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The U-Chang-Shi (Urumgqi-Changji-Shihezi) urban cluster, located at the heart of Xinjiang,
boasts abundant natural resources. Over the past two decades, rapid urbanization,
industrialization, and climate change have significantly threatened the region's ecological
livability. To comprehensively, scientifically, and objectively assess the ecological livability
of this area, this study leverages the Google Earth Engine (GEE) platform and multi-source
remote sensing data to develop a comprehensive evaluation metric-the Remote Sensing
Ecological Livability Index (RSELI). This aims to examine the changes in the ecological
livability of the U-Chang-Shi urban cluster from 2000 to 2020. The findings show that
despite some annual improvements, the overall trend in ecological livability is declining,
indicating that the swift pace of urbanization and industrialization has placed considerable
pressure on the region's ecological environment. Land use changes, driven by urban
expansion and the growth in agricultural and industrial lands, have progressively
encroached upon existing green spaces and water bodies, further deteriorating the
ecological environment. Additionally, the region's topographical features have influenced
its ecological livability; large terrain fluctuations have made soil erosion and geological
disasters common. Despite the central plains' vast rivers providing ample water resources,
over exploitation and ill-conceived hydrological constructions have led to escalating water
scarcity. The area near the Gurbantunggut Desert in the north, with its extremely fragile
ecological environment, has long been unsuitable for habitation. This study provides a
crucial scientific basis for the future development of the U-Chang-Shi urban cluster and
hopes to offer theoretical support and practical guidance for the sustainable development
and ecological improvement of the region.
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Abstract

The U-Chang-Shi (Urumqi-Changji-Shihezi) urban cluster, located at the heart of Xinjiang, boasts
abundant natural resources. Over the past two decades, rapid urbanization, industrialization, and climate
change have significantly threatened the region's ecological livability. To comprehensively, scientifically,
and objectively assess the ecological livability of this area, this study leverages the Google Earth Engine
(GEE) platform and multi-source remote sensing data to develop a comprehensive evaluation metric-the
Remote Sensing Ecological Livability Index (RSELI). This aims to examine the changes in the ecological
livability of the U-Chang-Shi urban cluster from 2000 to 2020. The findings show that despite some
annual improvements, the overall trend in ecological livability is declining, indicating that the swift pace
of urbanization and industrialization has placed considerable pressure on the region's ecological
environment. Land use changes, driven by urban expansion and the growth in agricultural and industrial
lands, have progressively encroached upon existing green spaces and water bodies, further deteriorating
the ecological environment. Additionally, the region's topographical features have influenced its
ecological livability; large terrain fluctuations have made soil erosion and geological disasters common.
Despite the central plains' vast rivers providing ample water resources, over exploitation and ill-conceived
hydrological constructions have led to escalating water scarcity. The area near the Gurbantunggut Desert
in the north, with its extremely fragile ecological environment, has long been unsuitable for habitation.
This study provides a crucial scientific basis for the future development of the U-Chang-Shi urban cluster
and hopes to offer theoretical support and practical guidance for the sustainable development and
ecological improvement of the region.

Keywords: Urumgqi-Changji-Shihezi urban cluster; Google Earth Engine; RSELI; remote sensing
technology

Introduction
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As the process of global urbanization continues to deepen, cities have become the main places where
most people live and work. This rapid trend of urbanization, especially in developing countries, has
brought a series of challenges and opportunities (Z/ang et al., 2023). However, with the swift expansion
of cities and population agglomeration, urban ecological environmental issues have gradually become a
focal concern for both the public and governments. From air pollution and water scarcity to urban heat
island effects, these environmental issues directly threaten the health and quality of life of urban residents
and also constrain the sustainable development of cities(Clen et al., 2023). Therefore, the livability of
cities, especially from an ecological perspective, has received high attention from governments, research
institutions, and urban planners worldwide.Ecological livability involves not only the quality of the
natural environment but also socioeconomic and cultural factors, making it an important indicator of a
city's overall development level(Li et al., 2020). In recent years, with the advancement of remote sensing
technology, researchers have been able to obtain and analyze urban ecological environment data more
accurately, thereby providing a scientific basis for assessing urban ecological livability.

The U-Chang-Shi urban cluster, a typical developing urban agglomeration in arid regions, faces
widespread and representative challenges regarding ecological livability in the urbanization process. This
area is characterized by arid climate, water scarcity, and fragile ecological environment, while also
bearing the environmental pressures brought by rapid urbanization(Wang et al., 2024). The significant
contradictions between urban development and ecological protection in this region necessitate more
scientific, objective, and comprehensive evaluation methods to support urban ecological construction and
management. Building on the research of previous scholars and considering the topographical and
climatic characteristics of the U-Chang-Shi urban cluster, this study utilized the Google Earth Engine
(GEE) platform to acquire eight key parameters: Greenness (NDVI), Wetness (WET), Dryness (NDBSI),
Heat (LST), Elevation (DEM), Slope (SLOPE), Aerosol Optical Depth (AOD), and Population Density
(PD). Workflow of the study is shown in Fig. 1. These parameters encompass multiple crucial aspects of
the urban ecological environment and are key factors affecting urban livability. This research pioneers the
application of principal component analysis to these eight parameters on the GEE platform, determining
their weights to effectively avoid the biases of subjective weighting, and successfully constructing the
Remote Sensing Ecological Livability Index (RSELI), which underscores the impact of the ecological
environment on urban livability. Compared to traditional evaluation methods, the use of the GEE
platform's data acquisition and analysis capabilities has significantly enhanced the efficiency and
accuracy of the study. This research not only provides a new method and perspective for assessing the
ecological livability of the U-Chang-Shi urban cluster but also offers robust theoretical support and
practical guidance for evaluating the ecological livability of other cities and urban clusters in typical
dryland areas.

