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ABSTRACT
The development and progression of diseases in multicellular organisms unfold
within the intricate three-dimensional body environment. Thus, to comprehensively
understand the molecular mechanisms governing individual development and disease
progression, precise acquisition of biological data, including genome, transcriptome,
proteome, metabolome, and epigenome, with single-cell resolution and spatial infor-
mation within the body’s three-dimensional context, is essential. This foundational
information serves as the basis for deciphering cellular and molecular mechanisms.
Although single-cell multi-omics technology can provide biological information such
as genome, transcriptome, proteome, metabolome, and epigenome with single-cell
resolution, the sample preparation process leads to the loss of spatial information.
Spatial multi-omics technology, however, facilitates the characterization of biological
data, such as genome, transcriptome, proteome, metabolome, and epigenome in tissue
samples, while retaining their spatial context. Consequently, these techniques signifi-
cantly enhance our understanding of individual development and disease pathology.
Currently, spatial multi-omics technology has played a vital role in elucidating various
processes in tumor biology, including tumor occurrence, development, and metastasis,
particularly in the realms of tumor immunity and the heterogeneity of the tumor
microenvironment. Therefore, this article provides a comprehensive overview of spatial
transcriptomics, spatial proteomics, and spatial metabolomics-related technologies
and their application in research concerning esophageal cancer, gastric cancer, and
colorectal cancer. The objective is to foster the research and implementation of spatial
multi-omics technology in digestive tumor diseases. This review will provide new
technical insights for molecular biology researchers.
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INTRODUCTION
In multicellular organisms, the processes of development and disease progression transpire
within intricate three-dimensional in vivo environments. Each cell within these organisms
inhabits a microenvironment that is intricately linked to its cellular fate, and these
microenvironments exhibit pronounced heterogeneity. Thus, to comprehensively fathom
the molecular underpinnings of individual development and the onset and progression
of diseases lies in acquiring precise biological data encompassing the spatial coordinates
of the cell’s genome, transcriptome, proteome, metabolome, and epigenome within
the in vivo three-dimensional milieu. This method facilitates the exploration of both
microenvironment-cell interactions and the intricate regulatory dynamics of cellular
functions, thereby affording insight into the pertinent molecular mechanisms. Notably,
while conventional single-cell multi-omics techniques result in the loss of cell spatial
coordinate data during sample preparation, recent advances in spatial multi-omics
methodologies have enabled the retention of this information (Badia-i-Mompel et al., 2023;
Velten & Stegle, 2023; Bressan, Battistoni & Hannon, 2023). Consequently, the synergistic
amalgamation of single-cell multi-omics and spatial multi-omics techniques holds promise
for the comprehensive analysis of biological information, encompassing the genome,
transcriptome, proteome, metabolome, and epigenome, while retaining essential spatial
information.

Digestive tract tumors, a prevalent form of cancer worldwide, contribute significantly
to annual mortality rates (Hirata et al., 2023; Thrift, Wenker & El-Serag, 2023). While
single-cell multi-omics techniques have been extensively employed in recent years to
elucidate the intricate molecular mechanisms and heterogeneity associated with digestive
tract tumor development, a comprehensive grasp of biological information, which includes
spatial coordinate data for cell genomes, transcriptomes, proteomes, metabolomes, and
epigenomes, necessitates the application of research methodologies such as spatial multi-
omics techniques (Li et al., 2023a; Frank et al., 2021). The integration of single-cell multi-
omics and spatial multi-omics approaches enables the acquisition of valuable insights
into the molecular underpinnings of tumor cell development and heterogeneity within
the three-dimensional microenvironment (Badia-i-Mompel et al., 2023; Velten & Stegle,
2023; Bressan, Battistoni & Hannon, 2023; Baysoy et al., 2023). Consequently, this article
offers a comprehensive review of spatial multi-omics techniques and their relevance in the
context of digestive tract tumor diseases, with the objective of promoting their utilization in
digestive tract tumor research (Fig. 1). Furthermore, it is hoped that forthcoming research
endeavors will harness spatial multi-omics techniques to achieve a more comprehensive
and precise understanding of the molecular mechanisms and heterogeneity that underlie
the development of digestive tract tumor diseases. Here, this article can provide insights
into cutting-edge technology for researchers engaged in molecular research, and provide
some new ideas for researchers engaged in biomedical and tumor research.
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Figure 1 Flow chart of the review.
Full-size DOI: 10.7717/peerj.17860/fig-1

SURVEY METHODOLOGY
We used specialized databases including PubMed and Web of Science for the literature
review. This review explores the current status of multi-omics technologies including
spatial transcriptomics, spatial proteomics, and spatial metabolomics, with a focus on the
application of multi-omics technologies in digestive tract tumors. This review will provide
the latest technical insights and study design ideas for our molecular researchers.

Necessity and advantages of spatial multi-omics development
Single-cell sequencing technology is also a new generation of high-throughput sequencing
technology, including single-cell genome sequencing, transcriptome sequencing,
epigenome sequencing, proteome sequencing, and multi-omics sequencing. Compared
with traditional omics, the combination of single-cell and multi-omics technologies has
the advantage that the heterogeneity of cells can be observed at the single cell level,
and the target molecules can be lowered from multicellular populations to single cell
molecules. Biological processes occur in a spatial context, and the three-dimensional
(3D) arrangement of cells in tissues has a profound impact on their functions, such as
limiting cell-to-cell interactions by modulating contact or short-range paracrine signals.
Although the technical development of single-cell multi-omics makes today’s tumor
research has reached the subcellular dimension, compared with the booming development
of spatial multi-omics, single-cell multi-omics seems to discard the spatial dimension
information between cells, and the development of spatial multi-omics just makes up for
these shortcomings (Fig. 2) (Vandereyken et al., 2023; Bressan, Battistoni & Hannon, 2023).
Single-cell multi-omics technology mainly emphasizes cell grouping, which often loses
the phenomenon of cell location information. The missed spatial location information
is also the loss of spatial heterogeneity, and can not further correlate the molecular
mechanism with the tissue in situ. This misses strong spatial evidence for the study of
cell-to-cell interactions, primitive gene expression, microenvironment between tissues,
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Figure 2 Spatial multi-omics techniques. Created with Figdraw, https://www.figdraw.com.
Full-size DOI: 10.7717/peerj.17860/fig-2

and tissue growth (Hsieh et al., 2022). The body is a complex and three-dimensional, and
the functional state between cells is closely related to the physical and endocrine regulation
between adjacent cells, which is extra important for the study of the location and spatial
information of single cells (Li et al., 2022). However, structure determines function, and
the complex structure of cells contributes to their different functions. Different cells are
different in time and space. The interaction between cells and their spatial location and
structural information form a unique cellular microenvironment to maintain the stability
of the complex functions of the human body (Wang & Fan, 2021). Visualization of cellular
spatial heterogeneity and spatial structure of tumor microenvironment, which cannot be
addressed by single-cell multi-omics technology (Walsh & Quail, 2023).

Spatial transcriptomics
Spatial transcriptomics is a technology designed to retain the spatial context of tissues
while concurrently elucidating the transcriptomic profiles of tissue sections. This approach
allows for the precise mapping of gene expression within tissue sections, unveiling the
spatial distribution of distinct cell types, their intercellular interactions, and gene expression
profiles across diverse tissue regions (Moor & Itzkovitz, 2017). Such insights are invaluable
for comprehending the molecular underpinnings of developmental processes and disease
etiology and progression. Spatial transcriptomics can be categorized into two major types:
those rooted in next-generation sequencing (NGS) methods and those relying on imaging
techniques.

NGS-based spatial transcriptomics methods
Spatial transcriptomics technology, initially introduced in 2016, hinges on barcoded
glass slides to furnish spatial localization information for RNA transcripts within tissue
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sections (Stahl et al., 2016). This information is subsequently employed to reconstruct the
transcriptomic landscape within the tissue’s three-dimensional architecture. Essentially,
spatial transcriptomics technology employs specialized glass slides with an array of discreet
microwells, each covering one or more oligonucleotide chains. These oligonucleotide
chains incorporate a spatial barcode specific to each microwell, along with a poly T tail that
complements the poly A tail of mRNA, enabling efficient capture. Following enzymatic
permeabilization, mRNAs from tissue sections are liberated from cells and entrapped by
the poly T tails within the microwells. Subsequently, cDNA synthesis takes place on the
glass slide, followed by sequencing using NGS (Fig. 3A). This procedure facilitates the
retrieval of the original spatial location information for mRNA, based on spatial barcodes.

