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ABSTRACT

Plants and bacteria are co-evolving and interact with one another in a continuous
process. This interaction enables the plant to assimilate the nutrients and acquire
protection with the help of beneficial bacteria known as plant growth-promoting
bacteria (PGPB). These beneficial bacteria naturally produce bioactive compounds
that can assist plants’ stress tolerance. Moreover, they employ various direct and
indirect processes to induce plant growth and protect plants against pathogens.
The direct mechanisms involve phytohormone production, phosphate solubilization,
zinc solubilization, potassium solubilization, ammonia production, and nitrogen
fixation while, the production of siderophores, lytic enzymes, hydrogen cyanide, and
antibiotics are included under indirect mechanisms. This property can be exploited
to prepare bioformulants for biofertilizers, biopesticides, and biofungicides, which
are convenient alternatives for chemical-based products to achieve sustainable
agricultural practices. However, the application and importance of PGPB in
sustainable agriculture are still debatable despite its immense diversity and plant
growth-supporting activities. Moreover, the performance of PGPB varies greatly and
is dictated by the environmental factors affecting plant growth and development.
This review emphasizes the role of PGPB in plant growth-promoting activities (stress
tolerance, production of bioactive compounds and phytohormones) and summarises
new formulations and opportunities.

Subjects Agricultural Science, Microbiology, Plant Science
Keywords Plant growth-promoting microbes, Biotic stress, Abiotic stress, Bioactive compound,
Phytohormones, Bioformulations

INTRODUCTION

Plants and bacteria have a continuous and dynamic co-evolutionary relationship where
they interact and communicate through the release of bioactive chemical signals. This
interaction can be positive or negative (Wille et al., 2019). Positive interactions benefit the
plants as they assist in obtaining minerals, phytohormones, and other nutrients. These
beneficial bacterial species can also act against phytopathogen by releasing several
bioactive compounds thereby helping plants to endure several stressful conditions. On the
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contrary, harmful interactions are inimical, since pathogens colonize the plant tissues
resulting in the death of the host plants (Dolatabadian, 2021; Adedayo et al., 2022).
Therefore, exploiting these beneficial microorganisms can help sustain the plants against
stress that hinders their productivity.

The regulations of soil fertility, the nutrient cycle, and the preservation of plant diversity
are all significantly influenced by microorganisms as a component of the soil ecosystem.
Zhou et al. (2020) state that the rhizosphere, a small region surrounding the plant roots
serves as a vital zone for significant biological interaction occurring between the plant and
microorganisms. It is a productive area where microorganisms like bacteria,
actinobacteria, fungi, algae, and protozoa actively battle for nutrition and space to thrive
(Manghwar et al., 2023). The plant growth promoting microorganism (PGPM) can inhabit
and interact with the roots of plants, which is advantageous to both the host and
microorganisms; a population of rhizospheric fungi and bacteria has the potential to
provide a habitat for other microbes as well (dos Lopes, Dias-Filho ¢» Gurgel, 2021). Among
all the beneficial microorganisms bacteria are the most abundant, followed by fungi and
actinobacteria (Poria et al., 2021). They create a positive influence on the plant through
nutrient assimilation and acquisition by direct or indirect mechanisms (Kumari, Meena ¢
Upadhyay, 2018).

The expansion of the global population puts food security at threat which leads to a rise
in the increasing application of inorganic chemical-based fertilizers, detrimental to human
health and the environment (Mitter et al., 2021), The various environmental stress factors
further contribute to the low yielding of crops; therefore, organic farming reliant on
microflora like PGPM ensures food availability, enhancing crop productivity, quality, and
better environment-friendly agricultural techniques (da Silva Oliveira et al., 2023). Hence,
crop production utilizing PGPM offers sustainability and safeguards soil biodiversity by
minimizing the use of chemical fertilizers (dos Lopes, Dias-Filho & Gurgel, 2021).

The different ways of plant growth promotion by bacteria are illustrated in Fig. 1.
Among all the bacteria, proteobacteria comprise most plant growth-promoting bacteria
(PGPB). It includes genera like Pantoea, Thiobacillus, Pseudomonas, Micrococcus,
Rhodococcus, Azospirillum, Azotobacter, Acinetobacter, Acetobacter Klebsiella,
Enterobacter, Alcaligenes, Arthrobacter, Burkholderia, Azorhizobium, Achromobacter,
Serratia, Bradyrhizobium, Flavobacterium, Mesorhizobium, Microrhizobium,
Streptomyces, Bacillus, Azoarcus, Aeromonas, Azoarcus, Caulobacter, Chromobacterium,
Delftia, Frankia, Flavobacterium, Gluconacetobacter, Paenibacillus, Rhizobium and
Streptomyces dos Lopes, Dias-Filho ¢ Gurgel (2021), have all demonstrated that bacteria
can boost plant development. Following Oldroyd et al. (2011), the Fabaceae, Poaceae,
Asteraceae, Solanaceae, Brassicaceae, and Crassulaceae were the most abundant family
connected with the PGPB host plant, they are depicted in Table 1.

The PGPB benefits the plants in several ways, which include aiding several biotic and
abiotic stress tolerances, inducing plant growth promotion by solubilizing different
inorganic mineral nutrients, nitrogen fixation, the release of plant growth regulators, and
several other biochemicals that directly or indirectly favor the plant productivity.
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Figure 1 Various plant growth-promoting activities offered by plant growth-promoting bacteria.
The impact of biotic stress (caused by living organisms) and abiotic stress (environmental factors) on
plants highlighting the role of PGBP in mitigating stress effects. PGBP enhance plant growth, nutrient
uptake, and stress tolerance through mechanisms such as siderophores, lytic enzyme,HCN, antibiotics &
nitrogen fixation, hormone production, efc. Full-size K&l DOT: 10.7717/peerj.17882/fig-1

Search methodology

The main purpose of this review is to emphasize the significance of plant growth-
promoting organisms, especially bacteria in the mitigation of various biotic and abiotic
factor-induced stress on plants, and their mechanisms employed to improve the quality
and quantity of plant products to achieve sustainable agriculture. To ensure the
comprehensive and unbiased coverage of the literature, we focus on the latest publications
in each of their particular area, between 2000 to 2024 including research articles, review
articles, and case studies using Google as a search engine. To elucidate some points, terms
like bioinoculants, bioformulants, and bioactive compounds were searched. Some
properties of PGPB including bioremediating potential, Pharmaceutical potential, and
genetics involved in the plant growth-promoting ability are excluded in this review which
may be diverted from this review’s goals and confuse the readers.
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Table 1 Plant growth promoting bacteria and their common host plant family.