Literature Review

To more precisely and systematically assess the ecological of cities, Remote Sensing (RS) and
Geographic Information Systems (GIS) have played a crucial role in this field. Representing modern
technology, their application in urban remote sensing has been widely recognized. Compared to
traditional assessment methods, remote sensing technology can provide more extensive, real-time, and
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objective data, ensuring the scientific accuracy of evaluation results. Combined with GIS, researchers can
conduct in-depth data analysis and visualization, thereby offering powerful decision support for
policymakers. Berihun used remote sensing data and Geographic Information Systems (GIS) to analyze
land use and cover changes from 1982 to 2017 in three watersheds of the Upper Blue Nile basin. The
study found significant reductions in natural vegetation and increases in cultivated land, driven primarily
by population growth and changes in agricultural practices. This research emphasizes the need for
strategic land management in areas experiencing similar environmental changes (Berihun, et al., 2019).In
the study by Zhao on the evaluation of the natural suitability of the human settlement environment on the
northern slope of the Tianshan Mountains, GIS revealed the spatial distribution pattern of natural
suitability for human settlement on the northern slope of the Tianshan Mountains (Z/iao et al., 2023).
However, traditional GIS relies on manpower to process massive amounts of data, which can be overly
complicated. Therefore, the Google Earth Engine (GEE) platform, as an advanced cloud computing
remote sensing data platform, provides researchers worldwide with a vast array of satellite remote sensing
data and powerful data processing tools (Zhang et al., 2023). Compared to traditional methods of
obtaining and processing remote sensing data, the GEE platform offers comprehensive data, rapid
processing, and easy operation advantages. Researchers no longer need to invest in expensive hardware or
wait for lengthy data processing. The GEE platform can quickly complete complex computational tasks in
the cloud, from simple image classification to complex model simulations (Zurgani et al., 2018).
Moreover, GEE's open API (Application Programming Interface) and flexible scripting language allow
researchers to customize data processing and analysis according to their needs. This high degree of
customizability enables the GEE platform to meet various complex research needs, from basic data
visualization to advanced machine learning models, all easily implemented on the GEE platform (Liu ef
al., 2018). Xiong developed the Automated Cropland Mapping Algorithm (ACMA) using GEE,
employing satellite data to map Africa's farmlands with an accuracy of about 90%, significantly reducing
the time needed for agricultural surveys(Xiong et al., 2017). Using GEE and Sentinel 5P imagery, a
significant decrease in air pollution in the Ahvaz area of Iran was observed, with noted reductions in the
concentrations of NO2 (13.7%), CO (6.1%), SO2 (28%), and HCHO (9.5%) before and after the COVID-
19 pandemic. This highlights the platform's versatility in meeting complex research needs, ranging from
data visualization to machine learning applications (Fatemeh et al., 2023).

Starting from the basic components, structure, and behavior of the system, an ecological model can
mathematically simulate the structure of the ecosystem with good physical significance, such as the
pressure-state-response (PSR) model (Bai and Tang, 2010), ecological footprint model (Gu et al., 2015),
urban resources and environment carrying capacity (URECC) system (Zhang et al., 2018), and ecosystem
service assessment model (Zhang et al., 2006). However, some defects (e.g., complicated process, and
over-parameterization) bring considerable limitations to wider application. Using remote sensing data
such as PM (il ncentration, surface temperature, and vegetation coverage, a Comprehensive Evaluation
Index (CEI) was established to assess environmental changes in many Chinese cities (/e ef al., 2017). In
2019, based on the analytic hierarchy process and expert scoring method, the Ecological Carrying
Capacity (ECC) index was constructed according to the specific ecological conditions of the Aral Sea
region (Wu et al., 2020b). Additionally, the Urban Ecological Quality Index (UEQI) (Gu et al., 2015),
Ecological Footprint Variation Index (EFVI) (Musse et al., 2018), Potential Ecological Risk Index (Xu et
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al., 2008), and City Sustainability Index (CSI) (Mori and Christodoulou, 2012) have also been widely
applied.

In 2013, Xu utilized Landsat satellite data to calculate four environmental factors—NDVI, WET,
NDBSI, and LST—and employed Principal Component Analysis (PCA) to derive the Remote Sensing
Ecological Index (RSEI) for evaluating the ecological environment of Fuzhou (Xu et al., 2018), which
gained wide recognition globally. For instance, Alwan used RSEI to assess ecological changes in Iraq's
Al-Hawizeh Marsh from 1990 to 2020 (4/wan and Aziz, 2022); Wu combined GEE and RSEI to analyze
the ecological quality of the Sahel region in Africa from 2001 to 2020 (Wu et al., 2022), Huang
constructed a seasonal RSEI using MODIS satellite data to evaluate the seasonal changes in ecological
quality in the Jing-Jin-Ji area from 2001 to 2020 (Huang et al., 2024). However, models solely based on
natural environmental factors were insufficient for accurate ecological livability assessments.
Consequently, some scholars have added additional factors to enhance evaluation models. For example,
Yu introduced the Ecological Livability Index (ELI) in 2022, incorporating NDVI, WET, NDBSI, LST,
and AOD, weighted based on an entropy method, to assess the ecological livability of Wuhan across
different seasons from 2002 to 2017 (Yu et al., 2022). In 2023, Zhang built upon the ELI to create the
UELI (IMP) model, employing the harmonic analysis of time series (HANTS) and spatial-temporal
information fusion based on a non-local means filter (Zhang et al., 2022).

The application of the Remote Sensing Ecological Livability Index (RSELI) model offers several
advantages and significance. Firstly, it leverages the vast data resources and processing capabilities of the
Google Earth Engine (GEE) platform, allowing for real-time, extensive, and precise data analysis.
Secondly, the use of principal component analysis ensures an objective weighting of key ecological
parameters, minimizing subjective biases. This methodology enhances the accuracy and reliability of
ecological livability assessments. The RSELI model not only provides a new perspective for evaluating
the U-Chang-Shi urban cluster but also offers a robust framework for other cities and urban clusters,
particularly in arid regions, supporting sustainable urban development and informed policy-making. This
approach significantly improves the efficiency and effectiveness of ecological assessments, contributing
valuable insights for urban planning and environmental management.