In late 2018, 10x Genomics advanced the field of spatial transcriptomics with the
introduction of their Visium spatial transcriptomics technology, which enhanced both
resolution and operational efficiency (Marx, 2021). Subsequently, in 2019, Vickovic et al.
(2019) presented the High-Definition Spatial Transcriptomics (HDST) technology. HDST
outperformed traditional spatial transcriptomics methods by employing an organized
magnetic bead array and a split-pool approach to generate high-resolution (2 µm) and
high-density (several million) bead arrays. Simultaneously, the Slide-seq technology
emerged, capturing mRNAs in frozen tissue sections at a spatial resolution of 10 µm
by placing random barcode-coated magnetic beads on glass slides, achieving single-cell-
sized resolution but requiring supplemental single-cell RNA sequencing (scRNA-seq)
data for heightened sensitivity (Rodriques et al., 2019). Subsequent to this, a Slide-seqV2
technology was developed, nearing single-cell resolution, with enhancements in bead
synthesis, library generation, and sequencing processes (Stickels et al., 2021). This improved
version of Slide-seq enhanced mRNA capture efficiency approximately tenfold compared
to its predecessor, albeit requiring further development for commercialization. Also,
in 2019, NanoString introduced the GeoMx Digital Spatial Profiler (DSP) technology,
tailored for spatial multi-omics analysis in the context of tumor immunity and the
tumor microenvironment (Hernandez et al., 2022). This technology quantifies the number
and spatial distribution of various immune cell-related protein markers in the tumor
microenvironment. It enables region-specific selection and precision laser cleavage of
DNA oligos linking antibodies or RNA probes, thus releasing DNA oligos for subsequent
quantification. Notably, its advantage lies in the precision of laser activation, allowing for
resolutions down to the single-cell level. However, it should be noted that its drawback is
the requirement for specially designed antibodies and probes.

In 2020, the Rong Fan team developed a method known as Deterministic Barcoding
in Tissue for spatial omics sequencing (DBiT-seq) for tissue section analysis (Liu et al.,
2020). DBiT-seq employs microfluidic channels to transport barcode probes, achieving
a 10 µm resolution and enabling concurrent capture of transcripts and chosen protein
targets. Unlike complex imaging methods, it utilizes high-throughput NGS and DNA
barcoding to concurrently acquire RNA transcriptome and proteomics data, enhancing
sample throughput and cost-effectiveness. DBiT-seq represents a novel spatial omics
technology that is facilitated by simple equipment and user-friendly for researchers. In
2021, Jun Hee Lee’s research team at the University of Michigan Medical School utilized
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Figure 3 Schematic diagrams of spatial transcriptomic andmatrix-assisted laser desorption/ion-
ization (MALDI). (A) Procedures of NGS-based method of spatial transcriptomic. (B) Procedures
of imaging-based method of spatial transcriptomic. (C) Schematic diagram of MALDI. The process
begins with the preparation of the MALDI sample, followed by the application of MALDI for the matrix
deposition. Subsequently, laser scanning technology is employed for the collection, processing, and
analysis of signals. Finally, the signals and multi-image data are integrated for visualization. Created with
Figdraw, https://www.figdraw.com.

Full-size DOI: 10.7717/peerj.17860/fig-3
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spatial barcode technology and Illumina sequencing to achieve sub-micron resolution in
spatial transcriptomics, denoting the method as Seq-Scope (Cho et al., 2021). It effectively
visualized transcriptome variations at cellular and subcellular levels across various tissues.
In 2022, BGI Group, collaborating with multiple institutions, developed Stereo-seq, a
high-field-of-view nanoscale resolution spatial omics technology (Chen et al., 2022). This
innovation permits high-throughput transcriptome analysis of tissue sections at subcellular
resolution, with scalability up to centimeter-level areas. Stereo-seq is distinguished by its
heightened sensitivity and uniform capture rates. It has the potential to complement
medical imaging and histopathological data, potentially becoming a specialized diagnostic
tool in routine clinical practice.

In essence, contemporary NGS-based spatial transcriptomics methods predominantly
entail the retrieval of spatially barcoded RNA for subsequent sequencing. These techniques
excel in their applicability to large-scale tissue section sequencing. Nonetheless, they fall
short in achieving precise single-cell resolution, and RNA detection efficiency remains
comparatively limited.

Imaging-based spatial transcriptomics methods
Spatial transcriptomics technology, grounded in imaging methodologies, primarily
encompasses two modalities: In Situ Sequencing (ISS) and In Situ Hybridization (ISH)
(Fig. 3B). The ISS method relies exclusively on ligase enzymes for the concatenation of two
DNA segments, specifically a primer with a predefined sequence and a probe congruent
with the template (Ke et al., 2013). In 2013, Ke et al. (2013) developed the first ISS method,
which used padlock probes to target known genes. Essentially, the ISS method involves
reverse transcribing mRNA into cDNAwithin intact tissue slices, and then binding padlock
probes to the cDNA. This allows for high throughput when subjected to bulk sequencing
but sacrifices spatial resolution. The advantages of the ISS method mainly include single-
cell resolution and subcellular transcript localization, while the drawback is primarily
lower detection efficiency (Moses & Pachter, 2022). In 2015, Lee et al. (2015) developed
Fluorescence In situ Sequencing (FISSEQ), a non-targeted method capturing all RNA
types. FISSEQ substantially augmented the detection throughput of in situ sequencing,
enabling the acquisition of gene expression maps across the entire genome, including gene
expression, RNA splicing, and post-transcriptional modifications while retaining spatial
positional information. However, FISSEQ’s limitation is evident in its significantly lower
gene yield compared to RNA-seq, providing only about 200 mRNA fragments per cell,
whereas single-cell RNA-seq yields approximately 40,000 mRNA fragments (Lee et al.,
2015). Consequently, the FISSEQ method has lower sequencing depth, potentially missing
low-abundance RNA transcripts, thereby failing to deliver comprehensive information
about intracellular RNA. In 2018, BaristaSeq technology was reported, which increased
amplification efficiency by fivefold and achieved a sequencing accuracy of at least 97% (Chen
et al., 2018). Subsequently, STARmap technology was developed, eliminating the need for
cDNA conversion and reducing noise by introducing a second hybridization step (Wang et
al., 2018). Moreover, it obviates the requirement for tissue clearing, leading to heightened
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sensitivity. As such, this technology exhibits promise in enabling gene expression detection
at single-cell resolution within three-dimensional space.

Spatial transcriptomics technology, rooted in ISHmethods, employs labeled nucleic acid
probes to precisely ascertain the spatial distribution and concentration of DNA and RNA
within biological tissues and cells, such as single-molecule fluorescence in situ hybridization
(smFISH) technology (Femino et al., 1998). In smFISH, fluorescently tagged probes are
employed to selectively hybridizewith target RNAmolecules, generating distinct fluorescent
signals. Subsequently, microscopy facilitates the visualization of RNA’s spatial positioning
and quantification. Nevertheless, it is imperative to note that smFISH is constrained in its
capacity to simultaneously target only a limited number of genes. In 2014, the Sequential
Fluorescence In Situ Hybridization (SeqFISH) technology was developed (Coskun & Cai,
2016). SeqFISH is a multi-round smFISH method, which has the drawbacks of being
high in cost and time-consuming. Subsequently, in 2015, Professor Xiaowei Zhuang of
Harvard University introduced the MERFISH (Multiplexed Error-Robust Fluorescence
In situ Hybridization) technology (Moffitt & Zhuang, 2016). This technique enables the
concurrent assessment of expression levels and spatial distribution of thousands of RNA
species within a single cell. In simple terms, MERFISH technology leverages a combination
of labeling and continuous imaging techniques to enhance detection throughput. It
utilizes binary barcoding to rectify errors in single-molecule labeling and detection. By
conducting multiple rounds of imaging, MERFISH simultaneously deciphers numerous
distinct barcodes, enabling the comprehensive assessment of the expression levels and
spatial distribution of thousands of RNA species. In 2019, Professor Long Cai developed
the seqFISH+ technology, which shares core principles with MERFISH (Eng et al., 2019).
SeqFISH+ employs a four-round imaging encoding approach and expands the fluorescence
imaging channels from a single laser to three (640 nm, 561 nm, 488 nm), substantially
increasing the coding capacity.

In conclusion, as deduced from the above, it is evident that the merits of ISS technology
encompass single-cell resolution, subcellular transcript localization, and applicability
to larger tissue regions. However, it is associated with the limitation of relatively lower
detection efficiency. On the other hand, ISH-based methods substantially expand the
detectable area, but they also encounter certain challenges. For instance, techniques like
smFISH struggle to isolate individual cells from complex backgrounds involving issues
such as signal interference and transcript accumulation.

Spatial proteomics
Proteomics is the systematic investigation of all protein structures and functions expressed
within cellular or tissue genomes, particularly under specific environmental or temporal
conditions. It employs high-resolution mass spectrometry and advanced bioinformatics
to unravel the mechanistic intricacies of physiological or pathological changes. Spatial
proteomics technology combines highly sensitive mass spectrometry and ultra-high-
resolution microscopy, complemented by cellular phenotyping, enabling precise protein
localization and functional analysis within cells and tissues (Vandereyken et al., 2023;
Mund, Brunner & Mann, 2022; Bahrami et al., 2023; Eisenstein, 2022). Regarding research
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methodologies, spatial proteomics technology falls into two primary categories: mass
spectrometry-based and antibody-based spatial proteomics.

