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ABSTRACT
Threemorning glory species in the genusArgyreia Lour.,A. lycioides (Choisy) Traiperm
& Rattanakrajang, A. mekongensis Gagnep & Courchet, and A. versicolor (Kerr) Staples
& Traiperm, were found co-occurring and co-flowering. Argyreia mekongensis and A.
versicolor are rare, while A. lycioides is near threatened and distributed throughout
Myanmar and Thailand. We investigated key floral characters (floral morphology
and phenology, as well as the micromorphology of the floral nectary disc and
staminal trichomes) and screened for important chemical compounds hypothesized
to contribute to pollinator attraction. Our findings demonstrate that some aspects of
floral morphology (e.g., corolla size, limb presence, and floral color) of the three studied
congeners exhibit significant differences. Moreover, pollinator composition appears to
be influenced by floral shape and size; morning glory species with wider corolla tubes
were pollinated by larger bees. The morphology of the floral nectary disc was similar in
all species, while variation in staminal trichomes was observed across species. Glandular
trichomes were found in all three species, while non-glandular trichomes were found
only in A. versicolor. Histochemical results revealed different compounds in the floral
nectary and staminal trichomes of each species, which may contribute to both floral
attraction and defense. These findings demonstrate some segregation of floral visitors
among sympatric co-flowering morning glory species, which appears to be influenced
by the macro- and micromorphology of flowers and their chemical compounds.
Moreover, understanding the floral morphology and chemical attractants of these
sympatric co-floweringArgyreia speciesmay help tomaintain their commonpollinators
in order to conserve these rare and endangered species, especially A. versicolor.

Subjects Biodiversity, Conservation Biology, Ecology, Plant Science, Taxonomy
Keywords Argyreia, Biodiversity, Convolvulaceae, Histochemistry, Plant conservation, Pollinator,
Trichome, Xylocopa

INTRODUCTION
Much of floral evolution is driven by pollinator attraction (Fenster et al., 2004) and
pollination efficiency (Stewart et al., 2022). To attract pollinators, floral morphology and
phenology are prominent and important features (Bobisud & Neuhaus, 1975; Schemske,
1981), including flower size, color, and scent (Rathcke, 1983;Waser & Price, 1983; Spaethe,
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Tautz & Chittka, 2001; Waser & Ollerton, 2006; Willmer, 2011; Hassa, Traiperm & Stewart,
2020; Hassa, Traiperm & Stewart, 2023). For example, large flowers tend to be favored
and selected for by insects since they are more visible (Chittka & Raine, 2006; Naug
& Arathi, 2007; Benitez-Vieyra et al., 2010) and reduce search time during pollinator
foraging (Spaethe, Tautz & Chittka, 2001). Similarly, Thompson (2001) demonstrated the
importance of floral size or display on variation in visitation patterns between different
insect types; hawkmoths and butterflies both preferred larger floral displays. Floral color
is another important trait for pollinator attraction since different pollinator species have
different spectral receptor cells; for example, hummingbirds tend to select red flowers
because of high chromatic contrast to the background (Herrera et al., 2008), whereas bees
are uncommon visitors to red flowers given their lower sensitivity to red wavelengths
(Bergamo et al., 2016). Flowering time and floral phenology also influence pollination and
reproductive success (Evans, Smith & Gendron, 1989; Elzinga et al., 2007). Phenology has
been shown to affect pollinator variation and effectiveness, which can impact fitness, as has
been demonstrated through reduced seed mass throughout the flowering season (Gallagher
& Campbell, 2020).

While floral morphology and phenology tend to be highly prominent and easily studied,
there are other floral traits that are less visible, yet are also important in plant–pollinator
interactions. For example, the floral nectary is an important floral organ as it provides
the primary reward for many pollinators, nectar (Pacini & Nicolson, 2007; Irwin et al.,
2010). The floral nectary is important not only in terms of providing food resources for
pollinators (Simpson & Neff, 1981; Proctor, Yeo & Lack, 1996; Neiland & Wilcock, 1998;
Nicolson, 2007a) but also for manipulating pollinator behavior (Bailey et al., 2007).
However, nectar not only attracts pollinators but also nectar robbers (Inouye, 1980).
Consequently, many plant species have evolved features that only allow visitation by
specific pollinators (e.g., pollination syndromes; Fenster et al., 2004). Nectar production
is one trait that has an important role in confining the range of visitors to species that
benefit the plants (Irwin, Adler & Agrawal, 2004). In angiosperms, nectar is dominated by
sugars, although the proportions of different sugar types vary according to species (Baker,
1982; Freeman, Worthington & Jackson, 1991; Stiles & Freeman, 1993). Other compounds
in nectar have also been investigated, such as terpenes and lipids (Nicolson, 2007b).
Terpenes are present in the nectar of diverse plant species and are generally considered
to be attractants (Hammer & Menzel, 1995; Raguso, Light & Pickersky, 1996; Plepys et al.,
2002; Cunningham et al., 2004). Plants also produce lipids in many parts, including pollen
and nectar, which provide nutrition and serve as rewards for pollinators, especially oil
bee pollinators (e.g., Martins & Alves-dos Santos, 2013; Rabelo et al., 2014). While floral
morphology is an important component for predicting pollination syndromes, other
characters should also be considered, such as flowering phenology, anthesis start time and
duration, and chemical compounds in nectar that are certainly associated with pollination
and pollinator activities (Southwick, Loper & Sadwick, 1981; Baker & Baker, 1983; Pleasants,
1983; Waser et al., 1996; Galetto & Bernardello, 2005; Ollerton et al., 2009; Bobrowiec &
Oliveira, 2012). Additionally, macroevolutionary studies can reveal associations between
nectar traits and pollinator types, for example, finding similar nectar properties in plants
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that are visited by the same pollinators (Faegri & Van der Pijl, 1979; Proctor, Yeo & Lack,
1996). Floral chemistry can mediate interactions with pollinators, pathogens, and/or
herbivores, and therefore influence plant fitness (Strauss & Whittall, 2006; Irwin et al.,
2010; Good et al., 2014).

