- 1 Variation in floral morphology, histochemistry, and floral visitors of three sympatric
- 2 morning glory species
- 3 Awapa Jirabanjongjit¹, Alyssa B. Stewart¹, Chakkrapong Rattanamanee², and Paweena
- 4 Traiperm^{1,*}
- 5 Department of Plant Science, Faculty of Science, Mahidol University, Bangkok 10400,
- 6 Thailand
- 7 2 37/1 Moo4 Saocha-Ngok, Bangkhla, Chachoengsao 24110, Thailand
- 8 * Corresponding Author

- 10 Abstract
- 11 Three morning glory species in the genus Argyreia Lour., A. lycioides (Choisy) Traiperm &
- 12 Rattanakrajang, A. mekongensis Gagnep & Courchet, and A. versicolor (Kerr) Staples &
- Traiperm, were found co-occurring and co-flowering. Two of these species (A. mekongensis
- and A. versicolor) are rare and endemic to Thailand, while the third (A. lycioides) has not yet
- been evaluated. We investigate key floral characters (floral morphology and phenology, as
- well as the micromorphology of the floral nectary disc and staminal trichomes) and screened
- for important chemical compounds hypothesized to contribute to pollinator attraction. Our
- results found some overlap among the three study species in terms of floral visitors.
- 19 However, pollinator composition appears to be influenced by floral shape and size; morning
- 20 glory species with wider corolla tubes were pollinated by larger bees. The morphology of the
- 21 floral nectary disc was similar in all species while variation in staminal trichomes was
- 22 observed across species. Glandular trichomes were found in all three species, while non-
- 23 glandular trichomes were found only in *A. versicolor*. Histochemical results revealed
- 24 different compounds in the floral nectary and staminal trichomes of each species, which
- 25 contribute to both floral attraction and defense. These findings demonstrate some segregation

Comentado [JG1]: I am not sure if this information supports the aim of the study

Comentado [JG2]: I understand those flower characteristics will improve pollinator attraction, but I think it will be better to mention first some results about the flower characters evaluated, and Later you will talk about visitors' composition.

26 of floral visitors among sympatric co-flowering morning glory species, which appears to be influenced by the macro- and micromorphology of flowers and their chemical compounds. 27 Moreover, understanding the floral morphology and chemical attractants of these sympatric 28 co-flowering Argyreia spp. may help to maintain their common pollinators in order to 29 conserve these rare and endangered species, especially A. versicolor. 30 31 Keywords: Argyreia, Biodiversity, Convolvulaceae, Histochemistry, Plant Conservation, 32 Pollinator, Trichome, Xylocopa 33 34 Introduction 35 Much of floral evolution is driven by pollinator attraction (Fenster et al., 2004) and 36 37 pollination efficiency (Stewart et al., 2022). To attract pollinators, floral morphology is one prominent and important feature (Bobisud & Neuhaus, 1975; Schemske, 1981), including 38 39 flower size, color, scent, and phenology (Rathcke, 1983; Waser & Price, 1983; Spaethe, Tautz & Chittka, 2001; Waser & Ollerton, 2006; Willmer, 2011; Hassa, Traiperm & Stewart, 40 2020, 2024). For example, large flowers tend to be favored and selected for by insects since 41 42 they are more visible (Chittka & Raine, 2006; Naug & Arathi, 2007; Benitez-Vieyra et al., 43 2010) and reduce search time during pollinator foraging (Spaethe, Tautz & Chittka, 2001). Similarly, Thompson (2001) demonstrated the importance of floral size or display on 44 variation in visitation patterns between different insect types; hawkmoths and butterflies both 45 preferred larger displays. Floral color is another important trait for pollinator attraction since 46 different species have different spectral receptor cells; for example, humming birds tend to 47 select red flowers because of high chromatic contrast to the background (Herrera et al., 48 49 2008), whereas bees are uncommon visitors to red flowers given their lower sensitivity to red wavelengths (Bergamo et al., 2016). Flowering time and floral phenology also influence 50

Comentado [JG3]: Please review the sentence, I probably do not understand it well, but phenology is not part of flower morphology

Comentado [JG4]: Large floral displays? Or large flowers? please review

Comentado [JG5]: Species of visitors??

pollination and reproductive success (Evans, Smith & Gendron, 1989; Elzinga et al., 2007).

51

Phenology has been shown to affect pollinator variation and effectiveness, which can impact 52 fitness, as has been demonstrated through reduced seed mass throughout the flowering season 53 (Gallagher & Campbell, 2020). 54 While floral morphology tends to be highly prominent, there are other floral traits that 55 are less visible, yet are also important in plant-pollinator interactions. For example, the floral 56 nectary is an important floral organ as it provides the primary reward for many pollinators, 57 58 nectar (Irwin et al., 2010; Pacini & Nicolson, 2007). The floral nectary is important not only in terms of providing food resources for pollinators (Simpson & Neff, 1981; Proctor, Yeo & 59 Lack, 1996; Neiland & Willcock, 1998; Nicolson, 2007) but also for manipulating pollinator 60 61 behavior (Bailey et al., 2007). However, nectar not only attracts beneficial pollinators, 62 but pollinators but can also lead to visits by less beneficial species at the same time. Consequently, many plant species have evolved features that only allow visitation by specific 63 64 pollinators (e.g., pollination syndromes; Fenster et al., 2004); nectar production is one trait that has an important role in confining the range of visitors to species that benefit the plants 65 (Irwin, Adler & Agrawal, 2004). While floral morphology is an important component to 66 67 predicting pollination syndromes, other characters should also be considered, such as 68 flowering phenology, anthesis start time and duration, and chemical compounds in nectar that are certainly associated with pollination and pollinator activities (Southwick, Loper & 69 Sadwick, 1981; Baker & Baker, 1983; Pleasants, 1983; Waser et al., 1996; Galetto & 70 71 Bernardello, 2005; Ollerton et al., 2009; Bobrowiec & Oliveira, 2012). Additionally, macroevolutionary studies can reveal associations between nectar traits and pollinator types, 72 for example, finding similar nectar properties in plants that are visited by the same pollinators 73 (Faegri & van der Pijl, 1979; Proctor, Yeo & Lack, 1996). Floral chemistry can mediate 74

Comentado [JG6]: Could you please explain, if these less beneficial visitors are secondary pollinators, antagonistic, or what kind of behavior have these insects?

Also, include reference

Comentado [JG7]: Please review redaction

interactions with pollinators, pathogens, and/or herbivores, and are therefore influence plant
 fitness (Strauss & Whittall, 2006; Irwin et al., 2010; Good et al., 2014).

77

78

79

80

81 82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

Another plant organ important in mediating plant-animal interactions is the trichome. Trichomes initially originate from expansions or appendages of the epidermis (Evert, 2006), and have diverse biological functions, such as in herbivore defense, pollinator attraction, or tissue protection and maintenance (Nihoul, 1993; Van Dam & Hare, 1998; Kennedy, 2003; Moyano, Cocucci & Sersic, 2003; Simmons & Gurr, 2005; Liu et al., 2006; Horgan et al., 2007; Gonzalez et al., 2008; Romero Souza & Vasconcellos-Neto, 2008; Nonomura et al., 2009; Kang et al., 2010; Karabourniotis et al., 2020), which may be due to the synthesis and storage of biologically active metabolites (Alonso et al., 1992; Antonious, 2001; Iijima et al., 2004; Siebert, 2004; Deschamps et al., 2006; Nagel et al., 2008; Wang et al., 2008; Biswas, Foster & Aung, 2009; Sallaud et al., 2009; Luo et al., 2010). Trichomes are typically found on vegetative and reproductive organs, such as leaves, stems, petals, petioles, peduncles, and seeds (Wagner, Wang & Shepherd, 2004). Trichomes can also be found on staminal filaments, although they have been less studied and their function in many cases is still unclear. Staminal trichomes have been reported in five species in the genus Teucrium L. (Lamiaceae) (Bini Maleci & Servettaz, 1991) and in some species of Argyreia Lour. (van Ooststroom, 1943, 1945, 1950, 1952; Hoogland, 1952; van Ooststroom & Hoogland, 1953; Chitchak et al., 2018; Chitchak, 2019) and Rivea Choisy (Chitchak, Stewart & Traiperm, 2022). Staminal trichomes have been proposed to contribute to pollinator attraction (Jirabanjongjit et al., 2021; Chitchak, Stewart & Traiperm, 2022). Floral traits such as color, size, shape, and the chemical composition of the nectary

Floral traits such as color, size, shape, and the chemical composition of the nectary and staminal trichomes can all influence floral visitors. Therefore, the objectives of this study were to study and compare how these traits influence floral visitor composition in three sympatric species of *Argyreia*—Lour.: A. lycioides—(Choisy)—Traiperm & Rattanakrajang, A.