Mass spectrometry-based spatial proteomics
Mass spectrometry imaging (MSI) is an exceptionally sensitive molecular imaging method
that originates from mass spectrometry. It facilitates the direct identification and spatial
localization of proteins within tissue sections, single cells, or various material surfaces, thus
furnishing proteomic insights with spatial resolution (Chaurand, Stoeckli & Caprioli, 1999;
Chaurand, Schwartz & Caprioli, 2004). Prominent attributes of MSI research encompass
its remarkable sensitivity, label-free peptide and protein imaging capacity, and spatial
resolution spanning from the individual to cellular scales. Additionally, MSI permits the
concurrent imaging of numerous distinct molecules within a single experiment. The most
common MSI technique is matrix assisted laser desorption ionization-mass spectrometry
imaging (MALDI-MSI), characterized by amechanismwhere amatrix absorbs laser energy,
facilitating ionization of sample molecules (Ryan, Spraggins & Caprioli, 2019; Stoeckli et al.,
2001). The ionized target analytes are subsequently introduced into a mass spectrometer
for identification. Simultaneously, raster scanning enables the generation of tissue images.
MALDI-MSI mass spectrometry tissue in situ imaging can analyze numerous protein or
peptide fragments at a resolution in the order of tens of micrometers (Fig. 3C). However,
this approach commonly relies on hematoxylin and eosin staining to identify regions
of interest (ROIs) and is constrained by limited resolution (Fig. 3C), posing challenges
for precise analysis of tumor microenvironment substructures like tumor-infiltrating
lymphocytes, tumor-associated macrophages, and tertiary lymphoid structures. The
Multiplexed Ion Beam Imaging (MIBI) technology, as reported by Garry Nolan and his
team in 2014, can be distilled as an antibody-based immune reaction utilizing distinct
isotopic labels for individual antibodies (Angelo et al., 2014; Rost et al., 2017; Liu et al.,
2022b; Liu et al., 2022a). This allows for targeted capture and analysis, thus providing
spatial information on multiple proteins (over 40 commercially available targets) at the
single-cell level (Fig. 4A). For instance, MIBI technology allows the simultaneous detection
of 36 representative proteins in triple-negative breast cancer tumor and immune cells,
providing a comprehensive depiction of their spatial distribution within breast cancer
tissue (Keren et al., 2018). However, the extensive adoption of MIBI technology is impeded
by its relatively high hardware costs, the expense associated with isotopically labeled
antibodies, and the need for specific tissue fixation matrices and customizable isotopic
selections. The subsequently developed Multiplexed Ion Beam Imaging-Time of Flight
(MIBI-TOF) technology offers an exceptional resolution of 260 nm and near-single-
molecule sensitivity (Keren et al., 2019; Baharlou et al., 2019; Keren et al., 2018) (Fig. 4A).
This technology enables routine and robust imaging of formalin-fixed paraffin-embedded
(FFPE) tissue samples but is reliant on isotopically labeled antibodies (Fig. 4A). Various
other mass spectrometry-based spatial proteomics techniques have been developed, each
with distinct attributes and limitations (Lundberg & Borner, 2019). In summary, mass
spectrometry-based spatial proteomics technology is rapidly advancing, with increased
sensitivity, the ability to detect more targets, and a higher degree of precision in single-cell
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resolution. It is highly likely that future developments will yield mass spectrometry-based
spatial proteomics technologies meeting these criteria.

Antibody-based spatial proteomics
The Co-Detection by Indexing (CODEX) technology is based on antibody-based spatial
proteomics technology. Simply put, it involves the individual labeling of antibodies with
distinct oligonucleotide barcode tags, followed by the selective detection and binding of
the fluorescent dye of the ‘‘secondary antibody’’ to the complementary oligonucleotide
sequence (Fig. 4B). This technological advancement overcomes the constraint of the
count of visible light spectral fluorescence imaging channels, effortlessly achieving the
simultaneous detection and analysis of 50 or more proteins (Goltsev et al., 2018; Black et
al., 2021;Kuswanto, Nolan & Lu, 2023;Hickey et al., 2021). In simple terms, the operational
process involves initially mixing several dozen antibodies, each with distinct barcode labels,
and incubating them collectively with the tissue section following a standard primary
antibody mixing procedure. Upon binding each specific antigen on the tissue section, a
fluorescent dye distinguishes the antibodies marked with different barcodes. This approach
effectively assigns distinct oligonucleotide barcode labels to individual antigen targets via
antibody recognition. Subsequently, the fluorescence imaging is carried out in stages, with
each round detecting three targets, incorporating three-color fluorescent label reporters
that recognize and bind to their corresponding barcodes. This facilitates the attachment of
fluorescent dyes to specific antibodies and antigens, subsequently recorded via imaging.
The detachable fluorescently labeled reporter is then gently washed, and a three-color
fluorescent label reporter recognizing other barcodes is introduced for coloration imaging
(Fig. 4B). This process iterates until all targets are identified. Ultimately, the superimposed
images showcase the spatial distribution and interrelationships of up to 50 distinct targets
within the same sample slice (Black et al., 2021; Wang et al., 2021a). Overall, the CODEX
technology not only comprehensively examines intricate spatial data within tissue samples
but also identifies fresh frozen samples, paraffin-embedded tissue samples and other
cellular samples, preserving sample integrity.

DSP is also a technology that can be used for spatial transcriptomics or proteomics
research. Simply put, it operates through probe in situ hybridization and antigen-antibody
interaction, enabling the identification of gene and protein expression within tissue
sections (Fig. 4C). Photocleavable linkers are utilized to affix oligonucleotide tag sequences
(DSP barcodes) to the probes and antibodies, facilitating high-throughput detection
and quantification of genes and proteins (Fig. 4C). The most prominent feature of
DSP technology lies in its ‘‘targeting’’ capability. Specifically, DSP can target specific
gene/protein expression characteristics in the target areas of tissue sections, thereby
narrowing the scope of research and significantly enhancing research efficiency. This
targeting ability is fundamentally underpinned by the amalgamation of DSP with multiple
immunofluorescence techniques. By implementing multiple immunofluorescent staining,
the structural attributes of tissue slices can be predetermined, enabling researchers to
methodically sequence and scrutinize target regions in alignment with their investigative
objectives (Fig. 4C). This deliberate identification of targeted information effectively
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Figure 4 Schematic diagrams of MIBI, MIBI and DSP. (A) Schematic diagram of MIBI. Commence by
incubating the sample with isotope labeling and antibodies. Subsequently, conduct imaging and isotope
quantification using mass spectrometry (MS). Finally, integrate and analyze the data to elucidate spatial
organization at the single-cell resolution. (continued on next page. . . )

Full-size DOI: 10.7717/peerj.17860/fig-4
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Figure 4 (. . .continued)
(B) Schematic diagram of CODEX. To begin, conjugate antibodies with barcode tags and incubate them
with the sample along with fluorescent tricolor probes for specific hybridization. Next, remove excess flu-
orescent dyes, and proceed to the cycling reaction and imaging steps. Finally, overlay the images at single-
cell resolution and conduct spatial information analysis. (C) Schematic diagram of DSP. Initially, incubate
the sample with a mixed antibody population. Subsequently, designate specific regions of interest (ROIs)
for scanning imaging, succeeded by UV light exposure to liberate oligonucleotides. Finally, utilize micro-
capillaries for collection and integrate the data for comprehensive analysis. Created with Figdraw, https://
www.figdraw.com.

circumvents the challenges associated with unselective data mining across the entirety of
the section. This aspect constitutes the key distinction between DSP technology and the
10X Visium spatial transcriptomics technology. At present, DSP technology facilitates
spatial proteins detection across key translational medical domains, encompassing
immunology, tumor immunology, and neuroscience, in addition to targeting common
drug targets and signaling pathways, with the potential to detect up to 100 specific protein
targets (Hernandez et al., 2022; Merritt et al., 2020). DSP can be synergistically integrated
with scRNA-seq to investigate the cellular distribution patterns within the tumor immune
microenvironment, enabling an intricate analysis of both the gene expression profiles
of tumor cells and the surrounding microenvironment. This integrated approach aids
in identifying prospective therapeutic targets for tumors, thereby holding substantial
implications for the advancement of precise tumor therapy (Jerby-Arnon et al., 2021). The
landscape of various antibody-based spatial proteomics technologies is rapidly progressing,
evident in the growing use of diverse antibodies for detection and their integration
with other multi-omics methodologies, representing an anticipated trajectory for future
development.

