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ABSTRACT

The U-Chang-Shi (Urumgi-Changji-Shihezi) urban cluster, located at the heart
of Xinjiang, boasts abundant natural resources. Over the past two decades, rapid
urbanization, industrialization, and climate change have significantly threatened the
region’s ecological livability. To comprehensively, scientifically, and objectively assess
the ecological livability of this area, this study leverages the Google Earth Engine
(GEE) platform and multi-source remote sensing data to develop a comprehensive
evaluation metric: the Remote Sensing Ecological Livability Index (RSELI). This aims
to examine the changes in the ecological livability of the U-Chang-Shi urban cluster
from 2000 to 2020. The findings show that despite some annual improvements, the
overall trend in ecological livability is declining, indicating that the swift pace of
urbanization and industrialization has placed considerable pressure on the region’s
ecological environment. Land use changes, driven by urban expansion and the growth
in agricultural and industrial lands, have progressively encroached upon existing green
spaces and water bodies, further deteriorating the ecological environment. Additionally,
the region’s topographical features have influenced its ecological livability; large terrain
fluctuations have made soil erosion and geological disasters common. Despite the
central plains’ vast rivers providing ample water resources, over exploitation and ill-
conceived hydrological constructions have led to escalating water scarcity. The area
near the Gurbantunggut Desert in the north, with its extremely fragile ecological
environment, has long been unsuitable for habitation. This study provides a crucial
scientific basis for the future development of the U-Chang-Shi urban cluster and hopes
to offer theoretical support and practical guidance for the sustainable development and
ecological improvement of the region.
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INTRODUCTION

As the process of global urbanization continues to deepen, cities have become the main
places where most people live and work. This rapid trend of urbanization, especially in
developing countries, has brought a series of challenges and opportunities (Zhang et al.,
2023). However, with the swift expansion of cities and population agglomeration, urban
ecological environmental issues have gradually become a focal concern for both the public
and governments. From air pollution and water scarcity to urban heat island effects, these
environmental issues directly threaten the health and quality of life of urban residents
and also constrain the sustainable development of cities (Chen et al., 2023). Therefore, the
livability of cities, especially from an ecological perspective, has received high attention from
governments, research institutions, and urban planners worldwide. Ecological livability
involves not only the quality of the natural environment but also socioeconomic and
cultural factors, making it an important indicator of a city’s overall development level (Li et
al., 2020). In recent years, with the advancement of remote sensing technology, researchers
have been able to obtain and analyze urban ecological environment data more accurately,
thereby providing a scientific basis for assessing urban ecological livability.

The U-Chang-Shi urban cluster, a typical developing urban agglomeration in arid
regions, faces widespread and representative challenges regarding ecological livability
in the urbanization process. This area is characterized by arid climate, water scarcity,
and fragile ecological environment, while also bearing the environmental pressures
brought by rapid urbanization (Wang et al., 2024). The significant contradictions between
urban development and ecological protection in this region necessitate more scientific,
objective, and comprehensive evaluation methods to support urban ecological construction
and management. Building on the research of previous scholars and considering the
topographical and climatic characteristics of the U-Chang-Shi urban cluster, this study
utilized the Google Earth Engine (GEE) platform to acquire eight key parameters: Greenness
(NDVI), Wetness (WET), Dryness (NDBSI), Heat (LST), Elevation (DEM), Slope (SLOPE),
Aerosol Optical Depth (AOD), and Population Density (PD). Workflow of the study is
shown in Fig. 1. These parameters encompass multiple crucial aspects of the urban
ecological environment and are key factors affecting urban livability. This research
pioneers the application of principal component analysis to these eight parameters on
the GEE platform, determining their weights to effectively avoid the biases of subjective
weighting, and successfully constructing the Remote Sensing Ecological Livability Index
(RSELI), which underscores the impact of the ecological environment on urban livability.
Compared to traditional evaluation methods, the use of the GEE platform’s data acquisition
and analysis capabilities has significantly enhanced the efficiency and accuracy of the study.
This research not only provides a new method and perspective for assessing the ecological
livability of the U-Chang-Shi urban cluster but also offers robust theoretical support and
practical guidance for evaluating the ecological livability of other cities and urban clusters
in typical dryland areas.
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Figure 1 Workflow of the study.
Full-size &l DOI: 10.7717/peer;j.17872/fig-1

LITERATURE REVIEW

To more precisely and systematically assess the ecological of cities, remote sensing (RS)
and Geographic Information Systems (GIS) have played a crucial role in this field.
Representing modern technology, their application in urban remote sensing has been widely
recognized. Compared to traditional assessment methods, remote sensing technology can
provide more extensive, real-time, and objective data, ensuring the scientific accuracy of
evaluation results. Combined with GIS, researchers can conduct in-depth data analysis
and visualization, thereby offering powerful decision support for policymakers. Berihun
et al. (2019) used remote sensing data and GIS to analyze land use and cover changes from
1982 to 2017 in three watersheds of the Upper Blue Nile basin. The study found significant
reductions in natural vegetation and increases in cultivated land, driven primarily by
population growth and changes in agricultural practices. This research emphasizes the
need for strategic land management in areas experiencing similar environmental changes
(Berihun et al., 2019). In the study by Zhao et al. (2023) on the evaluation of the natural
suitability of the human settlement environment on the northern slope of the Tianshan
Mountains, GIS revealed the spatial distribution pattern of natural suitability for human
settlement on the northern slope of the Tianshan Mountains. However, traditional GIS
relies on manpower to process massive amounts of data, which can be overly complicated.
Therefore, the Google Earth Engine (GEE) platform, as an advanced cloud computing
remote sensing data platform, provides researchers worldwide with a vast array of satellite
remote sensing data and powerful data processing tools (Zhang et al., 2023). Compared to
traditional methods of obtaining and processing remote sensing data, the GEE platform
offers comprehensive data, rapid processing, and easy operation advantages. Researchers
no longer need to invest in expensive hardware or wait for lengthy data processing. The
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GEE platform can quickly complete complex computational tasks in the cloud, from
simple image classification to complex model simulations (Zurqani et al., 2017). Moreover,
GEE’s open Application Programming Interface (API) and flexible scripting language
allow researchers to customize data processing and analysis according to their needs.
This high degree of customizability enables the GEE platform to meet various complex
research needs, from basic data visualization to advanced machine learning models, all
easily implemented on the GEE platform (Liu et al., 2018). Xiong et al. (2017) developed
the Automated Cropland Mapping Algorithm (ACMA) using GEE, employing satellite
data to map Africa’s farmlands with an accuracy of about 90%, significantly reducing the
time needed for agricultural surveys. Using GEE and Sentinel 5P imagery, a significant
decrease in air pollution in the Ahvaz area of Iran was observed, with noted reductions in
the concentrations of NO2 (13.7%), CO (6.1%), SO2 (28%), and HCHO (9.5%) before
and after the COVID-19 pandemic. This highlights the platform’s versatility in meeting
complex research needs, ranging from data visualization to machine learning applications
(Fatemeh, Akbar ¢ Khedri, 2023).

