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The U-Chang-Shi (Urumqi-Changji-Shihezi) urban cluster, located at the heart of Xinjiang,
boasts abundant natural resources. Over the past two decades, rapid urbanization,
industrialization, and climate change have significantly threatened the region's ecological
livability. To comprehensively, scientifically, and objectively assess the ecological livability
of this area, this study leverages the Google Earth Engine (GEE) platform and multi-source
remote sensing data to develop a comprehensive evaluation metric-the Remote Sensing
Ecological Livability Index (RSELI). This aims to examine the changes in the ecological
livability of the U-Chang-Shi urban cluster from 2000 to 2020. The findings show that
despite some annual improvements, the overall trend in ecological livability is declining,
indicating that the swift pace of urbanization and industrialization has placed considerable
pressure on the region's ecological environment. Land use changes, driven by urban
expansion and the growth in agricultural and industrial lands, have progressively
encroached upon existing green spaces and water bodies, further deteriorating the
ecological environment. Additionally, the region's topographical features have influenced
its ecological livability; large terrain fluctuations have made soil erosion and geological
disasters common. Despite the central plains' vast rivers providing ample water resources,
over exploitation and ill-conceived hydrological constructions have led to escalating water
scarcity. The area near the Gurbantunggut Desert in the north, with its extremely fragile
ecological environment, has long been unsuitable for habitation. This study provides a
crucial scientific basis for the future development of the U-Chang-Shi urban cluster and
hopes to offer theoretical support and practical guidance for the sustainable development
and ecological improvement of the region.
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11 Abstract

12 The U-Chang-Shi (Urumqi-Changji-Shihezi) urban cluster, located at the heart of Xinjiang, boasts 

13 abundant natural resources. Over the past two decades, rapid urbanization, industrialization, and climate 

14 change have significantly threatened the region's ecological livability. To comprehensively, scientifically, 

15 and objectively assess the ecological livability of this area, this study leverages the Google Earth Engine 

16 (GEE) platform and multi-source remote sensing data to develop a comprehensive evaluation metric-the 

17 Remote Sensing Ecological Livability Index (RSELI). This aims to examine the changes in the ecological 

18 livability of the U-Chang-Shi urban cluster from 2000 to 2020. The findings show that despite some 

19 annual improvements, the overall trend in ecological livability is declining, indicating that the swift pace 

20 of urbanization and industrialization has placed considerable pressure on the region's ecological 

21 environment. Land use changes, driven by urban expansion and the growth in agricultural and industrial 

22 lands, have progressively encroached upon existing green spaces and water bodies, further deteriorating 

23 the ecological environment. Additionally, the region's topographical features have influenced its 

24 ecological livability; large terrain fluctuations have made soil erosion and geological disasters common. 

25 Despite the central plains' vast rivers providing ample water resources, over exploitation and ill-conceived 

26 hydrological constructions have led to escalating water scarcity. The area near the Gurbantunggut Desert 

27 in the north, with its extremely fragile ecological environment, has long been unsuitable for habitation. 

28 This study provides a crucial scientific basis for the future development of the U-Chang-Shi urban cluster 

29 and hopes to offer theoretical support and practical guidance for the sustainable development and 

30 ecological improvement of the region.

31

32 Keywords: Urumqi-Changji-Shihezi urban cluster; Google Earth Engine; RSELI; remote sensing 

33 technology

34

35 Introduction
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36 As the process of global urbanization continues to deepen, cities have become the main places where 

37 most people live and work. This rapid trend of urbanization, especially in developing countries, has 

38 brought a series of challenges and opportunities (Zhang et al., 2023). However, with the swift expansion 

39 of cities and population agglomeration, urban ecological environmental issues have gradually become a 

40 focal concern for both the public and governments. From air pollution and water scarcity to urban heat 

41 island effects, these environmental issues directly threaten the health and quality of life of urban residents 

42 and also constrain the sustainable development of cities(Chen et al., 2023). Therefore, the livability of 

43 cities, especially from an ecological perspective, has received high attention from governments, research 

44 institutions, and urban planners worldwide.Ecological livability involves not only the quality of the 

45 natural environment but also socioeconomic and cultural factors, making it an important indicator of a 

46 city's overall development level(Li et al., 2020). In recent years, with the advancement of remote sensing 

47 technology, researchers have been able to obtain and analyze urban ecological environment data more 

48 accurately, thereby providing a scientific basis for assessing urban ecological livability.

49 The U-Chang-Shi urban cluster, a typical developing urban agglomeration in arid regions, faces 

50 widespread and representative challenges regarding ecological livability in the urbanization process. This 

51 area is characterized by arid climate, water scarcity, and fragile ecological environment, while also 

52 bearing the environmental pressures brought by rapid urbanization(Wang et al., 2024). The significant 

53 contradictions between urban development and ecological protection in this region necessitate more 

54 scientific, objective, and comprehensive evaluation methods to support urban ecological construction and 

55 management. Building on the research of previous scholars and considering the topographical and 

56 climatic characteristics of the U-Chang-Shi urban cluster, this study utilized the Google Earth Engine 

57 (GEE) platform to acquire eight key parameters: Greenness (NDVI), Wetness (WET), Dryness (NDBSI), 

58 Heat (LST), Elevation (DEM), Slope (SLOPE), Aerosol Optical Depth (AOD), and Population Density 

59 (PD). Workflow of the study is shown in Fig. 1. These parameters encompass multiple crucial aspects of 

60 the urban ecological environment and are key factors affecting urban livability. This research pioneers the 

61 application of principal component analysis to these eight parameters on the GEE platform, determining 

62 their weights to effectively avoid the biases of subjective weighting, and successfully constructing the 

63 Remote Sensing Ecological Livability Index (RSELI), which underscores the impact of the ecological 

64 environment on urban livability. Compared to traditional evaluation methods, the use of the GEE 

65 platform's data acquisition and analysis capabilities has significantly enhanced the efficiency and 

66 accuracy of the study. This research not only provides a new method and perspective for assessing the 

67 ecological livability of the U-Chang-Shi urban cluster but also offers robust theoretical support and 

68 practical guidance for evaluating the ecological livability of other cities and urban clusters in typical 

69 dryland areas.