Materials & Methods

Research Area Overview

The U-Chang-Shi urban cluster is one of the 19 important city clusters planned by China and is the
center of future development in Xinjiang, as well as its lifeline. It mainly includes Urumqi City, parts of
Changji Hui Autonomous Prefecture, Wujiaqu City, and Shihezi City, with Changji, Shihezi, and Turpan
serving as the regional center cities for urban cluster construction to drive the development of surrounding
cities and to create a new western center centered on Urumgqi. It is an important part of the economic belt
on the northern slope of the Tianshan Mountains in Xinjiang (Qu, 2003). The research area is shown in
Fig. 2

"t total area is 46,400 km? (accounting for 2.8% of Xinjiang's total area), and as of the end of 2021,
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the total permanent population was 5.717 million people (accounting for 30.2% of Xinjiang's total), with
a gross regional product of 537.182 billion yuan (accounting for 22.1% of Xinjiang's total GDP). The
region has a temperate continental arid climate, with an average annual temperature of 25.7 °C, an
average annual rainfall of 275.5 mm, and is rich in ecological resources, with a wide variety of flora and
fauna (Muhadaisi et al., 2021).

Data Sources and Research Methods

Data Sources and Preprocessing

The data used in the study were all obtained from the GEE platform, processed through GEE's
JavaScript code to compile data for the years 2000, 2005, 2010, 2015, and 2020. The four sets of data -
greenness NDVI, wetness WET, dryness NDBSI, and heat LST - are derived from the American MODIS
satellite data (Zhang et al., 2020). Elevation DEM and slope SLOPE data are from the United States
Geological Survey (USGS) and the Shuttle Radar Topography Mission (SRTM) (Dong et al., 2022).
Population density data are from the WorldPop project, which combines satellite and census data to
generate high-resolution population maps (Dong et al., 2021; Huang et al., 2002) and AOD data for the
region within China is sourced from MCD19A2 AOD data (Z/hou et al. 2018).

The remotely sensed data utilized in this study were sourced from the Google Earth Engine (GEE)
platform. To ensure the accuracy and consistency of the data, the following preprocessing steps were
implemented. The cloud masking function within GEE was employed to identify and remove cloud cover
through specific threshold settings and algorithms, thus obtaining clearer surface data. Cloud layers in
MODIS satellite data were detected and masked using the Quality Assessment Band (QA Band). To
ensure spatial alignment across images from different times and sensors, all imagery underwent geometric
correction. While images in GEE are pre-corrected, additional ground control points were used as needed
to ensure further alignment precision.Radiometric corrections were applied to ensure effective
comparison across data from different times and satellites, using GEE’s standardized correction
algorithms to eliminate radiometric discrepancies between images. Atmospheric corrections were
conducted to mitigate the impacts of atmospheric scattering and absorption on image quality, with
MODIS satellites employing the surface reflectance products in MODO09A1 for correction.Using
boundary information from the study area, remotely sensed images were cropped to ensure consistency
with the geographical scope of the study area, thereby minimizing interference from irrelevant regions.
These data preprocessing operations were compiled, processed, and calculated using JavaScript code on
the GEE platform, ensuring the efficiency and accuracy of constructing the Remote Sensing Ecological
Livability Index (RSELI) model.

Remote Sensing Ecological Livability Index (RSELI)
In this study, the Remote Sensing Ecological Livability Index (RSELI) is derived using principal

component analysis. It initially calculates the greenness (NDVI), wetness (WET), dryness (NDBSI), heat
(LST), elevation (DEM), slope (SLOPE), Aerosol Optical Depth (AOD), and population density (PD)

Peer] reviewing PDF | (2024:03:98482:2:0:NEW 22 Jun 2024)



Peer]

198
199
200
201
202
203
204
205
206
207
208
209

210
211

212
213
214
215
216

217
218

219
220
221

222
223
224
225

226

227

separately through models. To minimize errors, data from these eight indicators are selected within the 5%
to 95% confidence interval and then normalized. The normalized data are combined through band
synthesis, with the dataset of the eight normalized indicators concentrated on the first principal
component. The weights are determined based on the contribution rates of the eight indicators on the
principal component and their inherent characteristics, reducing the potential for human bias in assigning
values. All these operations are executed using GEE's JavaScript code for compilation and computation.
The models for each indicator are as follows.

Greenness (NDVI)

NDVI has become the most widely applied vegetation index in remote sensing, used for monitoring
surface green vegetation cover (Rouse et al., 1974). In this paper, this index is utilized to represent the
greenness within the RSELI. The formula is as follows:

NDVI = (onir — prea)/( iR + pred) (1)

In the formula: pyr represents the near-infrared band; p.q represents the red band.

Wetness (WET)

WET can be calculated through the Tasseled Cap Transformation (K-T Transformation) (Crisz, 1985;
Baig et al., 2014), extracted from MODIS satellite imagery data. In this paper, this index is utilized to
represent wetness within the RSELI. The formula is as follows:

WET = pbiuex 0.0315 4 Pereen X 0.2021+ preax 0.3102 + pnir X 0.1594 — pswiri x 0.6806
— pswirex 0.6109 )

In the formula: py,e represents the blue band;  pgreen represents the green band;  pswiri represents
short-wave infrared 1; pgwir, represents short-wave infrared 2.