Comentado [JGGF8]: please do not repeat species authors. I suggest just mentioning them in Methods

mekongensis Gagnep & Courchet, and A. versicolor (Kerr) Staples & Traiperm. Two of these species, A. mekongensis and A. versicolor, are rare and endemic to Thailand, especially the latter, which is extremely rare and near extinction (Staples et al. 2021; Jirabanjongjit et al. 2024). All three species are naturally found in the Watthana Nakhorn district of Sa Kaeo province, Thailand, and they have nearly identical flowering periods. The study area is found in eastern Thailand, has a tropical climate, and is classified as a lowland watershed with undulating plains at around 74 m above sea level. Human settlements are interspersed with natural habitat, and natural areas are primarily covered with deciduous dipterocarp forest that occasionally experiences fire forests.

110 Materials & Methods

100

101

102

103

104

105

106

107

108

109

111

112

113

114

115

116

117

118

120 121

122

123

Study species and sample collection

Three species of sympatric Argyreia Lour. were collected in this study. Argyreia mekongensis

Gagnep & Courchet and A. versicolor (Kerr) Staples & Traiperm are woody perennial twiner

(Staples & Traiperm, 2010), while A. lycioides (Choisy) Traiperm & Rattanakrajang is

woody shrub (Staples, 2010; Rattanakrajang, Traiperm & Staples, 2018; Rattanakrajang et

al., 2022). The nectaries of all three species surround the ovary at the base of the corolla. In

general, five stamens circle the outer edge of the nectary. The bases of the filaments are

covered by dense trichomes (i.e., staminal trichomes). Fresh mature flowers (five per species)

 119 were collected and kept in 4° C for histochemical examination.

Floral characters and flowering phenology

Floral characters were observed and recorded during field work following terminology from

Kew glossary (Beentje, 2010) and the Flora of Thailand (Convolvulaceae) (Staples, 2010), as

well as from recent studies of the three species (Staples & Traiperm, 2017; Rattanakrajang et

Comentado [JG9]: Where is the study area?

Comentado [JGGF10]: I think is missing a better species description, including that information of trichomes

Comentado [JGGF11]: Probably I am lost, pero how long was the fieldwork?

al., 2022). The floral phenology of A. lycioides was assessed from field work, herbarium 125 126 specimens, and relevant literature (Staples, 2010; Rattanakrajang, Traiperm & Staples, 2018; Rattanakrajang et al., 2022). The floral phenologies of A. mekongensis and A. versicolor were 127 recently observed and published in our earlier study (Jirabanjongjit, et al. 2024). 128 129 Floral visitor observation 130 The floral visitors of Argyreia mekongensis and A. versicolor have recently been reported 131 132 (Jirabanjongjit et al., 2024), but no records of the floral visitors of A. lycioides were found. We used action cameras (Xiaomi YI Z15, Xiaomi, Beijing, China) placed in front of mature 133 A. lycioides flowers to capture animal visits. We did not collect floral visitors to avoid 134 135 disturbing subsequent animal visits and to avoid damaging flowers with sweep nets. All 136 footage was reviewed and floral visitors were identified to the lowest taxonomic level possible with help from a local entomologist (see Acknowledgments). Permission to work 137 138 with animals was granted by MUSC-IACUC (Faculty of Science, Mahidol University-Institutional Animal Care and Use Committee) (Protocol numbers MUSC60-037-387 and 139 MUSC63-031-539). 140 141 142 Histochemical examination Histochemical techniques were used to detect the presence of chemical compounds of interest 143 144 in the floral nectary discs and staminal trichomes. Nectary discs were free hand-sectioned 145 both transversally and longitudinally. Staminal trichomes were removed from the filament base. Staminal trichome morphology was described based on Chitchak (2019). All sample 146 specimens were treated with the following histochemical assays: NADI reagent to test for 147 terpenes (David & Carde, 1964; Olaranont et al., 2018), Sudan Black B and Sudan III to test 148 for lipids (Brundrett, Kendrick & Peterson, 1991), and Naturstoff to test for flavonoids 149

(Olaranont et al., 2018; Tattini et al., 2000). Samples stained with NADI reagent, Sudan Black B, and Sudan III were examined under a light microscope (Olympus CX21 equipped with a Sony 6400 digital camera, Tokyo, Japan) and samples stained with Naturstoff were examined under a fluorescent microscope (Olympus BX53 with a DP73 camera set, Waltham, MA, USA) with a 436-nm exciter filter.

155 156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

150

151

152

153154

Results

Floral characters and flowering phenology

All three sympatric species have a campanulate floral shape but differ in size; flowers of A. versicolor and A. mekongensis are similar in size and significantly larger than A. lycioides. Moreover, both A. versicolor (Figure 1A, D) and A. mekongensis (Figure 1B, E) produce several flowers per inflorescence and flowers exhibit a corolla limb, while A. lycioides (Figure 1C, F) produces axillary solitary flowers that typically lack a corolla limb but are occasionally found with a very small corolla limb. In terms of floral color, A. versicolor has a whitish corolla tube with a purple corolla limb, A. mekongensis has a pure white corolla tube and limb with small brownish dots scattered across the flower, and A. lycioides has a waxy greenish-white tube with a dense concentration of dark purple dots inside the corolla (Figure 1). Additionally, A. versicolor and A. mekongensis are lianas, while A. lycioides is a shrub. Our previous work found that the flowers of A. versicolor start to open around 5:00 h, are fully open around 7:00 h, and flowers last until sunset; similarly, the flowers of A. mekongensis start to open around 5:00 h, are fully open around 7:00-8:00 h, but flowers last until the evening of the following day (Jirabanjongjit et al., 2024). The flowering periods of both A. versicolor and A. mekongensis occur from August to December and fruits are mature approximately 12-15 weeks later (Jirabanjongjit et al., 2024). From the observations of this

study, flowers of A. lycioides generally open around 5.00 h, are fully open around 8.00-9.00

Comentado [JGGF12]: Please include quantitative data and statistical test

Comentado [JGGF13]: Please change the order of letters that identify photographs, and use the traditional horizontal order

Comentado [JG14]: This information is different from those in the paper of 2024

Comentado [JGGF15]: I am not sure if this published information can be included in the result section, because they were not obtained in the present study.

Probably is better just to mention the results of the present study, and make a table comparing the data of the three species

Comentado [JG16]: The paper mentioned 10-12 weeks, please review

h, and last until the evening of the following day. The flowering period of *A. lycioides* lasts from early September until late October, and fruits are mature approximately 10-12 weeks later.

178

175

176

177

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197 198

199

Floral visitor observation

The flowers of A. versicolor and A. mekongensis have the same pollinators: Xylocopa latipes and X. aestuans (Jirabanjongjit et al., 2024) (Figures 2A-D). The campanulate form of their flowers allows large carpenter bees to enter while foraging on nectar, and the thorax of both Xylocopa species was observed to contact stigmas and stamens; pollen was also observed on the thorax of both bee species (Figures 2A-B). A number of other diurnal floral visitors were observed at A. mekongensis flowers, including Amegilla blue-banded bees (Figure 2E), Mylabris phalerata blister beetles (Figure 2F), Cinnyris jugularis sunbirds (Figure 2G), Hesperiidae skipper butterflies, and wasps; visits by other animal taxa to A. versicolor flowers were extremely uncommon. Several diurnal animal taxa were observed visiting A. lycioides flowers, including wasps (Vespidae; Figure 2I), an unknown bee (possibly Lipotriches sp.; Figure 2H), several ants (Formicidae), Cinnyris jugularis sunbirds (Figure 2J), cockroaches (Blattodea), and skipper butterflies (Hesperiidae). No nocturnal visitors were observed. Vespid wasps were the most frequent visitors. They entered the corolla to forage on nectar, during which their thorax was observed to touch the anthers and stigmas; pollen was observed on their thorax (Figure 2I). The unknown bee species, possibly in the genus Lipotriches, was also observed contacting floral reproductive structures, but was only rarely recorded visiting flowers. The cockroaches and skipper butterflies appear not to pollinate flowers, as they simply crawled along the outside of the corolla. Ants were occasionally observed walking on the inside of the corolla, in addition to the outside, but were never observed contacting anthers or stigmas. Sunbirds were observed robbing nectar;

Comentado [JGGF17]: I understand that anthesis was daily observed from a specific flower number, however, authors do have to show how they made the field observations. Review

Comentado [JG18]: The authors should not describe the behavior of bees as pollinators published in 2024 in this results section. It should only be used in discussion.

they would perch on branches near flowers and use their beaks to pierce the corolla base (Figure 2J).

Comentado [JGGF19]: I am not sure that sunbirds could take nectar in flowers with a vertical orientation. How the nectar will accumulate to be attractive to those big birds

Histochemistry of floral nectary discs

The sectioned nectaries of the three study species revealed some similarities and some differences among the tested compounds (Table 1). NADI reagent tested positive in all three species, revealing that terpenes are produced and/or accumulated in the epidermis, around the nectary ducts, and in the parenchyma cells of *A. versicolor* (Figure 3A) and *A. mekongensis* (Figure 4A), while terpenes were strongly detected throughout the entirety of the nectary disc of *A. lycioides* (Figure 5A). Similarly, flavonoids were detected in all species throughout the nectary disc (Figure 3B, Figure 4D, Figure 5B). In contrast, lipids were found only in *A. mekongensis* and appear to accumulate in the epidermis layer and nectary ducts (Figure 4B-C), while the other two study species tested negative for lipids using both Sudan Black B and Sudan III.