70

71 Literature Review

72 To more precisely and systematically assess the ecological of cities, Remote Sensing (RS) and 

73 Geographic Information Systems (GIS) have played a crucial role in this field. Representing modern 

74 technology, their application in urban remote sensing has been widely recognized. Compared to 

75 traditional assessment methods, remote sensing technology can provide more extensive, real-time, and 
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76 objective data, ensuring the scientific accuracy of evaluation results. Combined with GIS, researchers can 

77 conduct in-depth data analysis and visualization, thereby offering powerful decision support for 

78 policymakers. Berihun used remote sensing data and Geographic Information Systems (GIS) to analyze 

79 land use and cover changes from 1982 to 2017 in three watersheds of the Upper Blue Nile basin. The 

80 study found significant reductions in natural vegetation and increases in cultivated land, driven primarily 

81 by population growth and changes in agricultural practices. This research emphasizes the need for 

82 strategic land management in areas experiencing similar environmental changes (Berihun, et al., 2019).In 

83 the study by Zhao on the evaluation of the natural suitability of the human settlement environment on the 

84 northern slope of the Tianshan Mountains, GIS revealed the spatial distribution pattern of natural 

85 suitability for human settlement on the northern slope of the Tianshan Mountains (Zhao et al., 2023). 

86 However, traditional GIS relies on manpower to process massive amounts of data, which can be overly 

87 complicated. Therefore, the Google Earth Engine (GEE) platform, as an advanced cloud computing 

88 remote sensing data platform, provides researchers worldwide with a vast array of satellite remote sensing 

89 data and powerful data processing tools (Zhang et al., 2023). Compared to traditional methods of 

90 obtaining and processing remote sensing data, the GEE platform offers comprehensive data, rapid 

91 processing, and easy operation advantages. Researchers no longer need to invest in expensive hardware or 

92 wait for lengthy data processing. The GEE platform can quickly complete complex computational tasks in 

93 the cloud, from simple image classification to complex model simulations (Zurqani et al., 2018). 

94 Moreover, GEE's open API (Application Programming Interface) and flexible scripting language allow 

95 researchers to customize data processing and analysis according to their needs. This high degree of 

96 customizability enables the GEE platform to meet various complex research needs, from basic data 

97 visualization to advanced machine learning models, all easily implemented on the GEE platform (Liu et 

98 al., 2018). Xiong developed the Automated Cropland Mapping Algorithm (ACMA) using GEE, 

99 employing satellite data to map Africa's farmlands with an accuracy of about 90%, significantly reducing 

100 the time needed for agricultural surveys(Xiong et al., 2017). Using GEE and Sentinel 5P imagery, a 

101 significant decrease in air pollution in the Ahvaz area of Iran was observed, with noted reductions in the 

102 concentrations of NO2 (13.7%), CO (6.1%), SO2 (28%), and HCHO (9.5%) before and after the COVID-

103 19 pandemic. This highlights the platform's versatility in meeting complex research needs, ranging from 

104 data visualization to machine learning applications (Fatemeh et al., 2023).

105 Starting from the basic components, structure, and behavior of the system, an ecological model can 

106 mathematically simulate the structure of the ecosystem with good physical significance, such as the 

107 pressure-state-response (PSR) model (Bai and Tang, 2010), ecological footprint model (Gu et al., 2015), 

108 urban resources and environment carrying capacity (URECC) system (Zhang et al., 2018), and ecosystem 

109 service assessment model (Zhang et al., 2006). However, some defects (e.g., complicated process, and 

110 over-parameterization) bring considerable limitations to wider application. Using remote sensing data 

111 such as PM concentration, surface temperature, and vegetation coverage, a Comprehensive Evaluation 

112 Index (CEI) was established to assess environmental changes in many Chinese cities (He et al., 2017). In 

113 2019, based on the analytic hierarchy process and expert scoring method, the Ecological Carrying 

114 Capacity (ECC) index was constructed according to the specific ecological conditions of the Aral Sea 

115 region (Wu et al., 2020b). Additionally, the Urban Ecological Quality Index (UEQI) (Gu et al., 2015), 

116 Ecological Footprint Variation Index (EFVI) (Musse et al., 2018), Potential Ecological Risk Index (Xu et 
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117 al., 2008), and City Sustainability Index (CSI) (Mori and Christodoulou, 2012) have also been widely 

118 applied.

119 In 2013, Xu utilized Landsat satellite data to calculate four environmental factors�NDVI, WET, 

120 NDBSI, and LST�and employed Principal Component Analysis (PCA) to derive the Remote Sensing 

121 Ecological Index (RSEI) for evaluating the ecological environment of Fuzhou (Xu et al., 2018), which 

122 gained wide recognition globally. For instance, Alwan used RSEI to assess ecological changes in Iraq's 

123 Al-Hawizeh Marsh from 1990 to 2020 (Alwan and Aziz, 2022); Wu combined GEE and RSEI to analyze 

124 the ecological quality of the Sahel region in Africa from 2001 to 2020 (Wu et al., 2022); Huang 

125 constructed a seasonal RSEI using MODIS satellite data to evaluate the seasonal changes in ecological 

126 quality in the Jing-Jin-Ji area from 2001 to 2020 (Huang et al., 2024). However, models solely based on 

127 natural environmental factors were insufficient for accurate ecological livability assessments. 

128 Consequently, some scholars have added additional factors to enhance evaluation models. For example, 

129 Yu introduced the Ecological Livability Index (ELI) in 2022, incorporating NDVI, WET, NDBSI, LST, 

130 and AOD, weighted based on an entropy method, to assess the ecological livability of Wuhan across 

131 different seasons from 2002 to 2017 (Yu et al., 2022). In 2023, Zhang built upon the ELI to create the 

132 UELI (IMP) model, employing the harmonic analysis of time series (HANTS) and spatial-temporal 

133 information fusion based on a non-local means filter (Zhang et al., 2022).