SI.  Family
No

Plant

Plant growth-promoting bacteria Reference

1  Fabaceae

2 Poace

3 Asteraceae

4 Solanaceae

5  Brassicaceae

6  Crasulaceae

Phaseolus vulgaris

Mimosa pudica

Rice, wheat, maize,
soirghum,
sugarcane

Puticaria

Artemisia annua

Brasicaoleraceae

Echevarilaui

Rhizobium acidosoli, R. endophyticum, R. esperanzae, R. etli, R. hidalgoense, R.  Tapia-Garcia et al.
mesoamericanum, R. tropici, Acinetobacter, (2020)
Achromobacter sp., Brevibacillus sp., Cupriavidus sp., Ensifer sp.,
Stenotrophomonas sp., Pseudomonas sp., Dyella sp., Bacillus sp., Moraxella sp.,
Rhizobiumj sp.,
Azospirillum sp. Pedraza et al. (2020)

Bacillus cereus, Agrobacterium fabrum, Brevibacillus brevis, Bacillus subtilis, ALKahtani et al. (2020)
Paenibacillus, Acinetobacter radioresistant, Burkholderia,

Brevibacillus sp., Bacillus sp., Pseudomonas, Azospirillum, Klebsiella, Enterobacter, Husseiny et al. (2021)
Alcaligenes, Azotobacter, Streptomyces sp., Pantoea, Bacteroides, Proteobacteria,
Radiobacter sp., Stenotrophomonas sp.

Pseudomonas sp., Enterobacter., Arthrobacter sp., Pantoea Ferrari et al. (2023) and
Gustab et al. (2024)
Erwinia sp., Pantoea sp. Emmer et al. (2021)

Rationale and intended audience

Agricultural system using beneficial bacteria as bioinoculants is a promising way of
achieving a sustainable future. It is a good alternative to chemical fertilizer as an efficient,
eco-friendly, productive fertilizer that may aid provide the food demand of the growing
global population. They not only enhanced the plant growth but also maintained the soil
fertility and enhanced the soil microbiome.

PLANT GROWTH PROMOTING BACTERIA INDUCED
STRESS TOLERANCE

The continual exposure of plants to various stresses (both biotic and abiotic) adversely
impacts their growth and development, resulting in compromised yield and quality (Singh
et al., 2021). As a result, plants develop specific types of defense mechanisms for stress
response, which is assisted by a naturally occurring PGPB boosting the resistance against
various phytopathogens via producing biochemicals and enhancing the soil fertility
(Ramakrishna, Yadav & Li, 2019; Leontidou et al., 2020). The different stress factors and
mechanisms of bacterial stress tolerance are depicted in Fig. 2.

Abiotic stress factor

Climate change induces several abiotic stresses such as drought, salinity, temperature, and
heat. These along with nutrient limitations and the presence of heavy metals are crucial
players behind compromised yield by crop plants (Naing, Maung ¢ Kim, 2021). In the
following points, we will discuss the abiotic stress tolerance mechanisms offered by PGPB.
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Figure 2 Different stress factors and response of plant growth promoting bacteria to offer plant
growth promotion. The impact of biotic stress (caused by living organisms) and abiotic stress (envir-
onmental factors) on plants highlighting the role of PGBP in mitigating stress effects. PGBP enhance
plant growth, nutrient uptake, and stress tolerance through mechanisms such as nitrogen fixation,
hormone production, and biocontrol. Full-size £&] DOT: 10.7717/peerj.17882/fig-2

Drought
According to Ahluwalia, Singh & Bhatia (2021), drought stress is divided into four types, a
hydrological drought, a socio-economic drought, a meteorological drought and
agricultural drought. A hydrological drought arises when there is scarcity and limited
water supply in a particular place; a socio-economic drought occurs when water resources
are insufficient to meet the demand, meteorological drought happens in dry weather
places, and an agriculture drought results due to the reduction of water level in the soil.
Drought stress affects the plant by developing reactive oxygen species, which negatively
influence the plant structure and mechanism (Nautiyal et al., 2013). Therefore, certain
mitigation processes like the application of biochar, nanoparticles, film farming, drought
resistant plant cultivars, however, provide limited advantages to the agricultural system
(Fadiji et al., 2022).

PGPB can provide the plant with a better adaptation and tolerance to drought by
regulating water absorption, modifying the root structure, and producing phytochemicals
(Khan ¢ Bano, 2019). Maize plants treated with Bacillus pumilus and Pseudomonas putida
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demonstrated tolerance to drought stress and nutrient limitations (Kdlmdn et al., 2024).
Likewise, in another study by Ilyas et al. (2020), bacteria such as B. subtilis and A. brasilense
release a distinct amount of osmolytes that increase the drought tolerance in wheat,
enhancing seed and plant growth germination. This plant growth-promoting bacteria also
adapts to water stresses by releasing various bioactive compounds like indole-3-acetic acid,
salicylic acid, dihydroxybenzoicacid (DHBA), 1-aminocyclopropane-1-carboxylic acid
deaminase, and exopolysaccharides and regulate plant growth (Ahmed et al., 2021).
According to Danish et al. (2020), the soil of water-stress maize was inoculated with the
drought tolerating bacteria, and a tremendous improvement in the nutrient uptake by
shoot and root elongation and increasing the diameter, dry biomass, and chlorophyll
content was observed in the plant. The drought-tolerating bacterial strains, Pseudomonas
lini, and Serratia plymuthica inoculation lowers the drought-induced harm and increases
the soil aggregrate stability (Zhang et al., 2020). Moreover, inoculation of Bacillus albus,
and Bacillus cereus increases the seed vigor index (Ashry et al., 2022). All these tolerant
strain improves the pigment concentration in the plants increasing the photosynthetic
efficiency and the antioxidant properties as well (Saleem et al., 2021).

Other drought-tolerating bacteria include Achromobacter xylosoxidans, B. pumilus
(Castillo-Lorenzo et al., 2018), P. aeruginosa, L. adecarboxylate, E. cloacae, P. putida, A.
xylosoxidans (Danish et al., 2020), Zobellalle denitrificans, Endophyticans, P. fluorescens
S3X, Staphylococcus sciuri (Khalilpour, Mozafari & Abbaszadeh-Dahaji, 2021).

Temperature stress
A rise in the mean temperature of the climate is one of the most serious abiotic stresses
endured by plants (Desaint et al., 2021) Bacterial species such as Bacillus cereus, Serratia
liquefacience, Pseudomonas putida, P. fluorescens (Mitra et al., 2021), Burkholderia
phytofirmans, Curvularia proturberata (Rana et al., 2021), Parabulkholderia phytofirmans
(Issa et al., 2018), Bacillus sp., and Pseudomonas sp. (Ahmad et al., 2023) are identified to
have a heat tolerance by balancing plant regulators like cytokinins, ACC deaminase, and
antioxidant enzymes which control plant absorption of water and induce the expression of
heat shock proteins (Moumbock et al., 2021).

A diverse amino acid and its compound have been reported to reduce the harmful effect,
and also aid plants in response to heat stress (Santos et al., 2022). The application of
B. cereus increased overall plant biomass, chlorophyll content, and expression of heat
shock protein (Khan et al., 2020b). A study done by Park et al. (2017) reveals that
Enterobacter SA187 inoculation increases the heat endurance in the wheat and Arabidopsis
plants, thereby increasing the grain yield, height of the plant, and weight of the seed.
Furthermore, B. cereus increased the carotenoid, protein, ascorbate peroxidase, chlorophyll
content, and superoxide dismutase level in the plant (Bisht e Mishra, 2020).