Spatial metabolomics
Metabolomics is a comprehensive and quantitative analytical technology that examines
the dynamic variations in the metabolic profiles of organisms in response to specific
stimuli (Fiehn, 2002). It primarily focuses on small-molecule metabolites weighing less
than 1,000 Daltons (Da), including sugars, organic acids, lipids, amino acids, and aromatic
hydrocarbons. Consequently, metabolomics represents an emerging field of microscopic
inquiry, succeeding the trajectories of proteomics and genomics. Mass spectrometry
is a reliable method for elucidating metabolic products, offering a comprehensive
portrayal of the metabolic landscape during the analysis of cancer cell metabolites and
cancer metabolic reprogramming pathways (Kowalczyk et al., 2020; Ciocan-Cartita et
al., 2019). Nevertheless, conventional mass spectrometry approaches can compromise
the spatial information of molecules due to sample preparation steps. Consequently,
spatial metabolomics technology has emerged to address this limitation (Taylor, Lukowski
& Anderton, 2021; Alexandrov, 2020; Alexandrov, 2023; Saunders et al., 2023). Spatial
metabolomics technology is an emerging research methodology that integrates diverse
technical platforms and data sources for high-throughput and precise quantitative
analysis of intracellular metabolites (Planque et al., 2023; Saunders et al., 2023). It also
examines the spatial distribution of these metabolites to investigate their interactions
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and reciprocal regulatory mechanisms. Simply put, spatial metabolomics represents an
innovative molecular imaging method founded on mass spectrometry imaging (MSI) and
high-throughput sequencing. This method involves directly applying samples onto glass
slides or using nano-probes to scan cellular or tissue samples, enabling the acquisition of
comprehensive structural, quantitative, and spatial distribution information of numerous
endogenous metabolites, exogenous drugs, and other molecules, irrespective of their
prior characterization. This approach enables meticulous high-resolution spatial profiling
and precise localization of metabolite distributions within tissues, thereby playing a
critical role in elucidating the synthesis, accumulation, and regulatory mechanisms of
metabolites (Taylor, Lukowski & Anderton, 2021; Alexandrov, 2020; Alexandrov, 2023;
Saunders et al., 2023; Chen et al., 2023a).

MSI is a sensitive and efficient molecular imaging technique utilized for metabolite
detection. It involves scanning biological tissue slice samples point by point using mass
spectrometry and, in combination with specialized image processing software, directly
analyzing a wealth of information regarding the composition, relative abundance, and
spatial distribution of metabolites (Fig. 5). This methodology is widely employed in diverse
areas including tumor diagnosis, identification of tumor biomarkers, and the exploration
of drug distribution and mechanisms (Kumar, 2023b; Kret et al., 2023; Norris & Caprioli,
2013). MSI technology bypasses the need for preprocessing steps such as metabolite
extraction, isotope labeling, or sample staining, enabling efficient imaging analysis of
multiple substances within the sample and the visualization of metabolite spatiotemporal
distribution. Depending on the ion source, MSI encompasses matrix-assisted laser
desorption ionization-mass spectrometry imaging (MALDI-MSI), desorption electrospray
ionization-mass spectrometry imaging (DESI-MSI), secondary ion-mass spectrometry
imaging (SIMS-MSI), and laser ablation electrospray ionization-mass spectrometry imaging
(LA-ESI-MSI), and so on. Currently, three primary spatial metabolomics technologies rely
on MSI: MALDI-MSI, ambient flow-assisted desorption electrospray ionization-mass
spectrometry imaging (AFADESI-MSI), and DESI-MSI (Morato & Cooks, 2023; Watrous
& Dorrestein, 2011; Schwamborn & Caprioli, 2010).

In MALDI-MSI application for spatial metabolomics research, samples are coated or
co-crystallized with light-absorbing matrices and then exposed to pulses from UV or IR
lasers (Norris & Caprioli, 2013). The matrix absorbs the radiation, transferring energy to
the sample and aiding ionization (Fig. 5). However, MALDI-MSI has limitations. It exhibits
notable chemical noise at low mass ranges (<300 m/z) derived from matrix components,
potentially hindering the ionization of critical small molecules and requiring samples to be
positioned on conductive surfaces. Moreover, the process of laser desorption/ionization
can cause sample damage. Notably, MALDI-MSI primarily detects metabolites such
as proteins, peptides, and lipids. DESI-MSI technology operates on the principle of
desorption electrospray ionization (Fig. 5). In contrast to MALDI-MSI, DESI-MSI
necessitates less extensive sample preprocessing, induces minimal tissue destructiveness.
These attributes enable DESI-MSI to bridge gaps in applications where other MSI methods
fall short (Morato & Cooks, 2023). Currently, DESI-MSI is predominantly employed in
the domain of medical research. Notably, studies have showcased DESI-MSI’s capability
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Figure 5 Schematic diagrams of MADLI and DESI and AFADESI. Sample preparation can involve both
frozen or formalin-fixed paraffin-embedded (FFPE) specimens. In the processing phase, matrix-assisted
laser desorption ionization (MALDI) primarily entails matrix-assisted laser desorption ionization
for matrix-assisted laser desorption ionization (MALDI) for sample matrix deposition. On the
other hand, desorption electrospray ionization (DESI) and air flow-assisted desorption electrospray
ionization (AFADESI) primarily involve desorption electrospray ionization for ionization. AFADESI
benefits from air flow-assisted transfer tubing to enhance ionization efficiency. Ultimately, all three
techniques converge towards comprehensive mass spectrometry imaging analysis. Created with Figdraw,
https://www.figdraw.com.

Full-size DOI: 10.7717/peerj.17860/fig-5

to directly extract comprehensive structural, quantitative, and spatial distribution data
of both known and unknown endogenous metabolites, exogenous drug metabolites,
and various other molecules from biological tissues (Morato & Cooks, 2023; Kumar,
2023a). AFADESI-MSI, an extension of DESI-MSI technology, effectively overcomes the
bottleneck of limited metabolite identification in DESI-MSI (Fig. 5). It can map the spatial
distribution of over 1,000 metabolites in tissue samples, thereby facilitating research into
molecular mechanisms (He et al., 2018). In medical and clinical research, AFADESI-MSI
has found extensive application in the study of diseasemolecularmechanisms, reproductive
development, tumor metabolism and tumor immunity, tumor molecular pathological
diagnosis, biomarker screening, pharmacology, and toxicology of drugs (Parrot et al., 2018;
He et al., 2015).

In general, MALDI-MSI, DESI-MSI, and AFADESI-MSI technologies are utilized in
spatialmetabolomics research on large tissue samples. AFADESI-MSI is capable of detecting
small molecule metabolites below 1,000 Da, including diverse categories such as choline,
polyamines, amino acids, carnitines, nucleosides, nucleotides, organic acids, carbohydrates,
cholesterol, bile acids, and lipids. DESI-MSI, although also capable of detecting small
molecule metabolites below 1,000 Da, exhibits a preference for lipid metabolites. MALDI-
MSI is proficient in identifying proteins, peptides, and lipid metabolites but has notable
limitations in the detection of small molecule metabolites. With deeper research, the
metabolic heterogeneity of cells and tissue samples has been well recognized. However,
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Figure 6 The flow chart of space group to learn more explanatory as a flowchart of spatial multiomics.
The spatial multi-omics technology was used to analyze the tissues at the single-cell resolution, and spatial
clustering was performed through spatial reconstruction to analyze the interaction between cells. Finally,
the collected spatial multi-omics information was integrated and analyzed. Created with Figdraw, https://
www.figdraw.com.

Full-size DOI: 10.7717/peerj.17860/fig-6

the development of metabolomics technology has been relatively lagging due to the
unsuitability of amplification and labeling strategies for metabolite molecules. Nonetheless,
the combined utilization of various omics technologies has been integrated into research
focusing on disease molecular mechanisms, tumor metabolism, tumor immunity, tumor
molecular pathological diagnosis, and more (Ravi et al., 2022; Lee et al., 2023).

Spatial multi-omics analysis of gastrointestinal tumor initiation and
progression
Gastrointestinal cancer encompasses tumor formations in the digestive tract and digestive
glands, with a higher incidence of cancer in the digestive tract and digestive glands
(pancreas, liver, and gallbladder) compared to other parts of the human body (Privitera
et al., 2023; Ben-Aharon et al., 2023). The number of deaths due to cancerous lesions in
these areas is also relatively high. The development of multi-omics technologies allows
us to delve into the secrets of cellular heterogeneity, the microenvironment of cells,
and cellular communication during the process of tumor initiation and progression
from various perspectives such as the genome, transcriptome, proteome, epigenetics,
and metabolome (Zhou et al., 2023; Zeng et al., 2023). Spatial multi-omics techniques
allow for more accurate 3D spatial information to be resolved at single-cell resolution,
spatial clustering, and cell–cell interactions, while spatial multi-omics techniques have
the advantage of having more diverse, three-dimensional sample information (Fig. 6).
Here is a table comparing the popular spatial multi-omics technologies in these years
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Table 1 Examples of spatial multi-omics techniques.

DBiT-seq Spatial CITE-seq ATAC&RNA-seq CUT&Tag-RNA-seq GeoMxDSP

Tissue Frozen+ FFPE FFPE+ Frozen FFPE+ Frozen FFPE+ Frozen FFPE+ Frozen
Technology strategy NGS+ Antibody NGS+ Antibody NGS NGS+ Antibody NGS+ Antibody
Output style mRNA+ Protein RNA+ Protein Chromatin accessibility+ RNA Protein+ RNA RNA+ Protein
Resolution 10 µm 20 µm Single cell level Single cell level 1 µm
Sensitivity High Very High Very High High Very High
Capture Efficiency Very High Very High Very High High Very High
Cost Low/medium High Low/medium Low/medium High

(Table 1). Recent strides in spatial multi-omics technology have increasingly facilitated
the exploration of tumor initiation and progression within a complex three-dimensional
space (Bressan, Battistoni & Hannon, 2023). These advancements indicate an impending
era of comprehensive comprehension regarding the emergence and evolution of tumor
cells.