Comentado [JG20]: How the degree of this chemical was measured?

Morphology and histochemistry of staminal trichomes

Argyreia versicolor has two types of trichomes (Table 1), glandular trichomes (Figure 3D, E) and non-glandular trichomes (Figure 3F). The trichomes were dispersed across the lower part of the filaments, and the highest density of trichomes and the longest trichomes were found at the center of the distribution. Glandular trichomes were shorter than non-glandular trichomes and were fewer in number and shorter in length towards the margins of their distribution.

Each glandular trichome consisted of a head cell (apical cell), stalk, and basal cell; the head cells are unicellular apical glands which are either rounded cylindrical, globose (Figure 3D), or obovoid (Figure 3E), or globose (Figure 3D). Stalks were observed to have different lengths; long stalks (Figure 3E) were mostly found at the very base of the filaments while short stalks (Figure 3D) were densely scattered around the middle of filaments and sparsely

Comentado [JG21]: How authors measured the density of trichomes?

scattered near the tops of filaments. We also observed simple non-glandular staminal trichomes (Figure 3F), which were present only in this species and only at the center of the filament base. The non-glandular trichomes consisted of a basal cell and a long slender apical cell. The glandular staminal trichomes tested positive for terpenes (Figure 3C) while the simple non-glandular staminal trichomes did not (Table 1). Both glandular and non-glandular trichomes tested negative for lipids (Table 1). Flavonoids were detected in the apical cells of non-glandular trichomes, especially where the apical cell connects to the base (Figure 3F), but not in glandular trichomes (Table 1).

Only glandular trichomes were observed for *A. mekongensis*, and they were distributed across the base of filaments, densely at the center of their distribution and more sparsely towards the margins of their distribution. These glandular trichomes also consisted of a head cell (apical cell), stalk, and basal cell. The head cells are unicellular apical glands and five gland shapes were observed; rounded conical (Figure 4F), bell-shaped (Figure 4F), rounded cylindrical (Figure 4G), convex (Figure 4G), and globose (Figure 4H). Stalks were longer at the center of their distribution and shorter towards the margins of their distribution. Histochemical analysis revealed the presence of terpenes (Figure 4E) and lipids (Figure 4F-H), both of which appear to accumulate in the glands (Table 1). However, flavonoids were not detected (Table 1).

We also only observed glandular trichomes in *A. lycioides*, which were distributed across the base of the filaments, densely at the center of their distribution and more sparsely towards the margins of their distribution. Similar to the other two study species, these glandular trichomes consisted of a head cell (apical cell), stalk, and basal cell. The apical gland cells were observed to have four shape types: rounded cylindrical (Figure 5C), globose (Figure 5C), obovoid (Figure 5D), and pyriform (Figure 5D). In contrast to the other two study species, the glandular trichomes of *A. lycioides* have very short unicellular stalks

251 (Figure 5D). Histochemical analysis revealed the presence of terpenes (Figure 5C), while lipids and flavonoids were not detected (Table 1). 252 253 Discussion 254 Floral visitors in relation to floral characters 255 We observed high overlap in floral visitor composition between A. versicolor and A. 256 mekongensis, and some overlap between A. mekongensis and A. lycioides, but no overlap in 257 the taxa visiting A. versicolor and A. lycioides. Argyreia versicolor and A. mekongensis were 258 259 both almost exclusively visited by *Xylocopa* carpenter bees (*X. aestuans* and *X. latipes*). These species are very similar in shape and size, both of which allow their large bee 260 261 pollinators to enter the flower and contact floral reproductive structures with their thorax. Moreover, these species likely attract their pollinators with their relatively showy floral 262 displays: bright colors, a large corolla limb, and numerous flowers per inflorescence (5-9 263 264 flowers). While these two species do differ in color (A. versicolor is purple and white, while A. mekongensis is pure white), Xylocopa bees have been reported to favor both purplish-265 white and creamy white flowers (Raju & Rao, 2006). 266 267 We also observed some overlap in the animal taxa that visited A. mekongensis and A. 268 lycioides, namely, wasps, small bees, skipper butterflies, and sunbirds. However, most of these taxa were uncommon visitors and unlikely pollinators. For example, for both Argyreia 269 270 species, skipper butterflies (Hesperiidae) were only ever observed on the outside of the 271 corolla, and sunbirds (Cinnyris jugularis) were only ever observed robbing nectar. The one 272 exception is wasps in the family Vespidae, which were frequent visitors to and likely pollinators of A. lycioides (see paragraph below). The similarities in floral visitor composition 273 274 between A. mekongensis and A. lycioides may be due to their similar coloration and floral

heights. Both species have pale-colored flowers and were found about 1.5 m above ground,

275

Comentado [JGGF22]: I would like to see a table indicating flower visitors and their frequency

Comentado [JGGF23]: How you are sure that these characters attract flower visitors? Did you make an experiment by changing some of the colors or cutting the limb? The authors mention that visitor frequencies were very low. If the characteristics were as attractive visitors were frequent, as occurring in some orchid species.

Comentado [JG24]: Authors do not show the frequency of the flower visitors

whereas twining *A. versicolor* was usually found climbing tall trees and its flowers were typically around 5 m above ground.

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298299

300

Argyreia lycioides is the most different of the three study species in terms of shape and size, and it also had different pollinators than the other two. While A. versicolor and A. mekongensis were pollinated by Xylocopa carpenter bees (Jirabanjongjit et al., 2024), A. lycioides appears to be pollinated primarily by wasps in the family Vespidae. Key floral features that distinguish A. lycioides from the other two species are its floral arrangement (axillary solitary instead of inflorescence), size (about three-fourths the size of the other two), and reduced corolla limb (minimal to absent). The flowers of A. lycioides are too small for carpenter bees, but are appropriately sized for wasps or smaller bees, as were observed in this study. Wasps appear to be the main pollinators of A. lycioides given the frequency of their visits and their consistent contact with stigmas and anthers. Wasps can be found as pollinators of both generalist and specialized flowers (Heithaus, 1979; Nilsson, 1981; Kephart, 1983; Vieira & Shepherd, 1999; Ollerton et al., 2003; Johnson, 2005; Shuttleworth & Johnson, 2006, 2008, 2009a, b, c, d; Johnson, Ellis & Dötterl, 2007). While Faegri & Van der Pijl (1979) did not specifically describe a wasp pollination syndrome, evidence suggests that wasps often pollinate easily approachable flowers that have dull or cryptic coloration, a strong or unusual scent, and concentrated nectar (Heithaus, 1979; Proctor, Yeo & Lack, 1996; Ollerton & Watts, 2000; Johnson, Ellis & Dötterl, 2007; Shuttleworth & Johnson, 2009a; Shuttleworth & Johnson, 2009d). According to Kingston and McQuillan (2000), flowers that are visited by wasps mainly have pale colors, followed by yellow and some purple flowers. These results correspond with our findings, as A. lycioides has a greenish white corolla with a dense concentration of dark purple dots on the inside the corolla, and the wide corolla entrance and tube make nectar easily accessible. However, given that our study only opportunistically examined a single population, additional research is needed to assess the

Comentado [JGGF25]: The authors said above "both species have similarities in floral composition"; please review

Comentado [JGGF26]: The authors mention superficially about how flowers display, but they do not present any data about quantitative measures of flower size

visitation frequency and effectiveness of animal taxa visiting A. lycioides to determine its main pollinators.

Histochemistry of the floral nectary discs

In all three study species, the floral nectary surrounds the base of the ovary; this nectary disc is a conserved character within the Convolvulaceae (Govil, 1972; Deroin, 1992, 2002; Galetto & Bernardello, 2004; Wright, Welsh & Costea, 2011). However, investigation of terpenes, flavonoids, and lipids in the floral nectaries revealed some differences between the three sympatric *Argyreia* species.

Terpenes were detected in the floral nectaries of all three study species, and have also been reported in several other plant species (Giuliani, Bini & Lippi, 2012; Machado & Souza, 2016; Wiese et al., 2018; Farinnaso et al., 2021; Jirabanjongjit et al., 2021; Chitchak, Stewart & Traiperm, 2022). Terpenes are important secondary metabolites in plants that contribute to pollinator attraction by providing scent compounds (Knudsen & Gershenzon, 2006) that are recognized to attract bees (Bergström, Dobson & Groth, 1995; Robertson et al., 1995). Moreover, terpenes can contribute to plant-insect interactions for bees that forage for biologically active plant products (Harrewijn, Minks & Mollema, 1994; Stevenson, Nicolson & Wright, 2017). Therefore, apart from the food resources provided by nectar, the floral nectary can also produce other important chemical substances to attract and reward pollinators.