134 The application of the Remote Sensing Ecological Livability Index (RSELI) model offers several 

135 advantages and significance. Firstly, it leverages the vast data resources and processing capabilities of the 

136 Google Earth Engine (GEE) platform, allowing for real-time, extensive, and precise data analysis. 

137 Secondly, the use of principal component analysis ensures an objective weighting of key ecological 

138 parameters, minimizing subjective biases. This methodology enhances the accuracy and reliability of 

139 ecological livability assessments. The RSELI model not only provides a new perspective for evaluating 

140 the U-Chang-Shi urban cluster but also offers a robust framework for other cities and urban clusters, 

141 particularly in arid regions, supporting sustainable urban development and informed policy-making. This 

142 approach significantly improves the efficiency and effectiveness of ecological assessments, contributing 

143 valuable insights for urban planning and environmental management.

144

145 Materials & Methods

146

147 Research Area Overview

148

149 The U-Chang-Shi urban cluster is one of the 19 important city clusters planned by China and is the 

150 center of future development in Xinjiang, as well as its lifeline. It mainly includes Urumqi City, parts of 

151 Changji Hui Autonomous Prefecture, Wujiaqu City, and Shihezi City, with Changji, Shihezi, and Turpan 

152 serving as the regional center cities for urban cluster construction to drive the development of surrounding 

153 cities and to create a new western center centered on Urumqi. It is an important part of the economic belt 

154 on the northern slope of the Tianshan Mountains in Xinjiang (Qu, 2003). The research area is shown in 

155 Fig. 2:

156 The total area is 46,400 km² (accounting for 2.8% of Xinjiang's total area), and as of the end of 2021, 
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157 the total permanent population was 5.717 million people (accounting for 30.2% of Xinjiang's total), with 

158 a gross regional product of 537.182 billion yuan (accounting for 22.1% of Xinjiang's total GDP). The 

159 region has a temperate continental arid climate, with an average annual temperature of 25.7 °C, an 

160 average annual rainfall of 275.5 mm, and is rich in ecological resources, with a wide variety of flora and 

161 fauna (Muhadaisi et al., 2021).

162

163 Data Sources and Research Methods

164

165 Data Sources and Preprocessing

166

167 The data used in the study were all obtained from the GEE platform, processed through GEE's 

168 JavaScript code to compile data for the years 2000, 2005, 2010, 2015, and 2020. The four sets of data - 

169 greenness NDVI, wetness WET, dryness NDBSI, and heat LST - are derived from the American MODIS 

170 satellite data (Zhang et al., 2020). Elevation DEM and slope SLOPE data are from the United States 

171 Geological Survey (USGS) and the Shuttle Radar Topography Mission (SRTM) (Dong et al., 2022). 

172 Population density data are from the WorldPop project, which combines satellite and census data to 

173 generate high-resolution population maps (Dong et al., 2021; Huang et al., 2002) and AOD data for the 

174 region within China is sourced from MCD19A2 AOD data (Zhou et al. 2018).

175 The remotely sensed data utilized in this study were sourced from the Google Earth Engine (GEE) 

176 platform. To ensure the accuracy and consistency of the data, the following preprocessing steps were 

177 implemented. The cloud masking function within GEE was employed to identify and remove cloud cover 

178 through specific threshold settings and algorithms, thus obtaining clearer surface data. Cloud layers in 

179 MODIS satellite data were detected and masked using the Quality Assessment Band (QA Band). To 

180 ensure spatial alignment across images from different times and sensors, all imagery underwent geometric 

181 correction. While images in GEE are pre-corrected, additional ground control points were used as needed 

182 to ensure further alignment precision.Radiometric corrections were applied to ensure effective 

183 comparison across data from different times and satellites, using GEE�s standardized correction 

184 algorithms to eliminate radiometric discrepancies between images. Atmospheric corrections were 

185 conducted to mitigate the impacts of atmospheric scattering and absorption on image quality, with 

186 MODIS satellites employing the surface reflectance products in MOD09A1 for correction.Using 

187 boundary information from the study area, remotely sensed images were cropped to ensure consistency 

188 with the geographical scope of the study area, thereby minimizing interference from irrelevant regions. 

189 These data preprocessing operations were compiled, processed, and calculated using JavaScript code on 

190 the GEE platform, ensuring the efficiency and accuracy of constructing the Remote Sensing Ecological 

191 Livability Index (RSELI) model.

192

193 Remote Sensing Ecological Livability Index (RSELI)

194

195 In this study, the Remote Sensing Ecological Livability Index (RSELI) is derived using principal 

196 component analysis. It initially calculates the greenness (NDVI), wetness (WET), dryness (NDBSI), heat 

197 (LST), elevation (DEM), slope (SLOPE), Aerosol Optical Depth (AOD), and population density (PD) 
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198 separately through models. To minimize errors, data from these eight indicators are selected within the 5% 

199 to 95% confidence interval and then normalized. The normalized data are combined through band 

200 synthesis, with the dataset of the eight normalized indicators concentrated on the first principal 

201 component. The weights are determined based on the contribution rates of the eight indicators on the 

202 principal component and their inherent characteristics, reducing the potential for human bias in assigning 

203 values. All these operations are executed using GEE's JavaScript code for compilation and computation. 

204 The models for each indicator are as follows.

205

206 Greenness (NDVI) 

207

208 NDVI has become the most widely applied vegetation index in remote sensing, used for monitoring 

209 surface green vegetation cover (Rouse et al., 1974). In this paper, this index is utilized to represent the 

210 greenness within the RSELI. The formula is as follows:
211

                                    (1)
   redNIRredNIR /NDVI  

212 In the formula: ρNIR represents the near-infrared band;  ρred represents the red band.

213

214 Wetness (WET)

215 WET can be calculated through the Tasseled Cap Transformation (K-T Transformation) (Crist, 1985; 

216 Baig et al., 2014), extracted from MODIS satellite imagery data. In this paper, this index is utilized to 

217 represent wetness within the RSELI. The formula is as follows:

218

 (2)6109.0

6806.01594.03102.02021.00315.0WET

SWIR2

SWIR1NIRredgreenblue







219
In the formula: ρblue represents the blue band;  ρgreen represents the green band;  ρSWIR1 represents 

220
short-wave infrared 1;  ρSWIR2 represents short-wave infrared 2.