Compared with traditional multi-omics technology, spatial multi-omics technology
can gain more special perspectives in gastrointestinal tumors: spatial resolution, cellular
heterogeneity, multilevel analysis, and providing more accurate information for the
construction of tumor disease models for researchers. Spatial resolution, spatial multi-
omics technology can provide spatial resolution at the single-cell level, helping researchers
to locate the exact position of cells in tissues and to observe the interactions between
cells and neighboring cells or tissues, which provides strong evidence for understanding
the complex tumor microenvironment (Walsh & Quail, 2023). Cellular heterogeneity,
gastrointestinal tumors have a high degree of cellular heterogeneity and complexity,
spatial multi-omics technology can identify the distribution and functional status of
different cell populations in tumor tissues, which can help to monitor and characterize
tumor development. Spatial multi-omics technology can analyze more detailed molecular
spatial information at the molecular level of genome, proteome, metabolome, etc., and
the integrated information is more accurate than before. In summary, spatial multi-omics
technology provides new perspectives andmethods for the study of gastrointestinal tumors,
which will advance the research development of gastrointestinal tumors. These features
will provide insights into the cytomolecular diagnosis of gastrointestinal tumors, and as a
basis for providing more refined means of treatment monitoring for gastrointestinal tumor
patients, providing a basis for developing targeted therapy and individual precision therapy,
and more accurate and refined scientific research will also provide a basis for promoting
the progression of the disease and predicting the accuracy of treatment effects (Kiessling &
Kuppe, 2024; Xu et al., 2024). By localizing and analyzing different tumor regions through
this technology, researchers can more accurately and intuitively observe the impact of
tumor heterogeneity on the effect of immunotherapy, which is crucial for predicting
the response to treatment and developing personalized treatment strategies (Song et al.,
2023). In recent years, studies on the application of spatial multi-omics technology in
the prognosis of gastrointestinal tumor progression and other aspects have also been
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demonstrated, which showed that spatial multi-omics technology revealed gastrointestinal
tumor-specific metabolic remodeling and interactions and tracked molecular metabolites,
genes, and lipids at metabolism-transcriptional level, which revealed the interaction
between metabolic heterogeneity and cellular metabolism in tumors (Sun et al., 2023).
Tumor drug resistance is closely related to immunity, and researchers have used this
technology to track and validate the cellular interactions affected by drug resistance
and provide insights into individual cancer treatment (Che et al., 2024). Another study
showed that sequencing of colorectal cancer tissues to analyze changes in the macrophage
immune microenvironment using DSP spatial genomics technology using imaging mass
spectrometry flow (IMC) revealed significant changes in the relative abundance of specific
macrophage populations (CD68, CD163, HLA-DR, CD204) from normal colorectal tissues
to cancerous tissues (Roelands et al., 2023). These findings, using spatial multi-omics
techniques, will help to identify novel therapeutic modalities and provide a reliable basis
for the diagnosis of patient treatment, as well as new methods for monitoring tumor
progression and prognosis.

Therefore, this article offers a detailed review of the application and progress of spatial
multi-omics technology in three types of gastrointestinal cancers: esophageal cancer, gastric
cancer, and colorectal cancer.

Esophageal cancer
Esophageal cancer is one of the malignant tumors in the world with strong metastasis and
high fatality rates. It is projected to yield approximately 57,000 new cases and 880,000
deaths by 2040 (Morgan et al., 2022). At present, esophagectomy stands as the primary
therapeutic approach. Despite recent advancements in neoadjuvant chemotherapy,
immunotherapy, and their combined application, the survival prospects for individuals
afflicted with esophageal cancer persist at a disconcertingly low level (Shah et al., 2023).
Histopathologically, esophageal cancer manifests in two principal forms: esophageal
squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) (Smyth et
al., 2017). ESCC globally comprises approximately 90% of all esophageal cancer cases.
Considered potential precursors to ESCC, esophageal squamous precursor lesions (ESPL)
play a critical role in comprehending the onset and progression of ESCC and in devising
innovative therapeutic interventions (Wang et al., 2005). However, the scarcity of research
reports examining the pathogenesis from ESPL to ESCC can be attributed to the substantial
coexistence of normal tissue within ESPL (Liu et al., 2023). While single-cell multi-
omics sequencing can address the scarcity of ESPL cell samples, the complex sample
preparation process can compromise the spatial information of heterogeneous tissue
samples (Bressan, Battistoni & Hannon, 2023; Moses & Pachter, 2022; Moffitt, Lundberg
& Heyn, 2022; Seferbekova et al., 2023; Tian, Chen & Macosko, 2023; Vandereyken et al.,
2023; Velten & Stegle, 2023). Conversely, the development of spatial transcriptomics
technology enables the sequencing of the transcriptome of ESPL samples containing a
substantial amount of normal tissue cells in three-dimensional space at an approximate
single-cell resolution, facilitating an in-depth exploration of the interplay between ESPL
cell functionality, phenotype, and the microenvironment (Bressan, Battistoni & Hannon,
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2023; Moses & Pachter, 2022; Liu et al., 2023; Moffitt, Lundberg & Heyn, 2022; Seferbekova
et al., 2023; Tian, Chen & Macosko, 2023; Vandereyken et al., 2023; Velten & Stegle, 2023).
Liu et al. (2023) employed nanostring whole-transcriptome analysis technology to profile
the transcriptomes of 11 ROIs from normal esophagus (NE), 12 ROIs corresponding
to low-grade intraepithelial neoplasia (LGIH), 12 ROIs associated with high-grade
intraepithelial neoplasia (HGIH), and seven ROIs linked to ESCC. These ROIs were
derived from 5 µm thick paraffin sections obtained from six LGIH patients, six HGIH
patients, and seven ESCC patients. The investigation revealed an upregulation of TAGLN2
expression with the progression of ESCC, while CRNN exhibited an opposing trend,
thereby unveiling novel biomarkers capable of distinguishing NE, ESPL, and ESCC.
Nonetheless, nanostring whole-transcriptome analysis technology is subject to inherent
limitations resembling those of bulk RNA-seq targeted at specific regions, restricting its
capacity for achieving single-cell resolution. Moreover, the accuracy of RNA expression
detection is contingent upon the characteristics of the employed nucleic acid probes (Liu et
al., 2023). Compared to nanostring transcriptome analysis technology, the 10x Genomics
Visium spatial transcriptomic sequencing technology offers a comprehensive depiction of
spatial RNA transcription information in tumor samples (Bressan, Battistoni & Hannon,
2023; Moses & Pachter, 2022; Moffitt, Lundberg & Heyn, 2022; Seferbekova et al., 2023;
Tian, Chen & Macosko, 2023; Vandereyken et al., 2023; Velten & Stegle, 2023). Chen et al.
(2023b) performed single-cell RNA sequencing and spatial transcriptomic sequencing on a
collective of 79 samples, encompassing NE, HGIH, and ESCC from 29 ESCC patients.
Their findings highlighted the suppression of the epithelial cell transcription factor
KLF4 with ESCC progression, leading to a gradual decline in ANXA1 expression (Liu
et al., 2022c). ANXA1 functions as an FPR2 ligand, maintaining fibroblast homeostasis,
and its absence contributes to the uncontrolled conversion of normal fibroblasts into
cancer-associated fibroblasts (CAFs) (Chen et al., 2023b). Simultaneously, the combined
utilization of single-cell transcriptomic sequencing and spatial transcriptomics furnishes
spatial characteristic insights into distinct cell subpopulations within the ESCC tumor
microenvironment (Guo et al., 2022). Consequently, this dual approach not only mitigates
the inherent limitations of spatial information loss during sample preparation in single-cell
transcriptomic sequencing but also addresses the spatial transcriptomics’ constraints
concerning single-cell resolution (Bressan, Battistoni & Hannon, 2023; Moses & Pachter,
2022; Moffitt, Lundberg & Heyn, 2022; Seferbekova et al., 2023; Tian, Chen & Macosko,
2023; Vandereyken et al., 2023; Velten & Stegle, 2023).

Tumor metabolic reprogramming significantly influences tumor initiation and
progression, displaying notable heterogeneity and variability (Li et al., 2023b; Finley, 2023).
Spatial metabolomics technology spatially characterizes metabolites and enzymes involved
in tumor metabolic reprogramming, enhancing our understanding of the complex process.
This approach aids in identifying potential metabolic vulnerabilities, thereby facilitating
the development of targeted therapies reliant on these vulnerabilities (Yuan et al., 2021;
Vicari et al., 2023). Chenlong Sun and colleagues employed their developed AFADESI-
MSI technology, enabling the mapping of diverse functional metabolites across various
metabolic pathways (He et al., 2018). Their spatial metabolomic investigation encompassed
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256 cases of cancer alongside corresponding normal tissues. The study identified notable
modifications in the proline biosynthesis, glutamine metabolism, uridine metabolism,
histidine metabolism, fatty acid biosynthesis, and polyamine biosynthesis pathways specific
to ESCC. Furthermore, the aberrant expression of six metabolic enzymes, namely PYCR2,
GLS, UPase1, HDC, FASN, and ODC, was concurrently observed throughout the ESCC
carcinogenesis process (Sun et al., 2019).

