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ABSTRACT
Background. As a key agricultural region in China, Heilongjiang Province has
experienced significant carbon emissions over the past few decades. To understand
the underlying factors and future trends in these emissions, a comprehensive analysis
was conducted from 1993 to 2030.
Methods. The agricultural carbon emissions from 1993 to 2020 were estimated using
the emission factor method. To analyze the influencing factors and future trends of
these emissions, the study employed the Logarithmic Mean Divisia Index (LMDI) and
integrated it with the Stochastic Impacts by Regression on Population, Affluence, and
Technology (STIRPAT) model.
Results. Results showed that (1) the agricultural carbon emissions in Heilongjiang were
primarily driven by rice cultivation, followed by fertilizer production and irrigation
electricity. (2) The economic and labor structure effects were the main driving factors
of agricultural carbon emissions, while the population, demographic, and intensity
effects were the main inhibitors. (3) Agricultural carbon emissions in Heilongjiang
Province peaked in 2016 with 69.6 Mt CO2-eq and could subsequently decline by
−3.92% to −4.52% between 2020 and 2030 in different scenario simulations. In the
future, Heilongjiang Province should prioritize the reduction of agricultural carbon
emissions from rice production. Adjusting the planting structure, managing the layout
of rice paddies, and promoting the cultivation of dry rice varieties would significantly
contribute to mitigating agricultural carbon emissions.

Subjects Agricultural Science, Climate Change Biology, Environmental Impacts
Keywords Logarithmic mean Divisia index (LMDI), STIRPAT model, Emission reduction
strategies, Agricultural activity

INTRODUCTION
Human activities are the primary contributor to climate change (IPCC, 2021). Agricultural
carbon emissions are intricately linked to climate change because agricultural practices
generate carbon dioxide and constitute a significant source of non-carbon dioxide
greenhouse gas (GHG) emissions (Melillo et al., 2002). The Sixth Climate Assessment
Report by the United Nations Intergovernmental Panel on Climate Change (IPCC)
revealed that anthropogenic GHG emissions from the agriculture and land use sector
(AFOLU) contributed 13–21% of the total GHG emissions during 2010–2019 (IPCC,
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2022). Furthermore, agricultural production is responsible for average annual emissions of
CH4 and N2O amounting to 157 ± 47.1 Mt and 6.6 ± 4.0 Mt, respectively (IPCC, 2022).
As a major agricultural nation, China has seen a 1.6-fold increase in grain production over
the past two decades (NBS, 2022). However, this surge in agricultural output has been
accompanied by increased carbon emissions, primarily attributed to the mechanization
of farming practices and the application of fertilizers. Agriculture accounts for 24% of
total GHG emissions in China (Shi et al., 2023), the dual challenges of emissions reduction
and food security are paramount. In response, China escalated its nationally determined
contributions, pledging to reach peak carbon emissions before 2030 and achieve carbon
neutrality by 2060 (UNFCCC, 2021). Each province planned its own emission reduction
strategy. As the top grain producer inChina,Heilongjiang Province faces the dual challenges
of neutralizing agricultural carbon and safeguarding food production. Therefore, to provide
scientific guidance for the future, it is important to identify the changing characteristics of
agricultural production in Heilongjiang over time and analyze the elements that influence
it.

Currently, the estimation of carbon emissions from the agricultural sector is well-
established. The IPCC carbon emissions coefficient method is the most popular for
estimating national and regional agricultural carbon emissions. This method is convenient
for calculating agricultural activities in terms of carbon emissions based on relevant
coefficients. Wu et al. (2023a) have estimated the total carbon emissions from crop
production in China by IPCC carbon emissions coefficient method and observed it
peaked at 262.65 Mt in 2015. However, the selection of coefficients in a few studies may not
have been appropriate, leading to errors in assessing carbon emissions.Du et al. (2019) and
Tian & Zhang (2013) chose the carbon emission coefficient for fertilizer production based
on a study from the United States, which may have resulted in a low assessment (Shan et
al., 2023). Therefore, the coefficients based on the local situation in China were selected
for a more accurate assessment. Additionally, studies have assessed carbon emissions from
plowing and agricultural diesel use (Ding et al., 2019; Huang & Zhang, 2022). The carbon
emissions from plowing are from the use of diesel in machinery, which is double counting,
and only carbon emissions from diesel must be assessed.

