

Focused ultrasound-induced cell apoptosis for the treatment of tumours

Na Wang^{1,2,*}, Li Luo^{2,*}, Xinzhi Xu², Hang Zhou² and Fang Li²

¹ Chongqing University, School of Medicine, Chongqing, China

² Chongqing University Cancer Hospital, Ultrasound Department, Chongqing, China

* These authors contributed equally to this work.

ABSTRACT

Cancer is a serious public health problem worldwide. Traditional treatments, such as surgery, radiotherapy, chemotherapy, and immunotherapy, do not always yield satisfactory results; therefore, an efficient treatment for tumours is urgently needed. As a convenient and minimally invasive modality, focused ultrasound (FUS) has been used not only as a diagnostic tool but also as a therapeutic tool in an increasing number of studies. FUS can help treat malignant tumours by inducing apoptosis. This review describes the three apoptotic pathways, apoptotic cell clearance, and how FUS affects these three apoptotic pathways. This review also discusses the role of thermal and cavitation effects on apoptosis, including caspase activity, mitochondrial dysfunction, and Ca^{2+} release. Finally, this article reviews various aspects of FUS combination therapy, including sensitization by radiotherapy and chemotherapy, gene expression upregulation, and the introduction of therapeutic gases, to provide new ideas for clinical tumour therapy.

Subjects Oncology, Radiology and Medical Imaging

Keywords Apoptosis, Focused ultrasound (FUS), Tumor, Treatment

INTRODUCTION

Submitted 1 February 2024

Accepted 18 July 2024

Published 21 August 2024

Corresponding author

Fang Li, lifang0703@cqu.edu.cn

Academic editor

Altijana Hromić-Jahjefendić

Additional Information and
Declarations can be found on
page 17

DOI 10.7717/peerj.17886

© Copyright

2024 Wang et al.

Distributed under

Creative Commons CC-BY 4.0

OPEN ACCESS

According to the latest global cancer burden data from the International Agency for Research on Cancer (IARC), the incidence of cancer has reached 20 million cases, with nearly 9.7 million deaths (Bray *et al.*, 2024). The classical cancer treatment modalities include surgery, radiation therapy, chemotherapy, and immunotherapy. With the available treatment modalities and differences in cancer types and regions, the five-year survival rates of patients with various cancers significantly differ (Bray *et al.*, 2024). Cancer has become one of the most important global public health issues. Thus, research on cancer treatment mobility is still of utmost importance and urgency. Guided by 2D greyscale ultrasound images and magnetic resonance (MR) (Lamsam *et al.*, 2018; Brighi *et al.*, 2020), focused ultrasound (FUS) is a noninvasive approach that utilizes external ultrasound waves to accurately target and concentrate regions. Apart from inducing coagulative necrosis in tumours through thermal ablation, FUS can also trigger tumour cell apoptosis through mechanical effects, thermal effects, and nonthermal and nonmechanical effects (Wu, 2014; Wang *et al.*, 2021b). Apoptosis is an inherent surveillance and regulatory mechanism that enables the timely elimination of nonfunctional, harmful, and aberrant cells (Newton *et al.*,

2024). Rewiring cancer drivers to activate apoptosis is also one of the tumour treatment modalities currently being pursued by many researchers, including strategies focusing on cell apoptosis to enhance the sensitivity and specificity of tumour therapy (Gourisankar *et al.*, 2023). Notably, FUS had no apparent cumulative effect on the passage of FUS energy. Because of biochemical signalling, metabolism, and anchorage, malignant cells also differ from normal cells in terms of mechanical properties (Kim & Hyun, 2023). Malignant cells are more susceptible to FUS stimulation. Accordingly, in the context of cancer, FUS can induce the apoptosis of malignant cells and preserve the surrounding healthy cells as much as possible.

Investigating the mechanisms of FUS-induced apoptosis involves accurately evaluating the effective treatment area, optimizing the acoustic power, reducing the risk of complications, and exploring the possibility of FUS combination therapy. This review describes the main pathways of tumour cell apoptosis, the relevant mechanisms of FUS-induced tumour cell apoptosis, and current research on FUS application in tumour therapy. This review might provide basic knowledge for general readers as well as cancer researchers, especially those who are dedicated to tumour research and developing new methods of cancer treatment, which may provide new insights to improve the clinical diagnosis and treatment of tumours.

SURVEY METHODOLOGY

Literature searches of the review for relevant studies were conducted in PubMed, Web of Science, and the China National Knowledge Infrastructure (CNIK). The keywords used were as follows: ultrasound, apoptosis, apoptosis pathways, death receptor pathway, endoplasmic reticulum stress signalling pathway, mitochondrial apoptosis pathway, and so on. Other keywords are shown in the appendix. We limited our literature search to the last 10 years, but we also considered other references in the cited literature to ensure that the literature was fully covered and screened. We screened a total of 397 articles, 128 of which were newer, of better quality, and more relevant to our topic.

Tumour-related apoptosis pathways

Apoptosis is a type of orderly cell death controlled by genes to maintain the stability of the internal environment of the body. It involves the activation, expression, and regulation of a series of genes (Newton *et al.*, 2024). Apoptosis is characterized by distinct histomorphological examinations: loss of cell membrane integrity, breakdown of cellular structures, aggregation of nucleoli and cytoplasm. Apoptosis manifests as cell shrinkage, the appearance of large transparent vacuoles in cytoplasm, chromatin condensation, orderly fragmentation of nuclear DNA, and ultimately the formation of apoptotic bodies (Zhong *et al.*, 2019; Cao *et al.*, 2021; Xu *et al.*, 2021; Dejas *et al.*, 2023). Hanahan & Weinberg (2011) proposed that the complexity of tumour diseases lies in the maintenance of proliferation signals, evasion of growth inhibitory factors, resistance to apoptosis, and immortality of cell replication. The doubling time of the tumour volume in malignant diseases is less than the doubling time of the tumour cell number (Morana, Wood & Gregory, 2022). Apoptosis is inhibited in the tumour environment to a certain extent. Tumour-related

apoptotic pathways include the death receptor pathway, the mitochondrial pathway, and the endoplasmic reticulum stress (ERS) pathway.

Due to the noncumulative effect of FUS and the fact that malignant cells are more sensitive to ultrasound waves, FUS induces malignant cell apoptosis but protects normal cells from it. The effective removal of cancer cells by programmed cell death is a feasible approach for clinical cancer treatment. Depending on the intensity of the ultrasound energy, FUS can be divided into high-intensity focused ultrasound (HIFU) and low-intensity focused ultrasound (LIFU). HIFU (greater than 200 W/cm²) refers to the use of a special ultrasound transmitter to focus sound waves towards the tumour site, converting them into heat energy and causing the temperature of the tumour treatment site to reach 65–100 °C in approximately 0.25 s, resulting in degeneration and necrosis of malignant cells (Jin, Zhao & Huang, 2023). LIFU (less than 100 W/cm²) also employs a focused emission sound field, with the sound beam converging towards the acoustic axis. It exhibits good focusing, penetration, and anti-attenuation properties but lacks the destructive properties of thermal ablation (Zhong *et al.*, 2023). HIFU and LIFU can cause apoptosis through different pathways and different proteins. This part reviews three classical apoptotic pathways and describes how HIFU and LIFU affect these pathways.

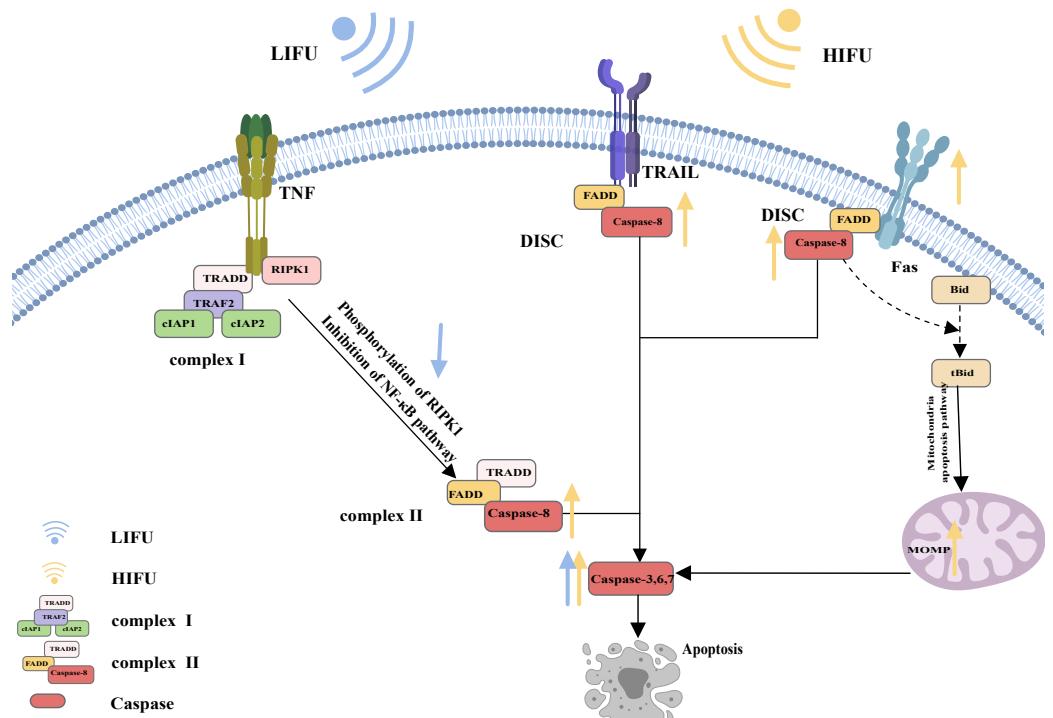
Death receptor pathway

A specific molecular death receptor on the surfaces of cells can bind to a specific molecule death ligand, and the resulting complex participates in activation of the caspase enzyme and the subsequent apoptotic reaction, which is the death receptor pathway of apoptosis (Green, 2022). Death receptors mainly include tumour necrosis factor receptor-1 (TNFR1), CD95 (also called Fas and APO-1), TRAIL receptors (also called DR4), TRAIL receptor-2 (also called DR5), death receptor 3 (DR3) and death receptor 6 (DR6). The main death ligands include TNF, CD95 ligand (CD95-L or Fas-L), and TRAIL (a TNF-related apoptosis-inducing ligand, also called APO-2L) (Annibaldi & Walczak, 2020).

CD95, as the most typical death receptor, can be used to elucidate the detailed process of apoptosis. CD95 is a trimer structure on the cell surface. When bound by the ligand CD95-L, its conformation changes, and the DD (death domain) is exposed to the cell. The DD then interacts with Fas-associated death domain protein (FADD) *via* DD-DD interactions, facilitating exposure of death effector domain (DED) in FADD. Consequently, the DED on the FADD can recruit caspase-8 and result in the oligomerization of caspase-8 through the DED-DED interaction. This complex, comprising ligated CD95, FADD, and caspase-8, is called DISC (DISC) (Xue *et al.*, 2023; Wang *et al.*, 2023b; Ranjan & Pathak, 2024). Activated caspase-8 initiates apoptosis directly by cleaving and activating the executioner caspase (−3, −6, and −7). Alternatively, it triggers the mitochondrial apoptosis pathway by cleaving Bid. The mitochondrial apoptotic pathway is described in the following sections and is reiterated here (Kantari & Walczak, 2011; Kaufmann, Strasser & Jost, 2012; Lavrik & Krammer, 2012; Han *et al.*, 2023; Mahadevan *et al.*, 2023; Sahoo *et al.*, 2023; Haymour *et al.*, 2023; Ma *et al.*, 2024).

The mechanism of apoptosis induced by TRAIL receptors appears similar to that induced by CD95. The ligation of TRAIL receptors results in the recruitment of the FADD to DDs

in the intracellular region. Then, the FADD binds to and dimerizes caspase-8, thereby activating it [Yagolovich, Gasparian & Dolgikh \(2023\)](#) and [Yuan & Ofengheim \(2023\)](#).