221

222 Dryness (NDBSI)

223 NDBSI is effective for monitoring environmental dryness, calculated as the average of the Built-up 

224 Index (IBI) and the Bare Soil Index (SI) (Xu, 2008; Essa et al., 2012). In this paper, this index is used to 

225 represent dryness within the RSELI. The formula is as follows:

226

                            (3)SWIR1green

green

redNIR

NIR

NIRSWIR1

SWIR1

SWIR1green

green

redNIR

NIR

NIRSWIR1

SWIR1

2

2

IBI



































227

                                        (4)

   
   blueNIRredSWIR1

blueNIRredSWIR1
SI








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228

                                                    (5)2

SIIBI
NDBSI




229

230 Heat (LST)

231 Heat (LST) involves the inversion of land surface temperature from satellite imagery using an 

232 atmospheric correction method. The emissivity (REf) of the surface is calculated through the Fractional 

233 Vegetation Cover (FVC). The original blackbody radiance values B(Ts), after radiometric correction, 

234 provide the radiance at the satellite, which is then atmospherically corrected to remove the effects of 

235 water vapor. Finally, the blackbody radiance is converted into land surface temperature using the Planck 

236 function (Jimenze et al., 2009; Paolini, 2004; Weng et al., 2009; Nichol, 2005). The formula is as follows:

237

  (6)0.050.7

0.05NDVI
NDVI1NDVI0NDVIFVC

0.7)~(0.05
0.7)~(0.050.7)(0.05)(




 

238

                          (7)
2

(natural)

2
(building)

(water)

FVC0.0461FVC0614.09625.0

FVC0.0671FVC086.09589.0

995.0







E

E

E

239

       (8)(natural)0.7)((building)0.7)~(0(water)0)( NDVINDVINDVIREf EEE  

240

                                 (9)
 

REf

REf1
TB

downupTIRS1
S





t

LtL ）（

241

                                                 (10)  1)
TB

K
ln(

K
LST

S

1

2




242 In the formula: E(water) represents the emissivity of water body pixels;  E(building) represents the 

243 emissivity of urban pixels;  E(natural) represents the emissivity of natural surface pixels;  Lup represents 

244 the atmospheric upward radiance, Ldown represents the atmospheric downward radiance, t represents the 

245 atmospheric transmittance in the thermal infrared band, and K1 and K2 are preset constants for satellite 

246 emission. All the above data are automatically acquired from the GEE platform.

247

248 Elevation (DEM) and Slope (SLOPE)

249 DEM and SLOPE data used in GEE are from the USGS/SRTMGL1_003 dataset, jointly measured 

250 by the National Aeronautics and Space Administration (NASA) and the National Imagery and Mapping 

251 Agency (NIMA) of China. The data were collected using the Shuttle Radar Topography Mission (SRTM) 

252 system aboard the Endeavour space shuttle, leading to the creation of digital terrain models, which are the 

253 current SRTM terrain product data (Aizizi et al., 2022).

254
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255 Aerosol Optical Depth (AOD)

256 AOD is selected to represent air quality conditions, reflecting the total amount of particulate matter 

257 suspended in the atmosphere. The MCD19A2 AOD data within the China region are chosen, which are 

258 the version 6 data products of the MODIS Terra and Aqua combined, using the Multi-Angle 

259 Implementation of Atmospheric Correction (MAIAC) land aerosol optical thickness (AOD) at grid level 2. 

260 These can be directly accessed and processed for annual average data compilation using JavaScript code 

261 on the GEE platform (Duan et al., 2021).

262

263 Population Density (PD)

264 The WorldPop project employs machine learning methods to analyze the relationship between 

265 population density and a series of geospatial covariate layers, disaggregating the most recent census-based 

266 population counts matched to corresponding administrative units into approximately 100x100m grid cells. 

267 The mapping method is based on a random forest algorithm for dasymetric redistribution (Lloyd, 2017), 

268 allowing for direct extraction and utilization through the GEE platform.

269

270 RSELI model

271 Due to the uneven dimensions of the eight factors, directly applying them in PCA would result in 

272 unbalanced indicator weights. Therefore, it is necessary to normalize these eight factors before 

273 performing PCA, converting each indicator value into a dimensionless value within the range of 0 to 1. 

274 This normalization ensures that all factors are on a comparable scale, allowing for a more accurate and 

275 balanced PCA calculation (Amani et al., 2020). The formula for this normalization process is as follows:

276

                                                        (11)minmax

mini
i

II

II
XI

-

-


277 In the formula: XIi represents the value after normalization, Ii represents the value before 

278 normalization, and Imax and Imin represent the maximum and minimum values before normalization, 

279 respectively.

280 After normalization of the eight factors, the first principal component (PC1) is calculated using the 

281 band synthesis and principal component analysis modules within the GEE platform. The formula for 

282 calculating PC1 is as follows:
283

         (12)
 PDLST,NDBSI,AOD,SLOPE,DEM,WET,NDVI,PC1RSELI 

284
The model described above can be compiled and processed using JavaScript code in the Google 

285
Earth Engine (GEE). GEE allows for the direct provision of the final results in TIFF format, which can be 

286
downloaded for analysis and use. Leveraging the GEE platform significantly reduces processing time due 

287
to its cloud computing capabilities, enabling the handling of multi-year remote sensing imagery in one go. 

288
This efficiency is particularly beneficial for extensive datasets covering long time periods, making GEE a 

289
powerful tool for environmental and ecological research.

290
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291 Results

292

293 Analysis of PCA

294

295
The PCA's results for the eight factor indicators of the U-Chang-Shi urban cluster from 2000 to 2020, 

296
as shown in Table 1, reveal that the first principal component (PC1) accounted for contribution rates of 

297
78.59%, 76.57%, 77.32%, 78.23%, and 77.45% for the five years, respectively. All contribution rates 

298
exceeded 75%, indicating that PC1 encompasses the vast majority of the characteristics among the eight 

299
indicators and can effectively represent the ecological livability level of the U-Chang-Shi urban cluster. 

300
The positive values of greenness and wetness across all five years in the table suggest that the region's 

301
vegetation cover and moisture level positively impact its ecological livability. In contrast, other indicators 

302
negatively affect the ecological condition, which aligns with the expected ecological status due to the arid 

303
continental climate prevalent in the area.

