Efficacy of tanshinone IIA for myocardial ischemiareperfusion injury in rat models: a systematic review and meta-analysis (#84763)

First submission

Guidance from your Editor

Please submit by 14 May 2024 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

7 Figure file(s)

4 Table file(s)

14 Other file(s)

Systematic review or meta analysis

- Have you checked our policies?
- Is the topic of the study relevant and meaningful?
- Are the results robust and believable?

Vertebrate animal usage checks

- Have you checked the authors ethical approval statement?
- Were the experiments necessary and ethical?
- Have you checked our <u>animal research policies</u>?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Efficacy of tanshinone IIA for myocardial ischemia-reperfusion injury in rat models: aystematic review and meta-analysis

Xiaobin Zhang ¹, Hehe Jiang ¹, Linlin Zhang ¹, Chen Chen ¹, Mengzhen Xing ¹, Dongqing Du ¹, Yujie Li ¹, Yuning Ma ¹, Yuxia Ma ^{Corresp., 1}, Chunjing Li ^{Corresp., 1}

Corresponding Authors: Yuxia Ma, Chunjing Li Email address: 60050012@sdutcm.edu.cn, 60050067@sdutcm.edu.cn

Background: Myocardial ischemia-reperfusion injury (MIRI) is severe damage to the ischemic myocardium when blood flow is restored, and it is a major complication of reperfusion therapy for myocardial infarction. Tanshinone IIA is a major constituent extracted from Salvia Miltiorrhza Bunge. Tanshinone II ad garnered attention due to its preventative and therapeutic effects on cardiovascular diseases. In recent years, it has been used to treat MIRI in numerous animal studies. Therefore, we performed a metaanalysis on the application of tanshinone IIA in rats models with MIRI to assess the therapeutic effects of tanshinone IIA. **Methods:** A comprehensive search of PubMed, Web of Science, Embase, Cochrane Library, China National Knowledge Infrastructure database, Wanfang database, and Chinese scientific journal database was conducted to obtain studies of tanshinone IIA intervention in rats models with MIRI. We utilized SYRCLE's Risk of Bias tool to assess the quality of studies. Assessment of tanshinone IIA treatment efficacy based on superoxide dismutase (SOD), methane dicarboxylic aldehyde (MDA), and myocardial infarction area results; and subgroup analysis using ischemia duration, reperfusion duration, dosage, and route. **Results:** According to inclusion and exclusion criteria, eleven eligible studies were selected from 274 studies. In ratguodels with MIRI, tanshinone IIA dramatically boosted SOD levels while decreasing MDA levels and myocardial infarction area. In addition, the duration of myocardial ischemia and reperfusion duration impacted the efficacy of tanshinone IIA. At the same time, more highquality research studies are required to determine the effectiveness and guiding criteria of tanshinone IIA. Animal studies showed that tanshinone IIA had a significant therapeutic influence on ischemia duration of less than 40 min and reperfusion duration of less than 180 min and that it was more effective when supplied through intravenous injection, intraperitoneal injection, and intragastric at doses of above 5 mg/kg. Conclusions: Tanshinone IIA can enhance SOD activity and decline MDA levels to ameliorate oxidative stress damage during MIRI. In addition, tanshinone IIA could decrease myocardial

¹ Acupuncture and moxibustion and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China

infarction area, suggesting that it mitigated the damage caused by MIRI in rats and had a myocardial protective effect. These findings can further inform the MIRI treatment strategy.

1

2

Efficacy of Tanshinone IIA for Myocardial Ischemia-

Reperfusion Injury in Rats Models: A Systematic Review

and Meta-Analysis

- 4 Xiao-Bin Zhang¹, He-He Jiang¹, Lin-Lin Zhang¹, Chen Chen¹, Meng-Zhen Xing¹, Dong-Qing Du¹,
- 5 Yu-Jie Li¹, Yu-Ning Ma¹, Yu-Xia Ma¹, Chun-Jing Li¹

6

- ⁷ Acupuncture and moxibustion and Massage College of Shandong University of Traditional
- 8 Chinese Medicine, Jinan, Shandong, China.

9

- 10 Correspondences: Yu-Xia Ma (60050012@sdutcm.edu.cn); Chun-Jing Li (60050067@sdutc
- 11 m.edu.cn)
- 12 ABSTRCT
- 13 **Background:** Myocardial ischemia-reperfusion injury (MIRI) is severe damage to the ischemic
- 14 myocardium when blood flow is restored, and it is a major complication of reperfusion therapy for
- 15 myocardial infarction. Tanshinone IIA is a major constituent extracted from Salvia Miltiorrhza
- Bunge. Tanshinone IIA had garnered attention due to its preventative and therapeutic effects on
- 17 cardiovascular diseases. In recent years, it has been used to treat MIRI in numerous animal studies.
- Therefore, we performed a meta-analysis on the application of tanshinone IIA in rats models with
- 19 MIRI to assess the therapeutic effects of tanshinone IIA.
- 20 Methods: A comprehensive search of PubMed, Web of Science, Embase, Cochrane Library,
- 21 China National Knowledge Infrastructure database, Wanfang database, and Chinese scientific
- 22 journal database was conducted to obtain studies of tanshinone IIA intervention in rats models
- 23 with MIRI. We utilized SYRCLE's Risk of Bias tool to assess the quality of studies.
- 24 Assessment of tanshinone IIA treatment efficacy based on superoxide dismutase (SOD),
- 25 methane dicarboxylic aldehyde (MDA), and myocardial infarction area results; and
- 26 subgroup analysis using ischemia duration, reperfusion duration, dosage, and route.
- 27 **Results:** According to inclusion and exclusion criteria, eleven eligible studies were selected from
- 28 274 studies. In rats models with MIRI, tanshinone IIA dramatically boosted SOD levels while
- 29 decreasing MDA levels and myocardial infarction area. In addition, the duration of myocardial
- 30 ischemia and reperfusion duration impacted the efficacy of tanshinone IIA. At the same time, more

- 31 high-quality research studies are required to determine the effectiveness and guiding criteria of
- 32 tanshinone IIA. Animal studies showed that tanshinone IIA had a significant therapeutic influence
- on ischemia duration of less than 40 min and reperfusion duration of less than 180 min and that it
- was more effective when supplied through intravenous injection, intraperitoneal injection, and
- 35 intragastric at doses of above 5 mg/kg.
- 36 **Conclusions:** Tanshinone IIA can enhance SOD activity and decline MDA levels to ameliorate
- 37 oxidative stress damage during MIRI. In addition, tanshinone IIA could decrease myocardial
- 38 infarction area, suggesting that it mitigated the damage caused by MIRI in rats and had a
- 39 myocardial protective effect. These findings can further inform the MIRI treatment strategy.
- 40 **Keywords** Myocardial ischemia-reperfusion injury, Tanshinone IIA, Superoxide dismutase,
- 41 Methane dicarboxylic aldehyde, Myocardial infarction area, Systematic review, Meta-
- 42 analysis

43

44

Introduction

- 45 According to the World Health Organization (WHO), ischemic heart disease remains the primary
- 46 cause of death worldwide, accounting for 16% of all deaths (Wang et al. 2022). As the world's
- 47 population ages, the incidence of acute myocardial infarction rises annually (*Reynolds et al. 2017*).
- 48 Acute myocardial infarction therapies significantly influenced the global population's economic
- 49 burdens (Pasala et al. 2022). Prompt restoration of coronary blood supply is the most effective
- 50 method for preventing myocardial cell mortality due to myocardial ischemia injury. At this stage,
- 51 the coronary blood flow is restored chiefly using percutaneous coronary intervention, coronary
- artery bypass grafting operations, and thrombolytic technology (*Biscaglia et al. 2022*).
- 53 Myocardial ischemia-reperfusion injury (MIRI) is a secondary damage in ischemic heart disease.
- 54 It refers to the sudden restoration of blood flow to the ischemic myocardium, which can lead to
- 55 cardiac myocyte dysfunction, structural damage to cardiac myocyte cells, and cell death, causing
- deterioration of cardiac function (Evans et al. 2020; Liu et al. 2018). The cellular and molecular
- 57 events underlying MIRI are complex and driven by multiple pathways, such as oxygen free
- 58 radicals, energy metabolism disorder, calcium overload, autophagy, apoptosis mitochondrial
- dysfunction, microvascular injury, etc (Chen et al. 2023; He et al. 2022). The precise
- 60 mechanism is not yet completely understood. There is no currently comprehensive treatment for
- 61 MIRI.