Flavonoids were also detected in the floral nectaries of all three study species, are prevalent throughout plants and their tissues especially in higher plants (Wollenweber & Dietz, 1981; Harborne, 1988; Taylor & Grotewold, 2005), and have previously been reported in several plant taxa (Ferreres et al., 1996; Truchado et al., 2008; Machado & Souza, 2016; Jirabanjongjit et al., 2021; Chitchak, Stewart & Traiperm, 2022). Several functions of

Comentado [JGGF27]: I agree with the authors. They do not have information (or at least they did not present it) for consider pollinators some insect species, even in the other two plant species.

flavonoids are well-known, such as their role in plant reproduction, namely, as a color attractant that advertises flowers to pollinators and fruits to seed dispersers (Dakora, 1995). Flavonoids can also absorb UV wavelengths, providing visual cues that guide bees or other insects to floral nectar (Thorp et al., 1975; Harborne, 1979; Agati & Tattini, 2010). Additionally, flavonoids can protect nectar from pathogens or microbes, preserving it for pollinators, which can also benefit plant reproduction (Treutter, 2005).

In contrast to terpenes and flavonoids, lipids were only found in one of the three study species, *A. mekongensis*. Lipids have been reported in the floral nectaries of many plant taxa, such as Anacardiaceae, Bignoniaceae, Convolvulaceae, and Orchidaceae (Figueiredo & Pais, 1992; Stpiczynska, 1997; Stpiczynska & Matusiewicz, 2001; Stpiczynska & Davies, 2006; Kowalkowska et al., 2015; Machado & Souza, 2016; Tolke et al., 2018; Phukela, Adit & Tandon, 2021; Jirabanjongjit et al., 2021; Chitchak, Stewart & Traiperm, 2022). Lipids are frequently found in the nectar of vertebrate-pollinated species due to their importance in the diets of vertebrates (Varassin, Trigo & Sazima, 2001; Gumede & Downs, 2020), however, their potential role in plant-insect interactions has not been widely studied. Previous research suggests that the positive detection of lipids in the floral nectary could indicate the presence of laticifers (Martin et al., 2012) or may provide nutrition for nectar-feeding insects, in addition to polysaccharides (Bernardello, 2007). From the results of this study, terpenes and flavonoids appear to be important substances that potentially attract pollinators, while lipids (which were only detected in *A. mekongensis*) may serve as additional nutrition for pollinators.

Histochemistry of the staminal trichomes

Argyreia versicolor is the only species examined in this study that has both non-glandular and glandular trichomes on the staminal filaments. Non-glandular staminal trichomes appear to be very uncommon, as Chitchak (2019) observed the staminal trichomes of 31 taxa and only

Comentado [JGGF28]: However, the authors mentioned that carpenter bees are the main visitors and pollinators, even in the other species A. versicolor. Were is the difference? One presents lipids and the other none, what happens then?

observed non-glandular trichomes in *A. versicolor*. Traditionally, non-glandular trichomes have been considered unimportant in the storage, production, and secretion of biologically active compounds (Werker, 2000). However, non-glandular trichomes have been found to store phenolic compounds, despite not having secretion abilities, and such phenolics are important in the protection against and regulation of biotic and abiotic stresses (Koudounas et al., 2015; Karabourniotis et al., 2020). Among secondary metabolic compounds, flavonoids, a type of phenolic compound, has been shown to substantially accumulate in non-glandular trichomes (Skaltsa et al., 1994; Valkama et al., 2004; Tattini et al., 2007; Koudounas et al., 2015), as we also observed in *A. versicolor*. Non-glandular trichomes are typically considered to provide physical plant defenses against biotic or abiotic stresses, such as protection against insect oviposition or herbivory (Levin, 1973; Baur, Binder & Benz, 1991), or as protection against drought (Ichie et al., 2016), low or high humidity, high solar radiation, or high light intensity (Werker, 2000; Ichie et al., 2016). Thus, it is possible that the non-glandular staminal trichomes found in *A. versicolor* may help protect the ovary from herbivory, as the ovary is located directly below the staminal trichomes.

Glandular trichomes were observed in all three study species, and had similar distribution patterns, but varied in some of their morphological features. *Argyreia lycioides* had shorter stalks than the other two species, which may be due to phenotypic integration of floral traits such as corolla size, as was reported in Chitchak (2019). The function of staminal trichomes is still unclear and they have received less attention than other types of trichomes. However, a recent study by Dieringer and Cabrera (2022) suggested one ecological advantage of staminal trichomes in *Agalinis auriculata*, in which they appear to facilitate the grasping of flowers during buzz pollination; filament trichomes had a positive effect on pollen removal in sternotribic pollination but a negative effect in nototribic pollination. Riviere et al. (2013) reported a different function of filament trichomes in the genus *Cuscuta*,

where glandular trichomes appear to play a role in the protection of the nectar or ovary (ovules).

Glandular trichomes usually secrete and accumulate specific secondary metabolites such as terpenes and other essential oils (Metcalf & Kogan, 1987). In the species that we examined, there were some differences in the histochemical results of glandular staminal trichomes, but terpenes were found in all species. In general, terpenes are reserved in specialized structures within plant tissues, such as secretory cavities, resin canals, latex canals, and glandular trichomes (Holopainen et al., 2013). Previous studies examining terpenes have mostly reported their presence in the glandular trichomes of leaves, and they are generally recognized as being defensive substances against microbes, fungi and/or herbivores (Harborne, 1993; Kelsey Reynolds & Rodriguez, 1984; Olaranont et al., 2018). However, more recent work has started to improve our understanding of how insects respond to terpenes and their function in attracting pollinators (Raguso & Light, 1998; Dudareva et al., 2006; Knudsen & Gershenzon, 2006). In contrast to the ubiquity of terpenes, lipids were only detected in the glandular staminal trichomes of A. mekongensis while flavonoids are not detected in the glandular staminal trichomes of any species. Previous work examining other morning glory species, such as Rivea ornata (Chitchak, Stewart & Traiperm, 2022) and Argyreia siamensis (Jirabanjongjit et al., 2021), have hypothesized that staminal trichomes are important for pollinator attraction since glandular staminal trichomes contain chemical substance such terpenes and flavonoids. The results of this study indicate that glandular staminal trichomes, with their accumulation of terpenes, may help protect the nectar and ovary from microbes, fungi, and herbivores, and/or may help attract pollinators and guide them to the nectar.

400

377

378

379

380 381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

401

Conclusion

The findings of this study reveal that the three sympatric, co-flowering Argyreia species exhibit some similarities and some differences in terms of floral visitors, floral characters, and histochemical compounds. When comparing pollinators, the two twining species, A. versicolor and A. mekongensis, shared carpenter bee pollinators due to their similar floral sizes and shapes. In contrast, A. lycioides is a perennial shrub with a smaller corolla tube, and appears to be pollinated by wasps (Vespidae) and possibly small- to medium-sized bees. All species exhibited trichomes at the base of staminal filaments; glandular trichomes were observed in all species but non-glandular trichomes were found only in A. versicolor. Histochemical investigation of the floral nectary and staminal trichomes revealed that all three species contain chemical substances that may be related to pollinator attraction and floral defense, although there were slight differences among species. Terpenes and flavonoids in the floral nectar may contribute to pollinator attraction while lipids may provide additional nutrition for pollinators. In terms of staminal trichomes, glandular trichomes may secrete chemical substances for pollinator attraction or plant defense, while non-glandular trichomes may help protect the nectary and ovary from herbivory. The knowledge gained from this study regarding flower morphology and chemical compounds, in combination with what we know about the breeding system of the rare species, A. versicolor (Jirabanjongjit et al. 2024), are necessary for plant conservation in terms of preserving their overlapping pollinators.

420

421

422

423

424

425

426

402

403

404

405 406

407

408

409

410

411 412

413

414

415

416

417

418

419

Acknowledgements

We would like to thank everyone who helped with field work, including Natthapong
Chitchak, Pongsakorn Kochaipat, Poomphat Srisombat, Tripatchara Atiratana, Kanjana
Pramali, Yanisa Olaranont, and Piriya Hassa. We are also grateful to Dr. Natapot Warrit for
assisting with insect identification. Permission to work with animals was granted by MUSCIACUC (Faculty of Science, Mahidol University-Institutional Animal Care and Use

427	Committee) (Protocol numbers MUSC60-037-387 and MUSC63-031-539). This research
428	was funded by Mahidol University (Frontier Research Grant and Strategic Research Fund
429	awarded to PT and ABS).
430	
431	References
432	Agati G, Tattini M. 2010. Multiple functional roles of flavonoids in photoprotection. New
433	Phytologist 186(4):786-793.
434	Alonso WR, Rajaonarivony JI, Gershenzon J, Croteau R. 1992. Purification of 4S-limonene
435	synthase, a monoterpene cyclase from the glandular trichomes of peppermint (Menthal
436	x piperita) and spearmint (Mentha spicata). Journal of Biological Chemistry
437	267(11):7582-7587.
438	Antoniou GF. 2001. Production and quantification of methyl ketones in wild tomato
439	accessions Journal of Environmental Science and Health, Part B-B 36(6):835-48.
440	Bailey SF, Hargreaves AL, Hechtenthal SD, Laird RA, Latty TM, Reid TG, Teucher AC,
441	Tindall JR. 2007. Empty flowers as a pollination-enhancement strategy. Evolutionary
442	Ecology Research 9(8):1245-1262.
443	Baker H, Baker I. 1983. Floral nectar sugar constituents in relation to pollinator type. In:
444	Jones CE, Little RJ, eds. <i>Handbooks of experimental pollination biology</i> . New York:
445	Van Nostrand Reinhold, 131-41.
446	Baur R, Binder S, Benz G. 1991. Nonglandular leaf trichomes as short-term inducible
447	defense of the grey alder, Alnus incana (L.), against the chrysomelid beetle,
448	Agelastica alni L Oecologia 87(2):219-226.
449	Beentje HJ. 2010. The Kew plant glossary: an illustrated dictionary of plant terms. UK:
450	Royal Botanic Gardens.