Starting from the basic components, structure, and behavior of the system, an
ecological model can mathematically simulate the structure of the ecosystem with good
physical significance, such as the pressure-state-response (PSR) model (Bai ¢ Tang,
2010), ecological footprint model (Gu et al., 2015), urban resources and environment
carrying capacity (URECC) system (Zhang et al., 2018), and ecosystem service assessment
model (Zhang, Yang ¢ Yu, 2006). However, some defects (e.g., complicated process,
and over-parameterization) bring considerable limitations to wider application. Using
remote sensing data such as PM concentration, surface temperature, and vegetation
coverage, a Comprehensive Evaluation Index (CEI) was established to assess environmental
changes in many Chinese cities (He et al., 2017). In 2019, based on the analytic hierarchy
process and expert scoring method, the Ecological Carrying Capacity (ECC) index was
constructed according to the specific ecological conditions of the Aral Sea region (Wu
et al., 2020). Additionally, the Urban Ecological Quality Index (UEQI) (Gu et al., 2015),
the Ecological Footprint Variation Index (EFVI) (Musse, Barona ¢ Rodriguez, 2018), the
Potential Ecological Risk Index (Xu et al., 2008), and the City Sustainability Index (CSI)
(Mori & Christodoulou, 2012) have also been widely applied.

In 2013, Xu et al. (2018) utilized Landsat satellite data to calculate four environmental
factors—NDVI, WET, NDBSI, and LST—and employed Principal Component Analysis
(PCA) to derive the Remote Sensing Ecological Index (RSEI) for evaluating the ecological
environment of Fuzhou, which gained wide recognition globally. For instance, Alwan ¢
Aziz (2022) used RSEI to assess ecological changes in Iraq’s Al-Hawizeh Marsh from 1990
to 2020; Wu et al. (2022) combined GEE and RSEI to analyze the ecological quality of the
Sahel region in Africa from 2001 to 2020; Huang et al. (2024) constructed a seasonal RSEI
using MODIS satellite data to evaluate the seasonal changes in ecological quality in the
Jing-Jin-Ji area from 2001 to 2020. However, models solely based on natural environmental
factors were insufficient for accurate ecological livability assessments. Consequently, some
scholars have added additional factors to enhance evaluation models. For example, Yu et al.
(2024) introduced the Ecological Livability Index (ELI) in 2022, incorporating NDVI, WET,
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NDBSI, LST, and AOD, weighted based on an entropy method, to assess the ecological
livability of Wuhan across different seasons from 2002 to 2017. In 2023, Zhang et al. (2022)
built upon the ELI to create the UELI (IMP) model, employing the harmonic analysis of
time series (HANTS) and spatial-temporal information fusion based on a non-local means
filter.

The application of the Remote Sensing Ecological Livability Index (RSELI) model
offers several advantages and significance. Firstly, it leverages the vast data resources and
processing capabilities of the Google Earth Engine (GEE) platform, allowing for real-time,
extensive, and precise data analysis. Secondly, the use of principal component analysis
ensures an objective weighting of key ecological parameters, minimizing subjective biases.
This methodology enhances the accuracy and reliability of ecological livability assessments.
The RSELI model not only provides a new perspective for evaluating the U-Chang-Shi urban
cluster but also offers a robust framework for other cities and urban clusters, particularly in
arid regions, supporting sustainable urban development and informed policy-making. This
approach significantly improves the efficiency and effectiveness of ecological assessments,
contributing valuable insights for urban planning and environmental management.

MATERIALS & METHODS

Research Area Overview

The U-Chang-Shi urban cluster is one of the 19 important city clusters planned by China
and is the center of future development in Xinjiang, as well as its lifeline. It mainly includes
Urumgi City, parts of Changji Hui Autonomous Prefecture, Wujiaqu City, and Shihezi
City, with Changji, Shihezi, and Turpan serving as the regional center cities for urban
cluster construction to drive the development of surrounding cities and to create a new
western center centered on Urumagi. It is an important part of the economic belt on the
northern slope of the Tianshan Mountains in Xinjiang (Qu, 2003). The research area is
shown in Fig. 2.

The total area is 46,400 km? (accounting for 2.8% of Xinjiang’s total area), and as of
the end of 2021, the total permanent population was 5.717 million people (accounting for
30.2% of Xinjiang’s total), with a gross regional product of 537.182 billion yuan (accounting
for 22.1% of Xinjiang’s total GDP). The region has a temperate continental arid climate,
with an average annual temperature of 25.7 °C, an average annual rainfall of 275.5 mm,
and is rich in ecological resources, with a wide variety of flora and fauna (Muhadaisi et al.,
2021).