Other bacterial strain like B. thuringiensis, B. subtilis, P. brassicacearum (Ashraf, Bano &
Ali, 2019), B. velenzensis (Abd EIl-Daim, Bejai ¢ Meijer, 2019), B. cereus (Khan et al.,
2020a).
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Salinity

The salinity of soil is caused by the scarcity of water (Reints, Dinar ¢ Crowley, 2020) and a
high concentration of NaCl from the compost fertilizer, which is used for sewage and
domestic waste treatment (Gondek et al., 2020). Soil salinization also occurs when there is a
high concentration of soluble ions like bicarbonate, magnesium, sodium, chloride, sulfate,
carbonate, and calcium (Shahid, Zaman ¢ Heng, 2018). Excessive Na" concentration can
completely change the soil composition, reduce the fertility of the soil (Manishankar et al.,
2018) germination rate, and decrease the photosynthetic pigment production by changing
the structure of chloroplasts (Ahmed et al., 2020), moreover inducing ion toxicity and
osmotic imbalance (Krishnamoorthy et al., 2022). A study by Taibi et al. (2016) shows that
salinity stress decreases the overall plant development, fruit yield, weight, and total number
of fruits in a single strawberry plant. Ansari, Ahmad ¢ Pichtel (2019) also state that a
plant’s water movement and stomata conductivity declined due to saline stress. The plant
growth-promoting bacteria can counteract the adverse effect of salinity by stimulating the
stress response, reducing the ROS production, production of Na-binding
exopolysaccharides (Talebi Atouei, Pourbabaee ¢ Shorafa, 2019) and also producing
phytohormones which promote the growth of root cells, enhancing the water intake
(Subramaniam et al., 2020). According to Del Rosario Cappellari et al. (2020), a
salt-tolerating strain Bacillus amyloliquifacience GB03 produces a volatile organic
compound that significantly increases the stress mitigation by sixfold to the plant,
compared to the one that is not exposed to the compounds. The salt-stress-tolerating
bacteria include Streptomyces sp. (Tolba et al., 2019), Aneurinibacillus aneurinilyticus,
Paenibacillus sp. (Gupta ¢ Pandey, 2019), Pseudomonas azotoformance (Liu et al., 2021).
Also, a bacterial strain like Pseudomonas, Bacillus, Enterobacter, Klebsiella, Agrobacterium,
Streptomyces, and Ochromobactrum can tolerate sodium chloride up to 150 g/L (Zhang
et al., 2018).

Heavy metal

Heavy metals are inorganic soil pollutants that negatively impact plants. Even though
heavy metals are toxic in higher concentrations, they are also an essential source of
micronutrients (Ayangbenro ¢ Babalola, 2017). Industrial effluent, farm, agrochemical,
and domestic waste are anthropological sources of heavy metals in the soil (Kamran et al.,
2020). Heavy metal enters the plant system, adversely affecting the environment and
human beings. Therefore, applying phytohormone-producing bacteria is a sustainable way
of removing heavy metals from the soil. The bacteria produce plant hormones that alter the
root structure, aiding the plant system to tolerate heavy metal stress (Ashraf et al., 2017).
Bacillus sp. is an efficient cadmium accumulator that lowers the availability of H,O,, O™,
and malondialdehyde (MDA) which in turn can trigger heavy metal induced reactive
oxygen species stress to the plant (Zhang et al., 2022). Although heavy metal are considered
harmful for ecological health, they can be tailored and employed for plants over all
development. Bacillus subtilis, Azospirillum brasilens, and Pseudomonas fluorescens
integrated with nano zinc increase the concentration of nitrogen, phosphorus, and zinc
which in turn enhances the over all productivity of wheat crop (Jalal et al., 2023c). Also,
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co-inoculation of Rhizobium tropici and Bacillus subtilis along with nano-zinc foliar spray
enhanced the chlorophyll content, zinc concentration and the grain yield (Jalal et al,
2023a). Plant regulators like IAA (Jalmi et al., 2018) and gibberelins (Sytar et al., 2019)
enhanced the plants’ stress tolerance (Abdelaal et al., 2021). Bacteria develop mechanisms
like biomolecules and biochemical production by modifying heavy metal mobilization in
response to heavy metal.

Heavy metal tolerating bacteria includes B. subtilis, P. brassicacearum, B. Thuringeansis
(Ashraf, Bano & Ali, 2019), B. cereus (Asaf et al., 2017), Raoultella ornithinolytica,
Brevibacterium, Aspergillus sp., Trichoderma sp., Pseudomonas flourescens (Bhatt et al.,
2019), Enterobacter sp. (Naveed et al., 2020), Bacillus sp. (Khan et al., 2017), B. megaterium
MCR-8 (Hansda, Kumar ¢ Anshumali, 2017), Variovorax sp., Bacteroidetes bacterium, P.
putida (Kamran et al., 2020), Alcaligenes faecalis, and P. syringae (Okpara-Elom et al.,
2024).

Biotic stresses

PGPM can potentially inhibit biotic stress in plants, induced by pathogenic fungi, bacteria,
nematodes, insects, and weeds (Gupta et al., 2021), this type of resistance is known as
Systemic acquired resistance (SAM), also when the plant growth-promoting bacteria elicit
the biotic stress by producing elicitors like volatile organic compounds, microbe associated
molecular patterns (MAMPs) in, and bioactive secondary metabolites, it is called induced
systemic resistance (ISR) (Romera et al., 2019; Dubey et al., 2020).

According to Migunova ¢ Sasanelli (2021), the PGPB inhibits pathogenic nematodes
directly by releasing different lytic enzymes, antibiotics, and volatile organic compounds
indirectly through nitrogen fixation, siderophores, and solubilizing phosphate
phytohormones production. Bacterial strains such as Pasteuria penetrans (Mohan et al.,
2020) and Brevibacillus laterosporus produce proteases that inhibit the nematode
Heteroderaglycines (Abd-Elgawad ¢ Askary, 2018). Bacillus megaterium also produces
proteases against M. graminocula (Liang et al., 2019). Also, P. aeruginosa, P. cepacia, and
P. fluorescens have anthelmintic, antimicrobial, antiviral, cytotoxic, and antitumor
properties that can fight against phytopathogens (Bhavya ¢» Geetha, 2021) Moreover,
bacteria like B. subtilis, and B. pumilus produce chitinase that combats nematodes like M.
hapla and Meloidogyne sp. (Kohli et al., 2018) by causing hydrolysis, disrupting chitin
synthesis, producing volatile compounds acting as antifungal (Xie et al., 2020). B.
amyloliquefaciens FZB42 produces bacteriocins inhibiting M. incognita (Liang et al., 2019).
According to Aeron et al. (2019), Anthrobacter nicotianae and Bacillus sp. release volatile
compounds that exhibit activity against M. graminicola and M. incognita. Lyseni bacillus,
Staphyococcus, Pseudomonas, and Enterobacter also have antibacterial, and antifungal
properties (Mamonokane, Eunice & Mahloro, 2018).