Dryness (NDBSI)

NDBSI is effective for monitoring environmental dryness, calculated as the average of the Built-up
Index (IBI) and the Bare Soil Index (SI) (Xu, 2008; Essa et al., 2012). In this paper, this index is used to
represent dryness within the RSELI. The formula is as follows:

2 pswiRr1 ONIR Pereen
IBI = JSWIRI+ ONIR - ONIR + Ored - Pereen + OSWIRI
2 OSWIRI LR Pereen
SWIRI+ ONIR ~ ONIR + Ored  Ogreen + OSWIRI 3)

I = (pswml +pred)—(pNIR + palue)
(pswml + pred)+ (pNIR + po]ue) 4)
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NDBSI = M

)

Heat (LST)

Heat (LST) involves the inversion of land surface temperature from satellite imagery using an
atmospheric correction method. The emissivity (REf) of the surface is calculated through the Fractional
Vegetation Cover (FVC). The original blackbody radiance values B(Ts), after radiometric correction,
provide the radiance at the satellite, which is then atmospherically corrected to remove the effects of
water vapor. Finally, the blackbody radiance is converted into land surface temperature using the Planck
function (Jimenze et al., 2009, Paolini, 2004; Weng et al., 2009; Nichol, 2005). The formula is as follows:

NDVTIo.0s5 ~ 07—0.05

FVC =NDVI<005x0+ NDVIs 07 x1+ NDVIwo.0s5 ~ 0.7) %

0.7-0.05 (6)
E(water) = 0995
E (buitding) = 0.9589 + 0.086 x FVC —0.0671x FVC?
E(natural) = 09625 + 00614 X FVC - 00461 X FVC2 (7)
REf = NDVI< 0y X E watery + NDVI0 ~ 0.7) X E ouitding) + ND VI 0.7) X E (natura) (8)
B(TS) _ JTIRS1 — Lup —fX (1 — REf) X Ldown
txREf ©9)

LST= K

K

In(——<+1)

In the formula: E(y.er represents the emissivity of water body pixels;  Epuidingy Tepresents the
emissivity of urban pixels;  Eawra represents the emissivity of natural surface pixels; L, represents
the atmospheric upward radiance, Ly, represents the atmospheric downward radiance, ¢ represents the
atmospheric transmittance in the thermal infrared band, and K; and K, are preset constants for satellite
emission. All the above data are automatically acquired from the GEE platform.

Elevation (DEM) and Slope (SLOPE)

DEM and SLOPE data used in GEE are from the USGS/SRTMGL1 003 dataset, jointly measured
by the National Aeronautics and Space Administration (NASA) and the National Imagery and Mapping
Agency (NIMA) of China. The data were collected using the Shuttle Radar Topography Mission (SRTM)
system aboard the Endeavour space shuttle, leading to the creation of digital terrain models, which are the
current SRTM terrain product data (A4izizi et al., 2022).
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Aerosol Optical Depth (AOD)

AOD is selected to represent air quality conditions, reflecting the total amount of particulate matter
suspended in the atmosphere. The MCD19A2 AOD data within the China region are chosen, which are
the version 6 data products of the MODIS Terra and Aqua combined, using the Multi-Angle
Implementation of Atmospheric Correction (MAIAC) land aerosol optical thickness (AOD) at grid level 2.
These can be directly accessed and processed for annual average data compilation using JavaScript code
on the GEE platform (Duan et al., 2021).

Population Density (PD)

The WorldPop project employs machine learning methods to analyze the relationship between
population density and a series of geospatial covariate layers, disaggregating the most recent census-based
population counts matched to corresponding administrative units into approximately 100x100m grid cells.
The mapping method is based on a random forest algorithm for dasymetric redistribution (Lloyd, 2017),
allowing for direct extraction and utilization through the GEE platform.

RSELI model

Due to the uneven dimensions of the eight factors, directly applying them in PCA would result in
unbalanced indicator weights. Therefore, it is necessary to normalize these eight factors before
performing PCA, converting each indicator value into a dimensionless value within the range of 0 to 1.
This normalization ensures that all factors are on a comparable scale, allowing for a more accurate and
balanced PCA calculation (Amani et al., 2020). The formula for this normalization process is as follows:

Ii-Imin
Imax—Imin ( 11 )

Xli=

In the formula: XI; represents the value after normalization, I; represents the value before
normalization, and I, and I, represent the maximum and minimum values before normalization,
respectively.

After normalization of the eight factors, the first principal component (PC1) is calculated using the
band synthesis and principal component analysis modules within the GEE platform. The formula for
calculating PC1 is as follows:

RSELI = PCI[NDVI, WET, DEM, SLOPE, AOD, NDBSI, LST, PD]| 12)

The model described above can be compiled and processed using JavaScript code in the Google
Earth Engine (GEE). GEE allows for the direct provision of the final results in TIFF format, which can be
downloaded for analysis and use. Leveraging the GEE platform significantly reduces processing time due
to its cloud computing capabilities, enabling the handling of multi-year remote sensing imagery in one go.
This efficiency is particularly beneficial for extensive datasets covering long time periods, making GEE a
powerful tool for environmental and ecological research.
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Results

Analysis of PCA

The PCA's results for the eight factor indicators of the U-Chang-Shi urban cluster from 2000 to 2020,
as shown in Table 1, reveal that the first principal component (PC1) accounted for contribution rates of
78.59%, 76.57%, 77.32%, 78.23%, and 77.45% for the five years, respectively. All contribution rates
exceeded 75%, indicating that PC1 encompasses the vast majority of the characteristics among the eight
indicators and can effectively represent the ecological livability level of the U-Chang-Shi urban cluster.
The positive values of greenness and wetness across all five years in the table suggest that the region's
vegetation cover and moisture level positively impact its ecological livability. In contrast, other indicators
negatively affect the ecological condition, which aligns with the expected ecological status due to the arid
continental climate prevalent in the area.