451	Benitez-Vieyra S, Ordano M, Fornoni J, Boege K, Domínguez CA. 2010. Selection on
452	signal-reward correlation: limits and opportunities to the evolution of deceit in
453	Turnera ulmifolia L Journal of Evolutionary Biology 23(12):2760-7.
454	Bergamo PJ, Rech AR, Brito VL, Sazima M. 2016. Flower colour and visitation rates of
455	Costus arabicus support the 'bee avoidance' hypothesis for red-reflecting
456	hummingbird-pollinated flowers Functional Ecology 30(5):710-720.
457	Bergström G, Dobson HE, Groth I. 1995. Spatial fragrance patterns within the flowers of
458	Ranunculus acris (Ranunculaceae)). Plant Systematics and Evolution 195:221-242.
459	Bernardello G. 2007. A systematic survey of floral nectaries In: Nicolson SW, Nepi M,
460	Pacini E, eds. Nectaries and nectar. Springer: Dordrecht, 19-128.
461	Bini Maleci L, Servettaz O. 1991. Morphology and distribution of trichomes in Italian specie
462	of Teucrium sect. Chamaedrys (Labiatae)-a taxonomical evaluation Plant
463	Systematics and Evolution 174:83-91.
464	Biswas KK, Foster AJ, Aung T, Mahmoud SS. 2009. Essential oil production: relationship
465	with abundance of glandular trichomes in aerial surface of plants Acta Physiologiae
466	Plantarum 31:13-19.
467	Bobisud L, Neuhaus R. 1975. Pollinator constancy and survival of rare species. <i>Oecologia</i>
468	21:263-272.
469	Bobrowiec PED, Oliveira PE. 2012. Removal effects on nectar production in bat-pollinated
470	flowers of the Brazilian Cerrado Biotropica 44(1):1-5.
471	Brundrett MC, Kendrick B, Peterson CA. 1991. Efficient lipid staining in plant material with
472	sudan red 7B or fluoral yellow 088 in polyethylene glycol-glycerol. Biotechnic &
473	Histochemistry 66(3):111-116.

474	Chitchak N, Traiperm P, Staples G, Rattanakrajang P, Sumanon P. 2018. Species delimitation
475	of some Argyreia (Convolvulaceae) using phenetic analyses: insights from leaf
476	anatomical data reveal a new species Botany 96(4):217-233.
477	Chitchak N, Stewart AB, Traiperm P. 2022. Functional ecology of external secretory
478	structures in Rivea ornata (Roxb.) Choisy (Convolvulaceae)). Plants 11(15):2068.
479	Chitchak N. 2019. Staminal trichome morphology of genus Argyreia Lour. (Convolvulaceae)
480	and its taxonomic implications. MSc thesis of Plant Sciences, Mahidol University.
481	Chittka L, Raine NE. 2006. Recognition of flowers by pollinators. Current Opinion in Plant
482	Biology 9(4):428-435.
483	Dakora FD. 1995. Plant flavonoids: biological molecules for useful exploitation. Functional
484	Plant Biology 22(1):87-99.
485	David R, Carde JP. 1964. Histochimie-coloration differentielle des inclusions lipidiques et
486	terpeniques des pseudophylles du pin maritime au moyen du reactif NADI. Comptes
487	Rendus Hebdomadaires Des Seances De L Academie Des Sciences 258(4):1338.
488	Deroin T. 1992. Anatomie florale de Humbertia madagascariensis Lam. Contribution à la
489	morphologie comparée de la fleur et du fruit des Convolvulaceae Bull Musé Natl
490	d'hist Nat Sec B. Adansonia 14(2):235-255.
491	Deschamps C, Gang D, Dudareva N, Simon JE. 2006. Developmental regulation of
492	phenylpropanoid biosynthesis in leaves and glandular trichomes of basil (Ocimum
493	basilicum L.). I nternational Journal of Plant Sciences 167(3):447-454.
494	Dieringer G, Cabrera RL. 2022. Stamen dimorphism, bee visitation, and pollen removal in
495	three species of Agalinis (Orobanchaceae)). Botany 100(4):377-386.
496	Dudareva N, Negre F, Nagegowda DA, Orlova I. 2006. Plant volatiles: recent advances and
497	future perspectives Critical Reviews in Plant Sciences 25(5):417-440.

498	Elzinga JA, Atlan A, Biere A, Gigord L, Weis AE, Bernasconi G. 2007. Time after time:
499	flowering phenology and biotic interactions Trends in Ecology & Evolution
500	22(8):432-439.
501	Evans EW, Smith CC, Gendron RP. 1989. Timing of reproduction in a prairie legume:
502	seasonal impacts of insects consuming flowers and seeds Oecologia 78:220-230.
503	Evert RF. 2006. Esau's plant anatomy: meristems, cells, and tissues of the plant body: their
504	structure, function, and development. John Wiley & Sons.
505	Faegri K, van der Pijl L. 1979. The principles of pollination ecology. Oxford: Pergamon
506	Press.
507	Farinasso HC, Consolaro H, Gomes SM, Aguiar AJ. 2021. From generalization to pollination
508	syndromes: filtering and dependency on functional-group of pollinators in two
509	cassava wild relatives Arthropod-Plant Interactions 15(2):235-247.
510	Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD. 2004. Pollination
511	syndromes and floral specialization Annual Review of Ecology, Evolution and
512	Systematics 35:375-403.
513	Ferreres F, Andrade P, Gil MI, Tomás-Barberán FA. 1996. Floral nectar phenolics as
514	biochemical markers for the botanical origin of heather honey. Zeitschrift für
515	Lebensmittel-Untersuchung und Forschung 202:40-44.
516	Figueiredo ACS, Pais MS. 1992. Ultrastructural aspects of the nectary spur of <i>Limodorum</i>
517	abortivum (L) Sw. (Orchidaceae)). Annals of Botany 70(4):325-331.
518	Galetto L, Bernardello G. 2004. Floral nectaries, nectar production dynamics and chemical
519	composition in six <i>Ipomoea</i> species (Convolvulaceae) in relation to pollinators
520	Annals of Botany 94(2):269-280.
521	Galetto L, Bernardello G. 2005. Rewards in flowers: Nectar In: Dafni A, Kevan PG,
522	Husbands BC, eds. Practical pollination biology, enviroquest. 261-313.

523	Gallagher MK, Campbell DR. 2020. Pollinator visitation rate and effectiveness vary with
524	flowering phenology. American Journal of Botany 107(3):445-455.
525	Giuliani C, Bini LM, Lippi MM. 2012. Two structures and functions in the nectary of
526	Frankincense tree (Boswellia sacra Flueck.)). Flora 207(1):74-79.
527	Gonzales WL, Negritto MA, Suarez LH, Gianoli E. 2008. Induction of glandular and non-
528	glandular trichomes by damage in leaves of Madia sativa under contrasting water
529	regimes Acta Oecologica 33(1):128-132.
530	Good AP, Gauthier MPL, Vannette RL, Fukami T. 2014. Honey bees avoid nectar colonized
531	by three bacterial species, but not by a yeast species, isolated from the bee gut PloS
532	ONE 9(1):e86494.
533	Govil CM. 1972. Morphological studies in the family convolvulaceae: IV. Vascular anatomy
534	of the flower. In Proceedings/Indian Academy of Sciences 75(6). New Delhi: Springer
535	India, 271-282.
536	Gumede ST, Downs CT. 2020. Preliminary observations suggest Common Myna prefer lipid
537	over protein and carbohydrate foods in a pairwise choice experiment. Ostrich
538	91(1):95-100.
539	Harborne JB. 1979. Correlations between flavonoid chemistry, anatomy and geography in the
540	Restionaceae Phytochemistry 18(8):1323-1327.
l 541	Harborne JB. 1988. The flavonoids: Advances in research since. New York, NY: Springer.
542	Harborne JB. 1993. Introduction to ecological biochemistry. 4th edn. London: Academic
543	Press.
544	Harrewijn P, Minks AK, Mollema C. 1994. Evolution of plant volatile production in insect-
545	plant relationships Chemoecology 5:55-73.