According to Olernska et al. (2020), the interactions between plants and various bacteria
have an array of effects on plant productivity and soil fertility by producing various
chemicals like siderophores, phytohormones, and antibiotics, which inhibit the efficacy of
various pathogenic fungi, dissolve phosphate in the soil, and produce indole acetic acid,
which promotes plant growth. Moreover, the PGPB must possess inherent rhizospheric
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competency which enables it to colonize the rhizosphere in addition to the previously
stated properties.

PGPB also reduces or stops the effect of specific pathogens that compete for nutrients
and interact with certain beneficial microorganisms and indirectly encourages plant
productivity (Benizri et al., 2021). PGPB synthesizes antimicrobials like bacteriocins,
antibacterial proteins, and enzymes that induce both narrow- and broad-spectrum
inhibition of bacteria by altering the structural membrane and damaging the cell wall
(Nazari & Smith, 2020; Mak, 2018) The antagonistic effect of PGPR can occur by
producing cell wall hydrolases such as chitinase, glucanase, proteases, and ligases that can
destroy the pathogenic cell (Pérez-Montario et al., 2014). Other than directly acting as an
anti-pathogenic activity, the antibiotic also triggers the induced systematic resistance (ISR)
in plants, suppressing the disease and acting as a biocontrolling agent. The pathogenic
bacteria mainly belong to bacterial genera like Erwinia, Pectobacterium, Pantoea,
Agrobacterium, Pseudomonas, Ralstonia, Burkholderia, Acidovorax, Xanthomonas,
Clavibacter, Streptomyces, Xylella, Spiroplasma, and Phytoplasma. They cause various
diseases, including wilting of leaves, spots, galls, blights, and root rot (Nabila ¢
Kasiamdari, 2021). Some examples of the most common disease-causing plant pathogens
and the PGP strain that suppresses them are listed in Table 2.

CLASSIFICATION OF PGPB

Based on their interactions with plants

Based on interactions, PGPB can be categorized into two types, namely free-living
rhizobacteria and symbiotic bacteria. The free-living rhizobacteria are present outside the
plant cells, while the symbiotic bacteria, also called endophytes, reside in the intercellular
spaces of the plant allowing them direct access to the exchange of metabolites (Turan et al.,
2016).

Following Djaya et al. (2019), endophytic bacteria are the organisms that colonize the
internal tissues of plants at least once in any part of their lifetime. Various endophytic
bacteria colonize different plant parts such as leaves, stems, roots, and flowers (Santoyo
et al., 2016). The density of culturable bacterial cells per gram retrieved from the root is
higher than that of stem and leaves, then flowers and fruits (Amend et al., 2019). According
to Afzal et al. (2019), the diversity of bacteria depends upon the conducive conditions,
genetic composition, and physiology of the plant parts they colonize. The relationship
between plants and endophytes is considered to be symbiotic and interacts with the root
more efficiently. Still, recent studies reveal that the microorganism’s mutualism or
pathogenicity depends on the genetic composition, environmental factors, and
co-colonization of bacteria. Therefore, the term endophytes also includes the pathogen
colonizing the plant tissue (Compant et al., 2021). The endophytic bacteria can be
pre-inoculated in the seeds, enhancing the seed quality, increasing the shelf life, and
boosting the plant’s endurance to specific stresses (Zapata-Sarmiento et al., 2020). Besides,
the rhizospheric bacteria can penetrate the plant tissues through the cracks in the roots and
cause various tissue injuries to the plant due to the continuous growth of the plant
(Sorensen & Sessitsch, 2007). Endophytic bacteria can also be used as bio-controlling
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Table 2 Biocontrol of disease-causing phytopathogen by plant growth-promoting bacteria.

Phytopathogen Plant Disease-causing  Resistant PGP strain Reference
Host
Meloidogyne incognita Rice Root knot Trichoderma citrinoviride Tariq et al. (2020)
nematode
Xanthomonas oryzae Rice Leaf blight Bacillus subtilin strain GB03 Faizal Azizi & Lau (2022)
Colletotrichum gossipii Cotton Ramulosis disease  Bacillus amyloliquefaciens, Bacillus Ferro et al. (2020)
velezensis

Colletotrichum sp Tea Shoot necrosis Trichoderma cammeliae Chakruno, Banik ¢ Sumi
(2022)

Fusarium oxysporum sp. lycopercici Tomato  Fusarium wilt Brevibaccilus brevis Liu et al. (2022)

Botrytis cinera Beans Chocolate spot Trichoderma atroviride Yones & Kayim (2021)

Slerotium cepiiorum Onion White rot Trichoderma atroviride Rivera-Méndez et al. (2020)

Fusarium oxysporum Cabbage  Wilt Rhizobactrin Khafagi, El-Syed & Elwan
(2020)

Fusarium solani, Macrophomina Soybean  Root rot Bradyrhizobium Parveen et al. (2019)

phaseolina
Phytophthora capsici Pepper Blight and fruit rot Bacillus licheniformis BLO6 Li et al. (2020)

agents; they help in plant growth directly and indirectly (Herndndez-Ledn et al., 2014),
such as the production of antibiotics, cell wall degrading enzymes, and pathogen-resistant
volatile compounds. They induce systemic resistance and reduce ethylene production
(Santoyo et al., 2016). Furthermore, endophytic actinobacteria also generate secondary
metabolites, improving the growth and resilience to various environmental stresses (Girdo
et al., 2019).

The study performed by Pitiwittayakul, Wongsorn ¢ Tanasupawat (2021) shows the
endophytes isolated such as Nguyenibacter vanlangensis, Acidomonas methanolica, Asaia
bogorensis, Tanticharoeniaaidae, Burkholderia gladioli, and Bacillus altitudinis from the
stem of sugarcane from the Nakhon Ratchasima Province in Thailand effectively inhibit
the mycelial growth of F.moniliforme AITO1. These isolates also exhibit plant growth
promotion properties through ammonia production, zinc, phosphate solubilization, and
biosynthesis of auxin and siderophores. This result highlights that endophytes can be
potentially used as PGP and antifungal.

Plant growth-promoting rhizobacteria (PGPR) refers to the bacteria that colonize the
rhizospheric region, and aid in plant growth and development by producing beneficial
metabolites (Santoyo et al., 2021). The bacteria must have the ability to induce plant
growth, suppress or stop the pathogen, and should be invasive (More et al., 2022). PGPR
affects the plant by producing and releasing secondary metabolites, which can be employed
for crop nutrition and protection, increasing the availability and uptake of different
micronutrients from the soil and replacing chemical pesticides (Ramakrishna, Yadav & Li,
2019; Zhao et al., 2021). The rhizospheric microbial diversity is determined by the exudates
and metabolites secreted by the roots that provide the optimum environment for microbial
growth regarding nutrient availability (Zhao et al., 2021; Vives-Peris et al., 2020).
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A study by Dorr, Moynihan & Mayer (2019) and Lee et al. (2022) reported that the
tomato seeds inoculated with a PGPR Rhodopseudomonas palustris enhance the overall
plant post-harvest quality and increase the nutrient availability in the fruits.