Another plant organ important in mediating plant-animal interactions is the trichome.
Trichomes initially originate from expansions or appendages of the epidermis (Evert, 2006),
and have diverse biological functions, such as in herbivore defense, pollinator attraction,
or tissue protection and maintenance (Nihoul, 1993; Van Dam & Hare, 1998; Kennedy,
2003; Moyano, Cocucci & Sersic, 2003; Simmons & Gurr, 2005; Liu et al., 2006; Horgan et
al., 2007; Gonzales et al., 2008; Romero, Souza & Vasconcellos-Neto, 2008; Nonomura et al.,
2009; Kang et al., 2010; Karabourniotis et al., 2020), which may be due to the synthesis and
storage of biologically active metabolites (Alonso et al., 1992; Antonious, 2001; Iijima et al.,
2004; Siebert, 2004;Deschamps et al., 2006;Nagel et al., 2008;Wang et al., 2008;Biswas et al.,
2009; Sallaud et al., 2009; Luo et al., 2010). Trichomes are typically found on vegetative and
reproductive organs, such as leaves, stems, petals, petioles, peduncles, and seeds (Wagner,
Wang & Shepherd, 2004). Trichomes can also be found on staminal filaments, although
they have been less studied and their function in many cases is still unclear. Staminal
trichomes have been reported in five species in the genus Teucrium L. (Lamiaceae) (Bini
Maleci & Servettaz, 1991) and in some species of Argyreia Lour. (Van Ooststroom, 1943;
Van Ooststroom, 1945; Van Ooststroom, 1950; Van Ooststroom, 1952; Hoogland, 1952; Van
Ooststroom & Hoogland, 1953; Chitchak et al., 2018; Chitchak, Stewart & Traiperm, 2024)
and Rivea Choisy (Chitchak, Stewart & Traiperm, 2022; Chitchak, Stewart & Traiperm,
2024). Staminal trichomes have been proposed to contribute to pollinator attraction
(Jirabanjongjit et al., 2021; Chitchak, Stewart & Traiperm, 2022).

Floral traits such as corolla color, size, and shape, as well as the chemical composition
of the nectary and staminal trichomes, can all influence floral visitors. In co-flowering
communities, floral traits and flowering time are major factors that influence plant–
pollinator interactions and the degree to which plants have to share or compete for
pollinators (McEwen & Vamosi, 2010; Suárez-Mariño et al., 2022). Most research shows
that competition for pollination among co-flowering species generally has negative effects
on plant fitness, particularly for rare plant species (Levin & Anderson, 1970; Johnson, Dutt &
Levine, 2022). Such competition for pollination often leads to the evolution of reproductive
isolation mechanisms, such as sympatric species diverging in flowering phenology or
morphology (Levin, 1971; Liu & Huang, 2013; Ramírez-Aguirre et al., 2019). However,
some studies have shown that highly similar floral traits and/or overlapping flowering
periods can enhance pollinator attraction and increase pollinator sharing, resulting in a
generalized plant–pollinator network structure (Schemske, 1981; Sargent & Ackerly, 2008;
De Jager, Dreyer & Ellis, 2011; Lázaro et al., 2020; Suárez-Mariño et al., 2022). Moreover,
high floral similarity with low flowering overlap can allow plants to benefit from shared
pollinator attraction without incurring the costs of interspecific pollen transfer (Bizecki
Robson, 2013). Interspecific pollen transfer can also be reduced, even among species with
overlapping flowering phenologies, through mechanisms such as high pollinator constancy
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(De Jager, Dreyer & Ellis, 2011) or differential pollen placement (Huang, Liu & Huang,
2015; Stewart & Dudash, 2016).

In this study we examined three sympatric Argyreia species (A. lycioides, A. mekongensis,
and A. versicolor) that have seemingly similar floral morphologies and phenologies, which
raises the question about the extent to which these species share, partition, or compete for
pollinators. Two of these species, A. versicolor and A. mekongensis, are rare—especially the
former, which is extremely rare and near extinction (Staples et al., 2021; Jirabanjongjit et
al., 2024)—while the status of A. lycioides is Near Threatened (Rattanakrajang et al., 2022).
Some aspects of their reproductive biology are already known, i.e., floral visitor composition
and anthesis of A. mekongensis and A. versicolor (Jirabanjongjit et al., 2024), and the present
study aims to (1) gather similar floral visitor and anthesis data for A. lycioides, (2) study
the floral histochemistry of the three species, and (3) compare the three species in terms
of floral morphology, phenology and histochemical characteristics in order to understand
how they relate to pollinator attraction and reward. Assessing the macromorphological,
micromorphological, histochemical, and phenological differences between these three
Argyreia species will inform our understanding of how these sympatric congeners share,
partition, or compete for pollinators, which is vital for their conservation.

MATERIALS & METHODS
Study site and study species
This study was conducted on the campus of Burapha University in Sa Kaeo province,
Thailand, where the natural distributions of our study species intersect. The study area is
characterized as a lowland watershed with undulating plains (Sa Kaeo Provincial Office,
https://sakaeopao.go.th/location/, January 2022) that are primarily covered with deciduous
dipterocarp forest (A. Jirabanjongjit, 2019, pers. obs.). The local climate is tropical with
seasons influenced by twomonsoons, resulting in three distinct seasons: summer, rainy, and
winter (Thai Meteorological Department, http://www.climate.tmd.go.th, January 2022).
The summer season begins in mid-February to mid-May, and the region experiences high
temperatures ranging from 25 to 35 ◦C, coupled with elevated humidity levels and minimal
precipitation. Summer is followed by the rainy season (mid-May until mid-October),
during which temperatures decrease slightly and precipitation increases substantially,
particularly in August and September, which is the start of the flowering season for our
three study species. The winter season spans frommid-October until mid-February, during
which temperatures are cooler but humidity remains relatively high (Thai Meteorological
Department, http://www.climate.tmd.go.th, January 2022).

The populations for each of our three study species were extremely small. We found
only two individuals of A. versicolor (located approximately 50 m apart), nine individuals
of A. mekongensis (located approximately 500–1,000 m apart), and 20 individuals of
A. lycioides (located around 5 m apart). Both A. mekongensis and A. versicolor are
woody twiners (Staples & Traiperm, 2010), commonly found growing on wild plants,
A. mekongensis around 1.5 m from the ground and A. versicolor around 5 m from the
ground. In contrast, A. lycioides is a woody shrub typically 0.5–3 m tall (Staples, 2010;
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Rattanakrajang, Traiperm & Staples, 2018; Rattanakrajang et al., 2022). We observed the
floral morphology and flowering phenology of all three species during their flowering
periods in 2019 and 2020.