Data sources and research methods
Data sources and preprocessing

The data used in the study were all obtained from the GEE platform, processed through
GEE’s JavaScript code to compile data for the years 2000, 2005, 2010, 2015, and 2020. The
four sets of data - greenness NDVI, wetness WET, dryness NDBSI, and heat LST - are
derived from the American MODIS satellite data (Zhang, Zhou ¢ Song, 2020). Elevation
DEM and slope SLOPE data are from the United States Geological Survey (USGS) and
the Shuttle Radar Topography Mission (SRTM) (Dong et al., 2022). Population density
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Figure2 Schematic diagram of study area. The data used in the study were all obtained and processed
through the Google Earth Engine (GEE) platform.
Full-size & DOLI: 10.7717/peerj.17872/fig-2

data are from the WorldPop project, which combines satellite and census data to generate
high-resolution population maps (Dong et al., 2022; Huang et al., 2002) and AOD data for
the region within China is sourced from MCD19A2 AOD data (Zhou et al., 2018).

The remotely sensed data utilized in this study were sourced from the Google Earth
Engine (GEE) platform. To ensure the accuracy and consistency of the data, the following
preprocessing steps were implemented. The cloud masking function within GEE was
employed to identify and remove cloud cover through specific threshold settings and
algorithms, thus obtaining clearer surface data. Cloud layers in MODIS satellite data were
detected and masked using the Quality Assessment Band (QA Band). To ensure spatial
alignment across images from different times and sensors, all imagery underwent geometric
correction. While images in GEE are pre-corrected, additional ground control points were
used as needed to ensure further alignment precision.Radiometric corrections were applied
to ensure effective comparison across data from different times and satellites, using GEE’s
standardized correction algorithms to eliminate radiometric discrepancies between images.
Atmospheric corrections were conducted to mitigate the impacts of atmospheric scattering
and absorption on image quality, with MODIS satellites employing the surface reflectance
products in MODO09AL1 for correction.Using boundary information from the study area,
remotely sensed images were cropped to ensure consistency with the geographical scope
of the study area, thereby minimizing interference from irrelevant regions. These data
preprocessing operations were compiled, processed, and calculated using JavaScript code
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on the GEE platform, ensuring the efficiency and accuracy of constructing the Remote
Sensing Ecological Livability Index (RSELI) model.

Remote sensing ecological livability index (RSELI)

In this study, the Remote Sensing Ecological Livability Index (RSELI) is derived using
principal component analysis. It initially calculates the greenness (NDVI), wetness (WET),
dryness (NDBSI), heat (LST), elevation (DEM), slope (SLOPE), Aerosol Optical Depth
(AOD), and population density (PD) separately through models. To minimize errors, data
from these eight indicators are selected within the 5% to 95% confidence interval and
then normalized. The normalized data are combined through band synthesis, with the
dataset of the eight normalized indicators concentrated on the first principal component.
The weights are determined based on the contribution rates of the eight indicators on the
principal component and their inherent characteristics, reducing the potential for human
bias in assigning values. All these operations are executed using GEE’s JavaScript code for
compilation and computation. The models for each indicator are as follows.

Greenness (NDVI). NDVI has become the most widely applied vegetation index in remote
sensing, used for monitoring surface green vegetation cover (Rouse ef al., 1974). In this
paper, this index is utilized to represent the greenness within the RSELIL. The formula is as

follows:

NDVI = (oNIR — Pred) / (ONIR + Pred) - (1)

In the formula: pnir represents the near-infrared band; pr.q represents the red band.

Wetness (WET). WET can be calculated through the Tasseled Cap Transformation (K-
T Transformation) (Crist et al., 1985; Baig et al., 2014), extracted from MODIS satellite
imagery data. In this paper, this index is utilized to represent wetness within the RSELI.
The formula is as follows:

WET = pplue X 0.0315+ pgreen X 0.2021 4 pred X 0.3102 + pnir X 0.1594 —
PSWIR1 X 0.6806 — PSWIR2 X 0.6109. (2)

In the formula: ppjue represents the blue band; pgreen represents the green band; pswir:
represents short-wave infrared 1; pswir> represents short-wave infrared 2.

Dryness (NDBSI). NDBSI is effective for monitoring environmental dryness, calculated as
the average of the Built-up Index (IBI) and the Bare Soil Index (SI) (Xu, 2008; Essa et al.,
2012). In this paper, this index is used to represent dryness within the RSELI. The formula
is as follows:

2pSWIRI _ _ __PNIR __ _ Pgreen
IBI = PSWIRIFTONIR ~ PNIRFPred  PgreentOSWIRI ( 3)
2pSWIR1 PNIR Pgreen
PSWIRITPONIR '~ PNIRTPred ~ PgreentPSWIRI
(Pswir1 + Pred) — (ONIR + Oblue)
SI= (4)

~ (PsWIR1 + Pred) + (ONIR + Pblue)
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IBI4-SI
NDBSI = +

(5)

Heat (LST). Heat (LST) involves the inversion of land surface temperature from satellite
imagery using an atmospheric correction method. The emissivity (REf) of the surface
is calculated through the Fractional Vegetation Cover (FVC). The original blackbody
radiance values B(Ts), after radiometric correction, provide the radiance at the satellite,
which is then atmospherically corrected to remove the effects of water vapor. Finally, the
blackbody radiance is converted into land surface temperature using the Planck function
(Jimenez-Munoz et al., 2009; Paolini, 2004; Weng, 2009; Nichol, 2005). The formula is as
follows:

NDVI9.05~0.7) —0.05

FVC=NDVI(<0.05 X 0+NDVIz0.7) X 14+ NDV(0.05~0.7) X ——=— = = ©
E(water) = 0.995

E(building) = 0.9589 40.086 x FVC —0.0671 x Fve?