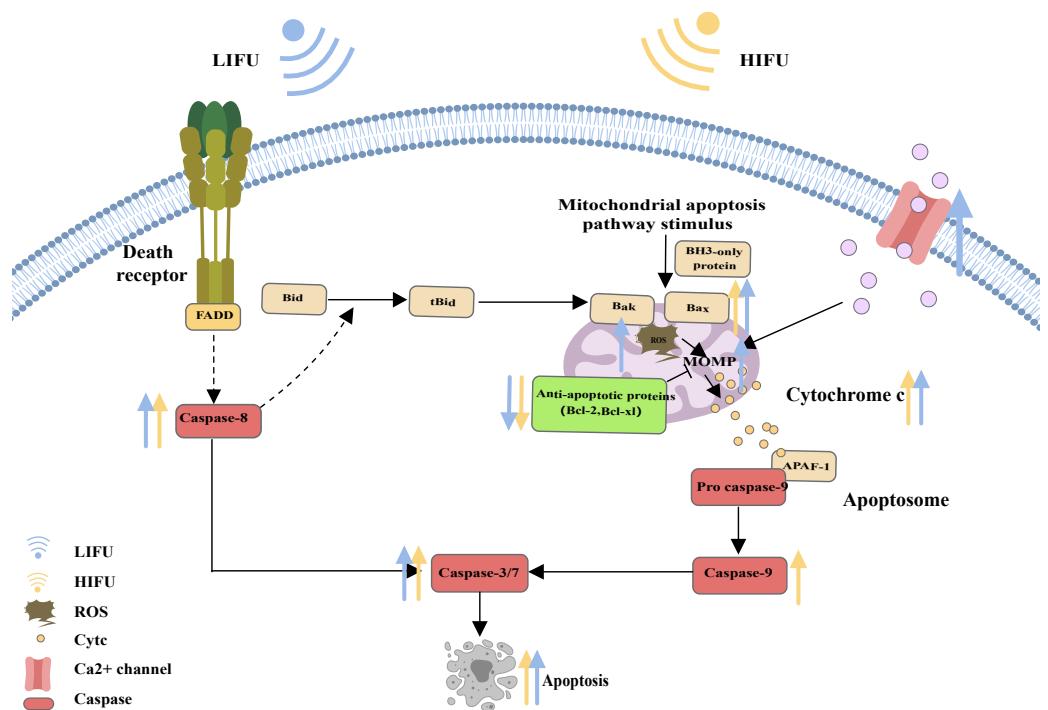

However, apoptotic signalling by TNFR1 is complex. As an extracellular apoptotic signal, TNF activates its cell surface receptor TNFR1 and forms a multicomponent protein complex (complex I) on the cytosolic side of the plasma membrane; this complex consists of adaptor proteins TRADD, TRAF2, receptor-interacting protein kinase 1 (RIPK1), and a pair of functionally redundant ubiquitin ligases with caspase-inhibiting activity (cIAP1 and cIAP2). Normally, RIPK1 is polyubiquitinated, and complex I activates the nuclear factor κ B (NF- κ B) signalling pathway, causing the transcription of various cytokines and antiapoptotic proteins and contributing to inflammation maintenance and cell death prevention. When the NF- κ B pathway is inhibited, RIPK1 is phosphorylated, and the translation of antiapoptotic proteins is suppressed. Complex I dissociates from the plasma membrane and recruits the FADD and caspase-8 to generate a cytosolic caspase-8-activating complex (complex II), thereby triggering apoptosis ([Siegmund, Zaitseva & Wajant, 2023](#); [Ai et al., 2024](#)) (Fig. 1).

Mitochondrial apoptosis pathway

When cells are subjected to severe stress (such as growth factor withdrawal, extensive DNA damage, endoplasmic reticulum stress, cell hypoxia, radiation, and physical damage), the mitochondrial apoptosis pathway can be activated and induce apoptosis ([Vringer & Tait, 2023](#)). Bcl-2 family proteins are the most important regulators of the mitochondrial apoptosis pathway and can regulate the mitochondrial membrane potential and control the permeability of the mitochondrial outer membrane (MOMP). Upon proapoptotic stress, two proapoptotic proteins, Bax and Bak, are activated by BH3 only and relocate to the surface of the mitochondrial outer membrane. Then, activated Bax and Bak induce MOMP, causing the release of cytochrome c. Cytochrome c binds to apoptosis protease activating factor 1 (APAF1), inducing the oligomerization of APAF1 into a heptameric structure called the apoptosome, which subsequently activates initiator caspase-9. Active caspase-9 then cleaves and activates effector caspases (caspase-3, caspase-6 and caspase-7), ultimately leading to apoptosis ([Flores-Romero, Dadsena & García-Sáez, 2023](#); [Nguyen et al., 2023](#); [Xie et al., 2023](#); [Harrington et al., 2023](#)) (Fig. 2).

Endoplasmic reticulum stress signalling pathway

As a complex and dynamic organelle, the endoplasmic reticulum (ER) is essential for normal cellular pathways, including Ca^{2+} storage, lipid metabolism, and protein production ([Li et al., 2024](#)). When entering a stress state, the ER activates the unfolded protein response (UPR) ([Abbonante et al., 2023](#)). The UPR is a highly conserved mechanism in metazoans and consists of three ER-associated pathways that initiate adaptive transcriptional programs within the nucleus: PKR-like ER-resident kinase (PERK), activated transcription factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE1) ([Jeong et al., 2023](#)). By sensing the accumulation of unfolded proteins or lipid bilayer stress (LBS) at the ER, the UPR triggers pathways to restore ER homeostasis and eventually induces apoptosis if the stress remains unresolved ([Celik et al., 2023](#)).


Figure 1 The death receptor pathway and the role of FUS in this pathway. The figure depicts the apoptosis pathway and the changes in apoptosis-related protein expression in response to HIFU and LIFU. Created with MedPeer (www.medpeer.cn).

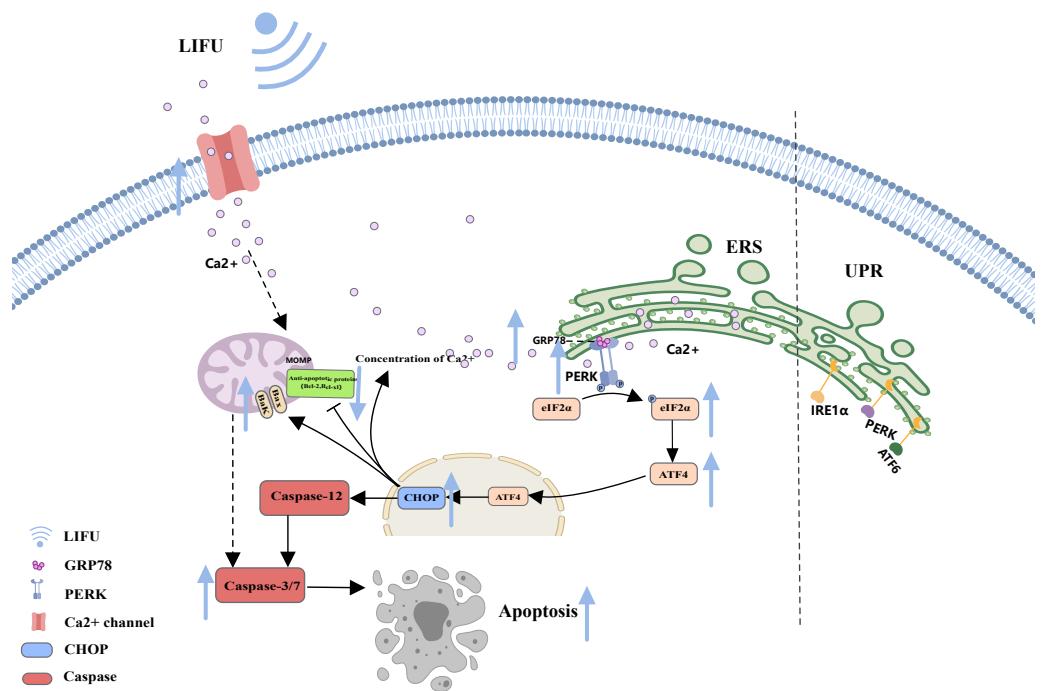
Full-size DOI: [10.7717/peerj.17886/fig-1](https://doi.org/10.7717/peerj.17886/fig-1)

As a storage site for Ca^{2+} , the ER membrane can modulate its own luminal Ca^{2+} dynamics and generate appropriate signals to maintain homeostasis, but disturbed Ca^{2+} homeostasis activates ERS. During ERS, glucose-regulated protein 78 (GRP78), an especially important Ca^{2+} -binding protein, increases. RNA-activated protein kinase-like ER kinase (PERK) can dissociate from GRP78 and trigger autophosphorylation and oligomerization, activating eukaryotic initiation factor 2 α (eIF2 α). Activated eIF2 α mediates the transcription of activated transcription factor 4 (ATF4), which induces the expression of the homologous protein (CHOP) (Chen *et al.*, 2022; Jeong *et al.*, 2023; Mi *et al.*, 2023). In turn, CHOP induces increases in the expression of several proapoptotic proteins (Bak and Bax), enhances suppression of antiapoptotic proteins (Bcl-2 and Bcl-xL) and translocation of these proteins from the cytoplasm to the mitochondria, increases the concentration of Ca^{2+} in the cytoplasm, and activates cysteine aspartate protease 12 (Caspase-12) and the caspase cascade (Celik *et al.*, 2023; Li *et al.*, 2024) (Fig. 3).

Clearance of apoptotic cells

Under physiological conditions, phagocytes can engulf and clear apoptotic bodies in a timely manner to maintain homeostasis of the internal environment (this process is called efferocytosis; Nagata & Segawa, 2021). Macrophages, dendritic cells, epithelial cells, endothelial cells, and fibroblasts can all play a role in efferocytosis, with macrophages

Figure 2 The mitochondrial pathway and the role of FUS in this pathway. The figure depicts the mitochondrial pathway of apoptosis and the changes in apoptosis-related protein expression in response to HIFU and LIFU. Created with MedPeer (www.medpeer.cn).


Full-size DOI: [10.7717/peerj.17886/fig-2](https://doi.org/10.7717/peerj.17886/fig-2)

playing a major role (Boada-Romero *et al.*, 2020). When cells undergo apoptosis, caspase-3 cleaves and inactivates flippases (ATP11A and 11C) and cleaves XKR8 to activate its phospholipid scramblase activity. Thus, phosphatidylserine (PtdSer) is rapidly and irreversibly exposed to the cell surface as an engulfment signal (Nagata & Segawa, 2021; Ramos & Oehler, 2024). PtdSer is recognized by macrophage receptors, including CD300b, BAI1, TIM4, and Stabilin-2. PtdSer is also recognized by soluble, bifunctional ‘bridging’ proteins, including Gas6/Pros1 and MFG-E8. The macrophage receptors for Gas6/Pros1 are the TAM receptor tyrosine kinases Mer and Axl, while those for MFG-E8 are $\alpha\beta 3$ and $\alpha\beta 5$ integrin dimers. Other proteins, including C1q, C3b and C4, also adhere to the surfaces of apoptotic cells by mechanisms that remain under study (Lemke, 2019). Macrophages recognize PtdSer and adhere to apoptotic cells.

Subsequently, apoptotic cells are usually engulfed by phagocyte lamellipodia, where Rac1 is activated. Activated Rac1 promotes actin polymerization and cytoskeletal rearrangement and the phagocytosis of apoptotic cells (Segawa & Nagata, 2015; Bartneck *et al.*, 2016; Henson, 2017; Nagata, 2018) (Fig. 4).