Argyreia versicolor (Kerr) Staples & Traiperm (2010) has an ovate leaf shape with an
axillary inflorescences comprising 7–12 flowers per inflorescence. The flowers are composed
of large pinkish green bracts. The corolla is white, tubular-campanulate, ca. five cm long,
with purple-dotted limbs (Staples & Traiperm, 2010). The flowers have two styles which
are significantly longer than the stamens. Flowers are self-incompatible (Jirabanjongjit et
al., 2024). The fruits are globose berries (Jirabanjongjit et al., 2024).

Argyreia mekongensis Gagnep & Courchet has an elliptic to broadly oblong leaf shape
with axillary inflorescences comprising 5–7 flowers per inflorescence (Staples & Traiperm,
2010). The flowers are accompanied by large pale greenish bracts that remain even after
fruits aremature (Staples & Traiperm, 2010). The corolla, which is around five cm in length,
is pure white, campanulate, and ca. 5–6 cm long (Staples & Traiperm, 2010). The flowers
contain five stamens and two stigma lobes. Flowers are self-incompatible (Jirabanjongjit et
al., 2024). The fruits are globose berries (Staples & Traiperm, 2010).

Argyreia lycioides (Choisy) Traiperm & Rattanakrajang has an elliptic-lanceolate leaf
shape with solitary flowers (Rattanakrajang et al., 2022). The flowers are composed of four
small greenish bracts. The corollas are around 1−2.5 cm long, urceolate in shape, and pale
yellowish-white in color (Rattanakrajang et al., 2022). The flowers have five stamens and
two stigma lobes. The mating system is unknown. The fruits are capsules with a persistent
calyx (Rattanakrajang et al., 2022).

Floral characters and flowering phenology
Data collection was conducted during the flowering period of all three study species over
two years of observation (2019–2020). The floral characters of A. lycioides (40 flowers),
A. mekongensis (53 flowers) and A. versicolor (66 flowers) were observed, measured and
recorded following terminology from the Kew glossary (Beentje, 2010) and the Flora of
Thailand (Convolvulaceae) (Staples, 2010), as well as from recent studies of the three
species (Staples & Traiperm, 2017; Rattanakrajang et al., 2022). The flowering phenology
of each study species was assessed from field work, herbarium specimens, and relevant
literature (Staples, 2010; Rattanakrajang, Traiperm & Staples, 2018; Rattanakrajang et al.,
2022).

We assessed 15 characters predicted to influence plant interactions with pollinators:
habit, flower arrangement (inflorescence or solitary), corolla shape, corolla length, corolla
tube diameter, corolla limb presence, corolla color, phenology, floral anthesis, floral
longevity, stamen position (included or excluded), stamen length, pistil length, and the
staminal trichome densities of glandular and non-glandular trichomes (Table 1). Staminal
trichome morphology was described based on Chitchak, Stewart & Traiperm (2024) and
the distribution and density of trichomes were assessed by examining the apex, middle,
and bottom of trichome distribution along the stamens. One-way ANOVA (package
‘‘multcomp’’) was conducted in R version 4.1.2 (R Core Team, 2022) to assess whether
the three study species differed in terms of four quantitative characters of interest: corolla
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length, corolla tube diameter, stamen length, and pistil length. For significant characters,
Tukey’s tests were used for post hoc analyses (package ‘‘multcomp’’).

Floral anthesis and visitor observation
The floral anthesis and floral visitors of A. mekongensis (observed from 25 flowers from
five plants across four days in 2019 and 29 flowers from five plants across seven days in
2020) and A. versicolor (22 flowers from two plants across four days in 2019 and 44 flowers
from the single study plant remaining across eight days in 2020) were recently reported
(Jirabanjongjit et al., 2024), but no such records for A. lycioides were found.

To determine the floral visitors of A. lycioides, we used action cameras (Xiaomi YI
Z15; Xiaomi, Beijing, China) placed in front of mature flowers to capture animal visits.
During 2019, we recorded 16 flowers from four individuals across four days, while in
2020 we observed 24 flowers from four individuals across seven days. We did not collect
floral visitors to avoid disturbing subsequent animal visits and to avoid damaging flowers
with sweep nets. All footage was reviewed and floral visitors were identified to the lowest
taxonomic level possible with help from a local entomologist (see Acknowledgments).

Animal visitors were categorized based on their behavior at flowers as follows: potential
pollinators (those that contacted both stigmas and anthers), florivores (those that consumed
any parts of the flowers), and visitors/nectar robbers (those that visited flowers without
contacting reproductive structures). The visitation rates of animal visitors were compared
using R version 4.1.2 (R Core Team, 2022). Linear mixed modelling was performed using
package ‘lme4’ where visitation rate was the response variable, animal taxon was a fixed
factor, and plant individual was a random factor. Models were assessed using nested
likelihood ratio tests (package ‘stats’). Turkey’s post hoc test (package ‘emmeans’) was
used for comparing factor levels.

Permission to work with animals was granted by MUSC-IACUC (Faculty of Science,
Mahidol University-Institutional Animal Care and Use Committee) (Protocol numbers
MUSC60-037-387 and MUSC63-031-539).

Histochemical examination
Histochemical techniques were used to detect the presence of chemical compounds of
interest in the floral nectary discs (found surrounding the ovary at the base of the corolla)
and staminal trichomes (found around the bases of the filaments). We examined 10
flowers per study species. Nectary discs were free hand-sectioned both transversally and
longitudinally. Staminal trichomes were removed from the filament base. All sample
specimens were treated with the following histochemical assays: NADI reagent to test for
terpenes (David & Carde, 1964; Olaranont et al., 2018), Sudan Black B and Sudan III to
test for lipids (Brundrett, Kendrick & Peterson, 1991), and Naturstoff to test for flavonoids
(Olaranont et al., 2018; Tattini et al., 2000). Samples stained with NADI reagent, Sudan
Black B, and Sudan III were examined under a light microscope (Olympus CX21 equipped
with a Sony 6400 digital camera, Tokyo, Japan) and samples stained with Naturstoff were
examined under a fluorescence microscope (Olympus BX53 with a DP73 camera set,
Waltham, MA, USA) with a 436-nm exciter filter.
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Table 1 Floral characters, habit, phenology and trichome characters.