Based on their cell wall composition

According to Dorr, Moynihan & Mayer (2019), the PGPB can also be classified based on
the composition of their cell wall; the bacteria that consist of a thick peptidoglycan wall can
retain a Gram dye are called Gram-positive, while the ones that have a thin peptidoglycan
wall and cannot keep the Gram’s dye are known as Gram-negative.

The Gram-positive PGPB includes B. alveli, B. thuringeansis, Clostridium novyi, C.
limosum, Symbiobacterium thermophillum, etc., Gram-negative PGPB includes Citrobacter
sp., C. freundii, C. intermedius, C. koseri, E. coli, Enterobacterderogenes, Flavobacterium sp.
(Rodrigues et al., 2016), Azotobacter chroococcum, A. insignis, A. nigricans, A. brasilense,
Az. salinestris, and Az. vinelandii (Shelat, Vyas & Jhala, 2017).

MECHANISM OF PLANT GROWTH PROMOTING ACTIVITY
BY BACTERIA

Antagonistic activity (indirect mechanism)

Siderophores production

Siderophores are the ferric-specific ligands produced by bacteria to combat low iron stress
and improve plant growth (Sayyed et al., 2013). They are classified as hydroxamates,
phenolates, and carboxylates on the basis of their iron-binding component (Nosrati et al.,
2018). Over 250 types of siderophores have been structurally characterized (Boukhalfa
et al., 2003). Iron is an essential micronutrient for plant and microorganism growth,
metabolism, and survival (de Souza et al., 2015). Siderophore-producing bacteria have an
iron-regulated protein on their cell surface which transports the ferric iron complex thus,
iron becomes available for the metabolic process. Siderophores produced by bacteria are
the primary source of iron in events of inefficient iron present in plants (Perez et al., 2019).

According to Loaces, Ferrando ¢ Scavino (2011), the rhizobacterial ability to release
siderophore has conferred various advantages to endophytic bacteria for colonizing the
plant roots and excluding other microorganisms from the same environment. The bacteria
that produce siderophores are mostly Bacillus, Chryseobacterium Phyllobacterium (Bhatt
et al., 2019), Pseudomonas sp. like Pseudomonas fluorescens, P. putida, P. aeruginosa, and
P. aureofaciens.

The siderophore produced by the bacterial isolates can be tested by the method
determined by Passari et al. (2015). A bacterial colony is inoculated in the blue agar plates
containing chrome azurol S (CAS) agar medium and incubated at 27 °C for 5 days.

The colonies with a yellow-orange halo zone were considered positive for siderophore
production.

The siderophore-based drugs and siderophores isolated from microbes can be used
efficiently to treat beta-thalassemia and certain anemia, iron overload diseases like
hemochromatosis and hemosiderosis, iron poisoning (Pietrangelo, 2003), antimalarial,
desferrioxamine-B is produced by Streptomyces piosus which is active against P.
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falcipararum which causes the depletion of iron. This type of siderophore also inhibits the
growth of parasites that cause sleeping sickness in humans (Nagoba & Vedpathak, 2011)
and cancer treatment (Petrik et al., 2017; Ribeiro ¢ Simées, 2019).

Production of lytic enzymes
Plant growth-promoting bacteria serve as defendants of other bacterial pathogens by
producing several enzymes, they are elaborated in the following.

Protease production

Proteases produced by microorganisms account for two-thirds of all commercial proteases
worldwide (Younes ¢» Rinaudo, 2015). The proteases from microbes are desirable since
they produce a greater yield and are rapid, space-saving, and cost-effective (Nisha ¢
Divakaran, 2014; Ali et al., 2016). Proteases can be classified into alkaline, acidic, and
neutral. Bacillus sp. is the most commonly commercially exploited microbe for protease
production. An antifungal metabolite from B. subtilis subsp. natto purified by Castaldi
et al. (2021) shows that different proteolytic enzymes such as serine protease, and subtilisin
act as an antifungal, showing a high active peak when analyzed with liquid
chromatography coupled with tandem mass spectrometry. These show the production of
protease as a potential defense system to protect plant aginst a threatening pathogen,
which in turn indirectly aids the plant development. Several protease-producing bacteria
include B. clausei, B. licheniformis, B. lentus, A. salinivibrio, and Cryptococcus aureus.
Streaming processes purify extracellular alkaline proteases like Subtilisin Carlsberg and
Subtilisin Novo to obtain end products (Kalaiarasi e~ Sunitha, 2009).

The production of proteases can be screened using a well plate assay method (Masi,
Gemechu ¢ Tafesse, 2021). The bacterial strains were inoculated on a 1% Skim milk agar
plate. The proteolytic activity was confirmed when a clear halo zone was formed. It was
expressed in terms of a millimeter. The PSI for protease activity was calculated using the
following.

PSI = (Colony diameter + Clear halo zone diameter)/Colony diameter.

The proteases produced from different bacterial sources can be purified using ion
exchange and gel filtration chromatography (Kanmani et al., 2011; Sa et al., 2012). Other
than being an antagonizing agent, alkaline protease is also involved in formulations of
ointment, gauze, and non-woven tissues (Awad et al., 2013). It also treated lytic enzyme
deficiency syndrome (Gupta & Khare, 2007; Palanivel, Ashokkumar ¢ Balagurunathan,
2013). Moreover, bandages immobilized with elastomers are used for burns, wounds,
carbuncles, and furuncles (Palanivel, Ashokkumar ¢ Balagurunathan, 2013).
Intracellularly-produced proteases have contributed to protein turnover, hydrolysis,
hormone regulation, and cell differentiation (Adrio & Demain, 2014). Industrial sectors
have extensively explored numerous bacterial species for synthesizing products like
detergent, food and brewing, silk degumming, denture cleaner, and waste management
(Razzaq et al., 2019).
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Catalase production

Bacteria with catalase activity are critical for the self-defense and protection of the plant
roots against hydrogen peroxide. This type of bacteria indirectly assists plant growth
during oxidative stress (Bumunang ¢ Babalola, 2014). Bacteria such as B. marinus, B.
insolitus, B. sphaericus, B. pasteurii, B. laterosporus, B. badiu, and Staphylococcus aureus
are positive for catalase activity (Talaiekhozani, 2022). The bacterial catalase activity can be
screened using the tube method described by Kumar et al. (2012). Bacterial colonies
incubated for 18-24 h were inoculated in a test tube containing 3% H,0O, and placed in a
dark room to observe the bubble formation. The tubes showing a bubble formation were
regarded as bacteria having a catalase activity.

Amylase production

There are three types of amylase: alpha, beta, and gamma. Among these, alpha-amylase is
produced mainly by bacteria, fungi, and actinobacteria. These amylases hydrolyse the cell
wall of pathogen thereby guarding the host plant against phytopathogen. The majority of
these enzymes are produced by endophytes of medicinal plants and crops (Ismail et al.,
2021). The bacteria that are known to produce a high amount of alpha-amylase are Bacillus
amyloliquefaciens, Bacillus licheniformis, Bacillus strearothermophilus, and Geobacilus
bacterium (Far et al., 2020).