The role of FUS in apoptosis

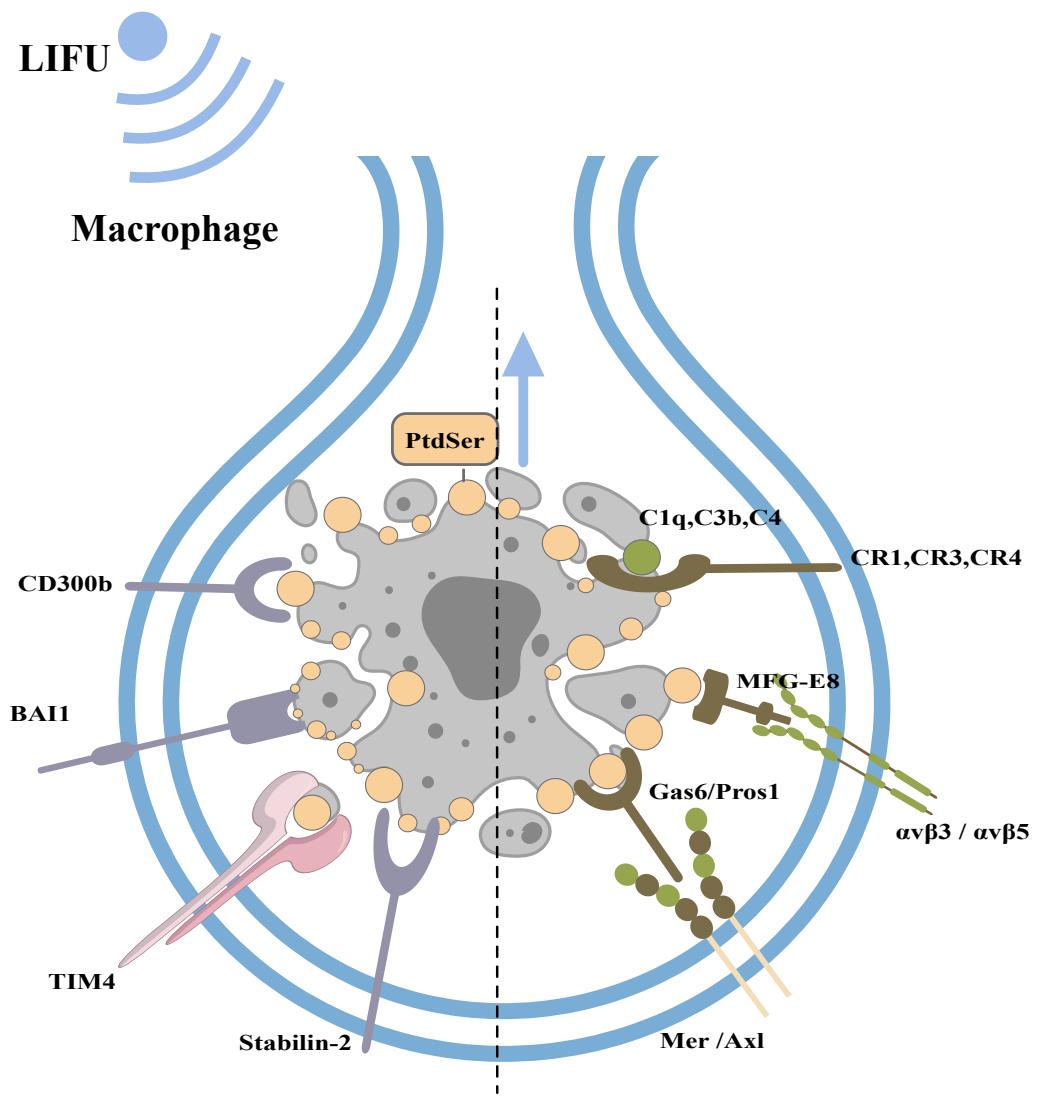

Based on the process of apoptosis, this study explored whether HIFU and LIFU can promote apoptosis and the underlying mechanisms. HIFU (10 W/cm^2 , 0.6 s, 1,584 kHz) can affect various aspects of apoptosis, including caspase-8 (a key participant in the death

Figure 3 The endoplasmic reticulum stress pathway and the role of FUS in this pathway. The figure depicts the apoptosis-associated ERS pathway and the changes in apoptosis-related protein expression in response to LIFU. Created with MedPeer (www.medpeer.cn).

Full-size DOI: [10.7717/peerj.17886/fig-3](https://doi.org/10.7717/peerj.17886/fig-3)

receptor pathway), caspase-9 (a key participant in the mitochondrial apoptosis pathway), and caspase-3/6 (an apoptotic executor) (Saliev *et al.*, 2013). Ran *et al.* (2023) reported that HIFU (5 W/cm², 160 s, 9.5 MHz) treatment increases the frequency of FasL, which can significantly induce apoptosis. Zhong *et al.* (2019) revealed the consequential production of ROS upon simultaneous HIFU (125 W/cm², 5 s, 0.94 MHz) irradiation. When ROS production increases, the mitochondrial membrane potential decreases, which causes mitochondrial apoptosis. Byun *et al.* (2023) reported that HIFU (0.6 J energy, 7 MHz) increased p53 translocation into mitochondria, which binds to Bcl-2 or Bcl-xL, causing Bak and Bax to be released from Bcl-2 or Bcl-xL. Thus, HIFU led to decreased expression of Bcl-2/Bcl-xL (an antiapoptotic signal) and increased expression of Bak/Bax (an apoptotic signal). Zhang *et al.* (2017) reported that HIFU (1,000 W/cm², 9 s, 1.048 MHz) exposure increased the expression of cleaved caspase-3 and PARP (a sign of apoptosis). Fu *et al.* (2020) reported that Fas expression was significantly upregulated after HIFU (3.5–4.5 W/cm², 10 MHz) treatment. To summarize, HIFU increases the expression of several apoptotic factors in the death receptor pathway (increasing FasL and caspase-8 expression) and the mitochondrial pathway (increasing caspase-9, Bax, Bak, and MOMP). HIFU also increases the expression of apoptotic executors (caspases –3, –6 and –7). However, this review did not find evidence that HIFU can affect the ERS pathway, which may necessitate further exploration and discussion in the future.

Figure 4 Clearance of apoptotic cells and the role of FUS in this process. The figure depicts apoptotic cell clearance and the types of apoptotic receptors. PtdSer is recognized by macrophage receptors, including CD300b, BAI1, TIM4, and Stabilin-2. PtdSer is also recognized by soluble, bifunctional 'bridging' proteins, including Gas6/Pros1 and MFG-E8. The macrophage receptors for Gas6/Pros1 are the TAM receptor tyrosine kinases Mer and Axl, while those for MFG-E8 are $\alpha v \beta 3$ and $\alpha v \beta 5$ integrin dimers. Created with MedPeer (www.medpeer.cn).

Full-size DOI: [10.7717/peerj.17886/fig-4](https://doi.org/10.7717/peerj.17886/fig-4)

Similarly, this manuscript also reviews LIFU-induced apoptosis. [Yao et al. \(2021\)](#) reported that LIFU (1.5 W/cm^2 , 90 s, 1 MHz) promotes mitochondrial-caspase apoptosis via ROS production, cytochrome C release and increased caspase-3 protein levels. Enhanced intracellular ROS levels are positively correlated with mitochondrial apoptosis ([Kuo et al., 2023](#)). [Hou et al. \(2021\)](#) suggested that Ca^{2+} endocytosis signalling occurs upon LIFU (0.2 MPa, 1 MHz) through activation of mechanosensitive ion channels. [Tabuchi et al. \(2008\)](#) observed the effects of LIFU (0.3 W/cm^2 , 1 min, 1 MHz) on apoptosis, and PtdSer

externalization was examined using an annexin V-FITC kit. [Fang et al. \(2023\)](#) showed that an increase in LIFU (83.4 mW/cm², 25 min, 2 MHz) promoted the expression of the apoptosis marker proteins cleaved caspase-3 and p53 and increased the ratio of Bax. [Guo et al. \(2023\)](#) revealed that LIFU (1.6 W/cm², 60 s, 1 MHz) increased the mRNA expression levels of key apoptosis markers (Bad, Bax, caspase-9, and caspase-3), ultimately leading to cell apoptosis. LIFU (0.2 W/cm², 60 S, 360 kHz and 90 mW/cm², 200 Ms, 1.5 MHz) may promote apoptosis by inhibiting the NF-κB signalling pathway ([Liu et al., 2020b](#); [Qiu et al., 2020](#)). [Liu et al. \(2020b\)](#) reported that LIFU (1 W/cm², 3 min, 1 MHz) could increase the expression of GRP78, PERK, CHOP and Bax and downregulate the expression of Bcl-2, triggering ERS-associated apoptosis and the mitochondrial apoptosis pathway. However, depending on the type of cancer cells and ultrasound parameters, the effects of HIFU and LIFU on the apoptotic pathway differ, as summarized in [Table 1](#).

In conclusion, FUS can promote apoptosis by affecting apoptosis pathways, including the death receptor pathway, the mitochondrial apoptosis pathway, the ERS signalling pathway, and the clearance of apoptotic cells ([Shi et al., 2016](#); [Ye et al., 2016](#); [Jahagirdar et al., 2018](#)). If this effect can be controlled and utilized, it may facilitate biological response evaluations of the treatment area and reduce the incidence of complications when using FUS to treat high-risk cancer sites.

Biological effects of FUS on apoptosis

The biological effects of FUS mainly include thermal effects, cavitation effects, mechanical effects, and molecular biological effects ([Zhang et al., 2020](#); [Hu et al., 2023](#)). FUS can induce a series of biological reactions at the cellular and molecular levels. It can regulate the expression of different molecules or affect related signalling pathways to modulate malignant cell apoptosis ([Saliev et al., 2013](#)). This characteristic indicates that FUS is a promising adjuvant therapy for malignant tumours in the future. Moreover, HIFU locally heats and destroys diseased or damaged tissue through ablation ([Ashar & Ranjan, 2023](#)). In contrast, LIFU may have effects on cellular redox mechanisms, leading to the activation of heat shock proteins, dysregulation of cellular metabolic pathways, and apoptosis ([Li et al., 2022b](#)). The following section focuses on exploring the biological effects of LIFU on apoptosis.

The role of thermal effects on apoptosis

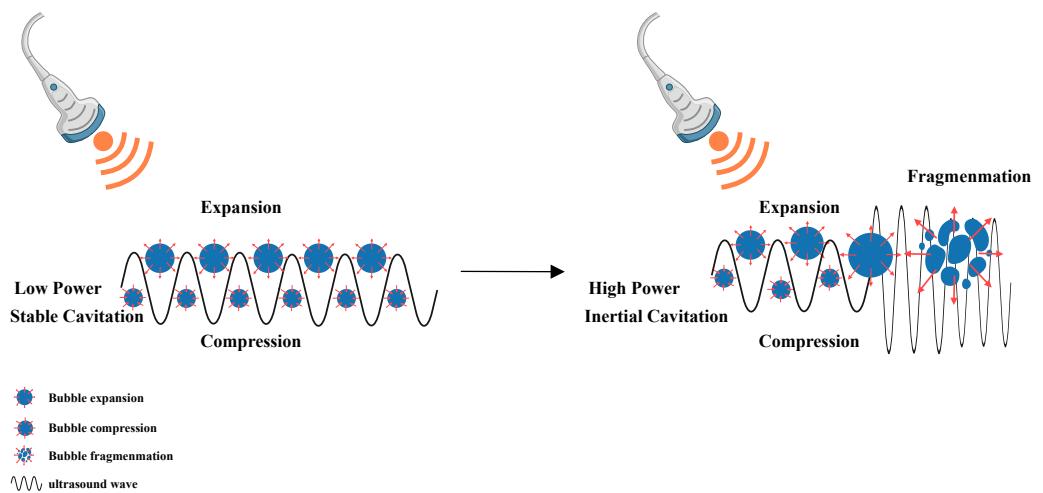

The ultrasonic thermal effect refers to when LIFU propagates in biological tissues, tissues, and organs that can absorb ultrasonic energy, resulting in an increased regional tissue temperature ([Duan et al., 2020](#)). When the tissue inside focal area is heated and reaches temperatures near the thermal threshold, tumour cell apoptosis can be induced. The specific mechanism may be related to the production of heat shock protein (Hsp) and the induction of ischaemia and hypoxia through thermal effects ([Peng et al., 2019](#)). For example, Hsp90 can induce apoptosis *via* the death receptor pathway by stimulating RIPK1 expression and inhibiting the NF-κB pathway. Hsp90 can also lead to mitochondrial dysfunction and severe oxidative stress ([Gümiş et al., 2023](#)), including an increase in Apaf-1, which participates in the assembly of apoptotic bodies and activates caspase-3,

Table 1 Effects on apoptosis induced by different FUS intensities.

	Ultrasound parameters	Type of cancer cell line/-model	Apoptosis factors	Reference
Cell trials	10 W/cm ² , 0.6 s, 1584 kHz	KDH-8 cell lines	Upregulation of the expression of caspase-8, 9, 3, and 6	Saliev et al. (2013)
	5 W/cm ² , 160 s, 9.5 MHz	H22 tumor-bearing mice	Upregulation of the expression of FasL	Ran et al. (2023)
	125 W/cm ² , 5 s, 0.94 MHz	MDA-MB-231 tumor-bearing mice	Generation of large amounts of ROS and MOMP	Zhong et al. (2019)
	0.6 J energy, 7 MHz	Sprague-Dawley rats(high-fat diet)	Upregulation of the expression of BAX and BAK- Downregulation of the expression of Bcl-2 and Bcl-xL	Byun et al. (2023)
HIFU	Animal trials			
	1,000 W/cm ² , 9 s, 1.048 MHz	A594 tumor-bearing nude mice	Upregulation of the expression of caspase-3 and PRAP	Zhang et al. (2017)
Clinical trials	3.5–4.5 W/cm ² , 10 MHz	Cervical intraepithelial neoplasia 1 (CIN1)	Upregulation of the expression of Fas	Fu et al. (2020)
	0.3 W/cm ² , 1 min, 1 MHz	U937 cell lines	Induction of PtdSer externalization	Tabuchi et al. (2008)
	1.6 W/cm ² , 60 s, 1 MHz	HepG2 cell lines	Upregulation of the mRNA expression levels of key apoptosis markers (Bad, Bax, caspase-9 and caspase-3)	Guo et al. (2023)
	90 mW/cm ² , 200 ms, 1.5 MHz	hPDLC cell lines	Inhibition of the NF-κB signalling pathway	Liu et al. (2020b) and Liu et al. (2020a)
LIFU	1 W/cm ² , 3 min, 1 MHz	SAS cell lines	Upregulation of the expression of GRP78, PERK, CHOP and BAX	Liu et al. (2020b) and Liu et al. (2020a)
	0.2 W/cm ² , 60 s, 360 kHz	ASPC-1 tumor-bearing nude mice	Inhibition of the NF-κB signalling pathway	Qiu et al. (2020)
	1.5 W/cm ² , 90 s, 1 MHz	Adult male New Zealand rabbits (high-cholesterol diet)	ROS induction, cytochrome c release, caspase 3 upregulation	Yao et al. (2021)
Animal trials		Mouse brains with GVs injected in a specific region.	Ca ²⁺ endocytosis	Hou et al. (2021)

caspase-6, and caspase-9 ([Wu et al., 2019](#); [Hu et al., 2020a](#); [Peng et al., 2022](#)). On the other hand, ischaemia and hypoxia lead to an apoptotic response in the ERS pathway through increased expression of the proapoptotic transcription factors CHOP and GRP78 ([Liu et al., 2020a](#)).