- 62 Tanshinone IIA is a lipid-soluble diterpenoid isolated from traditional Chinese medicine Salvia
- 63 Miltiorrhza Bunge (*Huang et al. 2022*). Through anti-inflammatory, lipid-regulating, antioxidant,
- and anti-apoptotic mechanisms, among others, it can play a preventive role in many cardiovascular
- disorders (*Li et al. 2018*). It is frequently used to treat people with cardiovascular disease (*Ren et al. 2018*).
- 66 al. 2019).
- 67 MIRI could affect indications such as oxidative stress and myocardial infarction area. The
- 68 myocardial infarction area can directly indicate the severity of MIRI. During ischemia, reactive
- 69 oxygen species and reactive nitrogen species, such as superoxide anions, and nitric oxide, are
- 70 overproduced and impair redox balance, thus leading to oxidative stress (Chen et al. 2021).
- 71 Superoxide dismutase (SOD) and methane dicarboxylic aldehyde (MDA) are essential oxidative
- 72 stress markers (*Tian et al. 2019*).
- 73 This study was undertaken by doing an exhaustive literature review on the intervention of
- 74 tanshinone IIA in MIRI rats. Its therapeutic effects on rats models with MIRI were systematically
- 75 evaluated in the hope of providing medical evidence for its clinical application.

76 Materials and methods

77 Protocol and registration

- 78 This article is a meta-analysis according to Reporting Items for Systematic Reviews and Meta-
- 79 Analyses (PRISMA)(*Page et al. 2021*). The review protocol was registered with the International
- 80 Prospective Register of Systematic Reviews (PROSPERO) (registration number:
- 81 CRD42022344447).

82 Search strategy

- 83 The computers were employed to search databases such as PubMed, Web of Science, Cochrane
- 84 Library, Embase, China National Knowledge Infrastructure (CNKI), Wanfang database
- 85 (Wanfang), and Chinese Scientific Journals database (VIP). The search period spanned from the
- launch of the individual databases to July 25, 2022. All searches were conducted using both subject
- and free words. The search phrase will include three components: intervention strategy, illness,
- and animal species. The only permitted languages were English and Chinese. Two authors (XB,
- 89 Zhang and HH, Jiang) separately searched English and Chinese databases for all relevant articles
- 90 using the following terms. The retrieval words include: "Myocardial reperfusion Injury," "Injuries,
- 91 Myocardial Reperfusion," "Myocardial Reperfusion Injuries," "Reperfusion Injuries,

106

- 92 Myocardial," "Myocardial Ischemic Reperfusion Injury," "Reperfusion Injury, Myocardial,"
- 93 "Injury, Myocardial Reperfusion," "Rats," "Ratt," "Rattus," "Rattus norvegicus," "Rats, Norway,"
- 94 "Rats, Laboratory," "Laboratory Rat," "Laboratory Rats," "Rat, Laboratory," "tanshinone IIA."
- 95 The detailed search strategy is provided in Table S1.

96 Inclusion and Exclusion Criteria

- 97 Included studies met the following criteria: (1) Rats models with MIRI, specifically by ligation of
- 98 the left anterior descending coronary artery to cause ischemia and reperfusion; (2) Tanshinone IIA
- 99 as an intervention with no restrictions in terms of dosage, route of administration, or duration of
- treatment; (3) Randomized controlled trials; (4) Superoxide dismutase (SOD), methane
- dicarboxylic aldehyde (MDA) and myocardial infarct area as one of the outcome measures.
- 102 The following criteria were used to exclude studies: (1) Animal species were not rats;
- 103 (2) Tanshinone IIA combined with other intervention therapies; (3) The study of
- 104 clinical case reports, duplicates, reviews, and unrelated studies; (4) Not English and
- 105 Chinese studies, published after July 25, 2022.

Study selection and data extraction

- 107 Two researchers (XB, Zhang and LL, Zhang) independently performed the literature
- 108 search, data extraction, and cross-checking. With the assistance of a third party,
- 109 contentious matters were discussed and settled (CJ, Li). Using Endnote X9 software,
- duplicate material was filtered away to start the screening process. The second phase
- 111 consisted of reading the titles and abstracts of the literature to eliminate unrelated
- works. Finally, the whole text of the article was reviewed and evaluated against the
- inclusion criteria to find those that met them.

114 Assessment of Risk of Bias in Individual Studies

- 115 The SYRCLE's Risk of Bias tool was employed to evaluate the risk bias of
- experimental animal research (Sun et al. 2020). Two authors (XB, Zhang and C, Chen)
- independently assessed the quality of the included studies using the SYRCLE's risk
- of bias tool, which analyzed sequence generation, baseline characteristics, allocation
- 119 concealment, random housing, blinding, random outcome assessments, incomplete
- outcome data, selective outcome reporting, and other sources of bias. Disagreements
- on quality assessment were resolved by discussion and agreement. A "yes" indicated
- that the risk of bias in this study was low, a "no" suggested that the risk of bias was

- 123 high, and an "unclear" meant that there were insufficient details to ascertain the
- 124 study's risk of bias.

125 Statistical analysis

- The meta-analysis was carried out using the RevMan 5.4 and Stata 16.0 software.
- 127 Compilation of data based on the relative risk (relative risk, RR) with a 95%
- 128 confidence interval (confidence interval, CI). Standard mean difference (SMD) or
- mean difference (MD) and 95% CI were implemented on measurement data. When the
- heterogeneity is minimal (p > 0.1, $I^2 < 50\%$), a fixed effect model is used to combine statistics;
- when the heterogeneity is substantial ($p \le 0.1$, $I^2 \ge 50\%$), a random effect model is employed.
- 132 Meta-analysis applying the random-effects model will be conducted to aggregate RR. To identify
- the origins of heterogeneity, subgroup and sensitivity analyses were performed. Using Egger's test
- and funnel plots, publication bias was assessed.

Results

Study selection

- 137 Two hundred and seventy-four articles were obtained based on the specified article search strategy.
- 138 Initially, 78 duplicates were eliminated through Endnote X9 software. Secondly, reviewing the
- titles and abstracts of the articles resulted in the elimination of 153 articles. Reading the whole
- article led to the elimination of 32 articles. Eventually, 11 articles were included in this meta-
- 141 analysis (Fig. 1).

142

143

135

136

Study Characteristics

- 144 This meta-analysis consisted of eleven articles, nine written in Chinese (Dai et al. 2013; Ding et
- al. 2020; Fu 2006; Hu et al. 2015; Jiao 2016; Ma et al. 2017; Tang et al. 2017; Yang 2010; Zhang
- 46 & Zhang 2010) and two written in English (Li et al. 2016; Yuan et al. 2014). There were a total of
- 147 378 rats enumerated, with 137 in the control group and 241 in the experimental group. Tanshinone
- 148 IIA was applied to the experimental group, whereas the control group was given normal saline,
- blank, or carboxymethylcellulose sodium. The technique described in the included article for
- establishing the rats models with MIRI was ligation and release of the left anterior descending
- 151 coronary artery. SOD was documented as an outcome measure in six investigations, MDA in five,
- and myocardial infarct area in six. The characteristics of the included articles are described in

153 Table 1.

154

Quality Evaluation

- 155 The SYRCLE's Risk of Bias tool was applied to assess the risk of bias in 11 articles.
- One study (Tang et al., 2017) described the randomization method, while other studies
- 157 just illustrated randomization without describing the randomization method. The
- experimental group and the control group possessed identical baseline characteristics.
- 159 Each study presented its findings precisely and comprehensively. None of the studies
- indicated any other bias, so they were all classified as "low risk." None of the studies
- provided information regarding allocation concealment, whether animals were housed
- 162 randomly during the experiment, whether caregivers and/or investigators were
- blinded, random outcome assessment, or blinding of outcome assessment, hence they
- were all deemed as "unclear" (Fig. 2). Overall, the included articles were not of
- particularly high quality. In the included studies, some flaws in the design and
- implementation of animal experimental methodology need to be addressed to translate
- 167 fundamental research into clinical investigations feasible.