E(nataral) = 0.9625+0.0614 x FVC —0.0461 x FVC? @)
REf= NDVI(<g) X E(water) + NDVI(0~0.7) X E(building) + NDVI(>0.7) X E(natural) ®)

— Lyp —t X (1 —REf) X Ljow
B(Ts) = PTRSL ™~ up ( £) x Ldown ©)
t X REf
K
LST= —— o

In(gitg+1)

In the formula: E(yater) represents the emissivity of water body pixels; Ebuilding) represents
the emissivity of urban pixels; E(natural) Tepresents the emissivity of natural surface pixels; Ly
represents the atmospheric upward radiance, Lyown represents the atmospheric downward
radiance, t represents the atmospheric transmittance in the thermal infrared band, and
K; and K; are preset constants for satellite emission. All the above data are automatically
acquired from the GEE platform.

Elevation (DEM) and slope (SLOPE). DEM and SLOPE data used in GEE are from the
USGS/SRTMGL1_003 dataset, jointly measured by the National Aeronautics and Space
Administration (NASA) and the National Imagery and Mapping Agency (NIMA) of
China. The data were collected using the Shuttle Radar Topography Mission (SRTM)
system aboard the Endeavour space shuttle, leading to the creation of digital terrain
models, which are the current SRTM terrain product data (Aizizi ef al., 2023).
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Aerosol optical depth (AOD). AOD is selected to represent air quality conditions, reflecting
the total amount of particulate matter suspended in the atmosphere. The MCD19A2
AQOD data within the China region are chosen, which are the version 6 data products of the
MODIS Terra and Aqua combined, using the Multi-Angle Implementation of Atmospheric
Correction (MAIAC) land aerosol optical thickness (AOD) at grid level 2. These can be
directly accessed and processed for annual average data compilation using JavaScript code
on the GEE platform (Duan et al., 2021).

Population density (PD). The WorldPop project employs machine learning methods to
analyze the relationship between population density and a series of geospatial covariate
layers, disaggregating the most recent census-based population counts matched to
corresponding administrative units into approximately 100x100m grid cells. The mapping
method is based on a random forest algorithm for dasymetric redistribution (Lloyd,
Sorichetta & Tatem, 2017), allowing for direct extraction and utilization through the GEE
platform.

RSELI model. Due to the uneven dimensions of the eight factors, directly applying
them in PCA would result in unbalanced indicator weights. Therefore, it is necessary
to normalize these eight factors before performing PCA, converting each indicator value
into a dimensionless value within the range of 0 to 1. This normalization ensures that
all factors are on a comparable scale, allowing for a more accurate and balanced PCA
calculation (Amani et al., 2020). The formula for this normalization process is as follows:

X[ = i min_ (11)
Iax — Imin
In the formula: XI; represents the value after normalization, I; represents the value
before normalization, and I, and I, represent the maximum and minimum values
before normalization, respectively.
After normalization of the eight factors, the first principal component (PC1) is calculated
using the band synthesis and principal component analysis modules within the GEE

platform. The formula for calculating PC1 is as follows:
RSELI=PC1[NDVI,WET,DEM, SLOPE, AOD,NDBSI, LST, PD]. (12)

The model described above can be compiled and processed using JavaScript code in
the Google Earth Engine (GEE). GEE allows for the direct provision of the final results in
TIFF format, which can be downloaded for analysis and use. Leveraging the GEE platform
significantly reduces processing time due to its cloud computing capabilities, enabling the
handling of multi-year remote sensing imagery in one go. This efficiency is particularly
beneficial for extensive datasets covering long time periods, making GEE a powerful tool
for environmental and ecological research.

RESULTS

Analysis of PCA
The PCA'’s results for the eight factor indicators of the U-Chang-Shi urban cluster from
2000 to 2020, as shown in Table 1, reveal that the first principal component (PC1)
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accounted for contribution rates of 78.59%, 76.57%, 77.32%, 78.23%, and 77.45% for
the five years, respectively. All contribution rates exceeded 75%, indicating that PC1
encompasses the vast majority of the characteristics among the eight indicators and can
effectively represent the ecological livability level of the U-Chang-Shi urban cluster. The
positive values of greenness and wetness across all five years in the table suggest that the
region’s vegetation cover and moisture level positively impact its ecological livability. In
contrast, other indicators negatively affect the ecological condition, which aligns with the
expected ecological status due to the arid continental climate prevalent in the area.

Observing the absolute values of the eigenvalues of the eight indicators in Table 1 from
2000 to 2020, the ranking of the absolute values of the indicator eigenvalues for the top five
positions consistently follows the order of DEM >LST >SLOPE >NDVI >WET. From 2000
to 2005, NDBSI >AQOD, and from 2005 to 2020, AOD >NDBSI. In all years, PD consistently
ranks last, indicating that the main factors affecting the ecological livability of the region
are elevation, temperature, slope, greenness, and wetness, in that order. Given the region’s
location on the northern slope of the mid-section of the Tianshan Mountains, elevation
and slope notably limit its ecological livability, with temperature impact ranked second.
This is attributable to the presence of a vast desert area in the northern part of the region
(the Gurbantunggut Desert), which experiences significant diurnal temperature variations,
thereby affecting greenness and wetness, in line with characteristics typical of arid areas.
Dryness and Aerosol Optical Depth show that before 2005, dryness had a greater impact
than Aerosol Optical Depth, but thereafter, the impact of Aerosol Optical Depth exceeded
that of dryness, mainly due to rapid industrial development in the region and a surge
in emissions of atmospheric pollutants. Huang’s study on the spatiotemporal variation
of aerosol optical thickness in Xinjiang from 2000 to 2013 noted an annual increase in
AOD in economically developed areas of Northern Xinjiang, especially in the economic
belt of the northern slope of the Tianshan Mountains, including the Du-Kui-Wu area
(Dushanzi-Kuitun-Wusu), Shihezi, and the U-Chang region, where AOD values showed
an upward trend. This conclusion aligns with the findings of this study (Huang et al., 2015).
As for the near-zero eigenvalue of population density, it indicates that population density
has almost no impact on the ecological livability of the region.