In summary, the introduction of LIFU close to the threshold can stimulate the expansion or enhancement of apoptosis and protect surrounding normal tissues and cells, representing a reliable method for improving the safety and efficacy of FUS in tumour treatment.

Figure 5 Cavitation induced by LIFU. This figure depicts the cavitation effect produced by LIFU. When the LIFU energy is sufficient, the tiny bubbles present in the liquid vibrate, grow and accumulate ultrasonic energy. When the energy reaches a certain threshold, the cavitation bubbles collapse and rapidly rupture, which is the mechanism underlying the cavitation effect of ultrasound. Created with MedPeer (www.medpeer.cn).

Full-size DOI: [10.7717/peerj.17886/fig-5](https://doi.org/10.7717/peerj.17886/fig-5)

The role of the cavitation effect in apoptosis

When the LIFU energy is sufficient, the microbubbles present in the liquid vibrate, grow and accumulate ultrasonic energy. When the energy reaches a certain threshold, the cavitation bubbles collapse and rapidly rupture, which is the mechanism underlying the cavitation effect of ultrasound (Myers *et al.*, 2018; Padilla *et al.*, 2023) (Fig. 5). Introduction of the echo contrast agent Levovist and targeting of malignant cells with therapeutic LIFU cause transient cavitation in the focal area, which results in significant cell apoptosis-related morphological changes, including cell contraction, membrane blebbing, chromatin aggregation, nuclear fragmentation, and the formation of apoptotic bodies (Ando *et al.*, 2006; Myers *et al.*, 2018). LIFU has a significant dose-dependent effect on cell apoptosis within a certain range of radiation doses, with an obvious increase in cell apoptosis as the radiation dose increases (Shi *et al.*, 2016; Hu *et al.*, 2023).

This part of the present review explored the pathway through which the LIFU-mediated cavitation effect induces apoptosis. Cao *et al.* (2021) confirmed that LIFU increased cleaved caspase-3 levels, decreased Bcl-2 levels, increased intracellular Ca^{2+} concentrations and increased cleaved caspase-8 (1.4 W/cm^2 , 1 min, 50% duty cycle, 360 kHz)-mediated cavitation. Zhao *et al.* (2015) observed that LIFU (1 MHz, 0.3-MPa peak negative pressure, 10% duty cycle, and 1-kHz pulse repetition frequency)-assisted cavitation can increase the cellular apoptotic index, mitochondrial depolarization, and cytochrome c release. LIFU (2 W/cm^2 , 40% duty cycle, 20 kHz) can induce mitochondrial depolarization, inner MOMP, and mitochondria-caspase signalling pathway activation together with increased Ca^{2+} concentrations and different expression levels of caspase-3, Bcl-2, and Bax, thus inducing the apoptosis of carcinoma cells (Shen *et al.*, 2020). Ho *et al.* (2023) reported that

Table 2 Effects on apoptosis induced by LIFU-mediated cavitation.

	Ultrasound parameters	Type of cancer cell line/-model	Apoptosis factors	Reference
Cell trials	1.4 W/cm ² , 1 min, 360 kHz, 50% duty cycle	AsPC-1 cells	Caspase- 3, caspase-8, intracellular Ca ²⁺ ,Bcl-2	Cao et al. (2021)
	0.3 MP, PRF 1 Hz, 10% duty cycle, 1 MHz	K562 cells	MOMP, cytochrome c release	Zhao et al. (2015)
	2.5 W/cm ²	HEp-2 cells	Caveolin-1, STAT3 signalling pathway	Ye et al. (2016)
	0.5 MHz, 210 mW/cm ²	HUVEC cells	p38-mediated MAPK pathway, ATF- 4, eIF2 α	Su et al. (2019)
Animal trials	1 MHz, PRF 1 Hz, 300 kPa	Ischaemia-stroke reperfusion model	NF- κ B, Bcl-2	Ho et al. (2023)
	1 MHz, 1 w/cm ² , 50% duty cycle	Psoriasis-like mouse model	ROSMitochondrial dysfunction	Xi et al. (2022)

cavitation induced by LIFU (1 MHz, 5,000 cycles, 1 Hz, 300 kPa) can inhibit the NF- κ B signalling pathway. After stimulation with LIFU (1 MHz, 1 W/cm², 50% duty cycle), cavitation generated abundant intracellular ROS, which caused HaCat cell apoptosis by inducing mitochondrial dysfunction ([Xi et al., 2022](#)). [Ye et al. \(2016\)](#) discovered that LIFU (2.5 W/cm²) can also downregulate the expression of the caveolin-1 protein and inhibit the STAT3 signalling pathway, hindering normal cell growth and redirecting apoptosis. [Su et al. \(2019\)](#) demonstrated that LIFU (210 mW/cm², 1 min, 20.5 MHz) can induce the p38-mediated MAPK and ERS apoptosis pathways, including ATF-4 and eIF2 α activation (Table 2).

LIFU-induced cavitation may participate in the mitochondrial pathway, death receptor pathway, and ERS pathway. LIFU is a novel apoptotic approach for tumour therapy, and key apoptotic factors, such as Bcl-2, caspase-8, and caspase-9, also warrant increased attention. For example, [Pan et al. \(2022\)](#) introduced BH3 mimetics (specific inhibitors of Bcl-2 and Bcl-xL) to increase mitochondrial sensitization in cancer cells and directly induce apoptosis. In the future, we look forward to more studies focusing on this topic.

LIFU enhances the clearance of apoptotic cells by macrophages

Macrophages are the main contributors to apoptotic cell elimination. At the early stage of tumour cell apoptosis, various structural changes occur on the cell membrane surface, such as PtdSer externalization. Corresponding receptors on the surface of the macrophage membrane can recognize the above substances, adhere to apoptotic cells, and promote phagocytosis ([Le et al., 2024](#)). The subtypes of macrophages mainly include M1 and M2 ([Peng et al., 2023](#)). M1 macrophages can kill tumour cells and inhibit tumour growth through phagocytosis and the Th1 response. M2 macrophages promote tissue repair, angiogenesis, and immune suppression by producing cytokines and triggering a Th2 response, which further facilitates tumour progression ([Peng et al., 2023; Wang et al., 2023a](#)). [Kong et al. \(2021\)](#) reported that LIFU (90 W/cm²*10 min, 80 kHz) can cause vibration of the piezoelectric material β -PVDF and local charge release, which opens voltage-gated channels to Ca²⁺ influx and stimulates macrophage M1 polarization and

M2 macrophages to transform into M1 macrophages through the Ca^{2+} -CAMK2A-NF- κ B signalling pathway. While engulfing apoptotic cells, M1 macrophages secrete a large number of proinflammatory cytokines, inhibit the activity of cocultured tumour cells, and kill tumour cells (Kong *et al.*, 2021). Therefore, under LIFU stimulation, the apoptosis of malignant cells increased, and the clearance of apoptotic cells by macrophages also increased. This synergistic effect may enhance the therapeutic effect of LIFU on malignant tumours.

Combining FUS to promote tumour treatment *via* cell apoptosis

Currently, the use of FUS in clinical practice mainly focuses on the thermal ablation effect caused by HIFU, aiming for thermal coagulative necrosis. However, FUS-induced apoptosis has advantages in terms of medium- to long-term effects and complication control in tumour treatment. FUS is often combined with microbubbles, drugs, gene transfection, and other modalities to enhance the induction of tumour cell apoptosis and improve the effectiveness of tumour treatment. In the following section, we discuss the application of FUS-induced apoptosis combined with other treatment modalities in tumours. Depending on the specific cancer cell type, the ultrasound parameters used may also vary. We have summarized the information in Table 3.

FUS combined with microbubbles to induce apoptosis

Microbubbles can not only serve as ultrasound contrast agents but also be oscillated and activated by FUS, enhancing the inherent biological effects of ultrasound, which facilitates the destruction of tumour cells while reducing damage to surrounding normal tissues and improving clinical safety (Huang *et al.*, 2023). FUS can induce multiple stimulating effects to promote cell apoptosis, such as reducing the mitochondrial membrane potential, promoting oxidative stress, and inducing extracellular Ca^{2+} influx and cell skeleton rearrangement. The introduction of microbubbles can decrease the threshold for achieving biological effects with FUS, thus facilitating the induction of apoptosis (Przystupski & Ussowicz, 2022).

Sondynamic therapy (SDT), which involves deep tissue penetration and high precision, has strong potential to become an ideal tumour therapy. This section focuses on the effects of SDT on apoptosis. Under FUS irradiation, sonosensitizers can be activated from the ground state to the excited state to generate ROS, including singlet oxygen and hydroxyl radicals. Acoustic cavitation plays an important role in activating sonosensitizers to generate ROS during the interaction of FUS with an aqueous environment (Zeng *et al.*, 2022; Zhang *et al.*, 2022). Ca^{2+} overload plays a primary role in the apoptotic process and is associated with increased ROS production, decreased mitochondrial membrane potential, and increased cyt-c (Bunevicius *et al.*, 2022). In addition, SDT induces ER stress, Bcl-2 downregulation, Bax upregulation, and ultimately tumour cell apoptosis (Wang *et al.*, 2024). Currently, studies on the use of SDT to induce apoptosis for treatment have involved several cancer types, such as glioblastoma, pancreatic cancer, squamous cell carcinoma, spinal-metastasized tumours, triple-negative breast cancer, osteosarcoma, prostate cancer, and hepatocellular carcinoma (Aksel *et al.*, 2021; Wang *et al.*, 2022; Wang *et al.*, 2023a;

Table 3 Apoptosis induced by FUS combined with microbubbles.

		Ultrasound parameters	Type of cancer cell line/model	Mechanisms	Reference
FUS-sensitizing radiotherapy	Cell trials	1,136 W/cm ² , 40 s	FaDu, T98G, PC-3 cells	FUS-induced cavitation	Hu et al. (2020a) and Hu et al. (2020b)
		225 W/cm ² , 1.467 MHz	FaDu, T98G, PC-3 cells	DNA damage	Zhang et al. (2021)
	Animal trials	3.5 W/cm ² , 1 MHz	4T1 tumor-bearing mice	Oxygenation enhancement	Xiao et al. (2024)
		740 kPa, 5 min, 500 kHz	MDA-MB-231 tumor-bearing mice	Cell death, microvascular effects	Sharma et al. (2023)
FUS-sensitizing chemotherapy	Animal trials	10-ms pulse length, 1-Hz pulse repetition frequency, 0.64-MPa peak-rarefactional pressure	nude mice bearing intracranial glioblastoma	Enhanced delivery of paclitaxel liposomes	Shen et al. (2017)
		24-fold transmission in 1 cycle, 3.5 MHz	4T1 tumor-bearing BAL-B/c mice	Sonosensitized electron transfer, ROS-mediated mitochondrial damage, cell apoptosis	Liu et al. (2023)
	Cell trials	0.5 W/cm ² , 8 s, 1 MHz 1.2 W/cm ² , 20 s, 20% duty cycle	OVCA-433 cells VCaP, LNCaP, PC-3, DU145 cells	Caspase-3, caspase-8 Upregulation of the protein expression levels of the apoptosis-associated genes caspase-9, cleaved caspase 9, cytochrome c	Xu et al. (2021) Qin, Li & Xie (2018)
Microbubble-mediated gene transfection	Animal trials	21-MHz (MS250, Visual Sonics, Toronto, Ontario, Canada)	HepG2, HepG3 tumor-bearing nude mice	Inhibition of cancer cell proliferation at the gene level	Chowdhury et al. (2018)
		1.2 MHz, 60 cycles, 5.5 MPa, 40-Hz pulse repetition frequency	SMMC-7721 tumor-bearing nude mice	Cavitation effect	Dong et al. (2020)
		0.5 W/cm ² , 8 s, 1 MHz	OVCA-433 cells	Caspase-3, caspase-8	Xu et al. (2021)
Microbubble-mediated gas transfection	NO	1.5 W/cm ² , 5 min, 20% duty cycle, 1 MHz	4T1 tumor-bearing mice	Interaction with ROS	Chen et al. (2023)
		1.0 MHz, 50% duty cycle, 1.0 W/cm ²	Lung metastasis bearing mice	Induction of strong intracellular oxidative stress levels and DNA double-strand breaks	Wang et al. (2021b)
	Animal trials	H2S	30 kHz, 5 min	pulmonary metastasis of 4T1 breast tumours	Li et al. (2022a) and Li et al. (2022b)
		CO	1 W/cm ² , 1 MHz, 10 s	4T1 tumor-bearing mice	Guo et al. (2022)

[Tian et al., 2023](#); [Gong et al., 2023](#)). Furthermore, related clinical trials (NCT05362409 and NCT05580328) have evaluated the antitumour efficacy of sonosensitizer therapy and indicates that SDT has favourable clinical potential.