Amylase producers can be observed after spot inoculation of bacterial isolates in the
starch Agar medium, incubated at 28 + 2 °C for 7 days. Iodine solution was splashed onto
plates, and after 5-10 min of reaction, a definite halo zone was observed (Mishra ¢ Behera,
2008).

The alkaline amylase is an essential constituent of liquid and solid detergents. They are
mainly used to remove starch-containing stains (Niyonzima ¢» More, 2014).

Urease production
Some soil bacteria can degrade urea in the form of ammonium and nitrate, which plants
can later utilize as a source of nitrogen (Witte, 2011). Brink (2010) can determine urea
hydrolysis. The urea-buffer solution (1% urea at pH 6 with 0.00025% phenol red was
added to Stuart’s urea broth that contained 5 ml of bacterial cultures. Production of
ammonia due to increased pH leads to a change of color. Tubes were incubated for 3 to 5
days at 37 °C and 120 rpm on an orbital shaker. The appearance of red or pink from yellow
indicates the breakdown of urea by the bacteria.

The ureolytic bacteria can precipitate calcite by increasing pH and producing carbonate
ions. This property is exploited for soil nutrient enrichment, concealment of concrete
cracks, and various biomineralization approaches (Cui et al., 2022).

Hydrogen cyanide production

Hydrogen cyanide is a highly toxic volatile compound capable of cellular respiration
disruption (Alemu, 2016). They inhibit pathogenic fungi, nematodes, insects, and termites
(Sehrawat, Sindhu & Glick, 2022). The HCN produced by rhizospheric bacteria also acts as
a controlling agent for weeds by colonizing the plant roots and hindering their growth.
It has no adverse effect on the plant host.
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Hydrogen cyanide production can be screened according to a method described by
Lorck (1948). According to him, bacteria were streaked in an agar media containing
4.4 g 7" of glycine. The Whatman filter paper was soaked in an alkaline prate solution and
put on the lid of the culture plate and then inoculated at 28 °C for 3 days. The color change
was observed and considered hydrogen cyanide production.

The HCN-producing bacteria mainly belong to Pseudomonas and Bacillus species
(Voisard et al., 1989; Lieberei, Fock & Biehl, 1996; Damodaran et al., 2013), Bacillus
pumilus, and Bacillus subtilis (Damodaran et al., 2013).

DIRECT MECHANISM

Phytohormone production

Plant hormones are indispensable chemical messengers that direct the plant’s ability to
react to the environment (Gutiérrez-Mariero et al., 2001; Vejan et al., 2016). Both plants
and microorganisms can carry out the biosynthesis of plant hormones like cytokinins and
auxin. The study carried out by Daud et al. (2019), Swarnalakshmi et al. (2020) and
Mekureyaw et al. (2022). Certain bacteria like Paenibacillus polymyxa, Rhizobium
leguminosarum and Pseudomonas fluorescens are known to be cytokine producers.
However, the production of cytokinins is not well studied and investigated due to their
diverse compound groups, usually present in minute amounts, making them difficult to
identify and quantify.

Moreover, studies regarding the gibberellic acid’s production as a plant growth
promoter are limited; only a few studies were conducted during the last 20 years; from the
latest study performed by Gutiérrez-Mariero et al. (2001), bacterial strains B. pumilus and
Bacillus licheniformis produced four forms of gibberellic acid. Among all the plant
hormones, IAA is most commonly investigated and regarded as one of the critical PGB
traits for plant growth promotion. It is a heterocyclic compound with a carboxymethyl
group that induces leaf formation, embryo development, root initiation and growth,
phototropism, geotropism, and fruit development (Chandra et al., 2019). A carboxymethyl
group, acetic acid, is responsible for all the functions performed by IAA (Mike-Anosike,
Braide & Adeleye, 2018). Certain studies indicated that some rhizospheric bacteria can
produce physiologically active IAA, which inspires root elongation, cell division, and plant
growth (Rehman et al., 2020). The bacteria that produced phytohormone include
Azospirillum (Pedraza et al., 2020; Raffi & Charyulu, 2020), Arthrobacter spp.
Bradyrhizobium, Bacillus, Pantoea, Rhanella, Burkholderia, Arthrobacter, Herbaspirillum,
Pseudomonas, Enterobacter, Mesorhizobium, and Brevundimonas (Prasad et al., 2019).
Plants and microbes synthesized IAA through several interrelated pathways. One of them
is the dependent pathway. Microbes’ IAA varies by physiological parameters like pH,
temperature, carbon, and nitrogen sources (Chandra, Askari ¢ Kumari, 2018). The
bacterial strains like Bacillus paenibacillus polymyxa, Bacillus subtilis, Camamonas
acidovorans, Bacillus megatarium, B. simplex, and Enterobacter cancerogenus, produce
IAA, which enable the plant to absorb more nutrients from the soil, resulting in the overall
enhancement of growth and development in plants (Goswami et al., 2013).
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IAA production by rhizobacteria can be analyzed as per the method described by
Ahmed ¢ Hasnain (2010). Here, the bacterial isolates were grown in nutrient broth
supplemented with 0.5% of L-tryptophan at 27 °C for 3 days. The suspension was then
centrifuged at 11,000 rpm for 10 min, and collect the supernatant. Further, 1 ml of the
supernatant was added to 2 ml of Salkwoski reagent (1 ml of 0.5 M FeCl; + +50 ml of 35%
perchloric acid) and incubated at room temperature in the dark for 30 min. The formation
of a pink color indicated that the bacteria produced IAA. Production of TAA is
quantitatively determined by taking OD at 530 nm, and the concentration was expressed in
pg/ml. This is an efficient protocol commonly used for qualitative and quantitative
estimation of IAA production.

Phosphate solubilization

According to Satyaprakash et al. (2017), phosphorus is considered the second most
essential nutrient for the plant; inadequate phosphorus eventually hinders the growth of
the plant. Studies have reported the ability of bacteria to solubilizes the inorganic
phosphate compounds like tricalcium phosphate, dicalcium phosphate, hydroxyapatite, as
well as rock phosphate into a soluble organic phosphate by releasing organic acids (Verma
et al., 2017) like citric acid and gluconic acid which chelate the cations of phosphate using
the hydroxyl and carboxyl groups present in them (Youssef, 2014).

Several studies involving phosphorus-solubilizing bacteria for plant growth
improvement report the treatment of maize, wheat, and lettuce seeds with
phosphate-solubilizing bacteria (PSB) such as Pseudomonas putida, Azospirillum
lipoferum, Bacillus firmus and Bacillus polymyxa, enhance the solubility of phosphorus in
the soil (Mohamed et al., 2019). Other species like P. chlororaphis, Serratia marcescens, B.
subtilis, B. megaterium, Arthrobacter aureofaciens, Phyllobacterium myrsinacearum,
Rhodococcus erythropolis (Kaymak, 2011), Burkholderia, flavobacterium, Rhizobium,
Erwinia, Acetobacter, Micrococcus, Agrobacterium and Achromobacterium (Youssef, 2014)
were identified as phosphate solubilizing bacteria.