304
Observing the absolute values of the eigenvalues of the eight indicators in Table 1 from 2000 to 

305
2020, the ranking of the absolute values of the indicator eigenvalues for the top five positions consistently 

306
follows the order of DEM > LST > SLOPE > NDVI > WET. From 2000 to 2005, NDBSI > AOD, and 

307
from 2005 to 2020, AOD > NDBSI. In all years, PD consistently ranks last, indicating that the main 

308
factors affecting the ecological livability of the region are elevation, temperature, slope, greenness, and 

309
wetness, in that order. Given the region's location on the northern slope of the mid-section of the Tianshan 

310
Mountains, elevation and slope notably limit its ecological livability, with temperature impact ranked 

311
second. This is attributable to the presence of a vast desert area in the northern part of the region (the 

312
Gurbantunggut Desert), which experiences significant diurnal temperature variations, thereby affecting 

313
greenness and wetness, in line with characteristics typical of arid areas. Dryness and Aerosol Optical 

314
Depth show that before 2005, dryness had a greater impact than Aerosol Optical Depth, but thereafter, the 

315
impact of Aerosol Optical Depth exceeded that of dryness, mainly due to rapid industrial development in 

316
the region and a surge in emissions of atmospheric pollutants. Huang's study on the spatiotemporal 

317
variation of aerosol optical thickness in Xinjiang from 2000 to 2013 noted an annual increase in AOD in 

318
economically developed areas of Northern Xinjiang, especially in the economic belt of the northern slope 

319
of the Tianshan Mountains, including the Du-Kui-Wu area (Dushanzi-Kuitun-Wusu), Shihezi, and the U-

320
Chang region, where AOD values showed an upward trend. This conclusion aligns with the findings of 

321
this study (Huang et al., 2015). As for the near-zero eigenvalue of population density, it indicates that 

322
population density has almost no impact on the ecological livability of the region.

323

324
Spatio-temporal Analysis of Ecological Livability Levels in the U-Chang-Shi Urban Cluster

325

326
Based on most researchers' studies on ecological livability, it is typically categorized into five levels. 

327
The RSELI index uses 0.2 as the benchmark for grading (Shi & Li, 2021; Fu & Zhang, 2023; Liu, Wu & 

328
Jin, 2023; Zhang et al., 2023), which are as follows: Excellent (Livable, 0.8~1.0), Good (Relatively 

329
Livable, 0.6~0.8), Moderate (Moderately Livable, 0.4~0.6), Fair (Unlivable, 0.2~0.4), and Poor 

330
(Extremely Unlivable, 0.0~0.2).
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331
Statistics from Table 2 indicate that the ecological livability index of the U-Chang-Shi urban cluster 

332
has slightly decreased over the past 20 years, with a significant decline between 2000 and 2005 and a 

333
gradual improvement thereafter, maintaining an overall state of Moderate livability. The AOD indicator 

334
has significantly increased over the 20 years, associated with air pollution, dust storms, and soil dust 

335
caused by drought. This period saw rapid industrial development in the area, leading to a significant 

336
increase in the emission of atmospheric pollutants. The overall change in LST has not been significant, 

337
showing a trend towards stability. The NDBSI indicator has slightly decreased over the 20 years, 

338
indicating a reduction in the region's dryness level, benefiting from an overall increase in the NDVI 

339
indicator over the same period, which reflects increased vegetation volume primarily due to large-scale 

340
vegetation planting and windbreak and sand fixation projects in Xinjiang's desert areas over the last 20 

341
years, reducing soil erosion. Although the NDVI indicator has increased annually, the WET indicator has 

342
gradually decreased over 20 years, consistent with the region's arid climate. Based on the analysis of 

343
precipitation change characteristics in Urumqi, there has been a yearly decrease in the number of rainy 

344
days over the past 30 years, with frequent occurrences of extreme heavy rainfall and drought events, 

345
leading to a reduction in humidity (Su & Xie, 2018).

346

347
Based on the aforementioned RSELI grading standards, the RSELI of the U-Chang-Shi urban cluster 

348
for each year was reclassified using ArcGIS 10.5 software, resulting in the Ecological Livability Map of 

349
the U-Chang-Shi urban cluster from 2000 to 2020, as shown in Fig. 3.

350
Combining the topographic map in Fig. 2 and the remote sensing ecological livability map in Fig. 3 

351
reveals that the terrain in the U-Chang-Shi urban cluster distinctly shows a high south and low north 

352
characteristic. The southern region, especially the southwest and southeast areas close to the Tianshan 

353
Mountains, has significant topographical variations, which puts pressure on its ecological livability, even 

354
leading to potential soil erosion and geological disasters. In contrast, the central area is a vast plain. As 

355
can be seen from the map, the U-Chang-Shi urban cluster is home to numerous rivers, especially Changji, 

356
located between two main rivers, bringing abundant water resources to the area. This positively supports 

357
local agriculture and the ecological environment. The northern region, near the Gurbantunggut Desert, has 

358
an extremely fragile ecosystem and has been unsuitable for habitation over the past 20 years. The long-

359
term pressure on the ecological environment in these fragile areas requires effective ecological restoration 

360
and protection.

361
Over the past 20 years, with the development of cities like Urumqi, Changji, and Shihezi, the trend 

362
of urban expansion has become increasingly apparent. Urbanization-induced land-use changes, reduction 

363
of green spaces, and increased pollution emissions may impact the local ecological environment. Since 

364
2010, as indicated in Fig. 3, with increased attention to the ecological environment, the U-Chang-Shi 

365
urban cluster has been actively engaged in greening and constructing parks and other ecological projects. 

366
These measures have played a positive role in improving and protecting the local ecological environment 

367
and enhancing the ecological livability. Of course, for sustainable development, the region needs to 

368
consider factors such as topography, water resources, urbanization, and economic development 

369
comprehensively. Strengthening ecological protection and rational resource utilization, maintaining a 

370
balance between ecology and economic development, and avoiding ecological destruction caused by 

371
excessive development are crucial.
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372

373
Using ArcGIS and Excel, the area of each RSELI level for five periods from 2000 to 2020 was 

374
extracted and analyzed, as shown in Table 3. Table 3 indicates that over 20 years, the area classified as 

375
Extremely Unlivable showed a trend of initial increase, followed by a decrease, and then another increase, 

376
mainly due to sand erosion caused by extreme weather events, resulting in fluctuations. Overall, the area 

377
under this category increased over 20 years. The area of the Unlivable level increased from 0.278 to 1.130 

378
thousand km² in 2005, nearly quadrupling, but then gradually decreased to 0.707 thousand km² by 2020. 