168

169

170

Meta-Analysis of Primary Outcomes

Superoxide Dismutase

- 171 Six of the included studies (Ding et al., 2020; Tang et al., 2017; Jiao et al., 2016; Hu et al., 2015;
- 172 Dai et al., 2013; Fu et al., 2006) reported the impact of tanshinone IIA on SOD levels intervention
- in rats models with MIRI (experimental group, n = 123; control group, n = 123). Units:
- 174 U/mol. Due to the heterogeneity of the articles (p < 0.00001, $I^2 = 100\%$). We performed the
- subgroup analysis to investigate the sources of heterogeneity based on ischemia duration (15 min
- 176 \leq time \leq 30 min, 30 min \leq time \leq 40 min or 40 min \leq time \leq 45 min), reperfusion duration (30
- $178 \quad \ \ ^{1} \cdot d^{\text{-}1} \leq dosage \leq 20 \ mg \cdot kg^{\text{-}1} \cdot d^{\text{-}1}, \ 20 mg \cdot kg^{\text{-}1} \cdot d^{\text{-}1} \leq dosage \leq 30 mg \cdot kg^{\text{-}1} \cdot d^{\text{-}1} \text{ or } 30 mg \cdot kg^{\text{-}1} \cdot d^{\text{-}1} \leq dosage \leq 30 mg \cdot kg^{\text{-}1} \cdot d^{\text{-}1} \leq dosage$
- $179 \le 60 \text{mg} \cdot \text{kg}^{-1} \cdot \text{d}^{-1}$) and route (i.v, i.g or i.p). The results showed that heterogeneity was significantly
- lower in the subgroup with the ischemic duration of 40 45 min (Table 2) (Supplementary Fig.
- 181 S1–S4), suggesting that this factor may be the cause of heterogeneity. However, it should be noted
- 182 that there was still considerable heterogeneity in the remaining subgroups (Table 2)
- 183 (Supplementary Fig. S1-S4), suggesting that heterogeneity might come from other factors. As

SOD could be susceptible to many reasons. We considered that variations in the testing instruments and methodologies employed in various studies may have been one of the main causes. Aside from the factors listed above, we found no other significant methodological differences between the six studies. Therefore, we employed a random-effects model to combine the data from six studies. According to this meta-analysis, the tanshinone IIA group was able to increase SOD levels significantly more than the control group (MD = 21.95, 95% CI [14.69-29.20], p < 0.00001) (Fig. 3).

191 192

Methane Dicarboxylic Aldehyde

- 193 Five studies (Jiao et al., 2016; Hu et al., 2015; Zhang et al., 2010; Yang et al., 2010; Fu et al.,
- 194 2006) investigated the effect of tanshinone IIA on MDA levels after intervention in rats models
- with MIRI (experimental group, n = 123; control group, n = 123). Unit: nmol/ml. Because of the
- heterogeneity of the results (p < 0.00001, $I^2 = 99\%$), We conducted a subgroup analysis to ascertain
- 197 the causes of heterogeneity according to ischemia duration (15 min \leq time \leq 30 min, 30 min \leq time
- 198 < 40 min or 40 min \le time \le 45 min), reperfusion duration (30 min \le time < 120 min, 120min \le
- 199 time < 180min or 180min \leq time \leq 480min), dosage (5 mg·kg⁻¹·d⁻¹ \leq dosage \leq 20 mg·kg⁻¹·d⁻¹,
- $200 \quad 20mg \cdot kg^{-1} \cdot d^{-1} \leq dosage \leq 30mg \cdot kg^{-1} \cdot d^{-1} \text{ or } 30mg \cdot kg^{-1} \cdot d^{-1} \leq dosage \leq 60mg \cdot kg^{-1} \cdot d^{-1}) \text{ and route (i.v, figure 1)}$
- i.g or i.p). The results showed a decrease in heterogeneity in the subgroup with the dosage of 30 -
- 202 60 mg/kg and route of i.v (Table 3) (Supplementary Fig. S5–S8), suggesting that these factors may
- be responsible for the heterogeneity. However, substantial heterogeneity persisted in the remaining
- subgroups (Table 3) (Supplementary Fig. S5–S8), suggesting that heterogeneity may have other
- 205 causes. We made use of a random-effects model. Meta-analysis indicated that the tanshinone IIA
- 206 group significantly reduced MDA levels compared to the control group (MD = -1.44, 95% CI [-
- 207 2.06 to -0.82], p < 0.00001) (Fig. 4).

208

209

Meta-Analysis of Secondary Outcomes

210 Myocardial infarction area

- 211 Six of the included studies (Ding et al., 2020; Ma et al., 2017; Li et al., 2016; Hu et al.,
- 212 2015; Yuan et al., 2014; Yang et al., 2010) examined the impact of tanshinone IIA on
- 213 myocardial infarction area intervention in rats models with MIRI (experimental
- 214 group, n = 154; control group, n = 170). Units: %. We executed a subgroup analysis

to determine the origins of heterogeneity based on ischemia duration (15 min ≤ time < 30 min, 215 30 min < time < 40 min or 40 min < time < 45 min), reperfusion duration (30 min < time < 120 216 min, 120min \leq time \leq 180min or 180min \leq time \leq 480min), dosage (5 mg·kg⁻¹·d⁻¹ \leq dosage \leq 20 217 $mg \cdot kg^{-1} \cdot d^{-1}$, $20mg \cdot kg^{-1} \cdot d^{-1} \le dosage \le 30mg \cdot kg^{-1} \cdot d^{-1}$ or $30mg \cdot kg^{-1} \cdot d^{-1} \le dosage \le 60mg \cdot kg^{-1} \cdot d^{-1}$) 218 and route (i.v, i.g or i.p), as the results were heterogeneous (p < 0.00001, $I^2 = 100\%$). The 219 results showed that heterogeneity was reduced in the subgroup with an ischemia duration of 40 -220 45 min (Table 4) (Supplementary Fig. S9–S12), implying that this factor may be the source of 221 heterogeneity. However, there was also substantial heterogeneity in the remaining subgroups 222 (Table 4) (Supplementary Fig. S9–S12), demonstrating that heterogeneity may have additional 223 sources. A random-effects model was chosen. Compared to the control group, the 224 tanshinone IIA group was able to significantly reduce myocardial infarction area (MD 225 = -10.00, 95% CI [-13.55 to -6.45], p < 0.00001) (Fig. 5). 226

227 228

231

Publication bias analysis

The publication bias of the SOD, MDA, and myocardial infarction area meta-analysis 229 was evaluated using Egger's test and funnel plots, respectively. The results indicated 230 that funnel plots and Egger's tests for each SOD, MDA, and myocardial infarction 232 area revealed poor symmetry in the distribution of the literature, indicating a degree of publication bias that may be attributable to factors such as the poor quality of the 233 included articles (Fig. 6). 234

235 236

237

238

239

240

241

242

243

Sensitivity analysis

To evaluate the consistency and reliability of the meta-analysis results, sensitivity tests were carried out on the SOD, MDA, and myocardial infarction area contained in this study. The evaluated meta-analyses for each indication were eliminated one by one, and the remaining studies were combined. The results of the sensitivity research indicated that the sensitivity analysis did not significantly affect the combined effect sizes for the SOD, MDA, and myocardial infarction area. This demonstrated that the conclusions of this meta-analysis were more dependable (Fig. 7).