The combined application of spatial metabolomics and scRNA-seq technologies allows
for the precise detection ofmRNA transcripts and low-molecular-weightmetabolites within
tissue sections. This integrated approach not only offers mRNA transcriptional insights but
also provides valuable spatial metabolic information, thereby enhancing our understanding
of the intricate relationship between tissue metabolism and homeostasis (Vicari et al.,
2023). However, current research on the concurrent use of spatial multi-omics techniques
in esophageal cancer remains limited. Techniques such as spatial ATAC-seq and spatial-
RNA-seq joint analysis, spatial proteomics combined with spatial transcriptomics and
spatial metabolomics analysis, as well as spatial transcriptomics combined with spatial
epigenomics analysis, have not been reported in esophageal cancer research (Table 2).
Certainly, the application of these emergent spatial multi-omics technologies in esophageal
cancer will significantly advance our understanding of esophageal cancer tumor biology
and foster the development of effective therapeutic strategies.

Gastric cancer
Gastric cancer, as the third most fatal cancer originating in the stomach, predominantly
manifests as gastric adenocarcinomas, accounting for 90% of cases (Hirata et al., 2023).
These malignancies emerge from the glandular epithelium of the gastric mucosa.
Histologically classified into intestinal and diffuse types according to the Lauren system,
intestinal-type gastric adenocarcinoma prevails over the diffuse type (Hirata et al., 2023;
Thrift, Wenker & El-Serag, 2023). Typically, the former exhibits a well-defined stepwise
progression often triggered by chronic inflammatory mucosal damage, including instances
induced by Helicobacter pylori infection. On the other hand, the origin of diffuse-type
gastric cancer remains ambiguous, potentially linked to gene mutations affecting pathways
associated with cell-extracellular matrix interactions (Hirata et al., 2023; Thrift, Wenker &
El-Serag, 2023). Tumor heterogeneity poses a significant impediment in the progression
of gastric cancer therapy, such as the genetic distinctions between primary and metastatic
gastric cancer that impede the advancement of precision oncology (Hirata et al., 2023;
Röcken et al., 2021). Clinically, the diagnosis and treatment selection for gastric cancer are
typically conducted by assessing endoscopic biopsies obtained from the luminal part of
the primary tumor (‘superficial mucosa’) (Shiotani, Cen & Graham, 2013). Nonetheless,
the presence of spatial intratumoral heterogeneity within the gastric cancer tumor may
substantially influence the outcomes of these biopsies. Therefore, Sundar et al. (2021)
undertook the characterization of 64 specific subregions, including the superficial and
deep sections of the primary tumor, as well as areas of lymph node metastasis, employing
nanostring transcriptomic analysis technology (the panel comprising 770 genes). Their
findings illuminated notable heterogeneity in mRNA expression among these subregions,
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Table 2 The application of spatial profiling technologies in gastrointestinal cancer.

Tumors Spatial profiling technologies Samples Year

Esophageal squa-
mous cell carci-
noma

10x Genomics Visium spatial transcrip-
tomic sequencing, in addition to scRNA-
seq

Three patients who were diagnosed with
pathologically confirmed ESCC

2022 (Guo et al., 2022)

Esophageal squa-
mous cell carci-
noma

AFADESI-MSI A total of 256 pairs of matched human
ESCC tissue samples, including cancer
tissues, adjacent noncancerous tissues

2019 (Sun et al., 2019)

Esophageal
squamous-cell
carcinoma

10x Genomics Visium spatial transcrip-
tomic sequencing, in addition to scRNA-
seq

A total of 29 samples from esophageal
squamous cell carcinoma patients, in-
cluding normal esophagus, high-grade
intraepithelial neoplasia, and esophageal
squamous cell carcinoma

2023 (Chen et al., 2023b;
Liu et al., 2022c)

Esophageal cancer Nano-string transcriptomic analysis (Ge-
oMx WTA panel)

Six patients with low-grade intraepithe-
lial neoplasia, six patients with high-
grade intraepithelial neoplasia, and seven
patients with esophageal squamous cell
carcinoma

2023 (Liu et al., 2023)

Gastric cancer Nano-string transcriptomic analysis (the
panel of 770 genes), in addition to the
next-generation sequencing (225 targeted
genes), DNA copy number profiles by
multiplex ligation-dependent probe am-
plification.

64 gastric cancers resection samples, in-
cluding tumor superficial, primary tumor
deep and lymph node metastasis subre-
gions

2020 (Sundar et al.,
2021)

Gastric cancer Nano-string transcriptomic analysis
(the panel of 1,812 genes), in addition to
scRNA-seq and bulk RNA-seq

scRNA-seq (about 200,000 cells): 48 sur-
gical resection and biopsy samples across
31 patients with gastric cancer, ranging
from clinical stages and histologic sub-
types.

2022 (Kumar et al.,
2022)

Nanostring: 13 samples including 10 tu-
mor and three normal, 156 regions of in-
terest

Gastric cancer Microarray-based spatial transcriptomics
(ST), in addition to the mass spectrome-
try imaging-based spatial metabolomics
(SM) and lipidomics (SL)

Postoperative cancer tissue from seven
male patients diagnosed with gastric ade-
nocarcinoma

2023 (Sun et al., 2023)

SM: Two sets of tissue sections (n= 7).
SL: Two sets of adjacent sections (n= 7)
ST: Tissue sections which adjacent to the
ones used for SM and SL (n= 4)

Gastric cancer SM Primary resected gastric cancer samples
were obtained from 362 patients who un-
derwent gastrectomy between 1995 and
2005 at the Surgery Department at the
Technical University Munich (tissue mi-
croarrays were analyzed in three tissue
cores from each patient).

2022 (Wang et al., 2022)

Gastric cancer Nanostring transcriptomic analysis (the
panel of 1,850 genes)

Samples from nine patients with gastric
cancer

2023 (Park et al., 2023)

Gastric cancer ST Four gastric cancer primary tumors 2023 (Jang et al., 2023)
(continued on next page)
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Table 2 (continued)

Tumors Spatial profiling technologies Samples Year

Gastric cancer Nanostring transcriptomic analysis (the
panel of 31 genes)

130 tissue microarray cores from 49 pa-
tients

2023 (Choi et al., 2023)

Colorectal cancer ST, in addition to scRNA-seq and bulk
RNA-seq

89 samples from 20 patients underwent
scRNA-seq and eight samples from four
patients were sequenced by ST

2022 (Wu et al., 2022b)

Colorectal cancer GeoMx transcriptomics, in addition to
scRNA-seq and CyCIF.

93 FFPE CRC human specimens 2023 (Lin et al., 2023)

Colorectal cancer ST, in addition to scRNA-seq and Ge-
oMx digital spatial profling (77 proteins)

ST to a specimen of CRC 2022 (Galeano Niño et
al., 2022)

Oral squamous cell
carcinoma

ST, in addition to scRNA-seq and Ge-
oMx digital spatial profling (77 proteins)

ST to a specimen of OSCC 2022 (Galeano Niño et
al., 2022)

Colorectal cancer Matrix assisted laser desorption ioniza-
tion (MALDI) image-guided proteomics

Eight fresh human colorectal carcinoma
liver metastases

2014 (Turtoi et al., 2014)

Colorectal cancer Digital Spatial Profiling (DSP), 84 genes
at the transcriptional level and 40 at the
protein level in all ROIs

Tumor specimens from four patients 2021 (Wang et al.,
2021b)

Colorectal cancer Digital Spatial Profiling (DSP), 1,825
CTA genes.

5 µm thick FFPE sections of eight differ-
ent patients

2023 (Roelands et al.,
2023)

Colorectal cancer Spatial lipidomics by MALDI-MSI A colorectal cancer tissue microarray
(TMA, n= 30)

2021 (Denti et al., 2021)

Colorectal cancer Digital Spatial Profiling (DSP), 40 at the
protein level

36 resected colorectal tumor specimens 2023 (Levy et al., 2023)

Colorectal cancer Digital Spatial Profiling (DSP), about
1,400 genes at the transcriptional level

Paired epithelial and non-epithelial re-
gions from three patients

2021 (Pelka et al., 2021)

Colorectal cancer ST, in addition to scRNA-seq and
metabolic profiling

Tumor specimens from six patients 2023 (Fleischer et al.,
2023)

Colorectal cancer ST (10x Genomics Visium), in addition
to scRNA-seq

Tumor specimens from four patients 2022 (Qi et al., 2022)

Colorectal cancer ST (10x Genomics Visium), in addition
to scRNA-seq

Tumor specimens from six patients 2023 (Wang et al., 2023)

implying that regional lymph node metastases are likely to originate from the deeper
segments of the primary tumor (Sundar et al., 2021). Furthermore, the integration of
nanostring transcriptomic analysis technology with scRNA-seq by Kumar et al. (2022)
yielded an extensive database featuring over 2 million single-cell sequencing profiles for
gastric cancer. This resource provides a unique opportunity to comprehend the cellular
subtypes within gastric cancer tumors, the intricate composition of the gastric cancer tumor
microenvironment based on subtypes, and the intricate cellular interactions within the
gastric tumors. Consequently, the synergistic deployment of single-cell omics and spatial
transcriptomics emerges as an effective and promising research strategy in comprehending
the dynamics of occurrence and development of gastric cancer.