Further studies to clarify the influencing factors and project changing trends in
agricultural carbon emissions could help develop targeted carbon reduction strategies.
The Logarithmic Mean Divisisa Index (LMDI) method has been widely used to identify
the factors influencing carbon emissions owing to its convenient analysis process and data
availability (Ang, 2015). Li, Bai & Xiao (2017) decomposed agricultural carbon emissions
in Heilongjiang, China, and observed that, except for the carbon emission intensity
effect, the effects of agricultural income, employment structure, and population acted
as positive driving factors of agricultural carbon emissions during 1996–2013. However,
agricultural carbon emissions in Heilongjiang have declined in recent years (Wu et al.,
2023a). In addition, the population of Heilongjiang has decreased by 18.5% over the last
decade (NBS, 2022). The relationship between the changes in these relevant factors and
agricultural carbon emissions in Heilongjiang deserves further study.
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Similar to the LMDI method, the Stochastic Impacts by Regression on Population,
Affluence, and Technology (STIRPAT) model is another useful tool for estimating the
driving forces of carbon emissions (Rosa & Dietz, 1998; York, Rosa & Dietz, 2003). The
LMDI is mostly used as a retrospective tool, such as for the impact of structural changes,
whereas the STIRPAT model can predict environmental impacts based on key driving
forces. These key forces reflect the policy implementation well. Thus, the advantage of
the STIRPAT model is its ability to provide recommendations for policy improvements,
together with effective predictions. The STIRPAT model has been used in many studies
to examine the impact factors of carbon emissions at the national or regional level (Wang
et al., 2013; Wu et al., 2021) and to predict carbon emission trends in particular industry
sectors (Vélez-Henao, Vivanco & Hernández-Riveros, 2019). Chinese research has estimated
the mining industry (Wei et al., 2023a), building sector (Zhu et al., 2022), and household
carbon emission factors (Wang et al., 2021) based on the STIRPAT model to determine
the optimal emission reduction strategy for China. The flexibility of the STIRPAT model
allows the consideration of more policy factors than the LMDI model, and the application
of the STIRPAT model in conjunction with scenario simulation is an important advantage
(Vélez-Henao, Vivanco & Hernández-Riveros, 2019; Wei et al., 2023b). The 14th Five-Year
Plan and Outline of Vision 2035 of Heilongjiang mentions a specific development plan
for the agricultural sector that provides useful data for future scenario analyses using the
STIRPATmodel. The prediction results indicated the extent of the impact of policy changes
on agricultural carbon emissions in Heilongjiang Province.

Because of this, this study used Heilongjiang Province as an example and
comprehensively analyzed agricultural carbon emissions from 1993 to 2020. Moreover,
we identified the influencing factors and predicted future trends in different scenarios.
Decomposition and prospective models of agriculture in Heilongjiang are universal in
China. The choice of driving factors and construction of the STIRPAT model in the
agricultural sector may provide a reference for other regions.

MATERIALS & METHODS
Study area
Heilongjiang Province is located in the northeast of China (43◦26′–53◦33′N, 121◦11′–
135◦05′E)with an area of 45.25× 104 km2. Heilongjiang has a continentalmonsoon climate;
the yearly average precipitation is 536 mm and the annual average temperature is 5.5 ◦C
(Wu et al., 2023b; Xi et al., 2023). The gross output value of agriculture in Heilongjiang
has developed from 29.99 billion Yuan in 1993 to 595.71 billion CNY in 2020, with an
average annual growth rate of 11.7%, higher than the national growth rate of 9.82%. In
2020, the total grain production in Heilongjiang reached 75.4 Mt, accounting for 11.3% of
the national grain production, which was the highest across the country. Commercial grain
accounts for 38.7% of the production, which is the highest amount across the country. The
mechanization rate of the major crops (plowing, planting, and harvesting) was above 98%,
which was 30% higher than the national average. Rice, maize, and soybean are the main
crops in Heilongjiang Province (NBS, 2022).
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Figure 1 Diagram of evaluation scope framework.
Full-size DOI: 10.7717/peerj.17856/fig-1