Characters Species

A. versicolor A. mekongensis A. lycioides

Habit Liana Liana Shrub
Flower arrangement Inflorescence Inflorescence Solitary flower
Corolla shape Campanulate Campanulate Campanulate
Corolla length (mm) 56.6± 1.9 49.5± 1.7 30.1± 0.4
Corolla tube diameter (mm) 28.1± 1.0 23.8± 1.2 20.5± 0.4
Corolla limb presence Present Present Absent or very small
Corolla color White corolla with purple limb White with small brownish dots Greenish white with dark purple dots inside
Flowering period (Phenology) August to December Late August to early December Early September to late October
Floral anthesis 05.30 (complete around 07.00) * 05.00 (complete around 07.00–08.00)* 05.00 (complete around 08.00–09.00)
Floral longevity 15–16 h * 36–40 h * 36–40 h
Stamen projection relative to corolla limb Included Included Included
Stamen length (mm) 22.5± 0.3 17.8± 0.8 15.8± 0.4
Glandular staminal trichome density
(per mm2)

36.1± 2.3 32.7± 5.6 27.0± 4.0

Non-glandular staminal trichome density
(per mm2)

5.1± 0.5 N/A N/A

Pistil length (mm) 39.7± 1.0 28.3± 0.9 17.3± 0.3

Notes.
All numerical data are presented as mean± standard error (SE).
*Data obtained from Jirabanjongjit et al. (2024).
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RESULTS
Floral characters and flowering phenology
Both A. versicolor (Figs. 1A, 1B) and A. mekongensis (Figs. 1C, 1D) are lianas that produce
several flowers per inflorescence, with flowers exhibiting a corolla limb. In contrast, A.
lycioides is a shrub, producing axillary solitary flowers that typically lack a corolla limb but
are sometimes found with a very small corolla limb (Figs. 1E, 1F). In terms of floral color
(Table 1), A. versicolor has a whitish corolla tube with a purple corolla limb, A. mekongensis
has a pure white corolla tube and limb with small brownish dots scattered across the
flower, and A. lycioides has a waxy greenish-white tube with a dense concentration of dark
purple dots inside the corolla (Fig. 1). The flowering periods of both A. versicolor and A.
mekongensis occur from August to December and fruits are mature approximately 10–12
weeks later. The flowering period of A. lycioides is shorter, from early September until late
October, and fruits are mature approximately 10–12 weeks later (Table 1).

All three sympatric species have a campanulate floral shape but differ in size (Table 1,
Figs. 1 and 2). ANOVA results revealed that these species are significantly different in terms
of corolla length (F2,12 = 40, p < 0.001), corolla tube diameter (F2,12= 11.58, p < 0.01),
stamen length (F2,13= 71.51, p < 0.001), and pistil length (F2,11= 116.2, p < 0.001) (Fig.
2). These floral characters appear to be smallest in A. lycioides and largest in A. versicolor,
while A. mekongensis is intermediate for all studied characters. The corolla length of A.
lycioides is significantly shorter than that of A. versicolor and A. mekongensis, although the
latter two are not significantly different. The corolla tube diameter of A. mekongensis is not
significantly different from other two species, while the diameters of A. lycioides and A.
versicolor are significantly different. In terms of stamen and pistil lengths, all three species
are significantly different from each other (Fig. 2).

Floral anthesis and visitor observation
The floral anthesis of both A. mekongensis and A. versicolor were obtained from
Jirabanjongjit et al. (2024) (see Table 1). The flowers of A. lycioides generally start to
open around 5.00 h, are fully open around 8.00−9.00 h, and last until the evening of
the following day (Table 1). The longevity of A. mekongensis and A. lycioides flowers is
approximately 36–40 h, while that of A. versicolor is 15–16 h.

The flowers of A. versicolor and A. mekongensis are both pollinated by Xylocopa latipes
and X. aestuans (Jirabanjongjit et al., 2024) (Figs. 3A–3D), and are also visited by several
diurnal florivores, visitors, and nectar robbers (Figs. 3E–3G). Several diurnal animal taxa
were observed visiting A. lycioides flowers, including an unknown bee (Anthophila; Fig.
3H), wasps (Vespidae; Fig. 3I), several ants (Formicidae), Cinnyris jugularis sunbirds
(Nectariniidae; Fig. 3J), cockroaches (Blattodea), and skipper butterflies (Hesperiidae).
No nocturnal visitors were observed. While some differences in species richness and
abundance were observed between the two study years, visitation rates of animal taxa
were not significantly different (Fig. 4). During the 2019 flowering season we observed
only two visitor taxa (Formicidae and the unknown bee species), both of which were
uncommon (Fig. 4A). During the 2020 flowering season we observed five visitor taxa (Fig.
4B). Vespid wasps were the most frequent visitors (Fig. 4B). They entered the corolla to
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Figure 1 Photos showing the floral characters of three sympatric Argyreia species. (A, B) A. versicolor,
(C, D) A. mekongensis, and (E, F) A. lycioides. Photos A, B and F were taken by Yotsawate Sirichamon, and
C, D and E were taken by Tripatchara Atiratana.

Full-size DOI: 10.7717/peerj.17866/fig-1
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Figure 2 A comparison of quantitative floral characters in three sympatric Argyreia species. (A)
Corolla length. (B) Corolla tube diameter. (C) Stamen length. (D) Pistil length. Circles and error bars
denote means and standard errors. Species with different lowercase letters are significantly different (p <

0.05).
Full-size DOI: 10.7717/peerj.17866/fig-2

forage on nectar, during which their thorax was observed to touch the anthers and stigmas;
pollen was observed on their thorax (Fig. 3I). The unknown bee species was also observed
contacting floral reproductive structures, but was only rarely recorded visiting flowers.
The cockroaches and skipper butterflies visited flowers several times (Fig. 4B) but appear
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Figure 3 Animal visitors of three sympatric species of Argyreia. (A) Xylocopa latipes visiting A. ver-
sicolor. (B) X. aestuans visiting A. versicolor. (C) X. latipes visiting A. mekongensis. (D) X. aestuans visit-
ing A. mekongensis. (E) Amegilla sp. visiting A. mekongensis. (F)Mylabris phalerata beetle consuming the
corolla of A. mekongensis. (G) Cinnyris jugularis sunbird robbing nectar from A. mekongensis. (H) Un-
known bee species (Anthophila) visiting A. lycioides. (I) Unknown wasp species (Vespidae) visiting A. ly-
cioides. (J) Cinnyris jugularis sunbird robbing nectar from A. lycioides. Photos credited to Awapa Jiraban-
jongjit.