Spatio-temporal analysis of ecological livability levels in the U-Chang-
Shi urban cluster

Based on most researchers’ studies on ecological livability, it is typically categorized into
five levels. The RSELI index uses 0.2 as the benchmark for grading (Shi ¢ Li, 2021; Fu

& Zhang, 2023; Liu, Wu & Jin, 2023; Zhang et al., 2023), which are as follows: Excellent
(Livable, 0.8~1.0), Good (Relatively Livable, 0.6~0.8), Moderate (Moderately Livable,
0.4~0.6), Fair (Unlivable, 0.2~0.4), and Poor (Extremely Unlivable, 0.0~0.2).

Statistics from Table 2 indicate that the ecological livability index of the U-Chang-Shi
urban cluster has slightly decreased over the past 20 years, with a significant decline
between 2000 and 2005 and a gradual improvement thereafter, maintaining an overall state
of Moderate livability. The AOD indicator has significantly increased over the 20 years,
associated with air pollution, dust storms, and soil dust caused by drought. This period saw
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Table 1 Principal component analysis of indicators from 2000 to 2020.

Years Eigenvalues PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
NDVI 0.3974 0.8290 0.1511 0.1779 0.0181 —0.3162 —0.0090 —0.0017
WET 0.1127 0.0231 —0.1449 —0.8986 —0.0549 —0.3855 —0.0942 0.0022
DEM —0.6121 0.4106 0.3067 —0.1983 —0.3785 0.3280 —0.2692 0.0024
SLOPE —0.4178 0.3032 —0.7940 0.0903 0.3036 —0.0401 —0.0345 0.0012
2000 AOD —0.0991 0.0755 0.3832 —0.2016 0.8693 0.1947 —0.0594 —0.0005
NDBSI —0.1029 —0.2048 0.0894 0.2461 0.0706 —0.4579 —0.8150 —0.0044
LST —0.5117 —0.0637 0.2773 0.1107 0.0254 —0.6282 0.4996 —0.0032
PD —0.0003 0.0011 —0.0022 —0.0040 —0.0015 0.0044 0.0011 —1.0000
Contribution rate/% 78.59% 11.32% 4.17% 3.07% 1.32% 0.76% 0.43% 0.34%
NDVI 0.3207 0.7897 0.3442 —0.1524 —0.3269 —0.0880 0.1314 —0.0017
WET 0.2062 0.0388 —0.6243 0.5065 —0.4808 —0.2530 0.1206 0.0054
DEM —0.6026 0.3848 0.0949 0.4672 0.3530 —0.3592 0.0891 0.0021
SLOPE —0.4128 0.2707 —0.5837 —0.6412 —0.0435 —0.0411 0.0301 0.0015
2005 AOD —0.0575 0.0615 0.0432 0.0065 —0.1840 —0.2342 —0.9499 —0.0003
NDBSI —0.1315 —0.3815 0.2989 —0.2695 —0.3224 —0.7184 0.2347 —0.0034
LST —0.5482 —0.0651 0.2255 0.1345 —0.6306 0.4760 0.0450 —0.0012
PD —0.0002 0.0014 —0.0059 0.0037 0.0006 —0.0001 0.0001 —1.0000
Contribution rate/% 76.57% 12.38% 4.21% 3.40% 1.45% 0.85% 0.76% 0.38%
NDVI 0.3258 —0.8280 —0.1107 0.3324 —0.1635 0.2101 0.1209 —0.0020
WET 0.2102 —0.1017 0.0152 —0.7783 0.1560 0.5336 0.1745 0.0069
DEM —0.6421 —0.3794 —0.3881 —0.1785 0.3818 —0.2542 0.2256 0.0010
SLOPE —0.4439 —0.2574 0.8443 —0.0414 —0.1283 0.0719 0.0213 0.0015
2010 AOD —0.1019 —0.0709 —0.1978 —0.3845 —0.8420 —0.2951 0.0388 —0.0031
NDBSI —0.0687 0.2744 —0.0005 0.2399 —0.1448 0.1773 0.9000 —0.0052
LST —0.4746 0.1162 —0.2914 0.2116 —0.2381 0.6949 —0.3034 0.0010
PD —0.0003 —0.0009 0.0015 —0.0061 0.0047 0.0038 —0.0039 —1.0000
Contribution rate/% 77.32% 11.56% 4.08% 3.56% 1.40% 0.83% 0.75% 0.50%
NDVI 0.3509 —0.8436 —0.2239 —0.2259 0.0060 0.2531 —0.0011 —0.0057
WET 0.2250 —0.0514 0.4590 0.6302 0.3332 0.4774 0.0058 —0.0047
DEM —0.6167 —0.4000 —0.2230 0.3992 0.3777 —0.3285 0.0022 —0.0015
SLOPE —0.4257 —0.2760 0.7658 —0.3744 —0.1253 0.0164 0.0015 —0.0017
2015 AOD —0.0896 —0.1711 —0.0142 0.4842 —0.8532 —0.0063 0.0007 —0.0009
NDBSI —0.0037 0.0070 —0.0034 —0.0027 —0.0014 0.0003 0.0043 —0.9999
LST —0.5067 0.1421 —0.3206 —0.1335 —0.0514 0.7745 —0.0016 0.0046
PD —0.0003 —0.0010 0.0041 0.0047 0.0021 0.0006 —1.0000 —0.0044
Contribution rate /% 78.23% 11.68% 3.97% 3.13% 1.33% 0.80% 0.47% 0.39%
NDVI 0.3570 —0.8079 —0.3083 —0.1195 0.0812 0.3200 0.0385 —0.0019
WET 0.2278 —0.0904 0.7467 0.4665 0.1611 0.3578 0.1036 0.0055
DEM —0.5793 —0.3982 —0.0429 0.3805 0.3079 —0.3781 0.3485 0.0036
SLOPE —0.3967 —0.2661 0.5227 —0.6902 —0.1379 0.0481 0.0285 0.0016
2020 AOD —0.1911 —0.1600 —0.0386 0.3324 —0.8995 0.1179 0.0543 —0.0059
NDBSI —0.0994 0.2847 —0.1954 —0.1419 0.0372 0.4846 0.7839 —0.0037
LST —0.5303 0.0556 —0.1804 0.1273 0.2079 0.6129 —0.4981 —0.0009
PD —0.0002 —0.0010 0.0065 0.0015 0.0066 —0.0029 —0.0010 —1.0000
Contribution rate /% 77.45% 11.25% 4.35% 3.52% 1.37% 0.89% 0.71% 0.46%
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Table 2 Statistical values of various factors and RSELI from 2000 to 2020.