244

245

Discussion

This systematic review and meta-analysis researched the success factors of animal studies by 246 collecting studies of tanshinone IIA in the treatment of MIRI rats, summarizing its efficacy and 247 utility, and providing solid evidence for future MIRI treatments. The left anterior descending 248 coronary artery was used as the ligation and release site in the rat models with MIRI included in 249 this systematic review and meta-analysis to valid the the validity and reasonableness of the input 250 data, which could reduce bias. SOD was the principal oxygen radical scavenging enzyme in the 251 organism. MDA was a crucial indicator of the severity of the free radical injury. In MIRI, the 252 cellular oxidative stress equilibrium can be perturbed, and both SOD and MDA levels can be used 253 as indicators of the oxidative stress equilibrium in the body (Zhang et al. 2022). The myocardial 254 infarction area is a direct reflection of the severity of MIRI. Therefore, we executed a systematic 255 review and meta-analysis to gather information regarding tanshinone IIA therapy in rat models 256 with MIRI. 257 Oxidative stress is an important pathogenic factor in myocardial injury. Myocardial ischemia and 258 hypoxia can generate massive amounts of oxygen radicals, resulting in an increase in the 259 permeability of cardiac cell membranes and even necrosis (*Petrosillo et al. 2005*). SOD eliminates 260 261 free radicals and inhibits the formation of more potent hydroxyl radicals (Fujii et al. 2022). Elevated SOD levels can increase the body's antioxidant capacity, thereby reducing the degree of 262 263 myocardial injury. For this reason, SOD was chosen as one of the primary endpoints. The results indicated that tanshinone IIA treatment of the rats models with MIRI increased serum 264 265 SOD levels. Similar outcomes were observed in the subgroups of ischemia duration, dosage, and route. However, when subgroup analysis was undertaken according to reperfusion duration, the 266 results for the 180 - 480 min category were negative (MD = 5.47, 95% CI [-0.56 to 11.50], p =267 0.08). Noting that this group consisted of only one study, this conclusion was 268 269 relatively unreliable and would need to be confirmed by additional research in the future. In addition, we discovered that the duration of ischemia might be a cause of 270 heterogeneity and that subgroup analysis only partially decreased heterogeneity. We 271 speculated that this may have been caused by measurement errors at various research institutions. 272 MDA is the final product of lipid peroxidation by oxygen radicals, which can induce cell 273 274 membrane degeneration and alter membrane fluidity and permeability, so indicating the extent of oxygen radical injury to cardiac myocytes (Nehra et al. 2022; Tawfik et al. 2021). SOD can be 275 used as an indicator of the body's antioxidant capacity, while MDA can be used to measure levels 276

of free radicals. Consequently, MDA was chosen as one of the primary outcomes of this 277 study. The results showed that tanshinone IIA could reduce MDA levels in the serum 278 of rats models with MIRI, with consistent findings across subgroups of reperfusion 279 duration, dosage, and route. However, subgroup analysis revealed that tanshinone IIA did not 280 significantly decrease MDA levels in the subgroup with ischemia duration between 40 and 45 281 minutes (MD = -1.12, 95% CI [-2.27 to 0.03], p = 0.06). The results suggested that tanshinone 282 IIA may be less efficient in improving MIRI in the presence of longer ischemic times. However, 283 this subgroup only contained three studies, so the validity of this conclusion needed to be 284 confirmed by further research. Even though subgroup analysis served to reduce subgroup 285 heterogeneity, there were still subgroups with substantial heterogeneity. We thought that the 286 source of heterogeneity may be some variation in the measuring techniques used 287 across research. 288 The myocardial infarction area reflected the extent of MIRI and provided a visual representation 289 of the tanshinone IIA's therapeutic effect. The results indicated that tanshinone IIA reduced 290 the area of myocardial infarction in rats models with MIRI, with consistent findings 291 292 across subgroups of ischemia duration, reperfusion duration, dosage, and route. Furthermore, we found that the duration of ischemia may be a factor contributing to 293 294 heterogeneity. Nevertheless, there was still unexplained variation, which we hypothesized was due to variations in detection equipment and methodologies across studies. 295 296 This was the first systematic review of the effects of tanshinone IIA on rats models with MIRI. The included articles were subject to a thorough filtering and inspection 297 298 procedure. It can be inferred that the overall quality of the included articles was not particularly excellent. Despite the rigorous evaluation of the effect of tanshinone IIA 299 300 intervention on the rats models with MIRI, this study had a few drawbacks. Shortcomings of this study: Firstly, only articles written in Chinese and English were sought. The search for grey 301 articles and conference articles was insufficient due to the difficulty of acquiring both. Secondly, 302 certain results were highly heterogeneous, with a few included publications and outcome indicators 303 showing some publication bias. Thirdly, this article was a meta-analysis review based on animal 304 305 experiments that may have been affected by the quality of the original study design, resulting in a lower quality overall and potentially affecting the accuracy of the results. The fourth common 306 limitation of these studies was the absence of descriptions of allocation concealment, blinding for 307

- 308 caregivers and/or investigators, random housing, and blinding for outcome assessment.
- Therefore, the included reports were classified as uncertain-risk. A larger sample size and higher-
- 310 quality studies are required to further validate the results and establish the validity of the study's
- 311 conclusions.

312 **CONCLUSION**

- 313 In this meta-analysis, eleven articles were considered for inclusion. More reliable preclinical
- evidence was acquired through the study of SOD, MDA, and myocardial infarction area. A
- comprehensive examination of the use of tanshinone IIA in rats models with MIRI found
- 316 great efficacy in the treatment of tanshinone IIA when the ischemia duration was less
- than 40 min and the reperfusion duration was less than 180 min. Tanshinone IIA had
- a significant therapeutic effect when administered intraperitoneal injection, intragastric,
- and intravenous injection at doses above 5 mg/kg. Consequently, the transference of tanshinone
- 320 IIA from the laboratory to the clinical treatment of MIRI is of considerable value.

321 **Funging**

- 322 This study was supported by the Shandong Natural Science Foundation Joint Fund Project
- 323 (ZR2021LZ044), Jinan's "20 articles of higher education" funded projects (2020GXRC005). The
- funders had no role in study design, data collection and analysis, decision to publish, or preparation
- 325 of the manuscript.

326 Grant Disclosures

- 327 The following grant information was disclosed by the authors:
- 328 Shandong Natural Science Foundation Joint Fund Project: ZR2021LZ044.
- Jinan's "20 articles of higher education" funded projects: 2020GXRC005.

330 Competing Interests

331 The authors declare that they have no competing interests.

332 **Author Contributions**

- 333 Xiao-Bin Zhang conceived and designed the experiments, performed the experiments, prepared
- figures and/or tables, and approved the final draft.
- 335 He-He Jiang prepared performed the experiments, prepared figures and/or tables, and approved
- 336 the final draft.
- Lin-Lin Zhang performed the experiments, authored or reviewed drafts of the article, and approved
- 338 the final draft.

339	Chen Chen performed the experiments, authored or reviewed drafts of the article, and approved
340	the final draft.
341	Meng-Zhen Xing analyzed the data, prepared figures and/or tables, and approved the final draft.
342	Dong-Qing Du analyzed the data, authored or reviewed drafts of the article, and approved the final
343	draft.
344	Yu-Jie Li analyzed the data, prepared figures and/or tables, and approved the final draft.
345	Yu-Ning Ma analyzed the data, prepared figures and/or tables, and approved the final draft.
346	Yu-Xia Ma conceived and designed the experiments, prepared figures and/or tables, and
347	approved the final draft
348	Chun-Jing Li conceived and designed the experiments, prepared figures and/or tables, and
349	approved the final draft
350	Data Availability
351	The following information was supplied regarding data availability:
352	The raw measurements are available in the Supplemental Files.
353	
354	REFERENCES
355	Biscaglia S, Uretsky BF, Tebaldi M, Erriquez A, Brugaletta S, Cerrato E, Quadri G, Spitaleri
356	G, Colaiori I, Di Girolamo D, Scoccia A, Zucchetti O, D'Aniello E, Manfrini M,
357	Pavasini R, Barbato E, and Campo G. 2022. Angio-Based Fractional Flow Reserve,
358	Functional Pattern of Coronary Artery Disease, and Prediction of Percutaneous Coronary
359	Intervention Result: a Proof-of-Concept Study. Cardiovasc Drugs Ther 36:645-653 DOI
360	10.1007/s10557-021-07162-6.
361	Chen J, Huang Q, Li J, Yao Y, Sun W, Zhang Z, Qi H, Chen Z, Liu J, Zhao D, Mi J, and Li
362	X. 2023. Panax ginseng against myocardial ischemia/reperfusion injury: A review of
363	preclinical evidence and potential mechanisms. J Ethnopharmacol 300: 115715 DOI
364	300:115715. 10.1016/j.jep.2022.115715.
365	Chen L, Shi D, and Guo M. 2021. The roles of PKC-δ and PKC-ε in myocardial
366	ischemia/reperfusion injury. Pharmacol Res 170:105716 DOI
367	10.1016/j.phrs.2021.105716.
368	Dai NF, Chen W, Zheng ZF, and Zang QW. 2013. The protective effect of tanshinon II A
369	postconditioning on myocardial ischemica/reperfusion injury in rats. Chinese Journal of