Observing the absolute values of the eigenvalues of the eight indicators in Table 1 from 2000 to
2020, the ranking of the absolute values of the indicator eigenvalues for the top five positions consistently
follows the order of DEM > LST > SLOPE > NDVI > WET. From 2000 to 2005, NDBSI > AOD, and
from 2005 to 2020, AOD > NDBSI. In all years, PD consistently ranks last, indicating that the main
factors affecting the ecological livability of the region are elevation, temperature, slope, greenness, and
wetness, in that order. Given the region's location on the northern slope of the mid-section of the Tianshan
Mountains, elevation and slope notably limit its ecological livability, with temperature impact ranked
second. This is attributable to the presence of a vast desert area in the northern part of the region (the
Gurbantunggut Desert), which experiences significant diurnal temperature variations, thereby affecting
greenness and wetness, in line with characteristics typical of arid areas. Dryness and Aerosol Optical
Depth show that before 2005, dryness had a greater impact than Aerosol Optical Depth, but thereafter, the
impact of Aerosol Optical Depth exceeded that of dryness, mainly due to rapid industrial development in
the region and a surge in emissions of atmospheric pollutants. Huang's study on the spatiotemporal
variation of aerosol optical thickness in Xinjiang from 2000 to 2013 noted an annual increase in AOD in
economically developed areas of Northern Xinjiang, especially in the economic belt of the northern slope
of the Tianshan Mountains, including the Du-Kui-Wu area (Dushanzi-Kuitun-Wusu), Shihezi, and the U-
Chang region, where AOD values showed an upward trend. This conclusion aligns with the findings of
this study (Huang et al., 2015). As for the near-zero eigenvalue of population density, it indicates that
population density has almost no impact on the ecological livability of the region.

Spatio-temporal Analysis of Ecological Livability Levels in the U-Chang-Shi Urban Cluster

Based on most researchers' studies on ecological livability, it is typically categorized into five levels.
The RSELI index uses 0.2 as the benchmark for grading (Shi & Li, 2021; Fu & Zhang, 2023; Liu, Wu &
Jin, 2023; Zhang et al., 2023), which are as follows: Excellent (Livable, 0.8~1.0), Good (Relatively
Livable, 0.6~0.8), Moderate (Moderately Livable, 0.4~0.6), Fair (Unlivable, 0.2~0.4), and Poor
(Extremely Unlivable, 0.0~0.2).
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Statistics from Table 2 indicate that the ecological livability index of the U-Chang-Shi urban cluster
has slightly decreased over the past 20 years, with a significant decline between 2000 and 2005 and a
gradual improvement thereafter, maintaining an overall state of Moderate livability. The AOD indicator
has significantly increased over the 20 years, associated with air pollution, dust storms, and soil dust
caused by drought. This period saw rapid industrial development in the area, leading to a significant
increase in the emission of atmospheric pollutants. The overall change in LST has not been significant,
showing a trend towards stability. The NDBSI indicator has slightly decreased over the 20 years,
indicating a reduction in the region's dryness level, benefiting from an overall increase in the NDVI
indicator over the same period, which reflects increased vegetation volume primarily due to large-scale
vegetation planting and windbreak and sand fixation projects in Xinjiang's desert areas over the last 20
years, reducing soil erosion. Although the NDVI indicator has increased annually, the WET indicator has
gradually decreased over 20 years, consistent with the region's arid climate. Based on the analysis of
precipitation change characteristics in Urumgqi, there has been a yearly decrease in the number of rainy
days over the past 30 years, with frequent occurrences of extreme heavy rainfall and drought events,
leading to a reduction in humidity (Su & Xie, 2018).

Based on the aforementioned RSELI grading standards, the RSELI of the U-Chang-Shi urban cluster
for each year was reclassified using ArcGIS 10.5 software, resulting in the Ecological Livability Map of
the U-Chang-Shi urban cluster from 2000 to 2020, as shown in Fig. 3.

Combining the topographic map in Fig. 2 and the remote sensing ecological livability map in Fig. 3
reveals that the terrain in the U-Chang-Shi urban cluster distinctly shows a high south and low north
characteristic. The southern region, especially the southwest and southeast areas close to the Tianshan
Mountains, has significant topographical variations, which puts pressure on its ecological livability, even
leading to potential soil erosion and geological disasters. In contrast, the central area is a vast plain. As
can be seen from the map, the U-Chang-Shi urban cluster is home to numerous rivers, especially Changji,
located between two main rivers, bringing abundant water resources to the area. This positively supports
local agriculture and the ecological environment. The northern region, near the Gurbantunggut Desert, has
an extremely fragile ecosystem and has been unsuitable for habitation over the past 20 years. The long-
term pressure on the ecological environment in these fragile areas requires effective ecological restoration
and protection.

Over the past 20 years, with the development of cities like Urumgqi, Changji, and Shihezi, the trend
of urban expansion has become increasingly apparent. Urbanization-induced land-use changes, reduction
of green spaces, and increased pollution emissions may impact the local ecological environment. Since
2010, as indicated in Fig. 3, with increased attention to the ecological environment, the U-Chang-Shi
urban cluster has been actively engaged in greening and constructing parks and other ecological projects.
These measures have played a positive role in improving and protecting the local ecological environment
and enhancing the ecological livability. Of course, for sustainable development, the region needs to
consider factors such as topography, water resources, urbanization, and economic development
comprehensively. Strengthening ecological protection and rational resource utilization, maintaining a
balance between ecology and economic development, and avoiding ecological destruction caused by
excessive development are crucial.
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Using ArcGIS and Excel, the area of each RSELI level for five periods from 2000 to 2020 was
extracted and analyzed, as shown in Table 3. Table 3 indicates that over 20 years, the area classified as
Extremely Unlivable showed a trend of initial increase, followed by a decrease, and then another increase,
mainly due to sand erosion caused by extreme weather events, resulting in fluctuations. Overall, the area
under this category increased over 20 years. The area of the Unlivable level increased from 0.278 to 1.130
thousand km? in 2005, nearly quadrupling, but then gradually decreased to 0.707 thousand km? by 2020.
Although it was an increase from 2000, it was significantly lower than the peak in 2005, indicating some
improvement in ecological livability. The area of the Moderately Livable level decreased from 2.919
thousand km? in 2000 to 2.529 thousand km? in 2020. Despite still covering a large area, this reduction
over 20 years should be noted as a warning against ecological degradation. The area of the Relatively
Livable level fluctuated significantly over 20 years but overall showed a decreasing trend, with a
reduction of 7.73%. The area classified as Livable doubled from 0.259 thousand km? in 2000 to 0.520
thousand km? in 2020, showing a clear growth trend. In summary, these data indicate that more areas
have become more suitable for living. At the same time, the total areas classified as Unlivable and
Extremely Unlivable have also increased, which may reflect environmental degradation or pressures from
urbanization in some regions.