FUS combined with chemotherapy/gene/gas therapy induces apoptosis in tumour cells

FUS enhances the ability of radiotherapy and chemotherapy to induce apoptosis in tumour cells. FUS can sensitize cells to radiotherapy. The endothelial cell membrane is subjected to mechanical damage under ultrasound stimulation, rendering it more responsive to radiation therapy and enhancing the effect of the original treatment (Shi *et al.*, 2021; McCorkell *et al.*, 2022). Leong *et al.* (2023) demonstrated that the use of FUS (750 kPa, 500 kHz)-stimulated microbubbles can potentially enhance the effects of radiotherapy through the activation of the acid sphingomyelinase ASMase or sphingomyelin phosphodiesterase 1 (SMPD1)-ceramide pathway. The findings of Xiao *et al.* (2024) strongly support the role of nano-PFC as a US (3.5 W/cm², 1 MHz)-responsive oxygen carrier in improving the radiosensitizing effect by enhancing tumour oxygenation. Sharma *et al.* (2023) demonstrated that for MDA-MB-231 xenograft tumours, significant cell death occurs with ultrasound treatments as short as 1 min, and significant microvascular effects require a longer treatment time (>5 min). Using an *in vitro* cell culture model, Hu *et al.* (2020b) showed the potential of FUS (740 kPa, 5 min, 500 kHz)-induced cavitation as a sensitizer to radiotherapy. Zhang *et al.* (2021) reported that FUS (213/225 W/cm², 1.14/1.467 MHz) radiosensitizes human cancer cells by enhancing DNA damage. Eisenbrey *et al.* (2021) reported that the combination of FUS (2.3-μsec pulses at a pulse repetition frequency of 100 Hz, 1.13-μsec at 1.5 MHz)-triggered microbubble destruction and transarterial radioembolization is feasible with an excellent safety profile in their patient population and appears to result in an improved hepatocellular carcinoma treatment response.

Similarly, FUS can also sensitize cells to chemotherapy. Shen *et al.* (2017) used microbubbles to enhance the delivery of paclitaxel liposomes to treat intracranial glioblastoma. Microbubbles not only enhance blood-brain barrier penetration and increase drug accumulation in local tumour tissue but also enhance the proapoptotic effect of paclitaxel liposomes. Paclitaxel can exert unique antitumour effects, which include inhibiting cell division, suppressing cell proliferation, increasing chromosomal instability, and promoting apoptosis (Scribano *et al.*, 2021). Liu *et al.* (2023) developed cyanin platin, a Pt(IV) prodrug that can be controllably activated by FUS (24-times transmission in 1 cycle is used to achieve a video-rate imaging speed (17 frames/s), 3.5 MHz). Upon irradiation with FUS, the prodrug was reduced to chemotherapeutic carboplatin *via* a sonosensitized electron transfer process. Simultaneously, sonoactivated cyaninplatin generated ROS and depleted intracellular reductants, thereby enhancing ROS-mediated mitochondrial damage and cell apoptosis efficiency. Luo *et al.* (2022) discovered that microbubbles can be used as sensitizers during chemotherapy. The optimal treatment time is immediately after chemotherapy. This approach can significantly increase drug perfusion and improve the effectiveness of killing tumour cells. Based on the characteristics of FUS and microbubbles, we can reduce the dosage of chemotherapy drugs or the radiation intensity.

The combination of FUS and microbubble-mediated gene transfection induces apoptosis in tumour cells. Researchers have also shown that UTMD transects small-molecule miRNAs

into cells at the gene level. miRNAs can upregulate the expression of proapoptotic proteins or downregulate the expression of proapoptotic proteins by integrating genetic information (Chowdhury *et al.*, 2018; Qin, Li & Xie, 2018; Ran *et al.*, 2018; Michon, Rodier & Yu, 2022). Qin, Li & Xie (2018) UTMD (1.2 W/cm², 20 s; 20% duty cycle) was used to transfet siRNA205 into prostate cells, which upregulated the protein expression levels of the apoptosis-associated genes caspase-9, cleaved caspase- 9, and cytochrome c and successfully inhibited the proliferation, migration, and invasion of prostate cancer cells. Chowdhury *et al.* (2018) delivered complementary miRNA122 into hepatocellular carcinoma through microbubble vectors, inhibited the proliferation of cancer cells at the gene level, and promoted their apoptosis. Dong *et al.* (2020) combined PLNDs with UTMD (1.2 MHz, 60 cycles, 5.5 MPa, 40-Hz pulse repetition frequency), delivered four pre-miRNA plasmids, and verified their therapeutic efficacy in subcutaneous tumours in a mouse xenograft HCC model. Xu *et al.* (2021) synthesized a targeted microbubble agent for UTMD (0.5 W/cm², 8 s, 1 MHz)-mediated shRNA against the Livin gene in human ovarian cancer OVCA-433 cells. Livin activity is associated with the expression of caspase-3 and caspase-8.

The combination of FUS and gas therapy induces tumour cell apoptosis. Guo *et al.* (2022) constructed an efficient ultrasonic-triggered and targeted CO release strategy based on a novel targeted acoustic release carrier of carbon monoxide (TARC-CO). With FUS (1 W/cm², 1 MHz, 10 s) irradiation, CO was demonstrated to effectively induce mitochondrial dysfunction by reducing the mitochondrial membrane potential, leading to the apoptosis of 4T1 cells. Moreover, different gas therapies, such as NO and H₂S, have been investigated extensively (Chen *et al.*, 2023). Chen *et al.* (2023) produced a unique strategy for producing NO gas that was successfully developed *via* FUS (1.5 W/cm², 5 min, 20% duty cycle, 1 MHz)-induced piezo catalysis-based polyarginine-coated barium titanate nanoparticles (BTO@DPA). NO can even further interact with ROS to produce more reactive peroxynitrite, thus inducing serious tumour cell apoptosis under both hypoxia and normoxia. Wang *et al.* (2021a) reported that NO in cancer cells can causes strong intracellular oxidative stress and DNA double-strand breaks to ultimately induce cancer cell apoptosis. Li *et al.* (2022a) reported that H₂S-mediated inhibition of mitochondrial respiration and ATP generation promotes cell necrosis and apoptosis.

If microbubbles carry therapeutic gas into the local tumour site and release that gas under FUS energy, they can avoid damaging the surrounding normal tissues while rapidly achieving a suitable concentration of proapoptotic gas, serving as a potential means for future tumour-specific therapy.

CONCLUSION

As a conventional medical tool, FUS is often used for the diagnosis and treatment of diseases. Relevant studies have recently shown that FUS can promote tumour cell apoptosis through three major mechanisms—thermal effects, cavitation effects, and related molecular biological effects—and therefore shows promise for minimally invasive treatment of tumours. Moreover, FUS combined with microbubbles can also enhance the clearance of apoptotic cells and enhance the targeting and sensitivity of tumour therapy. The specific

molecular mechanism by which FUS promotes apoptosis has not yet been elucidated, and more researchers need to focus on this topic in the future. Because the energy required to achieve FUS varies for different lesion sites, determining how to regulate the appropriate FUS energy and accurately define the irradiation target area to improve the effectiveness of tumour treatment while ensuring safety also needs to be prioritized in future studies.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the Natural Science Foundation of Chongqing, China (No. cstc2020jcyj-msxmX0538, No. cstb2022nscq-msxc324) and the China Postdoctoral Science Foundation (2023M740439). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

The Natural Science Foundation of Chongqing, China: No. cstc2020jcyj-msxmX0538, No. cstb2022nscq-msxc324.

The China Postdoctoral Science Foundation: 2023M740439.

Competing Interests

The authors declare that they have no conflict of interest.

Author Contributions

- Na Wang conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.
- Li Luo conceived and designed the experiments, performed the experiments, analyzed the data, authored or reviewed drafts of the article, and approved the final draft.
- Xinzhi Xu performed the experiments, authored or reviewed drafts of the article, and approved the final draft.
- Hang Zhou conceived and designed the experiments, authored or reviewed drafts of the article, and approved the final draft.
- Fang Li conceived and designed the experiments, authored or reviewed drafts of the article, and approved the final draft.

Data Availability

The following information was supplied regarding data availability:

This article is a literature review and did not utilize raw data.

Supplemental Information

Supplemental information for this article can be found online at <http://dx.doi.org/10.7717/peerj.17886#supplemental-information>.

REFERENCES

Annibaldi A, Walczak H. 2020. Death receptors and their ligands in inflammatory disease and cancer. *Cold Spring Harbor Perspectives in Biology* 12(9):a036384 DOI 10.1101/cshperspect.a036384.

Abbonante V, Malara A, Chrisam M, Metti S, Soprano P, Semplicini C, Bello L, Bozzi V, Battiston M, Pecci A, Pegoraro E, De Marco L, Braghetta P, Bonaldo P, Balduini A. 2023. Lack of COL6/collagen VI causes megakaryocyte dysfunction by impairing autophagy and inducing apoptosis. *Autophagy* 19:984–999 DOI 10.1080/15548627.2022.2100105.

Ai Y, Meng Y, Yan B, Zhou Q, Wang X. 2024. The biochemical pathways of apoptotic, necroptotic, pyroptotic, and ferroptotic cell death. *Molecular Cell* 84:170–179 DOI 10.1016/j.molcel.2023.11.040.

Aksel M, Kesmez Ö, Yavaş A, Bilgin MD. 2021. Titaniumdioxide mediated sonophotodynamic therapy against prostate cancer. *Journal of Photochemistry and Photobiology. B, Biology* 225:112333 DOI 10.1016/j.jphotobiol.2021.112333.

Ando H, Feril LB, Kondo T, Tabuchi Y, Ogawa R, Zhao Q-L, Cui Z-G, Umemura S, Yoshikawa H, Misaki T. 2006. An echo-contrast agent, levovist, lowers the ultrasound intensity required to induce apoptosis of human leukemia cells. *Cancer Letters* 242:37–45 DOI 10.1016/j.canlet.2005.10.032.

Ashar H, Ranjan A. 2023. Immunomodulation and targeted drug delivery with high intensity focused ultrasound (HIFU): principles and mechanisms. *Pharmacology & Therapeutics* 244:108393 DOI 10.1016/j.pharmthera.2023.108393.

Bartneck M, Fech V, Ehling J, Govaere O, Warzecha KT, Hittatiya K, Vucur M, Gautheron J, Luedde T, Trautwein C, Lammers T, Roskams T, Jahnens-Dechent W, Tacke F. 2016. Histidine-rich glycoprotein promotes macrophage activation and inflammation in chronic liver disease. *Hepatology* 63:1310–1324 DOI 10.1002/hep.28418.

Boada-Romero E, Martinez J, Heckmann BL, Green DR. 2020. The clearance of dead cells by efferocytosis. *Nature Reviews. Molecular Cell Biology* 21:398–414 DOI 10.1038/s41580-020-0232-1.

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. 2024. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA: A Cancer Journal for Clinicians* 74:229–263 DOI 10.3322/caac.21834.

Brighi C, Reid L, White AL, Genovesi LA, Kojic M, Millar A, Bruce Z, Day BW, Rose S, Whittaker AK, Puttick S. 2020. MR-guided focused ultrasound increases antibody delivery to nonenhancing high-grade glioma. *Neuro-Oncology Advances* 2:vdaa030 DOI 10.1093/noajnl/vdaa030.

Bunevicius A, Pikis S, Padilla F, Prada F, Sheehan J. 2022. Sonodynamic therapy for gliomas. *Journal of Neuro-Oncology* 156:1–10 DOI 10.1007/s11060-021-03807-6.

Byun K-A, Park HJ, Oh S, Batsukh S, Sun HJ, Kim T, Kim S, Kang D, Son KH, Byun K. 2023. High-Intensity Focused Ultrasound Decreases Subcutaneous Fat

Tissue Thickness by Increasing Apoptosis and Autophagy. *Biomolecules* **13**:392
DOI [10.3390/biom13020392](https://doi.org/10.3390/biom13020392).