Table 1 Emission factors of agriculture inputs used in the evaluation.

Items Emission factors Unit Sources

Rice cultivation 168.0 Kg/ha NDRC (2011)
Machinery use 0.8443 tC/t Yan et al. (2022) and IPCC (2006)
N fertilizer production 2.116 tC/t N Chen, Lu & Wang (2015)
P fertilizer production 0.636 t C/t P205 Chen, Lu & Wang (2015)
K fertilizer production 0.14 t C/t K2O Chen, Lu & Wang (2015)
Compound fertilizer production 1.77 Kg C/kg Wu & He (2021)
Irrigation electricity 0.74 t C/ ha Cheng et al. (2011)
Pesticide production 16.75 kg C/kg Zhang et al. (2016)
Agricultural film production 22.7 kg C/kg Huang et al. (2016)

Carbon emissions from agriculture
In this study, the emissions from chemical fertilizers, pesticides, agricultural plastic films,
machinery, and irrigation were analyzed.

Ctotal=

n∑
i

Ei×EFi×GWPi (1)

where Ctotal is the total carbon emissions from agricultural activities, Ei is the input
amount of agricultural activity items, and n is the type of activity, which includes rice
cultivation, cropland emissions, machinery use, irrigation electricity, fertilizer production,
pesticide production, and agricultural film production (Fig. 1). The rice cultivated area;
effective irrigated area; effective amounts of N, P, K, and compound fertilizers; amounts of
pesticides; and agricultural film from 1993 to 2020 were all obtained from the Heilongjiang
Statistical Yearbooks (HLJBS, 1993–2020). EF i is the carbon emission factor, i, as described
in Table 1. GWP i is the warming potential of GHG emissions from agricultural activities,
and CH4 and N2O have a GWP of 27.2 and 273 times that of CO2 on a 100-year time scale
(IPCC, 2021).

Farmland N2O emissions due to nitrogen fertilizer application were obtained using
Eqs. (2)–(5).
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EN2O =
∑

(Ninput ×EF) (2)

Ninput =Ndirect +Nindirect (3)

Ndirect =Nfertilizer×EFdirect (4)

Nindirect =Ndirect ×10%×0.01+Ndirect ×20%×0.0075 (5)

where EFdirect is 0.0114 kgN2O-N.
The Mann-Kendall (MK) test was used to analyze the time-series trends of carbon

emissions (Khambhammettu, 2005; Wang et al., 2022). We first identified the years with
the maximum carbon emissions of each agricultural activity and total carbon emissions
and then conducted the MK test on changes in emissions from the maximum year to 2020
and the period 1993–2020, 2000–2020, and 2010–2020.

Decomposition of agricultural carbon emissions factors
The Logarithmic Mean Divisia Index (LMDI) decomposition method was employed to
analyze the evolution of agricultural GHG emissions in Heilongjiang Province from 1993
to 2020. We constructed a specific LMDI decomposition Eq. (6) for agricultural carbon
emissions based on Kaya’s identity (Kaya, 1989).