Spatio-temporal Analysis of the Variations in Ecological Livability in the U-Chang-Shi Urban Cluster

Based on the RSELI classification, to obtain spatio-temporal distribution information on the changes
in ecological environment quality between different years, the raster calculator in ArcGIS was used to
process RSELI of different years. The changes were categorized into three types: improved (>0),
unchanged (=0), and worsened (<0), with the statistical results shown in Table 4. The results were
visualized using ArcGIS 10.5, as seen in Fig. 4.

From 2000 to 2020, the region's livability experienced significant changes, with a large area showing
worsened livability between 2000 and 2005, while from 2005 to 2010 and 2015 to 2020, more areas saw
improvements in livability. Throughout 2000 to 2020, the areas with unchanged livability accounted for
the largest proportion, averaging 69.79%, indicating that despite changes in some regions, the livability of
most areas remained stable. The proportion of areas with worsened livability was highest between 2000
and 2005, reaching 30.78%, with this percentage gradually decreasing thereafter. Overall, the proportion
of areas with worsened livability from 2000 to 2020 was 19.88%. Areas with improved livability had the
highest proportion between 2005 and 2010, at 19.33%, with an average proportion of 10.33% throughout
2000 to 2020.

Discussion

This study's findings underscore the dynamic interplay between urbanization, industrialization, and
the ecological livability of the U-Chang-Shi urban cluster. The use of the RSELI, derived from
comprehensive remote sensing data via the Google Earth Engine (GEE), provides a detailed
understanding of ecological livability trends over the past two decades. Despite improvements in
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ecological livability in certain years, the overall trend indicates a gradual decline in ecological livability,
highlighting the significant impact of rapid urban and industrial expansion.

The analysis reveals a direct correlation between eight environmental factors and the degradation of
ecological quality. This observation is particularly relevant given the region's industrial boom and its
consequent environmental repercussions. The study emphasizes the significant influence of geographical
features on ecological livability. The disparity in livability between the southern mountainous regions and
the central plains of the U-Chang-Shi urban cluster exemplifies how natural topography can exacerbate or
alleviate the challenges posed by urbanization. The vulnerability of northern areas, close to the
Gurbantunggut Desert, to becoming uninhabitable zones further underscores the necessity for strategic
ecological management and conservation efforts.

The spatio-temporal analysis based on the RSELI classification elucidates the varying degrees of
ecological livability across different areas within the urban cluster, offering a granular perspective on the
distribution of livable spaces. This detailed mapping aids in identifying areas in dire need of ecological
restoration and those showing resilience or improvement in livability standards, facilitating targeted
intervention. In light of these findings, it becomes crucial for policymakers and urban planners to adopt an
integrated approach to urban development that equally prioritizes ecological sustainability alongside
economic and infrastructural expansion. The significant role of green spaces, water conservation, and
pollution control measures in enhancing urban livability cannot be overstated. Moreover, the study's
methodology, leveraging the advanced capabilities of the GEE platform, sets a precedent for future
ecological and urban research, providing a scalable and efficient framework for monitoring and analyzing
global environmental quality.

In contrast to prior research, which predominantly emphasized human-centric indicators and
employed survey methodologies for assessing ecological livability—illustrated by Zhu, who utilized local
yearbook data combined with surveys, and Pan, who integrated remote sensing imagery with survey
data—this study encompasses both ecological and anthropogenic factors. It incorporates eight distinct
variables through the Google Earth Engine (GEE) platform, enabling precise and efficient computational
analysis. This approach offers a significant advancement over models that solely relied on vegetation and
landscape pattern indices without incorporating human dimensions, underscoring the comprehensive and
timely nature of this research.

Unlike other studies, previous ecological suitability evaluations focused more on humanistic
indicators and were conducted through survey questionnaires. For example, Zhu conducted Community
Level Livability evaluations using local yearbook data and survey questionnaires (Z/u, et al., 2020),
while Pan used remote sensing image data and survey questionnaires (Pan, et al., 2023). However, this
approach was inefficient and data updates were not timely. Other scholars have also constructed
evaluation models based on six ecological indicators, namely vegetation conditions and landscape
patterns (Huang, et al., 2022), but lack humanistic indicators. Therefore, compared with other scholars'
research, this study selected eight factors, including ecological and humanistic categories. The entire
calculation process was carried out through the GEE platform, achieving accurate and efficient results.

Although the U-Chang-Shi urban cluster faces considerable ecological challenges, the insights
gained from this study offer a roadmap for sustainable urban development. By integrating ecological
considerations into the urban planning process, it is possible to pave the way towards a more livable,
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resilient, and sustainable urban future.The findings of this study provide crucial insights for urban
planners and policymakers in the region, aiding them in incorporating ecological conservation and
sustainable development into their decision-making processes for future urban expansion. This research
not only offers a reference model for assessing ecological livability in similar regions but also identifies
directions for further investigation. Future developments could include more sophisticated ecological
monitoring systems that integrate finer remote sensing data and other environmental variables to rapidly
and comprehensively assess the ecological livability of regions, offering more precise data support for
urban planners and policymakers. Additionally, by building on these monitoring systems and
incorporating machine learning and big data analytics, future research can more effectively identify key
drivers of changes in ecological livability, providing a scientific basis for devising differentiated
ecological protection and restoration strategies. Considering regional geographic conditions, climate
change, and socio-economic factors collectively will aid in achieving sustainable development goals for
the U-Chang-Shi urban cluster and other similar areas, ensuring the coordinated development of ecology
and economy.