Cao J, Hu C, Zhou H, Qiu F, Chen J, Zhang J, Huang P. 2021. Microbubble-mediated cavitation promotes apoptosis and suppresses invasion in AsPC-1 cells. *Ultrasound in Medicine & Biology* **47**:323–333 DOI [10.1016/j.ultrasmedbio.2020.10.014](https://doi.org/10.1016/j.ultrasmedbio.2020.10.014).

Celik C, Lee SYT, Yap WS, Thibault G. 2023. Endoplasmic reticulum stress and lipids in health and diseases. *Progress in Lipid Research* **89**:101198 DOI [10.1016/j.plipres.2022.101198](https://doi.org/10.1016/j.plipres.2022.101198).

Chen X, Mi L, Gu G, Gao X, Gao X, Shi M, Chai Y, Chen F, Yang W, Zhang J. 2022. Dysfunctional endoplasmic reticulum-mitochondrion coupling is associated with endoplasmic reticulum stress-induced apoptosis and neurological deficits in a rodent model of severe head injury. *Journal of Neurotrauma* **39**:560–576 DOI [10.1089/neu.2021.0347](https://doi.org/10.1089/neu.2021.0347).

Chen J, Tang Q, Wang Y, Xu M, Sun S, Zhang J, Wu R, Yue X, Li X, Chen Q, Liang X. 2023. Ultrasound-induced piezocatalysis triggered NO generation for enhanced hypoxic tumor therapy. *ACS Applied Materials & Interfaces* **15**:15220–15234 DOI [10.1021/acsami.3c00603](https://doi.org/10.1021/acsami.3c00603).

Chowdhury SM, Lee T, Bachawal SV, Devulapally R, Abou-Elkacem L, Yeung TA, Wischhusen J, Tian L, Dahl J, Paulmurugan R, Willmann JK. 2018. Longitudinal assessment of ultrasound-guided complementary microRNA therapy of hepatocellular carcinoma. *Journal of Controlled Release* **281**:19–28 DOI [10.1016/j.jconrel.2018.05.009](https://doi.org/10.1016/j.jconrel.2018.05.009).

Dejas L, Santoni K, Meunier E, Lamkanfi M. 2023. Regulated cell death in neutrophils: from apoptosis to NETosis and pyroptosis. *Seminars in Immunology* **70**:101849 DOI [10.1016/j.smim.2023.101849](https://doi.org/10.1016/j.smim.2023.101849).

Dong W, Wu P, Zhou D, Huang J, Qin M, Yang X, Wan M, Zong Y. 2020. Ultrasound-mediated gene therapy of hepatocellular carcinoma using pre-microRNA plasmid-loaded nanodroplets. *Ultrasound in Medicine & Biology* **46**:90–107 DOI [10.1016/j.ultrasmedbio.2019.09.016](https://doi.org/10.1016/j.ultrasmedbio.2019.09.016).

Duan L, Yang L, Jin J, Yang F, Liu D, Hu K, Wang Q, Yue Y, Gu N. 2020. Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications. *Theranostics* **10**:462–483 DOI [10.7150/thno.37593](https://doi.org/10.7150/thno.37593).

Eisenbrey JR, Forsberg F, Wessner CE, Delaney LJ, Bradigan K, Gummadi S, Tantawi M, Lyshchik A, O’Kane P, Liu J-B, Intenzo C, Civan J, Maley W, Keith SW, Anton K, Tan A, Smolock A, Shamimi-Noori S, Shaw CM. 2021. US-triggered microbubble destruction for augmenting hepatocellular carcinoma response to transarterial radioembolization: a randomized pilot clinical trial. *Radiology* **298**:450–457 DOI [10.1148/radiol.2020202321](https://doi.org/10.1148/radiol.2020202321).

Fang Y, Bai Z, Cao J, Zhang G, Li X, Li S, Yan Y, Gao P, Kong X, Zhang Z. 2023. Low-intensity ultrasound combined with arsenic trioxide induced apoptosis of glioma via EGFR/AKT/mTOR. *Life Sciences* **332**:122103 DOI [10.1016/j.lfs.2023.122103](https://doi.org/10.1016/j.lfs.2023.122103).

Flores-Romero H, Dadsena S, García-Sáez AJ. 2023. Mitochondrial pores at the crossroad between cell death and inflammatory signaling. *Molecular Cell* **83**:843–856 DOI [10.1016/j.molcel.2023.02.021](https://doi.org/10.1016/j.molcel.2023.02.021).

Fu Z, Fan Y, Wu C, Yan P, Ye Y, Yang H, Li C. 2020. Clinical efficacy and mechanism for focused ultrasound (FUS) in the management of cervical intraepithelial neoplasia 1 (CIN1). *International Journal of Hyperthermia* 37:339–345 DOI [10.1080/02656736.2020.1749316](https://doi.org/10.1080/02656736.2020.1749316).

Gong M, Huang Y, Feng H, Lin J, Huang A, Hu J, Tang Q, Zhu X, Han S, Lu J, Wang J. 2023. A nanodrug combining CD47 and sonodynamic therapy efficiently inhibits osteosarcoma deterioration. *Journal of Controlled Release* 355:68–84 DOI [10.1016/j.jconrel.2023.01.038](https://doi.org/10.1016/j.jconrel.2023.01.038).

Gourisankar S, Krokhotin A, Ji W, Liu X, Chang C-Y, Kim SH, Li Z, Wenderski W, Simanauskaite JM, Yang H, Vogel H, Zhang T, Green MR, Gray NS, Crabtree GR. 2023. Rewiring cancer drivers to activate apoptosis. *Nature* 620:417–425 DOI [10.1038/s41586-023-06348-2](https://doi.org/10.1038/s41586-023-06348-2).

Green DR. 2022. The death receptor pathway of apoptosis. *Cold Spring Harbor Perspectives in Biology* 14:a041053 DOI [10.1101/cshperspect.a041053](https://doi.org/10.1101/cshperspect.a041053).

Gümüş M, Koca I, Sert Y, Dişli A, Yenilmez Tunoğlu EN, Tutar L, Tutar Y. 2023. Triad pyrazole-thiazole-coumarin heterocyclic core effectively inhibit HSP and drive cancer cells to apoptosis. *Journal of Biomolecular Structure & Dynamics* 41:14382–14397 DOI [10.1080/07391102.2023.2181643](https://doi.org/10.1080/07391102.2023.2181643).

Guo W, Huang S, An J, Zhang J, Dong F, Dang J, Zhang J. 2022. Ultrasound-mediated antitumor therapy via targeted acoustic release carrier of carbon monoxide (TARC-CO). *ACS Applied Materials & Interfaces* 14:50664–50676 DOI [10.1021/acsami.2c16821](https://doi.org/10.1021/acsami.2c16821).

Guo X, Lin J, Pan L, He K, Huang Z, Chen J, Lin C, Zeng B, Luo S, Wang M. 2023. Ultrasound-triggered release of miR-199a-3p from liposome nanobubbles for enhanced hepatocellular carcinoma treatment. *Artificial Cells, Nanomedicine, and Biotechnology* 51:560–571 DOI [10.1080/21691401.2023.2268137](https://doi.org/10.1080/21691401.2023.2268137).

Han Y-H, Wang Y, Lee S-J, Jin M-H, Sun H-N, Kwon T. 2023. Regulation of anoikis by extrinsic death receptor pathways. *Cell Communication and Signaling* 21:227 DOI [10.1186/s12964-023-01247-5](https://doi.org/10.1186/s12964-023-01247-5).

Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. *Cell* 144:646–674 DOI [10.1016/j.cell.2011.02.013](https://doi.org/10.1016/j.cell.2011.02.013).

Harrington JS, Ryter SW, Plataki M, Price DR, Choi AMK. 2023. Mitochondria in health, disease, and aging. *Physiological Reviews* 103:2349–2422 DOI [10.1152/physrev.00058.2021](https://doi.org/10.1152/physrev.00058.2021).

Haymour L, Jean M, Smulski C, Legembre P. 2023. CD95 (Fas) and CD95L (FasL)-mediated non-canonical signaling pathways. *Biochimica Et Biophysica Acta. Reviews on Cancer* 1878(6):189004 DOI [10.1016/j.bbcan.2023.189004](https://doi.org/10.1016/j.bbcan.2023.189004).

Henson PM. 2017. Cell removal: efferocytosis. *Annual Review of Cell and Developmental Biology* 33:127–144 DOI [10.1146/annurev-cellbio-111315-125315](https://doi.org/10.1146/annurev-cellbio-111315-125315).

Ho Y-J, Cheng H-L, Liao L-D, Lin Y-C, Tsai H-C, Yeh C-K. 2023. Oxygen-loaded microbubble-mediated sonoperfusion and oxygenation for neuroprotection after ischemic stroke reperfusion. *Biomaterials Research* 27:65 DOI [10.1186/s40824-023-00400-y](https://doi.org/10.1186/s40824-023-00400-y).

Hou X, Qiu Z, Xian Q, Kala S, Jing J, Wong KF, Zhu J, Guo J, Zhu T, Yang M, Sun L. 2021. Precise ultrasound neuromodulation in a deep brain region using nano gas vesicles as actuators. *Advanced Science* **8**:e2101934 DOI [10.1002/advs.202101934](https://doi.org/10.1002/advs.202101934).

Hu Y, Wei J, Shen Y, Chen S, Chen X. 2023. Barrier-breaking effects of ultrasonic cavitation for drug delivery and biomarker release. *Ultrasonics Sonochemistry* **94**:106346 DOI [10.1016/j.ultsonch.2023.106346](https://doi.org/10.1016/j.ultsonch.2023.106346).

Hu B, Zhang S, Liu W, Wang P, Chen S, Lv X, Shi D, Ma K, Wang B, Wu Y, Shao Z. 2020a. Inhibiting heat shock protein 90 protects nucleus pulposus-derived stem/progenitor cells from compression-induced necroptosis and apoptosis. *Frontiers in Cell and Developmental Biology* **8**:685 DOI [10.3389/fcell.2020.00685](https://doi.org/10.3389/fcell.2020.00685).

Hu S, Zhang X, Unger M, Patties I, Melzer A, Landgraf L. 2020b. Focused ultrasound-induced cavitation sensitizes cancer cells to radiation therapy and hyperthermia. *Cell* **9**:2595 DOI [10.3390/cells9122595](https://doi.org/10.3390/cells9122595).

Huang D, Wang J, Song C, Zhao Y. 2023. Ultrasound-responsive matters for biomedical applications. *Innovation* **4**:100421 DOI [10.1016/j.xinn.2023.100421](https://doi.org/10.1016/j.xinn.2023.100421).

Jahagirdar D, Gore CR, Patel H, Maria K, Tandon I, Sharma NK. 2018. Induction of apoptotic death and cell cycle arrest in hela cells by extracellular factors of breast cancer cells. *Asian Pacific Journal of Cancer Prevention* **19**:3307–3316 DOI [10.31557/APJCP.2018.19.12.3307](https://doi.org/10.31557/APJCP.2018.19.12.3307).

Jeong H, Hong E-H, Ahn J-H, Cho J, Jeong J-H, Kim C-W, Yoon B-I, Koo JH, Park Y-Y, Yang YM, Iwawaki T, Vallance BA, Chang S-Y, Ko H-J. 2023. ERdj5 protects goblet cells from endoplasmic reticulum stress-mediated apoptosis under inflammatory conditions. *Experimental & Molecular Medicine* **55**:401–412 DOI [10.1038/s12276-023-00945-x](https://doi.org/10.1038/s12276-023-00945-x).

Jin J, Zhao Y, Huang P. 2023. Combination of HIFU with sulfur hexafluoride microbubbles in the treatment of solitary uterine fibroids: a systematic review and meta-analysis. *European Radiology* **34**:3786–3794 DOI [10.1007/s00330-023-10407-7](https://doi.org/10.1007/s00330-023-10407-7).

Kantari C, Walczak H. 2011. Caspase-8 and bid: caught in the act between death receptors and mitochondria. *Biochimica Et Biophysica Acta* **1813**:558–563 DOI [10.1016/j.bbamcr.2011.01.026](https://doi.org/10.1016/j.bbamcr.2011.01.026).

Kaufmann T, Strasser A, Jost PJ. 2012. Fas death receptor signalling: roles of Bid and XIAP. *Cell Death and Differentiation* **19**:42–50 DOI [10.1038/cdd.2011.121](https://doi.org/10.1038/cdd.2011.121).

Kim Y-J, Hyun J. 2023. Mechanosensitive ion channels in apoptosis and ferroptosis: focusing on the role of Piezo1. *BMB Reports* **56**:145–152 DOI [10.5483/BMBRep.2023-0002](https://doi.org/10.5483/BMBRep.2023-0002).

Kong Y, Liu F, Ma B, Duan J, Yuan W, Sang Y, Han L, Wang S, Liu H. 2021. Wireless localized electrical stimulation generated by an ultrasound-driven piezoelectric discharge regulates proinflammatory macrophage polarization. *Advanced Science* **8**:2100962 DOI [10.1002/advs.202100962](https://doi.org/10.1002/advs.202100962).