Full-size DOI: 10.7717/peerj.17866/fig-3

not to pollinate flowers, as they simply crawled along the outside of the corolla. Ants were
occasionally observed walking on the inside of the corolla, in addition to the outside, but
were never observed contacting anthers or stigmas. Sunbirds were relative frequent visitors
in 2020 (Fig. 4B), but were observed robbing nectar by perching on branches near flowers
and piercing the corolla base with their beaks (Fig. 3J).
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Figure 4 Visitation rates of animal visitors observed at A. lycioides flowers. (A) 2019 (n= 4 plants) and
in (B) 2020 (n= 4 plants). The blue circles and error bar denote means and standard errors, while pastel-
colored jittered points show the distributions of the raw data. Note: Only Anthophila and Vespidae con-
tacted floral stigmas and anthers, and are the potential pollinators of A. lycioides.

Full-size DOI: 10.7717/peerj.17866/fig-4

Histochemistry of floral nectary discs
The sectioned nectaries of the three study species revealed some similarities and some
differences among the tested compounds (Table 2). NADI reagent tested positive in all
three species, revealing that terpenes are produced and/or accumulated in the epidermis,
around the nectary ducts, and in the parenchyma cells of A. versicolor (Fig. 5A) and A.
mekongensis (Fig. 6A), while terpenes were broadly detected throughout the entirety of
the nectary disc of A. lycioides in comparison to other two species (Fig. 7A). Similarly,
flavonoids were detected in all species throughout the nectary disc (Figs. 5D, 6G, 7C). In
contrast, lipids were found only in A. mekongensis, as detected by both Sudan Black B and
Sudan III, appearing to accumulate in the epidermis layer and nectary ducts (Figs. 6C, 6E),
while the other two study species tested negative for lipids using both Sudan Black B and
Sudan III.

Morphology and histochemistry of staminal trichomes
Argyreia versicolor has two types of trichomes (Table 2), glandular trichomes (Figs. 5B,
5C, 5E) and non-glandular trichomes (Fig. 5F). The trichomes were dispersed across the
lower part of the filaments, and the highest density of trichomes and the longest trichomes
were found at the center of the distribution. Glandular trichomes were shorter than
non-glandular trichomes and were fewer in number and shorter in length towards the
margins of their distribution. Each glandular trichome consisted of a head cell (apical cell),
stalk, and basal cell; the head cells are unicellular apical glands which are either rounded
cylindrical, obovoid (Fig. 5C), or globose (Fig. 5E). Stalks were observed to have different
lengths; long stalks (Fig. 5C) were mostly found at the very base of the filaments while
short stalks (Fig. 5E) were densely scattered around the middle of filaments and sparsely
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Table 2 Results of histochemical analysis testing for the presence of terpenes, lipids, and flavonoids in
the floral nectary and staminal trichomes of three sympatric Argyreia species.

Floral organ Species Reagent tested

NADI
(terpenes)

Sudan III
(lipids)

Sudan Black B
(lipids)

Naturstoff
(flavonoids)

A. versicolor
√

– –
√

A. mekongensis
√ √ √ √Nectary discs

A. lycioides
√

– –
√

A. versicolor
√

– – –
A. mekongensis

√ √ √
–

Glandular
staminal
trichomes A. lycioides

√
– – –

A. versicolor – – –
√

A. mekongensis N/A N/A N/A N/A
Non-glandular
staminal
trichomes A. lycioides N/A N/A N/A N/A

Notes.
√
, positive result; –, negative result; N/A, not applicable.

(A. mekongensis and A. lycioides do not possess non-glandular staminal trichomes).

Figure 5 Results of histochemical analysis conducted in A. versicolor. (A) Transversal section of the
floral nectary showing the presence of terpenes; positive staining shown at the blue arrow pointing to a
nectary duct (ND) and the nectary epidermis (EP). (B) Staminal trichomes showing the presence of ter-
penes; positive staining shown by the blue arrow pointing to the apical gland cell. (C) Unstained long
glandular trichomes at the base of staminal filaments; red arrows pointing to rounded cylindrical (RCY)
and obovoid (OBO) apical gland cells. (D) Longitudinal section of the floral nectary showing the pres-
ence of flavonoids under a fluorescence microscope; positive staining shown by the white arrow point-
ing to the nectary disc. (E) Unstained short glandular trichomes at the middle of staminal filaments; red
arrow pointing to an apical gland cell that is globose shaped (GLO). (F) Staminal trichomes stained with
Naturstoff reagent and viewed under fluorescence microscope reveal the presence of flavonoids; strong
staining shown at the blue arrow, white arrow pointing to an apical cell of a non-glandular trichome. Pho-
tos credited to Awapa Jirabanjongjit.