Factor Years
2000 2005 2010 2015 2020
RSELI 0.519 0.459 0.479 0.493 0.490
AOD 0.364 0.394 0.464 0.541 0.712
LST (°C) 41.407 41.301 40.359 41.130 40.530
NDBSI 0.112 0.109 0.097 0.108 0.104
NDVI 0.295 0.300 0.323 0.308 0.317
WET —0.156 —0.203 —0.202 —0.209 —0.224
PD 24.900 28.605 34.068 38.989 45.060
(People/m?)
Notes.

Except for Heat (LST) and Population Density (PD), the other factors are dimensionless.

rapid industrial development in the area, leading to a significant increase in the emission
of atmospheric pollutants. The overall change in LST has not been significant, showing
a trend towards stability. The NDBSI indicator has slightly decreased over the 20 years,
indicating a reduction in the region’s dryness level, benefiting from an overall increase
in the NDVI indicator over the same period, which reflects increased vegetation volume
primarily due to large-scale vegetation planting and windbreak and sand fixation projects
in Xinjiang’s desert areas over the last 20 years, reducing soil erosion. Although the NDVI
indicator has increased annually, the WET indicator has gradually decreased over 20 years,
consistent with the region’s arid climate. Based on the analysis of precipitation change
characteristics in Urumgj, there has been a yearly decrease in the number of rainy days
over the past 30 years, with frequent occurrences of extreme heavy rainfall and drought
events, leading to a reduction in humidity (Su & Xie, 2018).

Based on the aforementioned RSELI grading standards, the RSELI of the U-Chang-Shi
urban cluster for each year was reclassified using ArcGIS 10.5 software, resulting in the
Ecological Livability Map of the U-Chang-Shi urban cluster from 2000 to 2020, as shown
in Fig. 3.

Combining the topographic map in Fig. 2 and the remote sensing ecological livability
map in Fig. 3 reveals that the terrain in the U-Chang-Shi urban cluster distinctly shows a
high south and low north characteristic. The southern region, especially the southwest and
southeast areas close to the Tianshan Mountains, has significant topographical variations,
which puts pressure on its ecological livability, even leading to potential soil erosion and
geological disasters. In contrast, the central area is a vast plain. As can be seen from the map,
the U-Chang-Shi urban cluster is home to numerous rivers, especially Changji, located
between two main rivers, bringing abundant water resources to the area. This positively
supports local agriculture and the ecological environment. The northern region, near the
Gurbantunggut Desert, has an extremely fragile ecosystem and has been unsuitable for
habitation over the past 20 years. The long-term pressure on the ecological environment
in these fragile areas requires effective ecological restoration and protection.

Over the past 20 years, with the development of cities like Urumgqi, Changji, and Shihezi,
the trend of urban expansion has become increasingly apparent. Urbanization-induced
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Figure3 (A-E) Spatial distribution of RSELI in U-Chang-Shi Urban Cluster from 2000 to 2020. The
data used in the study were all obtained and processed through the Google Earth Engine (GEE) platform.
Full-size Gal DOI: 10.7717/peerj.17872/fig-3

land-use changes, reduction of green spaces, and increased pollution emissions may impact
the local ecological environment. Since 2010, as indicated in Fig. 3, with increased attention
to the ecological environment, the U-Chang-Shi urban cluster has been actively engaged
in greening and constructing parks and other ecological projects. These measures have
played a positive role in improving and protecting the local ecological environment and
enhancing the ecological livability. Of course, for sustainable development, the region
needs to consider factors such as topography, water resources, urbanization, and economic
development comprehensively. Strengthening ecological protection and rational resource
utilization, maintaining a balance between ecology and economic development, and
avoiding ecological destruction caused by excessive development are crucial.

Using ArcGIS and Excel, the area of each RSELI level for five periods from 2000 to
2020 was extracted and analyzed, as shown in Table 3. Table 3 indicates that over 20 years,
the area classified as Extremely Unlivable showed a trend of initial increase, followed by
a decrease, and then another increase, mainly due to sand erosion caused by extreme
weather events, resulting in fluctuations. Overall, the area under this category increased
over 20 years. The area of the Unlivable level increased from 0.278 to 1.130 thousand km?
in 2005, nearly quadrupling, but then gradually decreased to 0.707 thousand km? by 2020.
Although it was an increase from 2000, it was significantly lower than the peak in 2005,
indicating some improvement in ecological livability. The area of the Moderately Livable
level decreased from 2.919 thousand km? in 2000 to 2.529 thousand km? in 2020. Despite
still covering a large area, this reduction over 20 years should be noted as a warning against
ecological degradation. The area of the Relatively Livable level fluctuated significantly
over 20 years but overall showed a decreasing trend, with a reduction of 7.73%. The area
classified as Livable doubled from 0.259 thousand km? in 2000 to 0.520 thousand km? in
2020, showing a clear growth trend. In summary, these data indicate that more areas have
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Table3 Area and proportion of RSELI grades in the U-Chang-Shi Urban Cluster from 2000 to 2020.