C =
C
Y
×

Y
PR
×

PR
P
×P =CI×EI×SI×DI (6)

where C represents the agricultural carbon emissions, Y represents the gross value of
agricultural production, PR represents the population working in agriculture, and P
represents the total population. CI = C/Y represents the intensity effect, which refers
to carbon emissions per unit of the gross value of agricultural production. EI = Y /PR
represents the economic effect, which refers to the share of unit labor input in the economic
output of the agricultural sector; SI = PR/P represents the labor structure effect, which
refers to the percentage of the total population working in the agricultural sector; and
DI = P represents the demographic effect. Agricultural carbon emissions in the past and t
periods were set as C0 and Ct , and C is the change in agricultural carbon emissions from
the base period to period t . The effects of agricultural carbon emissions can be decomposed
as follows.

Intensity effect1CI =
∑ Ct −C0

lnCt − lnC0
ln
CIt
CI0

(7)

Economic effect1EI =
∑ Ct −C0

lnCt − lnC0
ln
EIt
EI0

(8)

Labor structure effect1SI =
∑ Ct −C0

lnCt − lnC0
ln
SIt
SI0

(9)
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Demographic effect1DI =
∑ Ct −C0

lnCt − lnC0
ln
DIt
DI0

(10)

1C =Ct −C0=1CI+1EI+1SI+1DI . (11)

STIRPAT model for agricultural carbon emission trend prediction
Standard STIRPAT model
Considering the three key driving forces: population, affluence, and technology based
on the refined STIRPAT model (York, Rosa & Dietz, 2003) and factors chosen by Qiu
et al. (2022) and Yang et al. (2023). We used rural population (P), GDP per capita (A),
intensity of agricultural carbon emissions (T), gross power of agricultural machinery (M),
and number of technology patents (S) as specific driving factors. The agricultural carbon
emissions (C) were predicted as follows:

C = aPb
×Ac
×T d
×M f

×Sg ×e. (12)

The STIRPAT model can convert all factors to natural logarithmic form as follows:

lnC = lna+blnP+ clnA+dlnT+ flnM+glnS+ lne (13)

where a is a constant, and the driving factor coefficients of b,c,d,f , and d refer to the
percentage change in C in response to a 1% change in the driving factor with others held
constant.

Partial correlation analysis
The partial correlation coefficients between rural population (P), GDP per capita (A),
intensity of agriculture carbon emissions (T), gross power of agricultural machinery (M),
and agricultural carbon emissions (C) are −0.711, 0.939, −0.868, and 0.970, respectively.
The probabilities of significance (two-sided) tests are all below 1%, indicating that GDP per
capita and gross power of agricultural machinery are significantly positively correlated with
agricultural carbon emissions and that rural population, intensity of agricultural carbon
emissions, and number of technology patents are significantly negatively correlated with
agricultural carbon emissions.

Modeling the influencing factors of carbon emission
Using the principal component analysis to reduce the dimensionality of lnP, lnA, lnT, lnM,
and lnS, two principal components (F1 and F2) were extracted that explained 98.677%
of the original variables (Table 2), and the significance test values were less than 0.01.
Meanwhile, the relationship between FAC1, FAC2, and FAC3 and the original variables is
obtained as

F1=−0.462× lnP+0.801× lnA−0.721× lnT+0.893× lnM (14)

F2= 0.882× lnP−0.595× lnA+0.675× lnT−0.433× lnM (15)
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Table 2 Principal component analysis of the total explained variance.

Component 1 2 3 4

Eigenvalue 3.741 0.206 0.048 0.005
Variance contribution rate % 93.537 5.139 1.21 0.113Initial eigenvalue

Accumulative contribution rate % 93.537 98.677 99.887 100
Eigenvalue 3.741 0.206
Variance contribution rate % 93.537 5.139Extract sum of square loadings

Accumulative contribution rate % 93.537 98.677
Eigenvalue 2.172 1.775
Variance contribution rate % 54.299 44.378Rotation sum of square loadings

Accumulative contribution rate % 54.299 98.677

Using lnI as the dependent variable and F1 and F2 as explanatory variables, second-order
least squares regression analyses were performed to obtain the equations for the principal
components and the dependent variable, I , as follows:

lnI = 1.438×F1+1.642×F2−3.595R2
= 0.970,F = 408.681,P < 0.001. (16)