Conclusion

This study, based on the Google Earth Engine (GEE) platform and utilizing remote sensing data,
constructed the RSELI index to conduct an in-depth analysis of the ecological livability of the U-Chang-
Shi urban cluster from 2000 to 2020. The findings are as follows:

Spatio-temporal variation in ecological livability: The ecological livability index of the U-Chang-Shi
urban cluster fluctuated slightly over 20 years but generally remained in a moderately livable state.
Although there was a significant decline from 2000 to 2005, the index gradually began to rise from 2005,
which is related to regional ecological restoration projects and greening activities.

Changes in key ecological factors: The AOD indicator significantly increased over 20 years, closely
related to regional industrial development and increased emissions of atmospheric pollutants; the NDVI
indicator showed an overall increase in vegetation in the area, a direct result of China's large-scale
vegetation planting and windbreak and sand fixation projects in Xinjiang's desert areas over the last 20
years.

Geography and ecological livability: The topographical characteristics of the U-Chang-Shi urban
cluster have significantly impacted its ecological livability. The southern region, especially parts
bordering the Tianshan Mountains, due to large topographical variations, has relatively lower ecological
livability, while the central plains, benefiting from abundant river resources, have a relatively better
ecological environment.

Urbanization and ecological livability: The acceleration of urbanization, changes in land use,
reduction of green spaces, and increase in pollution may adversely affect the ecological environment of
the U-Chang-Shi urban cluster. However, since 2010, the region has shown a marked increase in attention
to the ecological environment, with numerous greening and ecological restoration projects implemented,
positively impacting ecological livability.

In summary, although the ecological livability of some areas has improved, many areas, especially
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the fragile ecological regions near the Gurbantunggut Desert in the north, are still experiencing a decline
in ecological livability. The ecological restoration and protection tasks in these areas remain challenging.
To achieve sustainable development, the U-Chang-Shi urban cluster should consider multiple factors such
as topography, water resources, urbanization, and economic development comprehensively. It should
balance the relationship between ecological and economic development, strengthen ecological protection,
use resources rationally, and avoid ecological damage caused by excessive development.
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Figure 2

Schematic diagram of study area

The data used in the study were all obtained and processed through the Google Earth Engine

(GEE) platform.

85"3!2'0"[‘. 86"0.'0"5 86°31|}'0"E 87“0;1]"!! 81'°3|='0"E 88“0"0" E 88°3lil'll"E 89°I]|'I]"E
Legend
N i
A :l Administrative boundary  DEM(m )
River system 5252
: ——
P waterbody —_—
z 279 z
s | &
% : | 4
= Manasi - | =
. Midong
z £
= =
= - =
Y o
3 3
z £
3 | =
g g
3 3
Z z
s s
== _—
o o
(2] ”
- -
Z z
£ | =
A o z
- [ ee—— LMy Location of the study area derived from Google Earth Engine using DEM data. -
Image © 2024 Google, DEM data sources include USGS and SRTM.
T T T T T T T T
B5°30'0"E 86°0"0"E 86°30'0"E 87°0"0"E 87°300"E 88°0"0"E 88°30'0"E 89°0"0"E

Peer] reviewing PDF | (2024:03:98482:2:0:NEW 22 Jun 2024)



PeerJ Manuscript to be reviewed

Figure 3

Spatial distribution of RSELI in U-Chang-Shi Urban Cluster from 2000 to 2020

The data used in the study were all obtained and processed through the Google Earth Engine

(GEE) platform.
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Figure 4

Temporal and spatial distribution of RSELI in U-Chang-Shi Urban Cluster from 2000 to
2020

The data used in the study were all obtained and processed through the Google Earth Engine

(GEE) platform.
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Table 1l(on next page)

Principal component analysis of indicators from 2000 to 2020
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1 Tablel Principal component analysis of indicators from 2000 to 2020

Years  Eigenvalues PC 1 PC2 PC3 PC4 PC5 PC6 PC7 PC38
NDVI 03974  0.8290  0.1511  0.1779 00181  -03162 -0.0090  -0.0017
WET 0.1127  0.0231  -0.1449  -0.8986  -0.0549  -03855  -0.0942  0.0022
DEM 06121 04106 03067  -0.1983  -0.3785 03280  -0.2692  0.0024
SLOPE 04178 03032 -0.7940  0.0903 03036  -0.0401  -0.0345  0.0012
2000 AOD 00991 00755 03832  -02016 0.8693  0.1947  -0.0594  -0.0005
NDBSI 01029 -02048  0.0894 02461  0.0706  -0.4579  -0.8150  -0.0044
LST 05117 -0.0637 02773 0.1107  0.0254  -0.6282 04996  -0.0032
PD 00003 00011  -0.0022 -0.0040  -0.0015  0.0044  0.0011  -1.0000
comrbution 78595  1132%  4.17%  3.07%  132%  076%  043%  0.34%
NDVI 03207 07897 03442  -0.1524 03269 -0.0880 0.1314  -0.0017
WET 02062  0.0388  -0.6243 05065  -0.4808 -02530  0.1206  0.0054
DEM 06026 03848 00949 04672 03530  -03592  0.0891  0.0021
SLOPE 04128 02707 05837  -0.6412  -0.0435  -0.0411  0.0301  0.0015
2005  AOD 00575 00615  0.0432 00065  -0.1840 -02342  -0.9499  -0.0003
NDBSI 01315 -03815 02989 -02695  -0.3224  -0.7184 02347  -0.0034
LST 05482 -0.0651 02255  0.1345  -0.6306 04760  0.0450  -0.0012
PD 00002 00014  -0.0059  0.0037  0.0006  -0.0001  0.0001  -1.0000
comrbution  7657%  1238%  421%  340%  145%  085%  0.76%  0.38%
NDVI 03258  -0.8280 -0.1107 03324  -0.1635 02101  0.1209  -0.0020
WET 02102 -0.1017 00152  -0.7783  0.1560 05336  0.1745  0.0069
DEM 06421 03794 03881 -0.1785 03818  -02542 02256  0.0010
SLOPE 04439 02574 08443  -0.0414 -0.1283 00719 00213  0.0015
2010  AOD 01019 -0.0709  -0.1978  -0.3845  -0.8420  -02951  0.0388  -0.0031
NDBSI 00687 02744 -0.0005 02399  -0.1448  0.1773  0.9000  -0.0052
LST 04746 01162 -02914 02116  -0.2381  0.6949  -0.3034  0.0010
PD 00003 -0.0009  0.0015  -0.0061  0.0047  0.0038  -0.0039  -1.0000