- 370 *Cardiovascular Research* 11:549-551 DOI 10.3969/j.issn.1672-5301.2013.07.020.
- 371 **Ding HS, Wang YJ, Huang ZY. 2020.** Effects of Tanshinone IIA on the Expressions of HMGB1,
- 372 IL-1β and SOD in Myocardial Ischemia-reperfusion Injury in Rats. *Journal of Emergency*
- 373 in Traditional Chinese Medicine 29:776-778,801 DOI 10.3969/j.issn.1004-
- 374 745X.2020.05.008.
- Evans S, Weinheimer CJ, Kovacs A, Williams JW, Randolph GJ, Jiang W, Barger PM, and
- Mann DL. 2020. Ischemia reperfusion injury provokes adverse left ventricular remodeling
- in dysferlin-deficient hearts through a pathway that involves TIRAP dependent signaling.
- 378 Sci Rep 10:14129 DOI 10.1038/s41598-020-71079-7.
- 379 Fu JJ. 2006. Fu JJ. Effect of Tanshinone IIA on cardiac apoptosis induced by oxidative stress
- 380 [Masters]: Sun Yat-sen University. Available from:
- https://d.wanfangdata.com.cn/thesis/ChJUaGVzaXNOZXdTMjAyMzAxMTISB1k5MjQ
- 382 zMDcaCGxocidhd3Bv.
- Fujii J, Homma T, and Osaki T. 2022. Superoxide Radicals in the Execution of Cell Death.
- *Antioxidants (Basel)* 11(3):501 DOI 10.3390/antiox11030501.
- 385 He J, Liu D, Zhao L, Zhou D, Rong J, Zhang L, and Xia Z. 2022. Myocardial
- ischemia/reperfusion injury: Mechanisms of injury and implications for management
- 387 (Review). Exp Ther Med 23:430 DOI 10.3892/etm.2022.11357.
- 388 Hu HL, Qian G, Tang GM, and Zhou BQ. 2015. Effect of tanshinone IIA on HMGB1 in rats
- after myocardial ischemia and reperfusion. *Chinese Journal of Gerontology* 35:4185-4187
- 390 DOI 10.3969/j.issn.1005-9202.2015.15.033.
- 391 Huang X, Deng H, Shen QK, and Quan ZS. 2022. Tanshinone IIA: Pharmacology, Total
- 392 Synthesis, and Progress in Structure-modifications. Curr Med Chem 29:1959-1989 DOI
- 393 10.2174/0929867328666211108110025.
- 394 Jiao SF. 2016. The mechanism of AMPKa2 mediating Tanshinone IIA against myocardial
- ischemia/reperfusion injury [Masters]. Nanchang University. Available from:
- 396 https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201901&filename=101619
- 397 5491.nh.
- 398 Li Q, Shen L, Wang Z, Jiang HP, and Liu LX. 2016. Tanshinone IIA protects against
- myocardial ischemia reperfusion injury by activating the PI3K/Akt/mTOR signaling
- 400 pathway. Biomed Pharmacother 84:106-114 DOI 10.1016/j.biopha.2016.09.014.

401	Li ZM, Xu SW, and Liu PQ. 2018. Salvia miltiorrhizaBurge (Danshen): a golden herbal medicine
402	in cardiovascular therapeutics. Acta Pharmacol Sin 39:802-824 DOI
403	10.1038/aps.2017.193.
404	Liu Q, Li Z, Liu Y, Xiao Q, Peng X, Chen Q, Deng R, Gao Z, Yu F, and Zhang Y. 2018.
405	Hydromorphine postconditioning protects isolated rat heart against ischemia-reperfusion
406	injury via activating P13K/Akt/eNOS signaling. Cardiovasc Ther 36:e12481 DOI
407	10.1111/1755-5922.12481.
408	Ma CX, Sun Y, Chen XB, and ZHang L. 2017. Study on the protective effect of tanshinone IIA
409	pretreatment on myocardial ischemia-reperfusion injury. Shaanxi Medical Journal
410	46:1358-1359 DOI 10.3969/j.issn.1000-7377.2017.10.014.
411	Nehra S, Bhardwaj V, Kalra N, Ganju L, Bansal A, Saxena S, and Saraswat D. 2022.
412	Correction to: Nanocurcumin protects cardiomyoblasts H9c2 from hypoxia-induced
413	hypertrophy and apoptosis by improving oxidative balance. J Physiol Biochem 78:707 DOI
414	10.1007/s13105-022-00886-5.
415	Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L,
416	Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson
417	A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA,
418	Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, and Moher D. 2021. The
419	PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Bmj
420	372:n71 DOI 10.1136/bmj.n71.
421	Pasala S, Cooper LB, Psotka MA, Sinha SS, deFilippi CR, Tran H, Tehrani B, Sherwood M,
422	Epps K, Batchelor W, and Damluji AA. 2022. The influence of heart failure on clinical
423	and economic outcomes among older adults ≥75 years of age with acute myocardial
424	infarction. Am Heart J 246:65-73 DOI 10.1016/j.ahj.2021.11.021.
425	Petrosillo G, Di Venosa N, Ruggiero FM, Pistolese M, D'Agostino D, Tiravanti E, Fiore T,
426	and Paradies G. 2005. Mitochondrial dysfunction associated with cardiac
427	ischemia/reperfusion can be attenuated by oxygen tension control. Role of oxygen-free
428	radicals and cardiolipin. Biochim Biophys Acta 1710:78-86 DOI
429	10.1016/j.bbabio.2005.10.003.
430	Ren J, Fu L, Nile SH, Zhang J, and Kai G. 2019. Salvia miltiorrhiza in Treating Cardiovascular
431	Diseases: A Review on Its Pharmacological and Clinical Applications. Front Pharmacol

432	10:753 DOI 10.3389/fphar.2019.00753.
433	Reynolds K, Go AS, Leong TK, Boudreau DM, Cassidy-Bushrow AE, Fortmann SP,
434	Goldberg RJ, Gurwitz JH, Magid DJ, Margolis KL, McNeal CJ, Newton KM,
435	Novotny R, Quesenberry CP, Jr., Rosamond WD, Smith DH, VanWormer JJ,
436	Vupputuri S, Waring SC, Williams MS, and Sidney S. 2017. Trends in Incidence of
437	Hospitalized Acute Myocardial Infarction in the Cardiovascular Research Network
438	(CVRN). Am J Med 130:317-327 DOI 10.1016/j.amjmed.2016.09.014.
439	Sun T, Wang P, Deng T, Tao X, Li B, and Xu Y. 2020. Effect of Panax notoginseng Saponins
440	on Focal Cerebral Ischemia-Reperfusion in Rat Models: A Meta-Analysis. Front
441	Pharmacol 11:572304 DOI 10.3389/fphar.2020.572304.
442	Tang SM, Wu YM, Zhou TY, Li XY, Meng XB, and Zhang H. 2017. The protective effect of
443	Tanshinone IIA on oxidative stress induced by myocardial ischemia reperfusion injury of
444	rats. China Medical Herald 14:8-11. Available from:
445	https://kns.cnki.net/kcms2/article/abstract?v = 3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iA
446	$EhECQAQ9aTiC5BjCgn0RucHHrrrF1EUMqoGgYNxeMA7Y999afDTvCGDcpJLz1_0\\$
447	&uniplatform=NZKPT.
448	Tawfik MK, Makary S, and Keshawy MM. 2021. Upregulation of antioxidant nuclear factor
449	erythroid 2-related factor 2 and its dependent genes associated with enhancing renal
450	ischemic preconditioning renoprotection using levosimendan and cilostazol in an
451	ischemia/reperfusion rat model. Arch Med Sci 17:1783-1796 DOI 10.5114/aoms/111373.
452	Tian L, Cao W, Yue R, Yuan Y, Guo X, Qin D, Xing J, and Wang X. 2019. Pretreatment with
453	Tilianin improves mitochondrial energy metabolism and oxidative stress in rats with
454	myocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1 alpha signaling
455	pathway. J Pharmacol Sci 139:352-360 DOI 10.1016/j.jphs.2019.02.008.
456	Wang Z, Yao M, Jiang L, Wang L, Yang Y, Wang Q, Qian X, Zhao Y, and Qian J. 2022.
457	Dexmedetomidine attenuates myocardial ischemia/reperfusion-induced ferroptosis via
458	AMPK/GSK-3beta/Nrf2 axis. Biomed Pharmacother 154:113572 DOI
459	10.1016/j.biopha.2022.113572.
460	Yang P. 2010. Study on mechanism and the protective effect of tanshinone II A and Prohibitin
461	against myocardial ischemia/reperfusion injury [Doctor]. Southern Medical University.
462	Available from:

163	https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C447WN1SO36whNHQvLEhcO
164	$y4v9J5uF5OhrnQEpjv_r9Smn6IuOvQXRVuIrzhcwCT3srDjUBxG2g_UOOQX0LlfgCC$
165	&uniplatform=NZKPT.
166	Yuan X, Jing S, Wu L, Chen L, and Fang J. 2014. Pharmacological postconditioning with
167	tanshinone IIA attenuates myocardial ischemia-reperfusion injury in rats by activating the
168	phosphatidylinositol 3-kinase pathway. Exp Ther Med 8:973-977 DOI
169	10.3892/etm.2014.1820.
170	Zhang LP, and Zhang J. 2010. Effects of tanshinone IIA on myocardial ischemia-reperfusion
1 71	injury in rats. Chinese Community Doctors. 12:28 DOI 10.3969/j.issn.1007-
172	614x.2010.27.026.
173	Zhang YJ, Wu SS, Chen XM, Pi JK, Cheng YF, Zhang Y, Wang XJ, Luo D, Zhou JH, Xu
174	JY, Li X, Wu Z, Jiang W, and Wang XX. 2022. Saikosaponin D Alleviates DOX-
175	induced Cardiac Injury In Vivo and In Vitro. J Cardiovasc Pharmacol 79:558-567 DOI
176	10.1097/fjc.00000000001206.
177	
478 470	
179	

Figure 1 Flow diagram of the literature selection process.

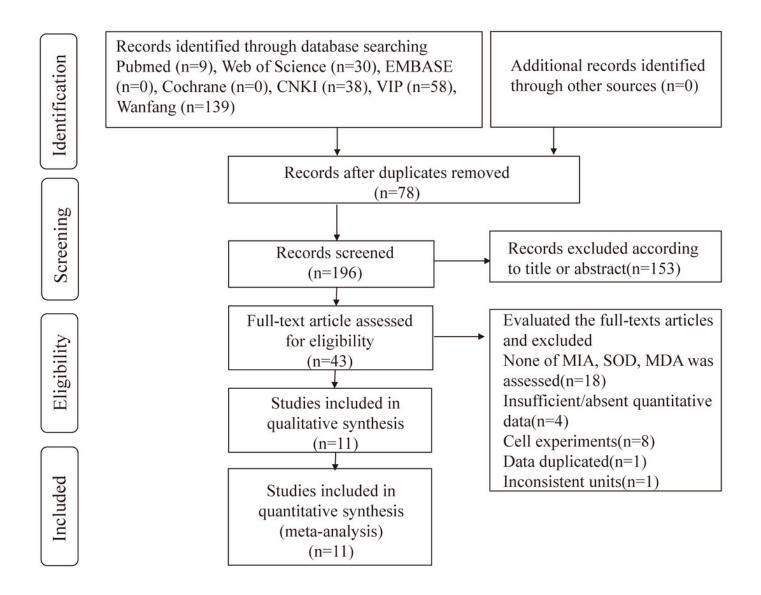
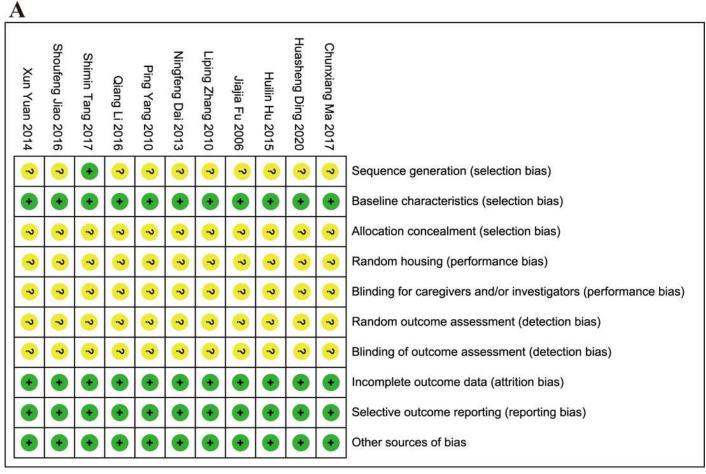



Figure 2 Evaluation of literature quality outcomes derived from SYRCLE's Risk of Bias utilizing the Cochrane tool.

(A) Risk of bias summary: the review authors' assessments of each risk of bias item for each included study. (B) Risk of bias graph: review authors' judgments about each risk of bias item displayed as a percentage for all included studies.

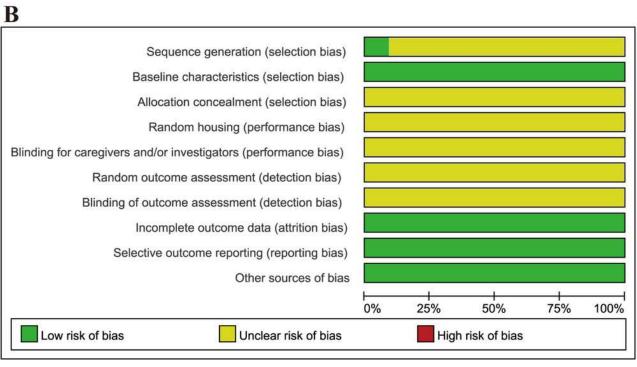


Figure 3 Forest plot of SOD.

	Experimental group (Cont	Control group			Mean Difference	Mean Difference
Study or Subgroup	Mean SD Total		Mean SD Tot		Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
Huasheng Ding 2020 16mg/kg	58.33	14.16	13	47.6	10.54	13	9.6%	10.73 [1.13, 20.33]	*
Huasheng Ding 2020 8mg/kg	70.84	16.94	13	47.6	10.54	13	9.1%	23.24 [12.39, 34.09]	
Huilin Hu 2015 10mg/kg	181.14	21.25	10	152.68	14.38	10	7.4%	28.46 [12.56, 44.36]	
Huilin Hu 2015 20mg/kg	197.62	31.49	10	152.68	14.38	10	5.7%	44.94 [23.48, 66.40]	-
Huilin Hu 2015 40mg/kg	224.58	24.56	10	152.68	14.38	10	6.8%	71.90 [54.26, 89.54]	
Jiajia Fu 2006 15mg/kg	68.92	6.26	13	58.14	9.56	13	10.6%	10.78 [4.57, 16.99]	-
liajia Fu 2006 30mg/kg	73.24	11.72	13	58.14	9.56	13	10.0%	15.10 [6.88, 23.32]	-
Jiajia Fu 2006 60mg/kg	75.55	9.67	13	58.14	9.56	13	10.3%	17.41 [10.02, 24.80]	
Ningfeng Dai 2013 30mg/kg	101.5	15.2	8	86.2	10.9	8	8.4%	15.30 [2.34, 28.26]	
Shimin Tang 2017 30mg/kg	26.54	6.41	10	21.07	7.32	10	10.7%	5.47 [-0.56, 11.50]	*
Shoufeng Jiao 2016 15mg/kg	123.35	3.13	10	98.02	2.79	10	11.3%	25.33 [22.73, 27.93]	-
Fotal (95% CI)			123			123	100.0%	21.95 [14.69, 29.20]	•
Heterogeneity: Tau ² = 119.28; Ch	ni2 = 92.24,	df = 10 (1)	P < 0.00	0001); 2=	89%				- to 15 to 15
Test for overall effect: Z = 5.93 (P		The Department							-50 -25 0 25 50 Favours [experimental] Favours [control]

Figure 4 Forest plot of MDA.

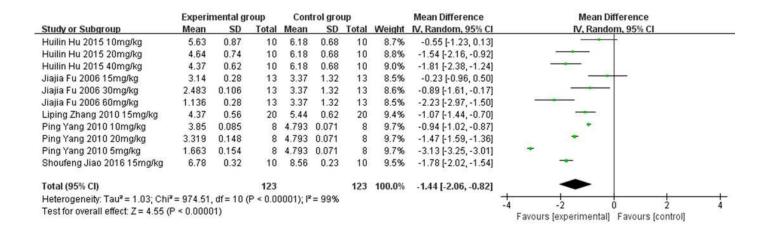


Figure 5 Forest plot of myocardial infarction area.