Full-size DOI: 10.7717/peerj.17866/fig-5
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Figure 6 Results of histochemical analysis conducted in A. mekongensis. (A) Transversal section of the
floral nectary showing the presence of terpenes; positive staining shown at the red arrows pointing to the
nectary duct (ND) and nectary epidermis (EP). (B) Staminal trichomes tested positive for terpenes; blue
arrows point to apical gland cells showing terpenes inside of the glands. (C) Transversal section of the flo-
ral nectary stained with Sudan Black B showing the presence of lipids; (continued on next page. . . )

Full-size DOI: 10.7717/peerj.17866/fig-6
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Figure 6 (. . .continued)
positive staining shown at the red arrow pointing to the nectary duct (ND). (D) Staminal trichomes
stained with Sudan Black B tested positive for lipids; red arrows point to apical gland cells containing
lipids, and demonstrate the different types of gland cells: BE, bell-shaped; RCO, rounded conical. (E)
Transversal section of the floral nectary stained with Sudan III showing the presence of lipids in black. (G)
Transversal section of the floral nectary stained with Naturstoff reagent and viewed under a fluorescence
microscope showing the presence of flavonoids. (F, H) Staminal trichomes stained with Sudan III
tested positive for lipids; blue arrows point to lipids inside of the apical gland cells, while red arrows
demonstrate the different types of gland cells: RCY, rounded cylindrical; CON, convex; GLO, globose.
Other abbreviations: N, nectary; OV, ovary; EP, epidermis. Photos credited to Awapa Jirabanjongjit.

scattered near the tops of filaments. The average density of glandular trichomes was 36.1
± 2.3 trichomes per mm2. We also observed simple non-glandular staminal trichomes
(Fig. 5F), which were present only in this species and only at the center of the filament base,
with an average density of 5.1 ± 0.5 trichomes per mm2. The non-glandular trichomes
consisted of a basal cell and a long slender apical cell. The glandular staminal trichomes
tested positive for terpenes (Fig. 5B) while the simple non-glandular staminal trichomes did
not (Table 2). Both glandular and non-glandular trichomes tested negative for lipids (Table
2). Flavonoids were detected in the apical cells of non-glandular trichomes, especially where
the apical cell connects to the base (Fig. 5F), but not in glandular trichomes (Table 2).

Only glandular trichomes were observed for A. mekongensis, and they were distributed
across the base of filaments, densely at the center of their distribution and more sparsely
towards the margins of their distribution, with an average density of 32.7 ± 5.6 trichomes
per mm2. These glandular trichomes also consisted of a head cell (apical cell), stalk, and
basal cell. The head cells are unicellular apical glands and five gland shapes were observed;
rounded conical (Fig. 6D), bell-shaped (Fig. 6D), rounded cylindrical (Fig. 6F), convex
(Fig. 6F), and globose (Fig. 6H). Stalks were longer at the center of their distribution
and shorter towards the margins of their distribution. Histochemical analysis revealed
the presence of terpenes (Fig. 6B) and lipids (Figs. 6D, 6F, 6H), both of which appear to
accumulate in the glands (Table 2). However, flavonoids were not detected (Table 2).

We also only observed glandular trichomes in A. lycioides, which were distributed across
the base of the filaments, densely at the center of their distribution and more sparsely
towards the margins of their distribution, with an average density of 27.0 ± 4.0 trichomes
per mm2. Similar to the other two study species, these glandular trichomes consisted of
a head cell (apical cell), stalk, and basal cell. The apical gland cells were observed to have
four shape types: rounded cylindrical (Fig. 7B), globose (Fig. 7B), obovoid (Fig. 7D), and
pyriform (Fig. 7D). In contrast to the other two study species, the glandular trichomes of
A. lycioides have very short unicellular stalks (Fig. 7D). Histochemical analysis revealed the
presence of terpenes (Fig. 7B), while lipids and flavonoids were not detected (Table 2).

DISCUSSION
Floral visitors in relation to floral characters
We observed high overlap in floral visitor composition between A. versicolor and A.
mekongensis, and some overlap between A. mekongensis and A. lycioides, but no overlap in
the taxa visiting A. versicolor and A. lycioides. Argyreia versicolor and A. mekongensis were
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Figure 7 Results of histochemical analysis conducted in A. lycioides. (A) Longitudinal section of the
floral nectary showing the presence of terpenes. (B) Staminal trichomes tested positive for terpenes; pos-
itive staining shown at the red arrows, which also demonstrate some of the different types of apical gland
cells: GLO, globose; RCY, rounded cylindrical. (C) Longitudinal section of the floral nectary stained with
Naturstoff reagent and viewed under a fluorescence microscope showing the presence of flavonoids. (D)
Unstained glandular trichomes; red arrows demonstrate some of the different types of apical gland cells:
PY, pyriform; OBO, obovoid. Other abbreviations: N, nectary; OV, ovary; BS, basal cells; S, stalk. Photos
credited to Awapa Jirabanjongjit.

Full-size DOI: 10.7717/peerj.17866/fig-7

both almost exclusively visited by Xylocopa carpenter bees (X. aestuans and X. latipes).
These species are very similar in terms of corolla shape and size, both of which allow their
large bee pollinators to enter the flower and contact floral reproductive structures with
their thorax. Moreover, these species potentially attract pollinators with their relatively
showy floral displays: bright colors, a large corolla limb (Jirabanjongjit et al., 2024), and
numerous flowers per inflorescence (5–9 flowers). While these two species do differ in
color (A. versicolor is purple and white, while A. mekongensis is pure white), Xylocopa bees
have been reported to favor both purplish-white and creamy white flowers (Raju & Rao,
2006).

Interestingly, the flowers of A. mekongensis are potentially capable of being pollinated
over two days (although stigma receptivity still needs to be tested), while those A. versicolor
open for only a single day. The long lifespan of A. mekongensis flowers is unusual in the
Convolvulaceae, as most morning glory flowers bloom for no more than 12 h (Hassa,
Traiperm & Stewart, 2023). Such differences in floral longevity suggest that A. mekongensis
flowers possibly receive twice as many visits as A. versicolor flowers, given that carpenter
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bee visitation rates to the two species are comparable (Jirabanjongjit et al., 2024). However,
these differences do not appear to have noticeable effects on plant reproduction, as naturally
pollinated flowers of the two Argyreia species set fruit that are similar in terms of both fruit
weight and seed number (Jirabanjongjit et al., 2024).