Years Poor Fair Moderate Good Excellent
Area/ Proportion  Area/ Proportion  Area/ Proportion  Area/ Proportion  Area/ Proportion
10* km? 10* km? 10* km? 10* km? 10* km?
2000 0.088 1.97% 0.278 6.23% 2.919 65.44% 0.917 20.57% 0.259 5.80%
2005 0.161 3.60% 1.130 25.34% 2.239 50.19% 0.665 14.91% 0.266 5.96%
2010 0.141 3.16% 0.796 17.84% 2.372 53.18% 0.828 18.56% 0.324 7.26%
2015 0.064 1.42% 0.472 10.58% 2.804 62.88% 0.845 18.95% 0.275 6.17%
2020 0.132 2.96% 0.707 15.84% 2.529 56.71% 0.572 12.84% 0.520 11.65%
Table 4 Changes of ecological livability in the U-Chang-Shi Urban Cluster from 2000 to 2020.
Classification 2000-2005 2005-2010 2010-2015 2015-2020 2000-2020
Area/ Proportion  Area/ Proportion Area/ Proportion  Area/ Proportion  Area/ Proportion
10* km? 10* km? 10* km? 10* km? 10* km?
Degraded 1.37 30.78% 0.22 4.93% 0.30 6.82% 0.56 12.60% 0.89 19.88%
No Change 2.95 66.19% 3.38 75.75% 3.46 77.69% 3.50 78.49% 3.11 69.79%
Improved 0.13 3.03% 0.86 19.33% 0.69 15.49% 0.40 8.91% 0.46 10.33%

become more suitable for living. At the same time, the total areas classified as Unlivable and
Extremely Unlivable have also increased, which may reflect environmental degradation or
pressures from urbanization in some regions.

Spatio-temporal analysis of the variations in ecological livability in the
U-Chang-Shi urban cluster

Based on the RSELI classification, to obtain spatio-temporal distribution information on
the changes in ecological environment quality between different years, the raster calculator
in ArcGIS was used to process RSELI of different years. The changes were categorized into
three types: improved (>0), unchanged (=0), and worsened (<0), with the statistical results
shown in Table 4. The results were visualized using ArcGIS 10.5, as seen in Fig. 4.

From 2000 to 2020, the region’s livability experienced significant changes, with a large
area showing worsened livability between 2000 and 2005, while from 2005 to 2010 and
2015 to 2020, more areas saw improvements in livability. Throughout 2000 to 2020, the
areas with unchanged livability accounted for the largest proportion, averaging 69.79%,
indicating that despite changes in some regions, the livability of most areas remained
stable. The proportion of areas with worsened livability was highest between 2000 and
2005, reaching 30.78%, with this percentage gradually decreasing thereafter. Overall, the
proportion of areas with worsened livability from 2000 to 2020 was 19.88%. Areas with
improved livability had the highest proportion between 2005 and 2010, at 19.33%, with an
average proportion of 10.33% throughout 2000 to 2020.

DISCUSSION

This study’s findings underscore the dynamic interplay between urbanization,
industrialization, and the ecological livability of the U-Chang-Shi urban cluster. The
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Figure 4 (A-E) Temporal and spatial distribution of RSELI in U-Chang-Shi Urban Cluster from 2000
t0 2020. The data used in the study were all obtained and processed through the Google Earth Engine
(GEE) platform.
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use of the RSELI, derived from comprehensive remote sensing data via the Google Earth
Engine (GEE), provides a detailed understanding of ecological livability trends over the
past two decades. Despite improvements in ecological livability in certain years, the overall
trend indicates a gradual decline in ecological livability, highlighting the significant impact
of rapid urban and industrial expansion.

The analysis reveals a direct correlation between eight environmental factors and the
degradation of ecological quality. This observation is particularly relevant given the region’s
industrial boom and its consequent environmental repercussions. The study emphasizes
the significant influence of geographical features on ecological livability. The disparity
in livability between the southern mountainous regions and the central plains of the
U-Chang-Shi urban cluster exemplifies how natural topography can exacerbate or alleviate
the challenges posed by urbanization. The vulnerability of northern areas, close to the
Gurbantunggut Desert, to becoming uninhabitable zones further underscores the necessity
for strategic ecological management and conservation efforts.

The spatio-temporal analysis based on the RSELI classification elucidates the varying
degrees of ecological livability across different areas within the urban cluster, offering a
granular perspective on the distribution of livable spaces. This detailed mapping aids in
identifying areas in dire need of ecological restoration and those showing resilience or
improvement in livability standards, facilitating targeted intervention. In light of these
findings, it becomes crucial for policymakers and urban planners to adopt an integrated
approach to urban development that equally prioritizes ecological sustainability alongside
economic and infrastructural expansion. The significant role of green spaces, water
conservation, and pollution control measures in enhancing urban livability cannot be
overstated. Moreover, the study’s methodology, leveraging the advanced capabilities of
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the GEE platform, sets a precedent for future ecological and urban research, providing
a scalable and efficient framework for monitoring and analyzing global environmental
quality.

In contrast to prior research, which predominantly emphasized human-centric
indicators and employed survey methodologies for assessing ecological livability—
illustrated by Zhu, who utilized local yearbook data combined with surveys, and Pan,
who integrated remote sensing imagery with survey data—this study encompasses both
ecological and anthropogenic factors. It incorporates eight distinct variables through the
Google Earth Engine (GEE) platform, enabling precise and efficient computational analysis.
This approach offers a significant advancement over models that solely relied on vegetation
and landscape pattern indices without incorporating human dimensions, underscoring the
comprehensive and timely nature of this research.