In addition to the synergy between spatial transcriptomics and single-cell multi-omics,
a combination of various spatial multi-omics technologies can also be used to facilitate
the elucidation of tumor metabolic reprogramming. Sun et al. (2023) conducted spatial
metabolomics, spatial lipidomics, and spatial transcriptomics analyses on adjacent frozen
sections of tumor tissue from patients with gastric adenocarcinoma. Their findings
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underscore the value of integrating spatial metabolomics, spatial lipidomics, and spatial
transcriptomics for the investigation of the markedly heterogeneous tumor tissues in
gastric cancer. This integrative methodology yields a comprehensive depiction of the
tumor’s metabolic landscape, emphasizing the intricate interplay between metabolites
and lipids within the metabolic network (Sun et al., 2023; Wang et al., 2022). Moreover,
it enables the visualization of gene regulatory networks linked to metabolite and lipid
expression within the framework of tumor metabolic reprogramming. According to
existing research, nanostring transcriptomic analysis has shown greater prevalence in
human gastric cancer samples compared to other spatial omics technologies, as indicated
in Table 2. Anticipated increases in the publication of spatial multi-omics research findings
on human gastric cancer samples are expected. These resources promise to substantially
enhance our comprehension of the development and progression of human gastric cancer,
potentially leading to the discovery of novel treatment modalities.

Colorectal cancer
Colorectal cancer (CRC), known as bowel, colon, or rectal cancer, originates in the colon or
rectum (components of the large intestine) (Spaander et al., 2023; Bando, Ohtsu & Yoshino,
2023). The application of spatial multi-omics technology in colorectal cancer research is
rapidly deepening our understanding of this disease.

Despite our comprehensive understanding of the genomic determinants of colorectal
cancer, the impact of the spatial arrangement of the tumor microenvironment and
intratumoral heterogeneity on the initiation of colorectal cancer remains incomplete.
Spatial tumor mapping collects detailed information about cellular molecules and
morphology in a 3D context, integrating it with tumor genetics (Rozenblatt-Rosen et
al., 2020; Lin et al., 2023). This process sheds light on the tumor microenvironment
and intratumoral heterogeneity. Researchers have utilized the MALDI-MSI to identify
consistent, distinct protein heterogeneity patterns in human liver metastases of colorectal
cancer (Turtoi et al., 2014). Moreover, the amalgamation of spatial multi-omics technology
with scRNA-seq techniques enables the characterization of heterogeneity in cells,
molecules, and morphology within the colorectal cancer tumor microenvironment.
Lin et al. (2023) employed high-plex cyclic immunofluorescence (CyCIF) technology in
conjunction with scRNA-seq and GeoMx transcriptomics to characterize 93 FFPE CRC
human specimens, constructing a spatial tumor map. Their findings demonstrated the
stratification of molecular states (protein markers) and tissue morphologies (histotypes)
within colorectal cancer tissue, ranging spatially from cell sizes to several millimeters.
Additionally, cell populations that are typically studied in a 2D manner at the local level
are frequently organized into large, interconnected 3D structures. Moreover, the combined
application of scRNA-seq and spatial transcriptomics techniques in characterizing
colorectal cancer liver metastases unveiled a significant temporal and spatial remodeling
of the immune microenvironment during the metastatic progression (Wu et al., 2022b).
Noteworthy observations included an enrichment of immunosuppressive cells and the
identification of highly metabolically active MRC1+ CCL18+ M2-like macrophages
at the metastatic site. These macrophages exhibited a terminal differentiation state,
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showcasing a robust metabolic phenotype and displaying sensitivity to neoadjuvant
chemotherapy. These findings enhance our understanding of how immune cells within
the tumor microenvironment spatially orchestrate the progression of colorectal cancer
liver metastasis. Moreover, the presence of diverse microorganisms in the heterogeneous
tumor microenvironment is pertinent to tumor initiation and development, amenable to
investigation through scRNA technology and spatial transcriptomics. For example, the
combined utilization of scRNA technology and spatial transcriptomics has unveiled the
diversity of tumor microbiota in human oral squamous cell carcinoma and colorectal
cancer (Galeano Niño et al., 2022). Despite this, the current utilization of spatial multi-
omics technology in the context of colorectal cancer remains constrained (Table 2). We
believe that the increasing application of multi-omics technology in colorectal cancer will
rapidly deepen our understanding and treatment of this disease.

The following is a summary of specific molecular markers for the diagnosis or treatment
of GI tumors revealed by multi-omics techniques (Table 3).

CONCLUSIONS
The complexity of human diseases unfolds within intricate three-dimensional
environments. The advent of spatial multi-omics technology has expedited our
comprehension of disease onset and progression, fostering novel avenues for treatment
development. Nonetheless, challenges persist in spatial multi-omics technology,
encompassing limited single-cell resolution, high costs, and considerable application
thresholds. While the combined usage of spatial multi-omics technology, single-cell multi-
omics technology, and bulk multi-omics technology can address some shortcomings, such
as challenges in single-cell resolution and low molecular capture efficiency, intricate
bioinformatics analysis and significant expenses remain additional barriers. In the
foreseeable future, the widespread commercialization of spatial multi-omics technology,
single-cell multi-omics technology, and bulk multi-omics technology will significantly
propel the advancement and utilization of spatial multi-omics technology, enriching our
grasp of disease dynamics. The combination of spatial omics technologies and traditional
technologies in gastrointestinal tumorswill take advantage of the spatial resolution of spatial
omics technologies and the convenience of traditional technologies. Bulk RNA seq and
standard proteomics have higher efficiency and lower cost when processing a large number
of samples, which is suitable for large number of samples to be screened and analyzed for
research, but usually mix the analysis of whole tissue samples, which may result in the loss
of information about the heterogeneity of different regions within a tumor (Kuksin et al.,
2021; Laurinavicius et al., 2016). The in situ analysis provided by spatial omics technologies
provides reliable information to reveal the original space of the host and cell-molecule
interactions (Galeano Niño et al., 2022). Bulk RNA seq and standard proteomics have a
wider coverage, while spatial omics technologies relies on specific high-end equipment to
obtain more accurate spatial information in a specific region, which will greatly reduce its
coverage width, convenience and popularity. This will greatly reduce its coverage width,
convenience and popularity, we can utilize the broad coverage of classical omics techniques
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Table 3 Specific molecular markers of interest to diagnose or treat specifically GI cancer revealed by the modernmulti-omics techiques.

Multi-omics techiques Technical field Specific molecular markers Research significance

Spatial metabolomics+
Spatial lipidomics

Arginine, Proline, Glutamate,
Glutamine, fatty acid:Palmitic
Acid(FA-16:0), Arachidonic Acid
(FA-20:4)

Lipid and metabolites
of molecular diagnosis
and treatment to provide
value (Sun et al., 2023)AFADESI-MSI+MALDI-

MSI Phospholipids:
Phosphatidylcholine 32:0,
Phosphatidylethanolamine
34:0, Phosphatidylcholine 34:1,
Phosphatidylethanolamine
36:1, Phosphatidylinositol 34:1,
Phosphatidylinositol 36:1
glucose metabolism:Lactic Acid,
Succinic Acid, Malic Acid

Spatial transcriptomics Glutamate+ Glutamine:GLUL,
GLS, Arginine+ Prolin:ASS1,
ALDH18A1 , PYCR, OAT, AG-
MAT, ODC1, SRM, SMS

Key genes that regulate
metabolic pathways (Sun et
al., 2023)

fatty acid:SCD, FADS, ELOVL
Phospholipids:ETNK1, CHKA,
PLD, LYPLA2
glucose metabolism:NDUFS6,
NDUFA6, NDUFAB1, NDUFB4,
NDUFB3, COX5A, COX7B,
COX7A2, UQCR11, UQCR10,
UQCRQ, ATP5MC3, ATP5F1E,
ATP5PF

DESI-MSI+ Immunohisto-
chemistry (IHC)+ Quantita-
tive reverse transcriptase-PCR
(qRT-PCR)

Spatial metabolomics+
Standard proteomics+
Standard transcriptomics

ACLY Esophageal adenocarci-
noma of lipid metabolic
pathway in cancer tar-
gets (Abbassi-Ghadi et al.,
2020)

GeoMx DSP+ Immunohis-
tochemistry (IHC)+ Im-
munofluorescence (IF)+
Western Blot

Spatial transcriptomics+
Standard proteomics

TAGLN2, CRNN Potential predictors of the
risk of ESCC (Liu et al.,
2023)