We also observed some overlap in the animal taxa that visited A. mekongensis and A.
lycioides, namely, wasps, medium-sized bees, skipper butterflies, and sunbirds. Of these
taxa, only wasps in the family Vespidae were frequent visitors to and likely pollinators of A.
lycioides (see paragraph below). The remaining taxa were uncommon visitors and unlikely
pollinators (Fig. 4). For example, for bothArgyreia species, skipper butterflies (Hesperiidae)
were only ever observed on the outside of the corolla, and sunbirds (Cinnyris jugularis)
were only ever observed robbing nectar. The presence of sunbirds at these Argyreia species
is somewhat surprising given that we observed only trace amounts of sticky nectar at the
base of the corolla tube (and their pendant orientation likely does not allow large quantities
of nectar to accumulate) and most flowers attractive to birds produce copious amounts
of dilute nectar (Stiles, 1981; Johnson & Nicolson, 2008). Moreover, A. mekongensis and A.
lycioides flowers have relatively pale and dull colors in contrast to most bird-visited flowers
(Stiles, 1981). Thus, additional research is needed to understand the behavior of sunbirds
at A. mekongensis and A. lycioides. The similarities in floral visitor composition between
A. mekongensis and A. lycioides may be due to their similar coloration and floral heights.
Both species have pale-colored flowers and were found about 1.5 m above ground, whereas
twining A. versicolor was usually found climbing tall trees and its flowers were typically
around 5 m above ground.

Argyreia lycioides is the most distinct in shape and size among the three study species.
Its flowers are significantly smaller than those of the other two Argyreia species, and it also
appears to attract smaller pollinators compared to the other two species. The flowers of
A. mekongensis and A. versicolor were pollinated by Xylocopa carpenter bees (Jirabanjongjit
et al., 2024), while A. lycioides appears to be pollinated primarily by wasps in the family
Vespidae. Key floral features that distinguish A. lycioides from the other two species are
its floral arrangement (axillary solitary instead of inflorescence), flower size, and reduced
corolla limb (minimal to absent). The flowers of A. lycioides are too small for carpenter
bees, but are appropriately sized for wasps or smaller bees, as were observed in this study.
Wasps appear to be the main pollinators of A. lycioides given the frequency of their visits
and their consistent contact with stigmas and anthers. Wasps can be found as pollinators
of both generalist and specialized flowers (Heithaus, 1979; Nilsson, 1981; Kephart, 1983;
Vieira & Shepherd, 1999; Ollerton et al., 2003; Johnson, 2005; Shuttleworth & Johnson, 2006;
Shuttleworth & Johnson, 2009; Johnson, Ellis & Dötterl, 2007). While Faegri & Van der Pijl
(1979) did not specifically describe a wasp pollination syndrome, evidence suggests that
wasps often pollinate easily approachable flowers that have dull or cryptic coloration, a
strong or unusual scent, and concentrated nectar (Heithaus, 1979; Proctor, Yeo & Lack,
1996;Ollerton & Watts, 2000; Johnson, Ellis & Dötterl, 2007; Shuttleworth & Johnson, 2009).
According to Kingston & Mc Quillan (2000), flowers that are visited by wasps mainly have
pale colors, followed by yellow and some purple flowers. These results correspond with
our findings, as A. lycioides has a greenish white corolla with a dense concentration of
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dark purple dots on the inside the corolla, and the wide corolla entrance and tube make
nectar easily accessible. However, given that our study only opportunistically examined
a single population, additional research is needed to assess the visitation frequency and
effectiveness of animal taxa visiting A. lycioides to determine its main pollinators.

Histochemistry of the floral nectary discs
In all three study species, the floral nectary surrounds the base of the ovary; this nectary
disc is a conserved character within the Convolvulaceae (Govil, 1972; Deroin, 1992; Galetto
& Bernardello, 2004; Wright, Welsh & Costea, 2011). However, investigation of terpenes,
flavonoids, and lipids in the floral nectaries revealed some differences between the three
sympatric Argyreia species.

Terpenes were detected in the floral nectaries of all three study species, and have also
been reported in several other plant species (Giuliani, Bini & Lippi, 2012; Machado &
Souza, 2016; Wiese et al., 2018; Farinasso et al., 2021; Jirabanjongjit et al., 2021; Chitchak,
Stewart & Traiperm, 2022). Terpenes are important secondary metabolites in plants that
contribute to pollinator attraction by providing scent compounds (Knudsen & Gershenzon,
2006) that are recognized to attract bees (Bergström, Dobson & Groth, 1995; Robertson
et al., 1995). Moreover, terpenes can contribute to plant-insect interactions for bees that
forage for biologically active plant products (Harrewijn, Minks & Mollema, 1994; Stevenson,
Nicolson & Wright, 2017). Therefore, apart from the food resources provided by nectar, the
floral nectary can also produce other important chemical substances to attract and reward
pollinators.

Flavonoids were also detected in the floral nectaries of all three study species, are
prevalent throughout plants and their tissues especially in higher plants (Wollenweber
& Dietz, 1981; Harborne, 1988; Taylor & Grotewold, 2005), and have previously been
reported in several plant taxa (Ferreres et al., 1996; Truchado et al., 2008;Machado & Souza,
2016; Jirabanjongjit et al., 2021; Chitchak, Stewart & Traiperm, 2022). Several functions of
flavonoids are well-known, such as their role in plant reproduction, namely, as a color
attractant that advertises flowers to pollinators and fruits to seed dispersers (Dakora, 1995).
Flavonoids can also absorb UV wavelengths, providing visual cues that guide bees or
other insects to floral nectar (Thorp et al., 1975; Harborne, 1979; Agati & Tattini, 2010).
Additionally, flavonoids can protect nectar from pathogens or microbes, preserving it for
pollinators, which can also benefit plant reproduction (Treutter, 2005).

In contrast to terpenes and flavonoids, lipids were only found in one of the three study
species, A. mekongensis. Lipids have been reported in the floral nectaries of many plant
taxa, such as Anacardiaceae, Bignoniaceae, Convolvulaceae, and Orchidaceae (Figueiredo
& Pais, 1992; Stpiczyńska, 1997; Stpiczyńska & Matusiewicz, 2001; Stpiczynska & Davies,
2006; Kowalkowska et al., 2015; Machado & Souza, 2016; Tölke et al., 2018; Phukela, Adit &
Tandon, 2021; Jirabanjongjit et al., 2021; Chitchak, Stewart & Traiperm, 2022). Lipids are
frequently found in the nectar of vertebrate-pollinated species due to their importance in the
diets of vertebrates (Varassin, Trigo & Sazima, 2001; Gumede & Downs, 2020), however,
their potential role in plant-insect interactions has not been widely studied. Previous
research suggests that the positive detection of lipids in the floral nectary could indicate
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the presence of laticifers (Martins et al., 2012), or may provide nutrition for nectar-feeding
insects, in addition to polysaccharides (Bernardello, 2007). It is noteworthy that lipids were
found only in A. mekongensis, but not the other two Argyreia species. These lipids did not
appear to attract different pollinators from the other two congeners, and floral visitation
rates were similar across all three study species. Thus, further work is needed to elucidate
the role of lipids in the floral nectary.