379
Although it was an increase from 2000, it was significantly lower than the peak in 2005, indicating some 

380
improvement in ecological livability. The area of the Moderately Livable level decreased from 2.919 

381
thousand km² in 2000 to 2.529 thousand km² in 2020. Despite still covering a large area, this reduction 

382
over 20 years should be noted as a warning against ecological degradation. The area of the Relatively 

383
Livable level fluctuated significantly over 20 years but overall showed a decreasing trend, with a 

384
reduction of 7.73%. The area classified as Livable doubled from 0.259 thousand km² in 2000 to 0.520 

385
thousand km² in 2020, showing a clear growth trend. In summary, these data indicate that more areas 

386
have become more suitable for living. At the same time, the total areas classified as Unlivable and 

387
Extremely Unlivable have also increased, which may reflect environmental degradation or pressures from 

388
urbanization in some regions.

389

390
Spatio-temporal Analysis of the Variations in Ecological Livability in the U-Chang-Shi Urban Cluster

391

392
Based on the RSELI classification, to obtain spatio-temporal distribution information on the changes 

393
in ecological environment quality between different years, the raster calculator in ArcGIS was used to 

394
process RSELI of different years. The changes were categorized into three types: improved (>0), 

395
unchanged (=0), and worsened (<0), with the statistical results shown in Table 4. The results were 

396
visualized using ArcGIS 10.5, as seen in Fig. 4.

397
From 2000 to 2020, the region's livability experienced significant changes, with a large area showing 

398
worsened livability between 2000 and 2005, while from 2005 to 2010 and 2015 to 2020, more areas saw 

399
improvements in livability. Throughout 2000 to 2020, the areas with unchanged livability accounted for 

400
the largest proportion, averaging 69.79%, indicating that despite changes in some regions, the livability of 

401
most areas remained stable. The proportion of areas with worsened livability was highest between 2000 

402
and 2005, reaching 30.78%, with this percentage gradually decreasing thereafter. Overall, the proportion 

403
of areas with worsened livability from 2000 to 2020 was 19.88%. Areas with improved livability had the 

404
highest proportion between 2005 and 2010, at 19.33%, with an average proportion of 10.33% throughout 

405
2000 to 2020.

406

407 Discussion

408
This study's findings underscore the dynamic interplay between urbanization, industrialization, and 

409
the ecological livability of the U-Chang-Shi urban cluster. The use of the RSELI, derived from 

410
comprehensive remote sensing data via the Google Earth Engine (GEE), provides a detailed 

411
understanding of ecological livability trends over the past two decades. Despite improvements in 
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412
ecological livability in certain years, the overall trend indicates a gradual decline in ecological livability, 

413
highlighting the significant impact of rapid urban and industrial expansion.

414
The analysis reveals a direct correlation between eight environmental factors and the degradation of 

415
ecological quality. This observation is particularly relevant given the region's industrial boom and its 

416
consequent environmental repercussions. The study emphasizes the significant influence of geographical 

417
features on ecological livability. The disparity in livability between the southern mountainous regions and 

418
the central plains of the U-Chang-Shi urban cluster exemplifies how natural topography can exacerbate or 

419
alleviate the challenges posed by urbanization. The vulnerability of northern areas, close to the 

420
Gurbantunggut Desert, to becoming uninhabitable zones further underscores the necessity for strategic 

421
ecological management and conservation efforts.

422
The spatio-temporal analysis based on the RSELI classification elucidates the varying degrees of 

423
ecological livability across different areas within the urban cluster, offering a granular perspective on the 

424
distribution of livable spaces. This detailed mapping aids in identifying areas in dire need of ecological 

425
restoration and those showing resilience or improvement in livability standards, facilitating targeted 

426
intervention. In light of these findings, it becomes crucial for policymakers and urban planners to adopt an 

427
integrated approach to urban development that equally prioritizes ecological sustainability alongside 

428
economic and infrastructural expansion. The significant role of green spaces, water conservation, and 

429
pollution control measures in enhancing urban livability cannot be overstated. Moreover, the study's 

430
methodology, leveraging the advanced capabilities of the GEE platform, sets a precedent for future 

431
ecological and urban research, providing a scalable and efficient framework for monitoring and analyzing 

432
global environmental quality.

433
In contrast to prior research, which predominantly emphasized human-centric indicators and 

434
employed survey methodologies for assessing ecological livability�illustrated by Zhu, who utilized local 

435
yearbook data combined with surveys, and Pan, who integrated remote sensing imagery with survey 

436
data�this study encompasses both ecological and anthropogenic factors. It incorporates eight distinct 

437
variables through the Google Earth Engine (GEE) platform, enabling precise and efficient computational 

438
analysis. This approach offers a significant advancement over models that solely relied on vegetation and 

439
landscape pattern indices without incorporating human dimensions, underscoring the comprehensive and 

440
timely nature of this research.

441
Unlike other studies, previous ecological suitability evaluations focused more on humanistic 

442
indicators and were conducted through survey questionnaires. For example, Zhu conducted Community 

443
Level Livability evaluations using local yearbook data and survey questionnaires (Zhu, et al., 2020), 

444
while Pan used remote sensing image data and survey questionnaires (Pan, et al., 2023). However, this 

445
approach was inefficient and data updates were not timely. Other scholars have also constructed 

446
evaluation models based on six ecological indicators, namely vegetation conditions and landscape 

447
patterns (Huang, et al., 2022), but lack humanistic indicators. Therefore, compared with other scholars' 

448
research, this study selected eight factors, including ecological and humanistic categories. The entire 

449
calculation process was carried out through the GEE platform, achieving accurate and efficient results.