DSP+ Immunohistochem-
istry (IHC)+mIF+Western
Blot+ Gene ChIP Assay

Spatial transcriptomics+
Spatial Proteomics+ Stan-
dard proteomics

GLI, PD-L1, mTOR, Arg1,
CD66b, VISTA, IDO1

In gastric cancer, immune
escape and immune po-
tential therapeutic value of
protein (Koh et al., 2021)

scRNA-seq+ DSP+ Im-
munohistochemistry (IHC)+
Western Blot

Single-cell transcriptomics
+ Spatial transcriptomics
+ Standard proteomics

KLF2, INHBA, FAP, PLVAP,
RGS5

Potential therapeutic tar-
gets in gastric cancer (Ku-
mar et al., 2022)

(continued on next page)
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Table 3 (continued)

Multi-omics techiques Technical field Specific molecular markers Research significance

scRNA-seq+ Spatial tran-
scriptomics+ Immunohisto-
chemistry (IHC)

Single-cell transcriptomics
+ Spatial transcriptomics
+ Standard proteomics

ALKBH1, AQP1, PECAM1 In gastric cancer, the di-
agnostic tools, prognostic
evaluation index, the po-
tential of molecular drug
targets and immunother-
apy (Chang et al., 2024)

CD83, TNFRSF4, TNFSF14,
VEGFR2, ADA, ARG1, HO-1

Forecast and manage the
potential adverse reactions
of protein in the process
of esophageal cancer treat-
ment (Zhang et al., 2023)Bulk RNA-seq+Whole-

Exome Sequencing (WES)+
mIF+ Immunohistochem-
istry (IHC)

Genomics+
Transcriptomics+ Spatial
proteomics

PD-L1, TMB, TNB, CD4+ T Potential proteins with pre-
dictive response and prog-
nostic value in esophageal
cancer (Zhang et al., 2023)

scRNA-seq+mIHC+West-
ern Blot

Single-cell transcriptomics
+ Spatial proteomics+
Standard proteomics

TGFB1, HSPB1 Potential molecular
markers for gastric
cancer chemotherapy
resistance (Che et al., 2024)

DSP+ IMC+ scRNA-seq+
IHC

Spatial genomics+ Single-
cell transcriptomics+
Standard proteomics

MUC4, IFITM1, CD81,
NOTCH3, PDGFRB, Thy1,
Hsp47, CD47-SIRP α

Clinically relevant
biomarkers and
therapeutic targets for
early development and
progression (Roelands et
al., 2023)

ISH+mIHC/mIF+ scRNA-
seq

Spatial proteomics+
Single-cell transcriptomics

Stem Cell Index, LGR5, ANXA1 Colon cancer chemother-
apy response potential
evaluation index:Stem Cell
Index (Vasquez et al., 2022)

mIHC+ scRNA-seq+ Spatial
transcriptomics

Spatial proteomics+ Spa-
tial transcriptomics+
Single-cell transcriptomics

MRC1+ , CCL18+M2-like
macrophages, IL4I1, MIF

Potential therapeutic tar-
get molecules related to
liver metastasis (Wu et al.,
2022b)

scRNA-seq+ Spatial tran-
scriptomics+ Immunofluo-
rescence (IF)

Single-cell transcriptomics
+ Spatial transcriptomics
+ Spatial proteomics

FAP+ , SPP1+ Treatment of potential tar-
get cell interactions (Qi et
al., 2022)

mIHC/mIF+ Spatial tran-
scriptomics+Western Blot
+ Immunoprecipitation (IP)
+ Quantitative reverse tran-
scription polymerase chain
reaction(qRT-PCR)

Spatial proteomics+ Spa-
tial transcriptomics+
Standard proteomics+
Standard transcriptomics

USP14, IDO1, TRIM21 Immunotherapy and
surveillance of immune
escape (Shi et al., 2022)

scRNA-seq+mIHC+ Im-
munohistochemistry (IHC)
Quantitative real-time reverse
transcription PCR (qRT-PCR)

Spatial proteomics
+ Single-cell
transcriptomics+
Standard transcriptomics

TCF-1, γ δ T-IELs Immunotherapy and prog-
nostic value (Yakou et al.,
2023)

mIHC+ RNA-seq Classical omics techniques
+ Spatial proteomics

XBP1 Value of potential thera-
peutic targets (Zhao et al.,
2021)
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for coarse screening, and then combine with spatial omics technologies for more accurate
analysis of microscopic information. bulk RNA seq and standard proteomics are suitable
for rapid screening and identification of relevant gene expression patterns, while spatial
omics technologies is more suitable formicroscopic perspectives, for example, spatial omics
technologies is more suitable for the analysis of spatial information. The development of
classical omics techniques is relatively mature, while spatial omics technologies is a new
and rapidly developing technology that requires a long period of application exploration,
and the respective features of classical omics techniques and spatial omics technologies
complement each other and are expected to play a more functional role. The respective
features of classical omics techniques and spatial omics technologies are complementary
to each other and are expected to fulfill more functions.

In the context of digestive tumor diseases, the application of spatial multi-omics
technology is still limited, and the types of digestive tumor diseases involved are also
restricted, with relatively fewer studies involving the application of various multi-omics
technologies. The molecular mechanisms underlying the occurrence and development
of digestive tumor diseases involve multiple aspects such as genomics, transcriptomics,
epigenetics, andmetabolomics. Therefore, efforts to comprehensively analyze themolecular
mechanisms related to digestive tumor diseases from multiple dimensions will bring
us closer to the truth of the occurrence and development of digestive tumor diseases.
Animal models related to digestive tumor diseases are indispensable tools for studying
the occurrence and development processes. Nevertheless, to date, there have been
few studies on the application of spatial multi-omics technology in animal models of
digestive tumor diseases. Ultimately, the extensive integration of spatial multi-omics
technology in both clinical and animal model samples will significantly enrich our
understanding of the molecular underpinnings of digestive tumor diseases. The more
complex cellular complexity and heterogeneity in gastrointestinal tumors are involved in
a more complex tumor microenvironment, nowadays immunotherapy is a hotspot for
development, and a full understanding of the tumor microenvironment is essential for
the development of immunotherapy, and the use of spatial multi-omics technology in
the cell cell–cell heterogeneity and cell–cell interaction provides a new perspective, the
tumor microenvironment involves the intercellular communication and interactions are
Quite complex, and the fine positioning, spatial location information between cells and
cells or tissues which is quite important, through the development of spatial multi-omics
technology will also open up the micro three-dimensional world of spatial information
acquisition and analysis, so that the location, behavior, function, and interactions between
individual cells become clear. However, spatial multi-omics technology is an emerging
field of technology, which requires special refined equipment and relatively high cost, and
many of the technologies are still in the early stage, which need to be further optimized
and standardized (Bressan, Battistoni & Hannon, 2023), and because it involves multi-
level location information, the amount of three-dimensional information involved is
huge, which still requires complex bioinformatics analysis tools to integrate and analyze.
Although spatial multi-omics technology has also been applied in clinical research with
remarkable results in recent years, there is still a lack of large-scale clinical studies to validate
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the practical role in the diagnosis and treatment of gastrointestinal tumors in the face of
the heterogeneity of the microenvironment in complex gastrointestinal tumors (Wu et al.,
2022a). Despite the great potential of spatial multi-omics technology in gastrointestinal
tumor research, further technological development and optimization are needed for better
application in clinical practice. It is expected that these limitations and unresolved issues
will be resolved as technology advances and costs decrease.

Abbreviations

NGS Next-generation sequencing
HDST High-Definition Spatial Transcriptomics
scRNA-seq Single-cell RNA sequencing
DSP GeoMx Digital Spatial Profiler
DBiT-seq Deterministic Barcoding in Tissue for spatial omics sequencing
ISS In Situ Sequencing
ISH In Situ Hybridization
FISSEQ Fluorescence In Situ Sequencing
smFISH single-molecule fluorescence in situ hybridization
SeqFISH Sequential Fluorescence In Situ Hybridization
MERFISH Multiplexed Error-Robust Fluorescence In Situ Hybridization
MSI Mass spectrometry imaging
MALDI-MSI Matrix assisted laser desorption ionization-mass spectrometry

imaging
ROIs Regions of interest
MIBI Multiplexed Ion Beam Imaging
MIBI-TOF Multiplexed Ion Beam Imaging-Time of Flight
FFPE Formalin-fixed paraffin-embedded
CODEX Co-Detection by Indexing
Da Daltons
DESI-MSI Desorption electrospray ionization-mass spectrometry imaging
SIMS-MSI Secondary ion-mass spectrometry imaging
LA-ESI-MSI Laser ablation electrospray ionization-mass spectrometry imaging
ESCC Esophageal squamous cell carcinoma
EAC Esophageal adenocarcinoma
ESCC Esophageal squamous cell carcinoma
ESPL Esophageal squamous precursor lesions
NE Normal esophagus
LGIH Low-grade intraepithelial neoplasia
HGIH High-grade intraepithelial neoplasia
CAFs Cancer-associated fibroblasts
CRC Colorectal cancer
AFADESI-MSI Ambient Flow-Assisted Desorption Electrospray Ionization Mass

Spectrometry Imaging
IHC Immunohistochemistry
qRT-PCR Quantitative reverse transcriptase-PCR
mIF multiplex immunofluorescence
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mIHC Multiplex immunohistochemical
IMC Imaging Mass Cytometry
IF Immunofluorescence
IP Immunoprecipitation
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