546	Hassa P, Traiperm P, Stewart AB. 2020. Pollinator visitation and female reproductive success
547	in two floral color morphs of Ipomoea aquatica (Convolvulaceae). Plant Systematics
548	and Evolution 306:88.
549	Hassa P Traiperm P, Stewart AB. 2023. Compatibility systems and pollinator dependency in
550	morning glory species (Convolvulaceae). BMC Plant Biology 23:432.
551	Heithaus ER. 1979. Flower visitation records and resource overlap of bees and wasps in
552	northwest Costa Rica. Brenesia 16:9-52.
553	Herrera G, Zagal JC, Diaz M, Fernández MJ, Vielma A, Cure M, Martinez J, Bozinovic F,
554	Palacios AG. 2008. Spectral sensitivities of photoreceptors and their role in colour
555	discrimination in the green-backed firecrown hummingbird (Sephanoides
556	sephaniodes). Journal of Comparative Physiology A 194:785-794.
557	Holopainen JK, Himanen SJ, Yuan JS, Chen F, Stewart CN. 2013. Ecological functions of
558	terpenoids in changing climates Journal of Natural Products 2913-2940.
559	Hoogland KD. 1952. The Convolvulaceae of Malaysia, VIII. Blumea 7(1):179-192.
560	Horgan FG, Quiring DT, Lagnaoui A, Pelletier Y. 2007. Variable responses of tuber moth to
561	the leaf trichomes of wild potatoes Entomologia Experimentalis et Applicata
562	125(1):1-12.
563	Ichie T, Inoue Y, Takahashi N, Kamiya K, Kenzo T. 2016. Ecological distribution of leaf
564	stomata and trichomes among tree species in a Malaysian lowland tropical rain
565	forest Journal of Plant Research 129:625-635.
566	Iijima Y, Gang DR, Fridman E, Lewinsohn E, Pichersky E. 2004. Characterization of
567	geraniol synthase from the peltate glands of sweet basil Plant Physiology
568	134(1):370-379.
569	Irwin RE, Adler LS, 2004. Agrawal AA. Community and evolutionary ecology of nectar.
570	Ecology 85(6):1477-1478.

571	Irwin RE, Bronstein JL, Manson JS, Richardson L. 2010. Nectar robbing: ecological and
572	evolutionary perspectives Annual Review of Ecology, Evolution and Systematics
573	41:271-292.
574	Jirabanjongjit A, Traiperm P, Sando T, Stewart, AB. 2021. Pollination and floral biology of a
575	rare morning glory species endemic to Thailand, Argyreia siamensis Plants
576	10(11):2402.
577	Jirabanjongjit A, Traiperm P, Rattanamanee C, Stewart AB. 2024. Near extinct Argyreia
578	versicolor and rare Argyreia mekongensis are dependent on carpenter bee pollinators.
579	AoB Plants 16:(1-10).
580	Johnson SD. 2005. Specialized pollination by spider-hunting wasps in the African orchid
581	Disa sankeyiPlant Systematics and Evolution 251:153-160.
582	Johnson SD, Ellis A, Dötterl S. 2007. Specialization for pollination by beetles and wasps: the
583	role of lollipop hairs and fragrance in Satyrium microrrhynchum
584	(Orchidaceae)American Journal of Botany 94(1):47-55.
585	Kang JH, Shi F, Jones AD, Marks MD, Howe GA. 2010. Distortion of trichome morphology
586	by the hairless mutation of tomato affects leaf surface chemistryJournal of
587	Experimental Botany 61(4):1053-1064.
588	Karabourniotis G, Liakopoulos G, Nikolopoulos D, Bresta P. 2020. Protective and defensive
589	roles of non-glandular trichomes against multiple stresses: structure-function
590	coordination Journal of Forestry Research 31(1):1-12.
591	Kelsey RG, Reynolds GW, Rodriguez E. 1984. Chemistry of biologically active constitutents
592	secreted and stored in plant glandular trichomes. Biology and chemistry of plant
593	trichomes. New York: Plenum Press.
594	Kennedy GG. 2003. Tomato, pests, parasitoids, and predators: tritrophic interactions
595	involving the genus Lycopersicon, Annual Review of Entomology 48(1):51-72.

596	Kephart SR. 1983. The partitioning of pollinators among three species of Asclepias. Ecology.
597	64(1):120-33.
598	Kingston AB, Mc Quillan PB. 2000. Are pollination syndromes useful predictors of floral
599	visitors in Tasmania?. Austral Ecology 25(6):600-609.
600	Knudsen JT, Gershenzon J. 2006. The chemical diversity of floral scent. In: Dudareva N,
601	Pichersky E, eds. Biology of floral scent. USA: CRC Press, 27-52.
602	Koudounas K, Manioudaki ME, Kourti A, Banilas G, Hatzopoulos P. 2015. Transcriptional
603	profiling unravels potential metabolic activities of the olive leaf non-glandular
604	trichome. Frontiers in Plant Science 6:633.
605	Kowalkowska AK, Kostelecka J, Bohdanowicz J, Kapusta M, Rojek J. 2015. Studies on
606	floral nectary, tepals' structure, and gynostemium morphology of Epipactis palustris
607	(L.) Crantz (Orchidaceae). Protoplasma. 252(1):321-333.
608	Levin Donald A. 1973. The role of trichomes in plant defense. The Quarterly Review of
609	Biology 48(1):3-15
610	Liu J, Xia KF, Zhu JC, Deng YG, Huang XL, Hu BL, Xu X, Xu ZF. 2006. The nightshade
611	proteinase inhibitor IIb gene is constitutively expressed in glandular trichomes. Plant
612	and Cell Physiology 47(9):1274-1284.
613	Luo SH, Luo Q, Niu XM, Xie MJ, Zhao X, Schneider B, Gershenzon J, Li SH. 2010.
614	Glandular trichomes of Leucosceptrum canum harbor defensive
615	sesterterpenoids. Angewandte Chemie 122(26):4573-4577.
616	Machado SR, Souza CVD. 2016. A reduced, yet functional, nectary disk integrates a complex
617	system of floral nectar secretion in the genus Zeyheria (Bignoniaceae). Acta Botanica
618	Brasilica 31:344-357.

519	Martins FM, Lima JF, Mascarenhas AAS, Macedo TP. 2012. Secretory structures of <i>Ipomoea</i>
520	asarifolia: anatomy and histochemistry. Revista Brasileira de Farmacognosia 22: 13-
521	20.
522	Metcalf RL, Kogan M. 1987. Plant volatiles as insect attractants. Critical Reviews in Plant
523	Sciences 5(3):251-301.
524	Moyano F, Cocucci A, Sersic A. 2003. Accessory pollen adhesive from glandular trichomes
525	on the anthers of Leonurus sibiricus L. (Lamiaceae). Plant Biology 5(04):411-418.
526	Nagel J, Culley LK, Lu Y, Liu E, Matthews PD, Stevens JF, Page JE. 2008. EST analysis of
527	hop glandular trichomes identifies an O-methyltransferase that catalyzes the
528	biosynthesis of xanthohumol. Plant Cell 20(1):186-200.
529	Naug D, Arathi HS. 2007. Receiver bias for exaggerated signals in honeybees and its
530	implications for the evolution of floral displays. Biology Letters 3(6):635-657.
531	Neiland MRM, Wilcock CC. 1998. Fruit set, nectar reward, and rarity in the
532	Orchidaceae. American Journal of Botany 85(12):1657-1671.
533	Nicolson SW. 2007. Nectar consumers. In: Nicolson SW, Nepi M, Panini E, eds. Nectaries
534	and nectar. Heidelberg: Springer-Verlag GmbH, 289-342.
535	Nihoul P. 1993. Do light intensity, temperature and photoperiod affect the entrapment of
536	mites on glandular hairs of cultivated tomatoes?. Experimental and Applied Acarology
537	17(9):709-718.
538	Nilsson LA. 1981. The pollination ecology of Listera ovata (Orchidaceae). Nordic Journal of
539	Botany 1(4):461-480.
540	Nonomura T, Xu L, Wada M, Kawamura S, Miyajima T, Nishitomi A, Kakutani K,
541	Takikawa Y, Matsuda Y, Toyoda H. 2009. Trichome exudates of Lycopersicon
542	pennellii form a chemical barrier to suppress leaf-surface germination of Oidium

neolycopersici conidia. Plant Science 176(1):31-37.