	Experin	Experimental group			Control group			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Chunxiang Ma 2017 20mg/kg	39.15	4.01	16	50.25	4.28	16	7.0%	-11.10 [-13.97, -8.23]	
Huasheng Ding 2020 16mg/kg	28.16	3.27	13	35.71	3.49	13	7.1%	-7.55 [-10.15, -4.95]	
Huasheng Ding 2020 8mg/kg	31.29	3.01	13	35.71	3.49	13	7.1%	-4.42 [-6.93, -1.91]	
Huilin Hu 2015 10mg/kg	18.23	2.86	10	20.5	3.22	10	7.1%	-2.27 [-4.94, 0.40]	
Huilin Hu 2015 20mg/kg	15.56	2.47	10	20.5	3.22	10	7.1%	-4.94 [-7.46, -2.42]	
Huilin Hu 2015 40mg/kg	8.15	1.88	10	20.5	3.22	10	7.2%	-12.35 [-14.66, -10.04]	
Ping Yang 2010 10mg/kg	20.09	1.58	8	25.66	1.42	8	7.3%	-5.57 [-7.04, -4.10]	
Ping Yang 2010 20mg/kg	12.4	2.05	8	25.66	1.42	8	7.3%	-13.26 [-14.99, -11.53]	
Ping Yang 2010 5mg/kg	25.11	2.23	8	25.66	1.42	8	7.2%	-0.55 [-2.38, 1.28]	-
Qiang Li 2016 10mg/kg	25.2	2.3	13	43.8	3.1	13	7.2%	-18.60 [-20.70, -16.50]	
Qiang Li 2016 20mg/kg	24.5	1.7	13	43.8	3.1	13	7.2%	-19.30 [-21.22, -17.38]	
(un Yuan 2014 10mg/kg	29.2	4.5	16	46.9	3.6	16	7.1%	-17.70 [-20.52, -14.88]	
(un Yuan 2014 20mg/kg	28.5	3	8	46.9	3.6	16	7.1%	-18.40 [-21.13, -15.67]	
(un Yuan 2014 5mg/kg	43	4	8	46.9	3.6	16	6.9%	-3.90 [-7.19, -0.61]	
Total (95% CI)			154			170	100.0%	-10.00 [-13.55, -6.45]	•
Heterogeneity: Tau2 = 44.46; Chi2	= 458.05.	df = 13 (P < 0.00	0001); I ²	= 97%	,			-1. 1. 1. 1. 1. 1.
Test for overall effect: Z = 5.52 (P	127.02.000.00								-20 -10 0 10 20 Favours [experimental] Favours [control]

Figure 6 Egger's tests and funnel plots for evaluating publication bias.

(A, B) Egger's test and funnel plot for publication bias in SOD. (C, D) Egger's test and funnel plot for publication bias in MDA. (E, F) Egger's test and funnel plot for publication bias in myocardial infarction area.

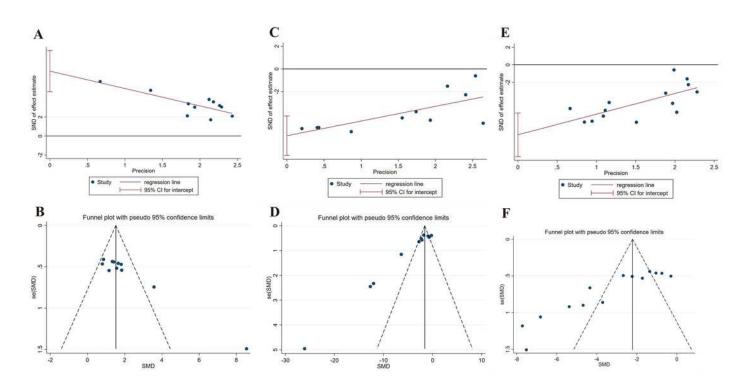
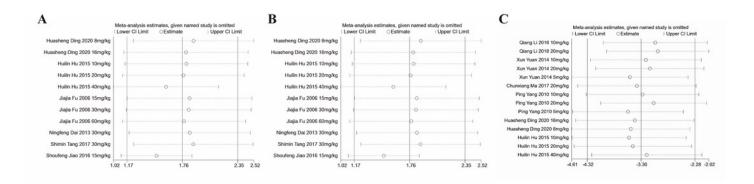



Figure 7 Sensitivity analysis chart for SOD, MDA, and myocardial infarction area.

(A)Sensitivity analysis chart for SOD. (B)Sensitivity analysis chart for MDA. (C)Sensitivity analysis chart for myocardial infarction area.

Table 1(on next page)

Table1 Summary of characteristics of the included studies

Notes: Abbreviations: TSAllA, Tanshinone IIA; TSAllA-L, Tanshinone IIA low-dose group; TSAllA-M, Tanshinone IIA medium-dose group; TSAllA-H, Tanshinone IIA high-dose group; Control, receiving either normal saline, blank, or carboxymethylcellulose sodium group; i.p, intraperitoneal injection; i.g, intragastric; i.v, intravenous injection; NS, normal saline; MIA, myocardial infarction area; SOD, superoxide dismutase; MDA, methane dicarboxylic aldehyde; CMC-Na, Carboxymethylcellulose sodium; ?, not recorded.

1 Table 1 Summary of characteristics of the included studies

Study	Species	Sex	Age	Weight	Ischemia	Reperfusion	Groups(n)	Dose	Route	Treatmen	t	Outcome
					duration	duration				time		measure
Ding et al.	SD	Male	?	210~270g	40min	120min	Control (n=13)	NS 4ml·kg ⁻¹ ·d ⁻¹	i.p	Prior	to	MIA, SOD
(2020)							TSA I A-L (n=13)	8mg·kg ⁻¹ ·d ⁻¹	i.p	ischemia		
							TSA II A-H (n=13)	16mg·kg ⁻¹ ·d ⁻¹	i.p			
Ma et al.	SD	Male	8~12 W	180~220g	30min	180min	Control (n=16)	NS	i.g	Prior	to	MIA
(2017)							TSA II A (n=16)	20mg·kg ⁻¹ ·d ⁻¹	i.g	ischemia		
Tang et al.	SD	Male	8W	260~280g	30min	480min	Control (n=10)	NS	i.g	Prior	to	SOD
(2017)							TSA I A (n=10)	30mg·kg-1·d-1	i.p	ischemia		
Jiao (2016)	SD	Male	7~8 W	250~280g	30min	120min	Control (n=10)	not intervene	-	Prior	to	MDA, SOD
				_			TSA I A (n=10)	15mg·kg-1·d-1	i.g	ischemia		
Li et al. (2016)	SD	Male	?	210~250g	30min	120min	Control (n=13)	not intervene	-	Prior	to	MIA
							TSA II A-L (n=13)	10mg·kg ⁻¹ ·d ⁻¹	i.v	ischemia		
							TSA II A-H (n=13)	20mg·kg ⁻¹ ·d ⁻¹	i.v			
Hu et al.	Wistar	Male	20~	260~300g	20min	60min	Control (n=10)	not intervene	-	Prior	to	MIA, SOD,
(2015)			32W				TSA II A-L (n=10)	10mg·kg ⁻¹ ·d ⁻¹	i.p	ischemia		MDA
							TSA \blacksquare A-M (n=10)	20mg·kg ⁻¹ ·d ⁻¹	i.p			
							TSA II A-H (n=10)	40mg·kg ⁻¹ ·d ⁻¹	i.p			
Yuan et al.	SD	Male	?	250~300g	30min	120min	Control (n=16)	not intervene	-	Prior	to	MIA
(2014)				· ·			TSA II A-L (n=8)	5mg·kg ⁻¹ ·d ⁻¹	i.v	ischemia		
							TSA II A-M (n=16)	10mg·kg ⁻¹ ·d ⁻¹	i.v			
							TSA II A-H (n=8)	20mg·kg ⁻¹ ·d ⁻¹	i.v			
Dai et al.	SD	Male	?	240~320g	30min	120min	Control (n=8)	not intervene	-	Prior	to	SOD
(2013)							TSA I A-L (n=8)	30mg·kg ⁻¹ ·d ⁻¹	i.v	ischemia		
Zhang &	Wistar	?	?	?	30min	120min	Control (n=20)	NS	i.g	Prior	to	MDA
Zhang (2010)							TSA II A (n=20)	15mg·kg ⁻¹ ·d ⁻¹	i.g	ischemia		
Yang (2010)	Wistar	Male	?	250~300g	15min	30min	Control (n=8)	NS	i.g	Prior	to	MIA, MDA
O , ,							TSA II A-L (n=8)	5mg·kg ⁻¹ ·d ⁻¹	i.g	ischemia		-
							TSA $II A-M (n=8)$	10mg·kg ⁻¹ ·d ⁻¹	i.g			
							TSA I A-H (n=8)	20mg·kg ⁻¹ ·d ⁻¹	i.g			
Fu (2006)	SD	Male	?	280~300g	45min	120min	Control (n=13)	0.5% CMC-Na	i.g	Prior	to	SOD, MDA
, ,				8			TSA II A-L (n=13)	15mg·kg-1·d-1	i.g	ischemia		,
							TSA II A-M (n=13)	30mg·kg ⁻¹ ·d ⁻¹	i.g			
							TSA I A-H (n=13)	60mg·kg ⁻¹ ·d ⁻¹	i.g			