Histochemistry of the staminal trichomes
Argyreia versicolor is the only species examined in this study that has both non-glandular and
glandular trichomes on the staminal filaments. Non-glandular staminal trichomes appear
to be very uncommon, as Chitchak, Stewart & Traiperm (2024) observed the staminal
trichomes of 73 taxa and observed non-glandular trichomes in A. versicolor. Traditionally,
non-glandular trichomes have been considered unimportant in the storage, production,
and secretion of biologically active compounds (Werker, 2000). However, non-glandular
trichomes have been found to store phenolic compounds, despite not having secretion
abilities, and such phenolics are important in the protection against and regulation of biotic
and abiotic stresses (Koudounas et al., 2015; Karabourniotis et al., 2020). Among secondary
metabolic compounds, flavonoids, which are phenolic compounds, have been shown
to substantially accumulate in non-glandular trichomes (Skaltsa et al., 1994; Valkama et
al., 2004; Tattini et al., 2007; Koudounas et al., 2015), as we also observed in A. versicolor.
Non-glandular trichomes are typically considered to provide physical plant defenses against
biotic or abiotic stresses, such as protection against insect oviposition or herbivory (Levin,
1973; Baur, Binder & Benz, 1991), or as protection against drought (Ichie et al., 2016), low
or high humidity, high solar radiation, or high light intensity (Werker, 2000; Ichie et al.,
2016). Thus, it is possible that the non-glandular staminal trichomes found in A. versicolor
may help protect the ovary from herbivory, as the ovary is located directly below the
staminal trichomes.

Glandular trichomeswere observed in all three study species, and had similar distribution
patterns, but varied in some of their morphological features. Argyreia lycioides had shorter
stalks than the other two species, whichmay be due to phenotypic integration of floral traits
such as corolla size, as was reported in Chitchak, Stewart & Traiperm (2024). The function
of staminal trichomes is still unclear and they have received less attention than other
types of trichomes. However, a recent study by Dieringer & Cabrera (2022) suggested one
ecological advantage of staminal trichomes in Agalinis auriculata, in which they appear to
facilitate the grasping of flowers during buzz pollination; filament trichomes had a positive
effect on pollen removal in sternotribic pollination but a negative effect in nototribic
pollination. Riviere et al. (2013) reported a different function of filament trichomes in the
genus Cuscuta, where glandular trichomes appear to play a role in the protection of the
nectar or ovary (ovules).

Glandular trichomes usually secrete and accumulate specific secondary metabolites
such as terpenes and other essential oils (Metcalf & Kogan, 1987). In the species that we
examined, there were some differences in the histochemical results of glandular staminal
trichomes, but terpenes were found in all species. In general, terpenes are reserved in
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specialized structures within plant tissues, such as secretory cavities, resin canals, latex
canals, and glandular trichomes (Holopainen et al., 2013). Previous studies examining
terpenes have mostly reported their presence in the glandular trichomes of leaves, and
they are generally recognized as being defensive substances against microbes, fungi and/or
herbivores (Harborne, 1993; Kelsey, Reynolds & Rodriguez, 1984; Olaranont et al., 2018).
However, more recent work has started to improve our understanding of how insects
respond to terpenes and their function in attracting pollinators (Raguso & Light, 1998;
Dudareva et al., 2006;Knudsen & Gershenzon, 2006). In contrast to the ubiquity of terpenes,
lipids were only detected in the glandular staminal trichomes of A. mekongensis while
flavonoids were not detected in the glandular staminal trichomes of any species. Previous
work examining other morning glory species, such as Rivea ornata (Chitchak, Stewart
& Traiperm, 2022) and Argyreia siamensis (Jirabanjongjit et al., 2021), have hypothesized
that staminal trichomes are important for pollinator attraction since glandular staminal
trichomes contain chemical substances such terpenes and flavonoids. The results of this
study indicate that glandular staminal trichomes, with their accumulation of terpenes, may
help protect the nectar and ovary from microbes, fungi, and herbivores, and/or may help
attract pollinators and guide them to the nectar.

CONCLUSIONS
The findings of this study reveal that the three sympatric, co-flowering Argyreia
species exhibit some similarities and some differences in terms of floral characters and
histochemical compounds, which appear to influence their interactions with floral visitors.
Notably, the two twining species, A. versicolor and A. mekongensis, have similar floral
shapes and sizes, and are both pollinated by large carpenter bees. In contrast, A. lycioides
is a perennial shrub with a smaller corolla tube, and appears to be pollinated by wasps
(Vespidae) and possibly small- to medium-sized bees. All species exhibited trichomes
at the base of staminal filaments; glandular trichomes were observed in all species
but non-glandular trichomes were found only in A. versicolor. Moreover, because the
glandular trichomes of all species contained volatile terpenes, these structures and chemical
compoundsmay help attract pollinators and/or guide them to the base of the corolla, where
pollinators were observed foraging. In contrast, non-glandular trichomes are typically
associated with herbivore defense, whichmay help explain why florivores were not observed
on A. versicolor even though they were observed on sympatric congeners. Furthermore,
terpenes and flavonoids found in the floral nectary of all three study species may contribute
to pollinator attractionwhile lipids in the nectar (foundonly inA. mekongensis)may provide
additional nutrition for pollinators. Overall, floral morphological differences contribute to
some pollinator partitioning, with A. lycioides utilizing unique pollinators, but A. versicolor
and A. mekongensis share the same pollinators. Additional research is needed to determine
whether these congeners rely on other mechanisms to reduce competition for pollination
(e.g., pollinator constancy or differential pollen placement), or whether competition and
interspecific pollen transfer reduce their reproductive success. The knowledge gained
from this study regarding flower morphology and chemical compounds, in combination
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with what we know about the breeding system of the rare species, A. versicolor and A.
mekongensis (Jirabanjongjit et al., 2024), are necessary for plant conservation in terms of
protecting their shared pollinators.
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