Unlike other studies, previous ecological suitability evaluations focused more on
humanistic indicators and were conducted through survey questionnaires. For example,
Zhu et al. (2020) conducted Community Level Livability evaluations using local yearbook
data and survey questionnaires, while Pan et al. (2023) used remote sensing image data
and survey questionnaires. However, this approach was inefficient and data updates were
not timely. Other scholars have also constructed evaluation models based on six ecological
indicators, namely vegetation conditions and landscape patterns (Huang, Li ¢» Zhang,
2022), but lack humanistic indicators. Therefore, compared with other scholars’ research,
this study selected eight factors, including ecological and humanistic categories. The entire
calculation process was carried out through the GEE platform, achieving accurate and
efficient results.

Although the U-Chang-Shi urban cluster faces considerable ecological challenges, the
insights gained from this study offer a roadmap for sustainable urban development.

By integrating ecological considerations into the urban planning process, it is possible
to pave the way towards a more livable, resilient, and sustainable urban future.The
findings of this study provide crucial insights for urban planners and policymakers

in the region, aiding them in incorporating ecological conservation and sustainable
development into their decision-making processes for future urban expansion. This
research not only offers a reference model for assessing ecological livability in similar
regions but also identifies directions for further investigation. Future developments could
include more sophisticated ecological monitoring systems that integrate finer remote
sensing data and other environmental variables to rapidly and comprehensively assess the
ecological livability of regions, offering more precise data support for urban planners and
policymakers. Additionally, by building on these monitoring systems and incorporating
machine learning and big data analytics, future research can more effectively identify
key drivers of changes in ecological livability, providing a scientific basis for devising
differentiated ecological protection and restoration strategies. Considering regional
geographic conditions, climate change, and socio-economic factors collectively will aid
in achieving sustainable development goals for the U-Chang-Shi urban cluster and other
similar areas, ensuring the coordinated development of ecology and economy.
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CONCLUSION

This study, based on the Google Earth Engine (GEE) platform and utilizing remote sensing
data, constructed the RSELI index to conduct an in-depth analysis of the ecological livability
of the U-Chang-Shi urban cluster from 2000 to 2020. The findings are as follows.

Spatio-temporal variation in ecological livability: The ecological livability index of the
U-Chang-Shi urban cluster fluctuated slightly over 20 years but generally remained in a
moderately livable state. Although there was a significant decline from 2000 to 2005, the
index gradually began to rise from 2005, which is related to regional ecological restoration
projects and greening activities.

Changes in key ecological factors: The AOD indicator significantly increased over
20 years, closely related to regional industrial development and increased emissions of
atmospheric pollutants; the NDVT indicator showed an overall increase in vegetation in
the area, a direct result of China’s large-scale vegetation planting and windbreak and sand
fixation projects in Xinjiang’s desert areas over the last 20 years.

Geography and ecological livability: The topographical characteristics of the U-Chang-
Shi urban cluster have significantly impacted its ecological livability. The southern region,
especially parts bordering the Tianshan Mountains, due to large topographical variations,
has relatively lower ecological livability, while the central plains, benefiting from abundant
river resources, have a relatively better ecological environment.

Urbanization and ecological livability: The acceleration of urbanization, changes in land
use, reduction of green spaces, and increase in pollution may adversely affect the ecological
environment of the U-Chang-Shi urban cluster. However, since 2010, the region has shown
a marked increase in attention to the ecological environment, with numerous greening and
ecological restoration projects implemented, positively impacting ecological livability.

In summary, although the ecological livability of some areas has improved, many
areas, especially the fragile ecological regions near the Gurbantunggut Desert in the north,
are still experiencing a decline in ecological livability. The ecological restoration and
protection tasks in these areas remain challenging. To achieve sustainable development,
the U-Chang-Shi urban cluster should consider multiple factors such as topography, water
resources, urbanization, and economic development comprehensively. It should balance
the relationship between ecological and economic development, strengthen ecological
protection, use resources rationally, and avoid ecological damage caused by excessive
development.
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1. Normalized Difference Vegetation Index (NDVI): MOD13A2.061 Terra Vegetation
Indices 16-Day Global 1km, https:/developers.google.com/earth-engine/datasets/catalog/
MODIS_061_MOD13A2

2. Wetness (WET): MYD09A1.061 Aqua Surface Reflectance 8-Day Global 500m,
https:/developers.google.com/earth-engine/datasets/catalogMODIS_061_MYDO09A1

3. Normalized Difference Built-up and Soil Index (NDBSI): USGS Landsat 8 Level
2, Collection 2, Tier 1, https:/developers.google.com/earth-engine/datasets/catalog/
LANDSAT_LCO08_C02_T1_L2

4. Land Surface Temperature (LST): MOD11A2.061 Terra Land Surface Temperature
and Emissivity 8-Day Global 1km, https:/developers.google.com/earth-engine/datasets/
catalog™MODIS_061_MODI11A2

5. Digital Elevation Model (DEM): NASA SRTM Digital Elevation 30m, https:
/Idevelopers.google.com/earth-engine/datasets/catalog/lUSGS_SRTMGL1_003

6. Slope (SLOPE): NASA SRTM Digital Elevation 30m, https:/developers.google.com/
earth-engine/datasets/catalog/USGS_SRTMGL1_003

7. Aerosol Optical Depth (AOD): MODO04_L2 - MODIS/Terra Aerosol 5-Min L2 Swath
10km, https:/ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/
MODO04_12

Chen et al. (2024), PeerJ, DOI 10.7717/peerj.17872 18/23


https://peerj.com
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD13A2
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD13A2
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD09A1
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD11A2
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD11A2
https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003
https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003
https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003
https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD04_L2
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD04_L2
http://dx.doi.org/10.7717/peerj.17872

Peer

8. Population Density (PD): GPWv411: UN-Adjusted Population Density (Gridded
Population of the World Version 4.11), https:/developers.google.com/earth-engine/
datasets/catalog/CIESIN_GPWv411_GPW_UNWPP-Adjusted_Population_Density
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