Kuo Y-Y, Chen W-T, Lin G-B, Lu C-H, Chao C-Y. 2023. Study on the effect of a triple cancer treatment of propolis, thermal cycling-hyperthermia, and low-intensity ultrasound on PANC-1 cells. *Aging* **15**:7496–7512 DOI [10.18632/aging.204916](https://doi.org/10.18632/aging.204916).

Lamsam L, Johnson E, Connolly ID, Wintermark M, Hayden Gephart M. 2018. A review of potential applications of MR-guided focused ultrasound for targeting brain tumor therapy. *Neurosurgical Focus* **44**:E10 DOI [10.3171/2017.11.FOCUS17620](https://doi.org/10.3171/2017.11.FOCUS17620).

Lavrik IN, Krammer PH. 2012. Regulation of CD95/Fas signaling at the DISC. *Cell Death and Differentiation* **19**:36–41 DOI [10.1038/cdd.2011.155](https://doi.org/10.1038/cdd.2011.155).

Le T, Ferling I, Qiu L, Nabaile C, Assunção L, Roskelley CD, Grinstein S, Freeman SA. 2024. Redistribution of the glycocalyx exposes phagocytic determinants on apoptotic cells. *Developmental Cell* **59**:853–868 DOI [10.1016/j.devcel.2024.01.020](https://doi.org/10.1016/j.devcel.2024.01.020).

Lemke G. 2019. How macrophages deal with death. *Nature Reviews. Immunology* **19**:539–549 DOI [10.1038/s41577-019-0167-y](https://doi.org/10.1038/s41577-019-0167-y).

Leong KX, Yang W, Sharma D, Liu S, Czarnota GJ. 2023. Ultrasound-stimulated microbubbles enhanced vascular disruption in fractionated radiotherapy-treated tumours via ASMase activation. *Disease Models & Mechanisms* **16**:dmm049531 DOI [10.1242/dmm.049531](https://doi.org/10.1242/dmm.049531).

Li G, Lei H, Yang Y, Zhong X, Gong F, Gong Y, Zhou Y, Zhang Y, Shi H, Xiao Z, Dong Z, Cheng L. 2022a. Titanium sulfide nanosheets serve as cascade bioreactors for H2S-mediated programmed gas–sonodynamic cancer therapy. *Advanced Science* **9**:2201069 DOI [10.1002/advs.202201069](https://doi.org/10.1002/advs.202201069).

Li X, Lu K, Guo S, Xue S, Lian F. 2024. TRPV4 blockade alleviates endoplasmic reticulum stress mediated apoptosis in hypoxia-induced cardiomyocyte injury. *Cellular Signalling* **114**:110973 DOI [10.1016/j.cellsig.2023.110973](https://doi.org/10.1016/j.cellsig.2023.110973).

Li M, Zhu Y, Yang C, Yang M, Ran H, Zhu Y, Zhang W. 2022b. Acoustic triggered nanobomb for US imaging guided sonodynamic therapy and activating antitumor immunity. *Drug Delivery* **29**:2177–2189 DOI [10.1080/10717544.2022.2095058](https://doi.org/10.1080/10717544.2022.2095058).

Liu T-J, Yeh Y-C, Lee W-L, Wang L-C, Lee H-W, Shiu M-T, Su C-S, Lai H-C. 2020a. Insulin ameliorates hypoxia-induced autophagy, endoplasmic reticular stress and apoptosis of myocardial cells: *in vitro* and *ex vivo* models. *European Journal of Pharmacology* **880**:173125 DOI [10.1016/j.ejphar.2020.173125](https://doi.org/10.1016/j.ejphar.2020.173125).

Liu G, Zhang Y, Yao H, Deng Z, Chen S, Wang Y, Peng W, Sun G, Tse M-K, Chen X, Yue J, Peng Y-K, Wang L, Zhu G. 2023. An ultrasound-activatable platinum prodrug for sono-sensitized chemotherapy. *Science Advances* **9**(25):eadg5964 DOI [10.1126/sciadv.adg5964](https://doi.org/10.1126/sciadv.adg5964).

Liu S, Zhou M, Li J, Hu B, Jiang D, Huang H, Song J. 2020b. LIPUS inhibited the expression of inflammatory factors and promoted the osteogenic differentiation capacity of hPDLCs by inhibiting the NF-κB signaling pathway. *Journal of Periodontal Research* **55**:125–140 DOI [10.1111/jre.12696](https://doi.org/10.1111/jre.12696).

Luo T, Bai L, Zhang Y, Huang L, Li H, Gao S, Dong X, Li N, Liu Z. 2022. Optimal treatment occasion for ultrasound stimulated microbubbles in promoting gemcitabine delivery to VX2 tumors. *Drug Delivery* **29**:2796–2804 DOI [10.1080/10717544.2022.2115163](https://doi.org/10.1080/10717544.2022.2115163).

Ma H, Suleman M, Zhang F, Cao T, Wen S, Sun D, Chen L, Jiang B, Wang Y, Lin F, Wang J, Li B, Li Q. 2024. Pirin inhibits FAS-mediated apoptosis to support colorectal cancer survival. *Advanced Science* **11**:e2301476 DOI [10.1002/advs.202301476](https://doi.org/10.1002/advs.202301476).

Mahadevan KK, LeBleu VS, Ramirez EV, Chen Y, Li B, Sockwell AM, Gagea M, Sugimoto H, Sthanam LK, Tampe D, Zeisberg M, Ying H, Jain AK, De Pinho RA, Maitra A, McAndrews KM, Kalluri R. 2023. Elimination of oncogenic KRAS in genetic mouse models eradicates pancreatic cancer by inducing FAS-dependent apoptosis by CD8+ T cells. *Developmental Cell* **58**:1562–1577 DOI [10.1016/j.devcel.2023.07.025](https://doi.org/10.1016/j.devcel.2023.07.025).

McCorkell G, Nakayama M, Feltis B, Piva T, Geso M. 2022. Ultrasound-stimulated microbubbles enhance radiation-induced cell killing. *Ultrasound in Medicine & Biology* **48**:2449–2460 DOI [10.1016/j.ultrasmedbio.2022.07.001](https://doi.org/10.1016/j.ultrasmedbio.2022.07.001).

Mi L, Min X, Shi M, Liu L, Zhang Y, Zhu Y, Li P, Chai Y, Chen F, Deng Q, Zhang S, Zhang J, Chen X. 2023. Neutrophil extracellular traps aggravate neuronal endoplasmic reticulum stress and apoptosis via TLR9 after traumatic brain injury. *Cell Death & Disease* **14**:374 DOI [10.1038/s41419-023-05898-7](https://doi.org/10.1038/s41419-023-05898-7).

Michon S, Rodier F, Yu FTH. 2022. Targeted anti-cancer provascular therapy using ultrasound, microbubbles, and nitrite to increase radiotherapy efficacy. *Bioconjugate Chemistry* **33**:1093–1105 DOI [10.1021/acs.bioconjchem.1c00510](https://doi.org/10.1021/acs.bioconjchem.1c00510).

Morana O, Wood W, Gregory CD. 2022. The apoptosis paradox in cancer. *International Journal of Molecular Sciences* **23**:1328 DOI [10.3390/ijms23031328](https://doi.org/10.3390/ijms23031328).

Myers R, Grundy M, Rowe C, Coville CM, Bau L, Erbs P, Foloppe J, Balloul J-M, Story C, Coussios CC, Carlisle R. 2018. Ultrasound-mediated cavitation does not decrease the activity of small molecule, antibody or viral-based medicines. *International Journal of Nanomedicine* **13**:337–349 DOI [10.2147/IJN.S141557](https://doi.org/10.2147/IJN.S141557).

Nagata S. 2018. Apoptosis and clearance of apoptotic cells. *Annual Review of Immunology* **36**:489–517 DOI [10.1146/annurev-immunol-042617-053010](https://doi.org/10.1146/annurev-immunol-042617-053010).

Nagata S, Segawa K. 2021. Sensing and clearance of apoptotic cells. *Current Opinion in Immunology* **68**:1–8 DOI [10.1016/j.co.2020.07.007](https://doi.org/10.1016/j.co.2020.07.007).

Newton K, Strasser A, Kayagaki N, Dixit VM. 2024. Cell death. *Cell* **187**:235–256 DOI [10.1016/j.cell.2023.11.044](https://doi.org/10.1016/j.cell.2023.11.044).

Nguyen TT, Wei S, Nguyen TH, Jo Y, Zhang Y, Park W, Gariani K, Oh C-M, Kim HH, Ha K-T, Park KS, Park R, Lee I-K, Shong M, Houtkooper RH, Ryu D. 2023. Mitochondria-associated programmed cell death as a therapeutic target for age-related disease. *Experimental & Molecular Medicine* **55**:1595–1619 DOI [10.1038/s12276-023-01046-5](https://doi.org/10.1038/s12276-023-01046-5).

Padilla F, Brenner J, Prada F, Klibanov AL. 2023. Theranostics in the vasculature: bioeffects of ultrasound and microbubbles to induce vascular shutdown. *Theranostics* **13**:4079–4101 DOI [10.7150/thno.70372](https://doi.org/10.7150/thno.70372).

Pan R, Ryan J, Pan D, Wucherpfennig KW, Letai A. 2022. Augmenting NK cell-based immunotherapy by targeting mitochondrial apoptosis. *Cell* **185**:1521–1538 DOI [10.1016/j.cell.2022.03.030](https://doi.org/10.1016/j.cell.2022.03.030).

Peng C, Sun T, Vykhotseva N, Power C, Zhang Y, McDaniel N, Porter T. 2019. Intracranial non-thermal ablation mediated by transcranial focused ultrasound and phase-shift nanoemulsions. *Ultrasound in Medicine & Biology* **45**:2104–2117 DOI [10.1016/j.ultrasmedbio.2019.04.010](https://doi.org/10.1016/j.ultrasmedbio.2019.04.010).

Peng C, Zhao F, Li H, Li L, Yang Y, Liu F. 2022. HSP90 mediates the connection of multiple programmed cell death in diseases. *Cell Death & Disease* **13**:929 DOI [10.1038/s41419-022-05373-9](https://doi.org/10.1038/s41419-022-05373-9).

Peng Y, Zhou M, Yang H, Qu R, Qiu Y, Hao J, Bi H, Guo D. 2023. Regulatory mechanism of M1/M2 macrophage polarization in the development of autoimmune diseases. *Mediators of Inflammation* **2023**:8821610 DOI [10.1155/2023/8821610](https://doi.org/10.1155/2023/8821610).

Przystupski D, Ussowicz M. 2022. Landscape of cellular bioeffects triggered by ultrasound-induced sonoporation. *International Journal of Molecular Sciences* **23**:11222 DOI [10.3390/ijms231911222](https://doi.org/10.3390/ijms231911222).

Qin D, Li H, Xie H. 2018. Ultrasound-targeted microbubble destruction-mediated miR-205 enhances cisplatin cytotoxicity in prostate cancer cells. *Molecular Medicine Reports* **18**:3242–3250 DOI [10.3892/mmr.2018.9316](https://doi.org/10.3892/mmr.2018.9316).

Qiu F, Chen J, Cao J, Diao F, Huang P. 2020. Low-intensity low-frequency ultrasound enhances the chemosensitivity of gemcitabine-resistant ASPC-1 cells via PI3K/AKT/NF- κ B pathway-mediated ABC transporters. *Oncology Reports* **44**:1158–1168 DOI [10.3892/or.2020.7671](https://doi.org/10.3892/or.2020.7671).

Ramos C, Oehler R. 2024. Clearance of apoptotic cells by neutrophils in inflammation and cancer. *Cell Death Discovery* **10**:26 DOI [10.1038/s41420-024-01809-7](https://doi.org/10.1038/s41420-024-01809-7).

Ran L-W, Wang H, Lan D, Jia H-X, Yu S-S. 2018. Effect of RNA interference targeting STAT3 gene combined with ultrasonic irradiation and sonovue microbubbles on proliferation and apoptosis in keratinocytes of psoriatic lesions. *Chinese Medical Journal* **131**:2097–2104 DOI [10.4103/0366-6999.239297](https://doi.org/10.4103/0366-6999.239297).

Ran L-F, Xie X-P, Xia J-Z, Xie F-L, Fan Y-M, Wu F. 2023. T-lymphocytes from focused ultrasound ablation subsequently mediate cellular antitumor immunity after adoptive cell transfer immunotherapy. *Frontiers in Immunology* **14**:1155229 DOI [10.3389/fimmu.2023.1155229](https://doi.org/10.3389/fimmu.2023.1155229).

Ranjan K, Pathak C. 2024. Cellular dynamics of fas-associated death domain in the regulation of cancer and inflammation. *International Journal of Molecular Sciences* **25**:3228 DOI [10.3390/ijms25063228](https://doi.org/10.3390/ijms25063228).