2 Notes:

7

Abbreviations: TSA II A, Tanshinone IIA; TSA II A-L, Tanshinone IIA low-dose group; TSA II A-M, Tanshinone IIA medium-dose group; TSA II A-H, Tanshinone IIA high-dose

group; Control, receiving either normal saline, blank, or carboxymethylcellulose sodium group; i.p, intraperitoneal injection; i.g, intragastric; i.v, intravenous injection; NS, normal

saline; MIA, myocardial infarction area; SOD, superoxide dismutase; MDA, methane dicarboxylic aldehyde; CMC-Na, Carboxymethylcellulose sodium; ?, not recorded.

Table 2(on next page)

Table 2 Subgroup analysis of SOD based on ischemia duration, reperfusion duration, dosage, and route.

Table 2 Subgroup analysis of SOD based on ischemia duration, reperfusion duration, dosage, and route.

2

Criteria for grouping	Subgroup	n	Mean difference (MD)	I ² (%)	Z	P
Ischemia	15 min ≤ Time < 30 min	3	48.25 (21.41, 75.08)	85	3.52	0.004
duration	30 min ≤ Time < 40 min	3	15.55 (0.57, 30.54)	95	2.03	0.04
	$40 \text{ min} \le \text{Time} \le 45 \text{ min}$	5	14.69 (10.60, 18.79)	21	7.03	< 0.00001
Reperfusion	$30 \text{ min} \leq \text{Time} < 120 \text{ min}$	3	48.26 (21.46, 75.06)	85	3.53	0.0004
duration	120 min ≤ Time < 180 min	7	17.12 (11.22, 23.03)	79	5.69	< 0.00001
	$180 \text{ min} \le \text{Time} \le 480 \text{ min}$	1	5.47 (-0.56, 11.50)	_	1.78	0.08
Dosage	$5~mg\cdot kg^{\text{-}1}\cdot d^{\text{-}1} \leq Dosage \leq 20~mg\cdot kg^{\text{-}1}\cdot d^{\text{-}1}$	5	19.20 (11.05, 27.36)	84	4.62	< 0.00001
	$20~mg\cdot kg^{\text{-}1}\cdot d^{\text{-}1} \leq Dosage < 30~mg\cdot kg^{\text{-}1}\cdot d^{\text{-}1}$	1	44.94 (23.48, 66.40)	_	4.11	< 0.0001
	$30 \text{ mg} \cdot kg^{\text{-}1} \cdot d^{\text{-}1} \leq Dosage \leq 60 \text{ mg} \cdot kg^{\text{-}1} \cdot d^{\text{-}1}$	5	23.11 (8.75, 37.46)	92	3.15	0.002
Route	i.v	1	15.30 (2.34, 28.26)		2.31	0.02
	i.g	4	17.51 (9.60, 25.41)	87	4.34	< 0.0001
	i.p	6	29.30 (12.62, 45.98)	92	3.44	0.0006

Table 3(on next page)

Table 3 Subgroup analysis of MDA based on ischemia duration, reperfusion duration, dosage, and route.

1 Table 3 Subgroup analysis of MDA based on ischemia duration, reperfusion duration, dosage, and route.

Criteria for	Subgroup	n	Mean difference (MD)	I ² (%)	Z	P
grouping						
Ischemia	15 min ≤ Time < 30 min	6	-1.59 (-2.48, -0.70)	99	3.49	0.0005
duration	30 min ≤ Time < 40 min	2	-1.44 (-2.13, -0.74)	90	4.06	< 0.0001
	$40 \text{ min} \leq \text{Time} \leq 45 \text{ min}$	3	-1.12 (-2.27, 0.03)	87	1.90	0.06
Reperfusion	$30 \text{ min} \leq \text{Time} < 120 \text{ min}$	6	-1.59 (-2.48, -0.70)	99	3.49	0.0005
duration	120 min ≤ Time < 180 min	5	-1.26 (-1.84, -0.69)	86	4.29	< 0.0001
Dosage	$5~mg\cdot kg^{\text{-}1}\cdot d^{\text{-}1} \leq Dosage \leq 20~mg\cdot kg^{\text{-}1}\cdot d^{\text{-}1}$	6	-1.11 (-1.46, -0.75)	95	6.13	< 0.00001
	$20~mg\cdot kg^{\text{-}1}\cdot d^{\text{-}1} \leq Dosage \leq 30~mg\cdot kg^{\text{-}1}\cdot d^{\text{-}1}$	2	-2.37 (-3.92, -0.81)	96	2.98	0.003
	$30 \text{ mg} \cdot kg^{\text{-}1} \cdot d^{\text{-}1} \leq Dosage \leq 60 \text{ mg} \cdot kg^{\text{-}1} \cdot d^{\text{-}1}$	3	-1.65 (-2.38, -0.92)	72	4.44	< 0.00001
Route	i.v	3	-1.32 (-2.04, -0.59)	75	3.57	0.0004
	i.g	8	-1.48 (-2.22, -0.75)	99	3.96	< 0.0001

Table 4(on next page)

Table 4 Subgroup analysis of myocardial infarction area based on ischemia duration, reperfusion duration, dosage, and route.

1 Table 4 Subgroup analysis of myocardial infarction area based on ischemia duration, reperfusion

2 duration, dosage, and route.

Criteria for	Subgroup	n	Mean difference (MD)	I ² (%)	Z	P
grouping						
Ischemia	15 min ≤ Time < 30 min	6	-6.51 (-10.75, -2.26)	96	3.00	0.003
duration	30 min ≤ Time < 40 min	6	-14.93 (-19.18, -10.68)	94	6.89	< 0.00001
	$40min \le Time \le 45 min$	2	-5.96 (-9.03, -2.90)	65	3.81	0.0001
Reperfusion	$30 \text{ min} \leq \text{Time} < 120 \text{ min}$	6	-6.51 (-10.75, -2.26)	96	3.00	0.003
duration	120 min ≤ Time < 180 min	7	-12.88 (-18.04, -7.73)	97	4.90	< 0.00001
	$180 \text{ min} \le \text{Time} \le 480 \text{ min}$	1	-11.10 (-13.97, -8.23)	_	7.57	< 0.00001
Dosage	$5 \text{ mg} \cdot \text{kg}^{\text{-}1} \cdot \text{d}^{\text{-}1} \leq \text{Dosage} \leq 20 \text{ mg} \cdot \text{kg}^{\text{-}1} \cdot \text{d}^{\text{-}1}$	8	-7.57 (-12.27, -2.86)	97	3.15	0.002
	$20~mg\cdot kg^{\text{-}1}\cdot d^{\text{-}1} \leq Dosage \leq 30~mg\cdot kg^{\text{-}1}\cdot d^{\text{-}1}$	5	-13.42 (-18.33, -8.51)	96	5.36	< 0.00001
	$30 \text{ mg} \cdot \text{kg}^{\text{-}1} \cdot \text{d}^{\text{-}1} \leq \text{Dosage} \leq 60 \text{ mg} \cdot \text{kg}^{\text{-}1} \cdot \text{d}^{\text{-}1}$	1	-12.35 (-14.66, -10.04)	_	10.47	< 0.00001
Route	i.v	5	-15.69 (-20.34, -11.05)	94	6.62	< 0.00001
	i.g	4	-7.59 (-13.23, -1.94)	97	2.63	0.008
	i.p	5	-6.33 (-9.85, -2.82)	90	3.54	0.0004