450
Although the U-Chang-Shi urban cluster faces considerable ecological challenges, the insights 

451
gained from this study offer a roadmap for sustainable urban development. By integrating ecological 

452
considerations into the urban planning process, it is possible to pave the way towards a more livable, 
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453
resilient, and sustainable urban future.The findings of this study provide crucial insights for urban 

454
planners and policymakers in the region, aiding them in incorporating ecological conservation and 

455
sustainable development into their decision-making processes for future urban expansion. This research 

456
not only offers a reference model for assessing ecological livability in similar regions but also identifies 

457
directions for further investigation. Future developments could include more sophisticated ecological 

458
monitoring systems that integrate finer remote sensing data and other environmental variables to rapidly 

459
and comprehensively assess the ecological livability of regions, offering more precise data support for 

460
urban planners and policymakers. Additionally, by building on these monitoring systems and 

461
incorporating machine learning and big data analytics, future research can more effectively identify key 

462
drivers of changes in ecological livability, providing a scientific basis for devising differentiated 

463
ecological protection and restoration strategies. Considering regional geographic conditions, climate 

464
change, and socio-economic factors collectively will aid in achieving sustainable development goals for 

465
the U-Chang-Shi urban cluster and other similar areas, ensuring the coordinated development of ecology 

466
and economy.

467

468 Conclusion

469

470
This study, based on the Google Earth Engine (GEE) platform and utilizing remote sensing data, 

471
constructed the RSELI index to conduct an in-depth analysis of the ecological livability of the U-Chang-

472
Shi urban cluster from 2000 to 2020. The findings are as follows:

473
Spatio-temporal variation in ecological livability: The ecological livability index of the U-Chang-Shi 

474
urban cluster fluctuated slightly over 20 years but generally remained in a moderately livable state. 

475
Although there was a significant decline from 2000 to 2005, the index gradually began to rise from 2005, 

476
which is related to regional ecological restoration projects and greening activities.

477
Changes in key ecological factors: The AOD indicator significantly increased over 20 years, closely 

478
related to regional industrial development and increased emissions of atmospheric pollutants;  the NDVI 

479
indicator showed an overall increase in vegetation in the area, a direct result of China's large-scale 

480
vegetation planting and windbreak and sand fixation projects in Xinjiang's desert areas over the last 20 

481
years.

482
Geography and ecological livability: The topographical characteristics of the U-Chang-Shi urban 

483
cluster have significantly impacted its ecological livability. The southern region, especially parts 

484
bordering the Tianshan Mountains, due to large topographical variations, has relatively lower ecological 

485
livability, while the central plains, benefiting from abundant river resources, have a relatively better 

486
ecological environment.

487
Urbanization and ecological livability: The acceleration of urbanization, changes in land use, 

488
reduction of green spaces, and increase in pollution may adversely affect the ecological environment of 

489
the U-Chang-Shi urban cluster. However, since 2010, the region has shown a marked increase in attention 

490
to the ecological environment, with numerous greening and ecological restoration projects implemented, 

491
positively impacting ecological livability.

492
In summary, although the ecological livability of some areas has improved, many areas, especially 
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493
the fragile ecological regions near the Gurbantunggut Desert in the north, are still experiencing a decline 

494
in ecological livability. The ecological restoration and protection tasks in these areas remain challenging. 

495
To achieve sustainable development, the U-Chang-Shi urban cluster should consider multiple factors such 

496
as topography, water resources, urbanization, and economic development comprehensively. It should 

497
balance the relationship between ecological and economic development, strengthen ecological protection, 

498
use resources rationally, and avoid ecological damage caused by excessive development.

499
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Figure 1
Workflow of the study
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Figure 2
Schematic diagram of study area

The data used in the study were all obtained and processed through the Google Earth Engine
(GEE) platform.
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Figure 3
Spatial distribution of RSELI in U-Chang-Shi Urban Cluster from 2000 to 2020

The data used in the study were all obtained and processed through the Google Earth Engine
(GEE) platform.
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Figure 4
Temporal and spatial distribution of RSELI in U-Chang-Shi Urban Cluster from 2000 to
2020

The data used in the study were all obtained and processed through the Google Earth Engine
(GEE) platform.
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Table 1(on next page)

Principal component analysis of indicators from 2000 to 2020
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1 Table 1  Principal component analysis of indicators from 2000 to 2020