Sahoo G, Samal D, Khandayataray P, Murthy MK. 2023. A review on caspases: key regulators of biological activities and apoptosis. *Molecular Neurobiology* **60**:5805–5837 DOI [10.1007/s12035-023-03433-5](https://doi.org/10.1007/s12035-023-03433-5).

Saliev T, Feril LB, Nabi G, Melzer A. 2013. Targeted manipulation of apoptotic pathways by using High Intensity Focused Ultrasound in cancer treatment. *Cancer Letters* **338**:204–208 DOI [10.1016/j.canlet.2013.04.016](https://doi.org/10.1016/j.canlet.2013.04.016).

Scribano CM, Wan J, Esbona K, Tucker JB, Lasek A, Zhou AS, Zasadil LM, Molini R, Fitzgerald J, Lager AM, Laffin JJ, Correia-Staudt K, Wisinski KB, Tevaarwerk AJ, O'Regan R, McGregor SM, Fowler AM, Chappell RJ, Bugni TS, Burkard ME, Weaver BA. 2021. Chromosomal instability sensitizes patient breast tumors to multipolar divisions induced by paclitaxel. *Science Translational Medicine* **13**:eabd4811 DOI [10.1126/scitranslmed.abd4811](https://doi.org/10.1126/scitranslmed.abd4811).

Segawa K, Nagata S. 2015. An apoptotic eat me signal: phosphatidylserine exposure. *Trends in Cell Biology* **25**:639–650 DOI [10.1016/j.tcb.2015.08.003](https://doi.org/10.1016/j.tcb.2015.08.003).

Sharma D, Tarapacki CM, Kandavel H, Panchalingam M, Kim HC, Cartar H, Kaffas AE, Czarnota GJ. 2023. Evaluating the effects of radiation and acoustically-stimulated microbubble therapy in an *in vivo* breast cancer model. *PLOS ONE* 18:e0277759 DOI 10.1371/journal.pone.0277759.

Shen Y, Pi Z, Yan F, Yeh C-K, Zeng X, Diao X, Hu Y, Chen S, Chen X, Zheng H. 2017. Enhanced delivery of paclitaxel liposomes using focused ultrasound with microbubbles for treating nude mice bearing intracranial glioblastoma xenografts. *International Journal of Nanomedicine* 12:5613–5629 DOI 10.2147/IJN.S136401.

Shen Z, Shao J, Zhang J, Qu W. 2020. Ultrasound cavitation enhanced chemotherapy: In vivo research and clinical application. *Experimental Biology and Medicine* 245:1200–1212 DOI 10.1177/1535370220936150.

Shi J, Fu C, Su X, Feng S, Wang S. 2021. Ultrasound-stimulated microbubbles inhibit aggressive phenotypes and promotes radiosensitivity of esophageal squamous cell carcinoma. *Bioengineered* 12:3000–3013 DOI 10.1080/21655979.2021.1931641.

Shi M, Liu B, Liu G, Wang P, Yang M, Li Y, Zhou J. 2016. Low intensity-pulsed ultrasound induced apoptosis of human hepatocellular carcinoma cells in vitro. *Ultrasonics* 64:43–53 DOI 10.1016/j.ultras.2015.07.011.

Siegmund D, Zaitseva O, Wajant H. 2023. Fn14 and TNFR2 as regulators of cytotoxic TNFR1 signaling. *Frontiers in Cell and Developmental Biology* 11:1267837 DOI 10.3389/fcell.2023.1267837.

Su Z, Xu T, Wang Y, Guo X, Tu J, Zhang D, Kong X, Sheng Y, Sun W. 2019. Low-intensity pulsed ultrasound promotes apoptosis and inhibits angiogenesis via p38 signaling-mediated endoplasmic reticulum stress in human endothelial cells. *Molecular Medicine Reports* 19:4645–4654 DOI 10.3892/mmr.2019.10136.

Tabuchi Y, Takasaki I, Zhao Q-L, Wada S, Hori T, Feril LB, Tachibana K, Nomura T, Kondo T. 2008. Genetic networks responsive to low-intensity pulsed ultrasound in human lymphoma U937 cells. *Cancer Letters* 270:286–294 DOI 10.1016/j.canlet.2008.05.018.

Tian H, Shang H, Chen Y, Wu B, Wang C, Wang X, Cheng W. 2023. Sonosensitizer nanoplatforms augmented sonodynamic therapy-sensitizing shikonin-induced necroptosis against hepatocellular carcinoma. *International Journal of Nanomedicine* 18:7079–7092 DOI 10.2147/IJN.S435104.

Vringer E, Tait SWG. 2023. Mitochondria and cell death-associated inflammation. *Cell Death and Differentiation* 30:304–312 DOI 10.1038/s41418-022-01094-w.

Wang P, Chen J, Zhong R, Xia Y, Wu Z, Zhang C, Yao H. 2024. Recent advances of ultrasound-responsive nanosystems in tumor immunotherapy. *European Journal of Pharmaceutics and Biopharmaceutics* 198:114246 DOI 10.1016/j.ejpb.2024.114246.

Wang M, Hou Z, Liu S, Liang S, Ding B, Zhao Y, Chang M, Han G, Kheraif AAA, Lin J. 2021a. A multifunctional nanovaccine based on L-Arginine-Loaded black mesoporous titania: ultrasound-triggered synergistic cancer sonodynamic therapy/gas therapy/immunotherapy with remarkably enhanced efficacy. *Small* 17:e2005728 DOI 10.1002/smll.202005728.

Wang J, Xie L, Shi Y, Ao L, Cai F, Yan F. 2021b. Early detection and reversal of cell apoptosis induced by focused ultrasound-mediated blood–brain barrier opening. *ACS Nano* **15**:14509–14521 DOI [10.1021/acsnano.1c04029](https://doi.org/10.1021/acsnano.1c04029).

Wang K, Xiong J, Lu Y, Wang L, Tian T. 2023a. SENP1-KLF4 signalling regulates LPS-induced macrophage M1 polarization. *The FEBS Journal* **290**:209–224 DOI [10.1111/febs.16589](https://doi.org/10.1111/febs.16589).

Wang R, Yang Y, Zhang Z, Zhao N, Wiemer EAC, Ben J, Ma J, Yuan L. 2023b. Major vault protein (MVP) suppresses aging- and estrogen deficiency-related bone loss through Fas-mediated apoptosis in osteoclasts. *Cell Death & Disease* **14**:604 DOI [10.1038/s41419-023-05928-4](https://doi.org/10.1038/s41419-023-05928-4).

Wang J, Zhao Z, Liu Y, Cao X, Li F, Ran H, Cao Y, Wu C. 2022. Mito-Bomb: a novel mitochondria-targeting nanosystem for ferroptosis-boosted sonodynamic antitumor therapy. *Drug Delivery* **29**:3111–3122 DOI [10.1080/10717544.2022.2126027](https://doi.org/10.1080/10717544.2022.2126027).

Wu F. 2014. High intensity focused ultrasound: a noninvasive therapy for locally advanced pancreatic cancer. *World Journal of Gastroenterology* **20**:16480–16488 DOI [10.3748/wjg.v20.i44.16480](https://doi.org/10.3748/wjg.v20.i44.16480).

Wu Z, Geng Y, Lu X, Shi Y, Wu G, Zhang M, Shan B, Pan H, Yuan J. 2019. Chaperone-mediated autophagy is involved in the execution of ferroptosis. *Proceedings of the National Academy of Sciences of the United States of America* **116**:2996–3005 DOI [10.1073/pnas.1819728116](https://doi.org/10.1073/pnas.1819728116).

Xi L, Han Y, Liu C, Liu Y, Wang Z, Wang R, Zheng Y. 2022. Sonodynamic therapy by phase-transition nanodroplets for reducing epidermal hyperplasia in psoriasis. *Journal of Controlled Release* **350**:435–447 DOI [10.1016/j.jconrel.2022.08.038](https://doi.org/10.1016/j.jconrel.2022.08.038).

Xiao W, Zhao L, Sun Y, Yang X, Fu Q. 2024. Stimuli-responsive nanoradiosensitizers for enhanced cancer radiotherapy. *Small Methods* **8**:2301131 DOI [10.1002/smtb.202301131](https://doi.org/10.1002/smtb.202301131).

Xie Y, Kang R, Klionsky DJ, Tang D. 2023. GPX4 in cell death, autophagy, and disease. *Autophagy* **19**:2621–2638 DOI [10.1080/15548627.2023.2218764](https://doi.org/10.1080/15548627.2023.2218764).

Xu X, Yu S, Liu X, Feng Y. 2021. Ultrasound-targeted microbubble destruction-mediated inhibition of livin expression accelerates ovarian cancer cell apoptosis. *Genetics Research* **2021**:7624346 DOI [10.1155/2021/7624346](https://doi.org/10.1155/2021/7624346).

Xue Q, Kang R, Klionsky DJ, Tang D, Liu J, Chen X. 2023. Copper metabolism in cell death and autophagy. *Autophagy* **19**:2175–2195 DOI [10.1080/15548627.2023.2200554](https://doi.org/10.1080/15548627.2023.2200554).

Yagolovich AV, Gasparian ME, Dolgikh DA. 2023. Recent advances in the development of nanodelivery systems targeting the trail death receptor pathway. *Pharmaceutics* **15**:515 DOI [10.3390/pharmaceutics15020515](https://doi.org/10.3390/pharmaceutics15020515).

Yao J, Yang Z, Huang L, Yang C, Wang J, Cao Y, Hao L, Zhang L, Zhang J, Li P, Wang Z, Sun Y, Ran H. 2021. Low-intensity focused ultrasound-responsive ferrite-encapsulated nanoparticles for atherosclerotic plaque neovascularization therapeutics. *Advanced Science* **8**:e2100850 DOI [10.1002/advs.202100850](https://doi.org/10.1002/advs.202100850).

Ye Q, Meng C, Shen Y, Ji J, Wang X, Zhou S, Jia L, Wang Y. 2016. Caveolin-1 mediates low-intensity ultrasound-induced apoptosis via downregulation of signal transducer

and activator of transcription 3 phosphorylation in laryngeal carcinoma cells. *Ultrasound in Medicine & Biology* 42:2253–2260 DOI 10.1016/j.ultrasmedbio.2016.04.017.

Yuan J, Ofengeim D. 2023. A guide to cell death pathways. *Nature Reviews. Molecular Cell Biology* 25:379–395 DOI 10.1038/s41580-023-00689-6.

Zeng Q, Ma X, Song Y, Chen Q, Jiao Q, Zhou L. 2022. Targeting regulated cell death in tumor nanomedicines. *Theranostics* 12:817–841 DOI 10.7150/thno.67932.

Zhang X, Bobeica M, Unger M, Bednarz A, Gerold B, Patties I, Melzer A, Landgraf L. 2021. Focused ultrasound radiosensitizes human cancer cells by enhancement of DNA damage. *Strahlentherapie Und Onkologie* 197:730–743 DOI 10.1007/s00066-021-01774-5.

Zhang T, Chen L, Zhang S, Xu Y, Fan Y, Zhang L. 2017. Effects of high-intensity focused ultrasound on cisplatin-resistant human lung adenocarcinoma in vitro and in vivo. *Acta Biochimica et Biophysica Sinica* 49:1092–1098 DOI 10.1093/abbs/gmx107.

Zhang Q, Fang G, Chen W, Zhong X, Long Y, Qin H, Ye J. 2020. The molecular effects of ultrasound on the expression of cellular proteome. *The Science of the Total Environment* 720:137439 DOI 10.1016/j.scitotenv.2020.137439.

Zhang Y, Zhao Y, Zhang Y, Liu Q, Zhang M, Tu K. 2022. The crosstalk between sonodynamic therapy and autophagy in cancer. *Frontiers in Pharmacology* 13:961725 DOI 10.3389/fphar.2022.961725.

Zhao L, Feng Y, Shi A, Zong Y, Wan M. 2015. Apoptosis induced by microbubble-assisted acoustic cavitation in k562 cells: the predominant role of the cyclosporin a-dependent mitochondrial permeability transition pore. *Ultrasound in Medicine & Biology* 41:2755–2764 DOI 10.1016/j.ultrasmedbio.2015.05.021.

Zhong Y-X, Liao J-C, Liu X, Tian H, Deng L-R, Long L. 2023. Low intensity focused ultrasound: a new prospect for the treatment of Parkinson's disease. *Annals of Medicine* 55:2251145 DOI 10.1080/07853890.2023.2251145.

Zhong X, Zhang M, Tian Z, Wang Q, Wang Z. 2019. The study of enhanced high-intensity focused ultrasound therapy by sonodynamic N2O microbubbles. *Nanoscale Research Letters* 14:381 DOI 10.1186/s11671-019-3219-0.