According to studies conducted by Lin et al. (2023) in the potato plant, the
phosphate-solubilizing bacteria strain Bacillus megaterium activated the gene expression
responsible for salinity, drought, and heat stress. Furthermore, the bacteria also trigger
different metabolic processes in the plant.

Moreover, the application of B. subtilis, A. brasilense, and P. fluorescens as a single and
combined or coupled with different application rates of phosphorous pentoxide increases
the overall sugarcane yields (Rosa et al., 2022, 2023).

Screening for phosphate solubilization by bacteria can be done by following the method
described by Kesaulya, Zakaria ¢ Syaiful (2015).

Ammonia production

Ammonia production is a remarkable trait of PGPR for plant growth promotion. When
ammonia produced by bacteria is accumulated in the soil, it resulted in alkalinity
conditions that repress many phytopathogen. Moreover, ammonia supplies nitrogen to the
plant, resulting in root and shoot elongation and biomass growth with increased plant
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biomass, eventually enhanced the plant growth indirectly (Bhattacharyya et al., 2020; Gohil
et al., 2022). The bacterial isolates can be screened for ammonia production by a method
described by Bhattacharyya et al. (2020). The bacteria incubated for 5 days at 30 °C in a
broth containing peptone, NaCl, and yeast extract were centrifuged at 10,000 rpm for
15 min, and subsequently, 0.5 ml Nessler reagent was added. The development of a brown
and yellow color indicated ammonia production, and the light absorbance was determined
using a Spectrophotometer at 450 nm. The ammonia-producing microbe includes
Pseudomonas putida (Ahemad ¢ Khan, 2012), Klebsiella sp. (Ahemad & Khan, 2010),
Enterobacter asburiae (Wickramasinghe et al., 2021).

Nitrogen fixation

Nitrogen is considered the most essential nutrient for plant development since it is
required for the overall growth and the production of fruits and seeds (Mahmud et al.,
2020). Plants cannot directly utilize atmospheric nitrogen; therefore, bacteria assist in
nutrient uptake by a symbiotic relationship with plant roots or by non-symbiotic bacteria
(Batista et al., 2018).

Bacterial genera that form a symbiotic relationship with the plant roots include
Bradyrhizobium, Mesorhizobium, Sinorhizobium, Azhorhizobium, Pararhizobium,
Neorhizobium, and Pseudomonas (Nascimento et al., 2019). A non-symbiotic bacteria
includes Achromobacter, Herbespirillum, Azoarcus (Turan et al., 2016)
Glucanoacetobacter, Azoarcus, Azotobacter, Azospirillum, Acetobacter, Enterobacter,
Burkholderia, Pseudomonas, Cyanobacteria and Diazotrophicus (Basile ¢ Lepek, 2021).

A study by Galindo et al. (2024) shows that the application of microbial consortia such
as A. subtilis and A. brasilense combined with different nitrogen application rates
upregulate the root and shoot development, carbon dioxide uptake, transpiration and leaf
chlorophyll index. Also, these microbial consortia inoculated in the seed improved the
grain yield and nitrogen accumulation of wheat (Gaspareto et al., 2023). Moreover,
Bradyrhizobium sp. and Bacillus sp. co-inoculation improve nodule formation thereby
enhancing the nitrogen fixation resulting in the overall plant yield of Vigna unguiculata
(Galindo et al., 2022).

Zinc solubilization

Zinc serves as an essential co-factor for enzyme activity that is involved in plant growth
promotion by the microbes; the siderophore production and zinc ion production are also
correlated (Eshaghi et al., 2019). The optimum zinc concentration in plants is about 30 to
100 mg/kg; below this level results in deficiency (Fasim et al., 2002). According to Singh
et al. (2005), zinc deficiency resulted in the slow growth and arising of necrotic marks in
the plants. Zinc solubilizing bacteria play an essential role in overcoming inadequate zinc
availability. The rhizobacteria mostly solubilizes zinc by producing organic acid
metabolites, which lowers the pH of the soil where it is produced and iron chelating
enzymes (Fasim et al., 2002). The plant enzymes like carbonic anhydrase and superoxide
dismutase are bound structurally by the zinc.
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The microbes like P.aeruginosa, Gluconacetobacter diazotrophicus, P. striata, P.
fluorescense, Burkholderia cenocepacia, S. liquifaciens, S. marcescens, B. thurigeansis, B.
aryabhattai (Kamran et al., 2017), B. subtilis, Thiobacillus thioxidans, and cyanobacteria
(Hussain et al., 2015) are reported to solubilize zinc. Also, genera like Rhizobium,
Pseudomonas, and Bacillus promote the zinc translocation towards plants from soil,
thereby improving the grain yield and zinc biofortification (Jalal et al., 2022) These
zinc-solubilizing microbes improve the overall quality and productivity of wheat by
producing exopolysaccharides and siderophores (Jalal, Jiinior ¢» Teixeira Filho, 2024).
Moreover, co-inoculation of B.subtilis and foliar zinc oxide, P. fluorescence and foliar zinc
oxide improved the the chlorophyll content, an amino acids, grains glutelin and prolamin
in maize (Jalal et al., 2023b).

The zinc solubilization potential of bacteria can be screened using a modified
Pikovskaya Agar containing insoluble zinc oxide. On the medium, 5 pL of bacterial culture
was inoculated, then incubated at 28 + 2 °C; the result can be observed after the 2, 4, and 7
days. The potential for zinc solubilization of the isolate was indicated by developing a
distinct halo zone around the bacterial growth spot (Sharma et al., 2012). The zinc
solubilizing index can be calculated by the ratio of Halo zone formed + colony/colony
diameters (Saravanan, Madhaiyan & Thangaraju, 2007).

According to a study by Wu et al. (2013), zinc inhibited biofilm production by A.
pleuropneumoniae, Salmonella typhymurium, E.coli, S.aureus, and Streptococcus suis
efficiently. The zinc nanoparticles obtained from the bacteria can also be used to enhance
the antimicrobial and biocidal activity of the human oral microbiome (Lallo da Silva et al.,
2019).

Potassium solubilization

Potassium is naturally present in the soil but they are not readily absorbed by it since it
exists in an insoluble form, therefore plant growth-promoting bacteria solubilize
potassium by proffering a variety of organic acids including citric acid, oxalic acid, and
tartaric acid (Olaniyan et al., 2022). Potassium has several critical functions, as it can alter
enzymes physical structures and expose the active site for the reactions. Furthermore, it
activates at least 60 enzymes involved in plant growth (Prajapati ¢ Modi, 2012). According
to Rawat, Pandey ¢» Saxena (2022), plants depend on potassium to open and close stomata.
The high level of potassium content in plants resulted in improved disease resistance, fiber
quality in cotton, and durability of fruit and vegetables and their physical quality
(Prajapati & Modi, 2012).

