava* and *Manilkara zapota* against human pathogenic bacteria. *International Journal of Pharmaceutical Sciences and Research* **9**(9):3944 DOI [10.13040/IJPSR.0975-8232.9\(9\).3944-48](https://doi.org/10.13040/IJPSR.0975-8232.9(9).3944-48).

Selim S, Alfy SE, Al-Ruwaili M, Abdo A, Jaouni SA. 2012. Susceptibility of imipenem-resistant *Pseudomonas aeruginosa* to flavonoid glycosides of Date Palm (*Phoenix dactylifera* L.). *African Journal of Biotechnology* **11**(2):416–422 DOI [10.5897/AJB11.1412](https://doi.org/10.5897/AJB11.1412).

Shahraki SH, Javar FM, Rahimi M. 2023. Quantitative and qualitative phytochemical analysis of *Manilkara zapota* (sapodilla) extract and its antibacterial activity on some gram-positive and gram-negative bacteria. *Scientifica* **2023**(9):1–6 DOI [10.1155/2023/5967638](https://doi.org/10.1155/2023/5967638).

Singh J, Kaur A, Shevkani K, Singh N. 2016. Composition, bioactive compounds and antioxidant activity of common Indian fruits and vegetables. *Journal of Food Science and Technology* **53**(11):4056–4066 DOI [10.1007/S13197-016-2412-8](https://doi.org/10.1007/S13197-016-2412-8).

Solikhah TI, Wijaya TA, Salsabila S, Pavita DA, Miftakhurrozaq RK, Raharjo HM, Yunita MN, Fikri F. 2023. The effect of sapodilla leaf extract (*Manilkara zapota* L.) on lipid profiles of alloxan-induced diabetic mice. *Pharmacognosy Journal* **15**(2):286–289 DOI [10.5530/pj.2023.15.40](https://doi.org/10.5530/pj.2023.15.40).

Tagousop C, Tamokou JDD, Ekom SE, Ngnokam D, Voutquenne-Nazabadioko L. 2018. Antimicrobial activities of flavonoid glycosides from *Graptophyllum grandulosum* and their mechanism of antibacterial action. *BMC Complementary and Alternative Medicine* **18**:252 DOI [10.1186/S12906-018-2321-7](https://doi.org/10.1186/S12906-018-2321-7).

Tulloch A, Goldson-Barnaby A, Bailey D, Gupte S. 2020. *Manilkara zapota* (naseberry): medicinal properties and food applications. *International Journal of Fruit Science* **20**(Sup2):S1–S7 DOI [10.1080/15538362.2019.1687071](https://doi.org/10.1080/15538362.2019.1687071).

Wang Y, McAllister TA, Yanke LJ, Cheeke PR. 2000. Effect of steroid saponin from *Yucca schidigera* extract on ruminal microbes. *Journal of Applied Microbiology* **88**(5):887–896 DOI [10.1046/J.1365-2672.2000.01054.X](https://doi.org/10.1046/J.1365-2672.2000.01054.X).