Years Eigenvalues PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8

NDVI 0.3974 0.8290 0.1511 0.1779 0.0181 -0.3162 -0.0090 -0.0017 

WET 0.1127 0.0231 -0.1449 -0.8986 -0.0549 -0.3855 -0.0942 0.0022 

DEM -0.6121 0.4106 0.3067 -0.1983 -0.3785 0.3280 -0.2692 0.0024 

SLOPE -0.4178 0.3032 -0.7940 0.0903 0.3036 -0.0401 -0.0345 0.0012 

AOD -0.0991 0.0755 0.3832 -0.2016 0.8693 0.1947 -0.0594 -0.0005 

NDBSI -0.1029 -0.2048 0.0894 0.2461 0.0706 -0.4579 -0.8150 -0.0044 

LST -0.5117 -0.0637 0.2773 0.1107 0.0254 -0.6282 0.4996 -0.0032 

PD -0.0003 0.0011 -0.0022 -0.0040 -0.0015 0.0044 0.0011 -1.0000 

2000

Contribution 
Rate / %

78.59% 11.32% 4.17% 3.07% 1.32% 0.76% 0.43% 0.34%

NDVI 0.3207 0.7897 0.3442 -0.1524 -0.3269 -0.0880 0.1314 -0.0017 

WET 0.2062 0.0388 -0.6243 0.5065 -0.4808 -0.2530 0.1206 0.0054 

DEM -0.6026 0.3848 0.0949 0.4672 0.3530 -0.3592 0.0891 0.0021 

SLOPE -0.4128 0.2707 -0.5837 -0.6412 -0.0435 -0.0411 0.0301 0.0015 

AOD -0.0575 0.0615 0.0432 0.0065 -0.1840 -0.2342 -0.9499 -0.0003 

NDBSI -0.1315 -0.3815 0.2989 -0.2695 -0.3224 -0.7184 0.2347 -0.0034 

LST -0.5482 -0.0651 0.2255 0.1345 -0.6306 0.4760 0.0450 -0.0012 

PD -0.0002 0.0014 -0.0059 0.0037 0.0006 -0.0001 0.0001 -1.0000 

2005

Contribution 
Rate / %

76.57% 12.38% 4.21% 3.40% 1.45% 0.85% 0.76% 0.38%

NDVI 0.3258 -0.8280 -0.1107 0.3324 -0.1635 0.2101 0.1209 -0.0020 

WET 0.2102 -0.1017 0.0152 -0.7783 0.1560 0.5336 0.1745 0.0069 

DEM -0.6421 -0.3794 -0.3881 -0.1785 0.3818 -0.2542 0.2256 0.0010 

SLOPE -0.4439 -0.2574 0.8443 -0.0414 -0.1283 0.0719 0.0213 0.0015 

AOD -0.1019 -0.0709 -0.1978 -0.3845 -0.8420 -0.2951 0.0388 -0.0031 

NDBSI -0.0687 0.2744 -0.0005 0.2399 -0.1448 0.1773 0.9000 -0.0052 

LST -0.4746 0.1162 -0.2914 0.2116 -0.2381 0.6949 -0.3034 0.0010 

PD -0.0003 -0.0009 0.0015 -0.0061 0.0047 0.0038 -0.0039 -1.0000 

2010

Contribution 
Rate / %

77.32% 11.56% 4.08% 3.56% 1.40% 0.83% 0.75% 0.50%

NDVI 0.3509 -0.8436 -0.2239 -0.2259 0.0060 0.2531 -0.0011 -0.0057 

WET 0.2250 -0.0514 0.4590 0.6302 0.3332 0.4774 0.0058 -0.0047 

DEM -0.6167 -0.4000 -0.2230 0.3992 0.3777 -0.3285 0.0022 -0.0015 

SLOPE -0.4257 -0.2760 0.7658 -0.3744 -0.1253 0.0164 0.0015 -0.0017 

AOD -0.0896 -0.1711 -0.0142 0.4842 -0.8532 -0.0063 0.0007 -0.0009 

NDBSI -0.0037 0.0070 -0.0034 -0.0027 -0.0014 0.0003 0.0043 -0.9999 

LST -0.5067 0.1421 -0.3206 -0.1335 -0.0514 0.7745 -0.0016 0.0046 

PD -0.0003 -0.0010 0.0041 0.0047 0.0021 0.0006 -1.0000 -0.0044 

2015

Contribution 
Rate / %

78.23% 11.68% 3.97% 3.13% 1.33% 0.80% 0.47% 0.39%

NDVI 0.3570 -0.8079 -0.3083 -0.1195 0.0812 0.3200 0.0385 -0.0019 

WET 0.2278 -0.0904 0.7467 0.4665 0.1611 0.3578 0.1036 0.0055 

DEM -0.5793 -0.3982 -0.0429 0.3805 0.3079 -0.3781 0.3485 0.0036 

SLOPE -0.3967 -0.2661 0.5227 -0.6902 -0.1379 0.0481 0.0285 0.0016 

AOD -0.1911 -0.1600 -0.0386 0.3324 -0.8995 0.1179 0.0543 -0.0059 

NDBSI -0.0994 0.2847 -0.1954 -0.1419 0.0372 0.4846 0.7839 -0.0037 

2020

LST -0.5303 0.0556 -0.1804 0.1273 0.2079 0.6129 -0.4981 -0.0009 
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PD -0.0002 -0.0010 0.0065 0.0015 0.0066 -0.0029 -0.0010 -1.0000 

Contribution 
Rate / %

77.45% 11.25% 4.35% 3.52% 1.37% 0.89% 0.71% 0.46%

2

PeerJ reviewing PDF | (2024:03:98482:2:0:NEW 22 Jun 2024)

Manuscript to be reviewed



Table 2(on next page)

Statistical values of various factors and RSELI from 2000 to 2020
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1 Table 2  Statistical values of various factors and RSELI from 2000 to 2020

Years

Factor
2000 2005 2010 2015 2020

RSELI 0.519 0.459 0.479 0.493 0.490 

AOD 0.364 0.394 0.464 0.541 0.712 

LST(℃) 41.407 41.301 40.359 41.130 40.530 

NDBSI 0.112 0.109 0.097 0.108 0.104 

NDVI 0.295 0.300 0.323 0.308 0.317 

WET -0.156 -0.203 -0.202 -0.209 -0.224 

PD 

(People/ m2)
24.900 28.605 34.068 38.989 45.060 

2 Note: Except for Heat (LST) and Population Density (PD), the other factors are dimensionless.

3
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Area and proportion of RSELI grades in the U-Chang-Shi Urban Cluster from 2000 to
2020
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1 Table 3  Area and proportion of RSELI grades in the U-Chang-Shi Urban Cluster from 2000 to 2020

Poor Fair Moderate Good Excellent

Years Area/

104 km2
Proportion

Area/

104 km2
Proportion

Area/

104 km2
Proportion

Area/

104 km2
Proportion

Area/

104 km2
Proportion

2000 0.088 1.97% 0.278 6.23% 2.919 65.44% 0.917 20.57% 0.259 5.80%

2005 0.161 3.60% 1.130 25.34% 2.239 50.19% 0.665 14.91% 0.266 5.96%

2010 0.141 3.16% 0.796 17.84% 2.372 53.18% 0.828 18.56% 0.324 7.26%

2015 0.064 1.42% 0.472 10.58% 2.804 62.88% 0.845 18.95% 0.275 6.17%

2020 0.132 2.96% 0.707 15.84% 2.529 56.71% 0.572 12.84% 0.520 11.65%

2
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Changes of ecological livability in the U-Chang-Shi Urban Cluster from 2000 to 2020
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1 Table 4  Changes of ecological livability in the U-Chang-Shi Urban Cluster from 2000 to 2020

2000�2005 2005�2010 2010�2015 2015�2020 2000�2020

Classification Area/

104 km2
Proportion

Area/

104 km2
Proportion

Area/

104 km2
Proportion

Area/

104 km2
Proportion

Area/

104 km2
Proportion

Degraded 1.37 30.78% 0.22 4.93% 0.30 6.82% 0.56 12.60% 0.89 19.88%

No Change 2.95 66.19% 3.38 75.75% 3.46 77.69% 3.50 78.49% 3.11 69.79%

Improved 0.13 3.03% 0.86 19.33% 0.69 15.49% 0.40 8.91% 0.46 10.33%

2
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