Potassium concentration in the plants regulates water retained in the plant, and low
potassium content results in sensitivity to water stress. Bacteria including Acidithiobacillus,
Burkholderia and Pseudomonas (Sharma, Shankhdhar ¢ Shankhdhar, 2016), Bacillus
megaterium, Arthrobacter (Keshavarz Zarjani et al., 2013), Pantoea ananatis,Rahnella
aquatilis, Enterobacter sp. (Bakhshandeh, Pirdashti ¢ Lendeh, 2017), Bacillus
mucilaginosus, Paenibacillus mucilaginosus (Hu, Chen ¢ Guo, 2006), Bacillus
licheniformis, Pseudomonas azotoformans (Maurya et al., 2016), Bacillus edaphicus (Sheng,
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Huang & YongXian, 2000), and Pseudomonas putida (Bagyalakshmi, Ponmurugan &
Marimuthu, 2012) have been identified as a potent K solubilizer.

The bacteria’s ability to saturate the potassium can be studied by spot inoculation in
Aleksandrow agar medium, the halo zone formed around the bacteria after seven days
suggests the potential to solubilize potassium (Sood et al., 2023). This protocol is time-
friendly, and commonly used for quality testing.

BIOFORMULATIONS OF PLANT GROWTH PROMOTING
BACTERIA

PGPRs significantly interest the agro-industrial sector. They have been utilized and
produced primarily for global crops (Tabassum et al., 2017). The plant growth-promoting
bacteria are formulated to increase their survival rate while stored and applied to the
plants. They are developed into liquid or solid-based wet and dry products (Berger et al.,
2018). Liquid formulation is regarded as the most effective among them, and it is further
divided into seed inoculation, soil inoculation, and shoot inoculation (Lopes, Dias-Filho ¢
Gurgel, 2021). According to Lee et al. (2022), liquid inoculants are a mixture of a whole
culture and a compound like oil, water, and other polymeric compounds that can enhance
the stability, adhesion as well as capacity of dispersion. According to Nosheen, Ajmal ¢
Song (2021), these inoculants inhabit the soil environment and the interior part of the plant
tissues, enhancing growth and development. In addition to the aforementioned inoculants,
Kaur ¢ Kaur (2018) elaborate different types of bioformulants, both carrier-based and
encapsulated. Carrier-based inoculants employ, clay, sawdust, straw, charcoal, and other
biodegradable materials as carriers which can aid in the survival of inoculants. Also, the
encapsulated bioformulation recruits a natural encapsulator like agar, agarose, cellulose,
biochar, and synthetic encapsulator including polyvinylpyrrolidone (PVP), polystyrene,
and polyacrylamides to extend the shelf life of inoculants. A good inoculant must have a
long shelf life with high endurability in harsh environments and be compatible with other
agrochemical products, in addition to that, they must possess the ability to be introduced
to the plant via foliar spray, seed treatment, soil application, bio priming, and seed dip
(Ahmad et al., 2022). These inoculants are biofertilizers and can be classified based on their
function.

i) Nitrogen fixer: According to Nosheen, Ajmal & Song (2021) bacterial species like
Klebsiella, Desulfovbrio, Anabaena, Rhodospirillum, Rhizobium, Frankia, Aulosira
bejerinkic, sligonema, Nostoc, Trichodesmium, Acetobacterdiazotrophicus, Clostridium,
Azospirillum spp, Alkaligenes, Azoarcus spp, and Enterobacter are commonly formulated
as a nitrogen-fixing biofertilizer. Among PGPB, Azospirillum is an industrially notable
microbe developed as a biofertilizer with strong efficacy (Etesami ¢ Emami, 2017; Raffi &
Charyulu, 2020).

ii) Potassium solubilizers: Even though there is a significant number of potential
potassium solubilizing bacteria, only a few are on the market due to failed survival during
the different stages of formulations. According to Etesami ¢» Emami (2017) bacteria like
Mucilaginosus, B.circulanscan, Arthrobacter spp, B.edaphicus, and Bacillus are being
formulated as potassium solubilizers.
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iii) Plant growth promoter: The bacteria like Agrobacterium, Eewinia, Pseudomonas
fluorescens, Xanthomonas, Enterobacter, Rhizobium, Streptomyces, Arthrobacter and
Pseudomonas sp. (Nosheen, Ajmal & Song, 2021) are being effectively used.

Biopesticides are another formulation of beneficial bacteria with targeted activity
against pathogens, contrary to a chemical pesticide that is non-targeted and causes
significant harm to other beneficial organisms. The Environmental Protection Agency
(EPA) highly promotes biopesticides since they are environmentally harmless. One of the
most commonly exploited bacteria for biopesticide production is Bacillus thuringiensis
(DeJong, 2020).

However, formulation of efficacious bioinoculants is a great challenge, since many of the
potential candidates failed to thrive within the formulation as well as after application in
the agriculture field. Therefore, Cell-free supernatant (CFSs) with a secondary metabolite
is also a desirable biostimulant and biofertilizer for the achievement of sustainable
agriculture. According to Pellegrini et al. (2020), Bacillus sp. is a capable genus for CFSs.
Moreover, Azospirillum brasilense (Berbel et al., 2020), Bradyrhizobium diazoefficiens, R.
tropici CIAT889 (Gustavo Moretti et al., 2019), Bradyrhizobium sp 1C-4059 (Tewari,
Pooniya ¢ Sharma, 2020), and Lactobacillus rahmnosus (Caballero et al., 2020), are all
known for their effective biostimulation. They offer a high potential to act against
phytopathogen as they possess a variety of bioactive molecules including, surfactin,
subtilin, subtilisin, mycosubtilin, and rhizoctocins (Pellegrini et al., 2020).

CONCLUSION

In today’s world of agriculture system, the culturable land is being contaminated and
eroded, however, demands for crops increase to feed the growing population, therefore,
adoption of sustainable farming is highly essential. Plant growth-promoting
microorganisms, specifically bacteria, have been extensively studied for their potential
ability to produce essential metabolites that directly or indirectly assist plant growth and
development. Furthermore, the PGPM can naturally release essential biochemicals like
plant growth regulators, siderophores, hydrogen cyanide, lytic enzymes, ammonia, etc.,
and can solubilize inorganic phosphate, zinc, and potassium. They also have the potential
to fix the atmospheric nitrogen and convert it into soluble form using enzymes called
nitrogenase. Therefore, these beneficial bacteria are essential in attaining a sustainable
agriculture system, enabling us to obtain a high quality and high quantity of plant products
in a much safer and environmentally friendly way. However, limited reports have been
made on the formulation of these beneficial bacteria for biofertilizers and biocontrolling
agents to enhance crop yield under different biotic and abiotic stress.

Plant growth-promoting bacteria hold the most promising way of sustainable
agriculture, accordingly further research and exploration of potential plant growth-
promoting bacteria for specific stresses and plants, also having a broad spectrum activity
can be investigated to extend the productivity of desired crops. Moreover, study on the
compatibility of PGPB and the host plants needed more attention to aid eliminating the
possible loss of active plant growth promoting traits of PGPB while adapting into the new
host plant environment. This can also help in selection of a right microbial strains for a
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particular crop of a particular environment. In addition to that, further study on the
co-existing potential of different PGPBs can be done, a strain which can coinhabit the same
environment without lowering each of their potential active traits to produce more
effective microbial consortia.
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