044	Oralamont 1, Stautier F, Traiperin F, Staples Ow. 2016. Investigation of the black dots on
545	leaves of Stictocardia species (Convolvulaceae) using anatomical and histochemical
546	analyses. Flora 249: 133-142.
547	Ollerton J, Watts S. 2000. Phenotype space and floral typology: towards an objective
548	assessment of pollination syndromes. Det Norske Videnskaps-Akademi. I.
549	Matematisk-Naturvidenskapelige Klasse, Skrifter, Ny Serie 39:149-159.
550	Ollerton J, Johnson SD, Cranmer L, Kellie SAM. 2003. The pollination ecology of an
551	assemblage of grassland asclepiads in South Africa. Annals of Botany 92(6):807-834.
552	Ollerton J, Alarcón R, Waser NM, Price MV, Watts S, Cranmer L, Hingston A, Peter CI,
553	Rotenberry J. 2009. A global test of the pollination syndrome hypothesis. Annals of
554	Botany 103(9):1471-1480.
555	Pacini E, Nicolson SW. 2007. Introduction. In: Nicolson SW, Nepi M, Panini E, eds.
556	Nectaries and nectar. Heidelberg: Springer-Verlag GmbH, 1-18.
557	Phukela B, Adit A, 2021. Tandon R. Evolutionary trends and diversity of major floral nectary
558	types across Solanaceae. Planta 254(3):1-20.
559	Pleasants JM. 1983. Nectar production patterns in <i>Ipomopsis aggregata</i> (Polemoniaceae).
560	American Journal of Botany 70(10):1468-1475.
561	Proctor M, Yeo P, Lack A. 1996. The natural history of pollination. Portland, Oregon:
562	Timber press.
563	Raguso RA, Light DM. 1998. Electroantennogram responses of male Sphinx perelegans
564	hawkmoths to floral and 'green-leaf volatiles'. Entomologia Experimentalis et
565	Applicata 86(3):287-293.
566	Raju AS, Rao SP. 2006. Nesting habits, floral resources and foraging ecology of large
567	carpenter bees (Xylocopa latipes and Xylocopa pubescens) in India. Current Science
260	1210 1217

669	Rathcke B. 1983. Competition and facilitation among plants for pollination. In: Real L,
670	editor. Pollination biology. London: Academic press, 305-329.
671	Rattanakrajang P, Sumanon P, Traiperm P, Staples GW, Utteridge T. 2022. Reduction of
672	Blinkworthia (Convolvulaceae) based on multilocus phylogenetic reconstruction and
673	resurrection of a species from synonymy revealed by phenetic analyses. Kew Bulletin
674	77(4):859-883.
675	Rattanakrajang P, Traiperm P, Staples GW. 2018. Re-evaluation of generic characters for
676	Blinkworthia (Convolvulaceae) based on morphology and reproductive organ
677	development. Plant Systematics and Evolution 304:415-429.
678	Riviere S, Clayson C, Dockstader K, Wright MA, Costea M. 2013. To attract or to repel?
679	diversity, evolution and role of the "most peculiar organ" in the Cuscuta flower
680	(dodder, Convolvulaceae)-the infrastaminal scales. Plant Systematics and Evolution
681	299(3):529-552.
682	Robertson GW, Griffiths DW, Woodford JAT, Birch ANE. 1995. Changes in the chemical
683	composition of volatiles released by the flowers and fruits of the red raspberry (Rubus
684	idaeus) cultivar glen prosen. Phytochemistry 38(5):1175-1179.
685	Romero GQ, Souza JC, Vasconcellos-Neto J. 2008. Anti-herbivore protection by mutualistic
686	spiders and the role of plant glandular trichomes. Ecology 89(11):3105-3115.
687	Sallaud C, Rontein D, Onillon S, Jabes F, Duffé P, Giacalone C, Thoraval S, Escoffier C,
688	Herbette G, Leonhardt N, Causse M. 2009. A novel pathway for sesquiterpene
689	biosynthesis from Z, Z-farnesyl pyrophosphate in the wild tomato Solanum
690	habrochaites. Plant Cell 21(1):301-317.
691	Schemske DW. 1981. Floral convergence and pollinator sharing in two bee-pollinated
692	tropical herbs. <i>Ecology</i> 62(4):946-954.

693	Shuttleworth A, Johnson SD. 2006. Specialized pollination by large spider-hunting wasps and
694	self-incompatibility in the African milkweed Pachycarpus asperifolius. International
695	Journal of Plant Sciences 167(6):1177-1186.
696	Shuttleworth A, Johnson SD. 2008. Bimodal pollination by wasps and beetles in the African
697	milkweed Xysmalobium undulatum. Biotropica 40(5):568-574.
698	Shuttleworth A, Johnson SD. 2009a. The importance of scent and nectar filters in a
699	specialized wasp-pollination system. Functional Ecology 23(5):931-940.
700	Shuttleworth A, Johnson SD. 2009b. Specialized pollination in the African milkweed
701	Xysmalobium orbiculare: a key role for floral scent in the attraction of spider-hunting
702	wasps. Plant Systematics and Evolution 280:37-44.
703	Shuttleworth A, Johnson SD. 2009c. Palp-faction: an African milkweed dismembers its wasp
704	pollinators. Environmental Entomology 38(3):741-747.
705	Shuttleworth A, Johnson SD. 2009d. A key role for floral scent in a wasp-pollination system
706	in Eucomis (Hyacinthaceae). Annals of Botany 103(5):715-725.
707	Siebert DJ. 2004. Localization of salvinorin A and related compounds in glandular trichomes
708	of the psychoactive sage, Salvia divinorum. Annals of Botany 93(6):763-771.
709	Simmons AT, Gurr GM. 2005. Trichomes of Lycopersicon species and their hybrids: effects
710	on pests and natural enemies. Agricultural and Forest Entomology 7(4):265-276.
711	Simpson BB, Neff JL. 1981. Floral rewards: alternatives to pollen and nectar. Annals of the
712	Missouri Botanical Garden 68:301-322.
713	Skaltsa H, Verykokidou E, Harvala C, Karabourniotis G, Manetasi Y. 1994. UV-B protective
714	potential and flavonoid content of leaf hairs of Quercus ilex. Phytochemistry 37(4):
715	987-990.

716	Southwick EE, Loper GM, Sadwick SE. 1981. Nectar production, composition, energetics
717	and pollinator attractiveness in spring flowers of western New York. American
718	Journal of Botany 68(7):994-1002.
719	Spaethe J, Tautz J, Chittka, L. 2001. Visual constraints in foraging bumblebees: flower size
720	and color affect search time and flight behavior. Proceedings of the National Academy
721	of Sciences 98(7):3898-3903.
722	Staples G. 2010. Convolvulaceae. In: Santisuk T, Larsen K, eds. Flora of Thailand 10(3).
723	Bangkok: Prachachon, 330-468.
724	Staples GW, Chitchak N, Kochaiphat P, Rattamanee C, Rattanakrajang P, Traiperm P. 2021.
725	Convolvulaceae in the Flora of Thailand: Addenda, Corrigenda and Emendanda, I.
726	Thai Forest Bulletin (Botany) 49(1):88-101.
727	Staples G, Traiperm P. 2010. Argyreia. In: Santisuk T, Larsen K, eds. Flora of Thailand
728	10(3). Bangkok: Prachachon, 337-371.
729	Staples G, Traiperm P. 2017. A nomenclatural review of Argyreia (Convolvulaceae). Taxon
730	66(2):445-477.
731	Stevenson PC, Nicolson SW, Wright GA. 2017. Plant secondary metabolites in nectar:
732	impacts on pollinators and ecological functions. Functional Ecology 31(1):65-75.
733	Stewart AB, Diller C, Dudash MR, Fenster CB. 2022. Pollination-precision hypothesis:
734	support from native honey bees and nectar bats. New Phytologist 235(4):1629-1640.
735	Stpiczyńska M. 1997. The structure of nectary of <i>Platanthera bifolia</i> L. Orchidaceae. <i>Acta</i>
736	Societatis Botanicorum Poloniae 66(1):5-11.
737	Stpiczynska M, Davies KL. 2006. Nectary structure in Symphyglossum sanguineum (Rchb. f.
738	Schltr. (Orchidaceae). Acta Agrobotanica 59(1):7-16.

739	Stpiczyńska M, Matusiewicz J. 2001. Anatomy and ultrastructure of spur nectary of
740	Gymnadenia conopsea (L.) Orchidaceae. Acta Societatis Botanicorum Poloniae
741	70(4):267-272.
742	Strauss SY, Whittall JB. 2006. Non-pollinator agents of selection on floral traits. In: Harder
743	LD, Barrett SCH, eds. Ecology and evolution of flowers. Oxford: Oxford University
744	press, 120-138.
745	Tattini M, Gravano E, Pinelli P, Mulinacci N, Romani A. 2000. Flavonoids accumulate in
746	leaves and glandular trichomes of Phillyrea latifolia exposed to excess solar
747	radiation. New Phytologist 148(1):69-77.
748	Tattini M, Matteini P, Saracini E, Traversi ML, Giordano C, Agati G. 2007. Morphology and
749	biochemistry of non-glandular trichomes in Cistus salvifolius L. leaves growing in
750	extreme habitats of the Mediterranean basin. Plant Biology 9(03):411-419.
751	Taylor LP, Grotewold E. 2005. Flavonoids as developmental regulators. Current Opinion in
752	Plant Biology 8(3):317-323.
753	Thompson J. How do visitation patterns vary among pollinators in relation to floral display
754	and floral design in a generalist pollination system?. Oecologia. 2001;126(3):386-94.
755	Thorp RW, Briggs DL, Estes JR, Erickson EH. 1975. Nectar fluorescence under ultraviolet
756	irradiation. Science 189(4201):476-478.
757	Tölke ED, Bachelier JB, Lima EA, Galetto L, Demarco D, Carmello-Guerreiro SM. 2018.
758	Diversity of floral nectary secretions and structure, and implications for their
759	evolution in Anacardiaceae. Botanical Journal of the Linnean Society 187(2):209-231
760	Treutter D. 2005. Significance of flavonoids in plant resistance and enhancement of their
761	biosynthesis. Plant Biology 7(06):581-591.