Contribution 77 350, 11569  4.08%  3.56%  140%  0.83%  0.75%  0.50%

Rate / %
NDVI 03500  -0.8436 02239 02259  0.0060 02531  -0.0011  -0.0057
WET 02250  -0.0514 04500  0.6302 03332 04774 00058  -0.0047
DEM 06167 -04000 -02230 03992 03777  -03285 00022  -0.0015
SLOPE 04257 -02760 07658 03744  -0.1253 00164 00015  -0.0017
2015 AOD 00896 -0.1711  -0.0142 04842  -0.8532  -0.0063  0.0007  -0.0009
NDBSI 00037 0.0070  -0.0034  -0.0027  -0.0014  0.0003  0.0043  -0.9999
LST 05067 0.01421 03206  -0.1335  -0.0514 07745  -0.0016  0.0046
PD 00003 -0.0010  0.0041 00047  0.0021  0.0006  -1.0000  -0.0044
Comrbution 78230 11.68%  3.97%  313%  133%  0.80%  047%  0.39%
NDVI 03570  -0.8079 -0.3083 -0.1195 00812 03200  0.0385  -0.0019
WET 02278  -0.0904 07467 04665  0.1611 03578  0.1036  0.0055
DEM 05793 -03982  -0.0429 03805 03079  -03781 03485  0.0036
2020 SLOPE 03967 -02661 05227  -0.6902 -0.1379  0.0481  0.0285  0.0016
AOD 01911 -0.1600 -0.0386 03324  -0.8995 0.1179 00543  -0.0059
NDBSI 00994 02847  -0.1954  -0.1419  0.0372 04846 07839  -0.0037
LST 05303 00556  -0.1804  0.1273 02079  0.6129  -04981  -0.0009
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PD 20.0002  -0.0010  0.0065  0.0015  0.0066  -0.0029  -0.0010  -1.0000
ggtne“/“(,’/gt“’n 77.45%  11.25%  4.35% 3.52% 137%  0.89% 0.71% 0.46%
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Table 2(on next page)

Statistical values of various factors and RSELI from 2000 to 2020
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1 Table2 Statistical values of various factors and RSELI from 2000 to 2020

Years

2000 2005 2010 2015 2020
Factor
RSELI 0.519 0.459 0.479 0.493 0.490
AOD 0.364 0.394 0.464 0.541 0.712
LST(°C) 41.407 41.301 40.359 41.130 40.530
NDBSI 0.112 0.109 0.097 0.108 0.104
NDVI 0.295 0.300 0.323 0.308 0.317
WET -0.156 -0.203 -0.202 -0.209 -0.224
PD

24.900 28.605 34.068 38.989 45.060
(People/ m?)

2 Note: Except for Heat (LST) and Population Density (PD), the other factors are dimensionless.
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Table 3(on next page)

Area and proportion of RSELI grades in the U-Chang-Shi Urban Cluster from 2000 to
2020
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1 Table3 Areaand proportion of RSELI grades in the U-Chang-Shi Urban Cluster from 2000 to 2020

Poor Fair Moderate Good Excellent
veus - Area Proportion Area/ Proportion Area/ Proportion Area/ Proportion Area/ Proportion
10* km? 10* km? 10* km? 10* km? 10* km?
2000 0.088 1.97% 0.278 6.23% 2919 65.44% 0.917 20.57% 0.259 5.80%
2005 0.161 3.60% 1.130 25.34% 2.239 50.19% 0.665 14.91% 0.266 5.96%
2010 0.141 3.16% 0.796 17.84% 2.372 53.18% 0.828 18.56% 0.324 7.26%
2015 0.064 1.42% 0.472 10.58% 2.804 62.88% 0.845 18.95% 0.275 6.17%
2020 0.132 2.96% 0.707 15.84% 2.529 56.71% 0.572 12.84% 0.520 11.65%
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Table 4(on next page)

Changes of ecological livability in the U-Chang-Shi Urban Cluster from 2000 to 2020
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1 Table4 Changes of ecological livability in the U-Chang-Shi Urban Cluster from 2000 to 2020
2000—2005 2005—2010 2010—2015 2015—2020 2000—2020
Classification Area/ Proportion Area/ Proportion Area/ Proportion Area/ Proportion Area/ Proportion
10* km? 10* km? 10* km? 10* km? 10* km?

Degraded 1.37 30.78% 0.22 4.93% 0.30 6.82% 0.56 12.60% 0.89 19.88%
No Change 2.95 66.19% 3.38 75.75% 3.46 77.69% 3.50 78.49% 3.11 69.79%

Improved 0.13 3.03% 0.86 19.33% 0.69 15.49% 0.40 8.91% 0.46 10.33%

2
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