/62	Truchado P, Ferreres F, Bortolotti L, Sabatini AG, Tomas-Barberan FA. 2008. Nectar
763	flavonol rhamnosides are floral markers of acacia (Robinia pseudacacia)
764	honey. Journal of Agricultural and Food Chemistry 56(19):8815-8824.
765	Valkama E, Salminen JP, Koricheva J, Pihlaja K. 2004. Changes in leaf trichomes and
766	epicuticular flavonoids during leaf development in three birch taxa. Annals of Botany
767	94(2):233-42.
768	Van Dam NM, Hare JD. 1998. Biological activity of Datura wrightii glandular trichome
769	exudate against Manduca sexta larvae. Journal of Chemical Ecology 24:1529-1549.
770	van Ooststroom SJ. 1943. The Convolvulaceae of Malaysia, IV. Blumea 5(2):339-411.
771	van Ooststroom SJ. 1945. A new species of Argyreia from Sumatra (Convolvulaceae)
772	Blumea 5:686-8.
773	van Ooststroom SJ. 1950. The Convolvulaceae of Malaysia, VI. Blumea 6(2):337-348.
774	van Ooststroom SJ. 1952. The Convolvulaceae of Malaysia, VII. Blumea 7(1):171-178.
775	van Ooststroom SJ, Hoogland RD. 1953. Convolvulaceae. In: Steenis CGGJ, ed. Flora
776	Malesiana, ser. I (4), 388-512.
777	Varassin IG, Trigo JR, Sazima M. 2001. The role of nectar production, flower pigments and
778	odour in the pollination of four species of $Passiflora$ (Passifloraceae) in south-eastern
779	Brazil. Botanical Journal of the Linnean Society 136(2):139-152.
780	Vieira MF, Shepherd GJ. 1999. Pollinators of Oxypetalum (Asclepiadaceae) in southeastern
781	Brazil. Revista Brasileira de Biologia 59:693-704.
782	Wagner GJ, Wang E, Shepherd R. 2004. New approaches for studying and exploiting an old
783	protuberance, the plant trichome. Annals of Botany 93(1):3.
784	Wang G, Tian L, Aziz N, Broun P, Dai X, He J, King A, Zhao PX, Dixon RA. 2008. Terpene
785	biosynthesis in glandular trichomes of hop. Plant Physiology 148(3):1254-1266.

786	Waser NM, Price MV. 1983. Optimal and actual outcrossing in plants, and the nature of
787	plant-pollinator interaction. In: Jones CE, Little RJ, eds. Handbook of experimental
788	pollination biology. New York: Van Nostrand Reinhold, 341-359.
789	Waser NM, Chittka L, Price MV, Williams NM, Ollerton J. 1996. Generalization in
790	pollination systems, and why it matters. Ecology 77(4):1043-1060.
791	Waser NM, Ollerton J. 2006. Plant-pollinator interactions: from specialization to
792	generalization. Chicago: University of Chicago Press.
793	Werker E. 2000. Trichome diversity and development. Advances in Botanical Research 31:1-
794	35.
795	Wiese N, Fischer J, Heidler J, Lewkowski O, Degenhardt J, Erler S. 2018. The terpenes of
796	leaves, pollen, and nectar of thyme (Thymus vulgaris) inhibit growth of bee disease-
797	associated microbes. Scientific Reports 8(1):1-12.
798	Willmer P. 2011. Pollination and floral ecology. Princeton University press.
799	Wollenweber E, Dietz VH. 1981. Occurrence and distribution of free flavonoid aglycones in
800	plants. Phytochemistry 20(5):869-932.
801	Wright MA, Welsh M, Costea M. 2011. Diversity and evolution of the gynoecium in Cuscuta
802	(dodders, Convolvulaceae) in relation to their reproductive biology: two styles are
803	better than one. Plant Systematics and Evolution 296:51-76.
804	
805	Figure captions
806	Figure 1. Photos showing the floral characters of three sympatric <i>Argyreia</i> species. (A, D)
807	Argyreia versicolor; (B, E) Argyreia mekongensis; and (C, F) Argyreia lycioides. Photo A, D
808	and F were taken by Yotsawate Sirichamorn, and B, C and E were taken by Tripatchara
809	Atiratana.
810	

812

813

814815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830 831

832

833834

835

Figure 2. Animal visitors of three sympatric species of Argyreia. (A) Xylocopa latipes visiting A. versicolor. (B) X. aestuans visiting A. versicolor. (C) X. latipes visiting A. mekongensis. (D) X. aestuans visiting A. mekongensis. (E) Amegilla sp. visiting A. mekongensis. (F) Mylabris phalerata beetle consuming the corolla of A. mekongensis. (G) Cinnyris jugularis sunbird robbing nectar from A. mekongensis. (H) Unknown bee species visiting A. lycioides. (I) Wasp (Vespidae) visiting A. lycioides. (J) Cinnyris jugularis sunbird robbing nectar from A. lycioides. Figure 3. Results of histochemical analysis conducted in Argyreia versicolor. (A) Transversal section of the floral nectary showing the presence of terpenes; positive staining shown at the blue arrow pointing to a nectary duct (ND) and red arrows pointing to the nectary epidermis. (B) Longitudinal section of the floral nectary showing the presence of flavonoids under a fluorescence microscope; positive staining shown by the white arrow pointing to the nectary disc. (C) Staminal trichomes showing the presence of terpenes; positive staining shown by the red arrow pointing to the apical gland cell. (D) Unstained short glandular trichomes at the middle of staminal filaments; red arrow pointing to an apical gland cell that is globose shaped (GLO). (E) Unstained long glandular trichomes at the base of staminal filaments; red arrows pointing to rounded cylindrical (RCY) and obovoid (OBO) apical gland cells. (F) Staminal trichomes stained with Naturstoff reagent and viewed under fluorescent microscope reveal the presence of flavonoids; strong staining shown at the blue arrow, white arrow pointing to an apical cell of a non-glandular trichome. Figure 4. Results of histochemical analysis conducted in Argyreia mekongensis. (A) Transversal section of the floral nectary showing the presence of terpenes; positive staining shown at the red arrows pointing to the nectary duct (ND) and epidermis (EP). (B)

Transversal section of the floral nectary stained with Sudan Black B showing the presence of lipids; positive staining shown at the red arrow pointing to the nectary duct (ND). (C)

Transversal section of the floral nectary stained with Sudan III showing the presence of lipids in black. (D) Transversal section of the floral nectary stained with Naturstoff reagent and viewed under a fluorescent microscope showing the presence of flavonoids. (E) Staminal trichomes tested positive for terpenes; red arrows point to apical gland cells showing terpenes inside of the glands. (F) Staminal trichomes stained with Sudan Black B tested positive for lipids; red arrows point to apical gland cells containing lipids, and demonstrate the different types of gland cells: BE=bell-shaped, RCO=rounded conical. (G-H) Staminal trichomes stained with Sudan III tested positive for lipids; red arrows point to lipids inside of the apical gland cells, while green arrows demonstrate the different types of gland cells: RCY=rounded cylindrical, CON=convex, GLO=globose. Other abbreviations: N=nectary, OV=ovary, EP=epidermis.

Figure 5. Results of histochemical analysis conducted in *Argyreia lycioides*. (A)

Longitudinal section of the floral nectary showing the presence of terpenes. (B) Longitudinal section of the floral nectary stained with Naturstoff reagent and viewed under a fluorescent microscope showing the presence of flavonoids. (C) Staminal trichomes tested positive for terpenes; positive staining shown at the red arrows, which also demonstrate some of the different types of apical gland cells: GLO=globose, RCY=rounded cylindrical. (D) Unstained glandular trichomes; red arrows demonstrate some of the different types of apical gland cells: PY=pyriform, OBO=obovoid. Other abbreviations: N=nectary, OV=ovary, BS=basal cells, S=stalk.

- 861 Table caption
- 862 **Table 1:** Results of histochemical analysis testing for the presence of terpenes, lipids, and
- 863 flavonoids in the floral nectary and staminal trichomes of three sympatric *Argyreia* species.