The Eq. (17) for the factors influencing agricultural carbon emissions in Heilongjiang
from 1993 to 2020 can be transformed from (Eq. 14) and (Eq. 15).

lnI = 0.784× lnP+0.175× lnA+0.072× lnT+0.574× lnM−3.595. (17)

Therefore, the multivariate nonlinear STIRPATmodel for agricultural carbon emissions
in Heilongjiang can be represented by Eq. (18). The trends of the simulations from the
STIRPAT model and the estimated values were generally similar (Fig. 2), indicating that
they can be used for the projection of agricultural carbon emissions.

I = e−3.595×P0.784
×A0.175

×T 0.072
×M 0.574. (18)

Scenario analysis setting
To analyze the impact of different development paths and policy preferences on agricultural
carbon emissions inHeilongjiang, three scenarios based on the adjustments to the 14th five-
year plan and outline of vision 2035 (https://www.ndrc.gov.cn/fggz/fzzlgh/dffzgh/202106/
t20210628_1284318.html) were constructed: (i). Business as usual (BAU) scenario: This
scenario follows the current emission reduction, economic development, and urbanization
rates deployed in Heilongjiang’s 14th Five-Year Plan and the outline of Vision 2035.
Heilongjiang has achieved a machinery target with a 98% mechanization rate in farming.
Therefore, the growth rate of machinery was set to zero. (ii). Intensity optimization
scenario: This scenario maintains the economic development and urbanization rate in
Heilongjiang’s 14th Five-Year Plan, outlines Vision 2035 and improves carbon intensity
by 20%. (iii). Slowdown in the economic development scenario: This scenario slows the
economic growth and urbanization rate by 20% and improves the carbon intensity by 20%.
Table 3 describes the parameters of the three scenarios.
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Figure 2 Comparison between the estimated values and fitted values of carbon emissions.
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Table 3 Parameters in each scenario.

Scenarios Period Growth rate %

P A T M

2020–2025 −1.35 5.50 −4.84 0.00
Business as usual scenario

2026–2030 −1.08 4.50 −4.50 0.00
2020–2025 −1.35 5.50 −5.80 0.00

Intensity optimization scenario
2026–2030 −1.08 4.50 −5.40 0.00
2020–2025 −1.08 4.40 −5.80 0.00Slowdown in economic develop-

ment scenario 2026–2030 −0.86 3.60 −5.40 0.00

RESULTS
Agricultural carbon emissions
Carbon emissions from agricultural activities in Heilongjiang Province showed an overall
increasing trend, peaking in 2016 at 69.6 Mt CO2-eq before declining to 64.7 Mt CO2-eq in
2020 (Fig. 3). The process can be divided into four stages. The first stage was from 1993 to
1997, which was the initial stage of increase with an average annual growth rate of carbon
emissions of 13.3%. Subsequently, there was a stationary phase from 1998 to 2003, followed
by a persistent increase from 2004 to 2016, during which the average annual growth rate of
carbon emissions was 5.8%. After 2016, agricultural carbon emissions gradually decreased
in the fourth stage. The trends in carbon emissions per unit hectare were similar to those of
the total agricultural emissions, which increased from 2.3 to 4.3 t CO2-eq · ha−1 between
1993 and 2020. The two peaks were 4.7 t CO2-eq · ha−1, which occurred in 2013 and 2017
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(Fig. 4). On the other hand, carbon emissions per unit yield showed a steady downward
trend after 2008. The level was comparable in 2020 (0.85 t CO2-eq · t−1) to the 1993 (0.83
t CO2-eq · t−1).
Regarding the composition of agricultural carbon emissions, rice cultivation accounted

for the largest proportion (27.3% in 2020), surpassing the emissions from fertilizer
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Table 4 MK test results for carbon emissions of agricultural acitvities.

Agricultural activities Z value Maximum year Z value

1993–2020 2000–2020 2010–2020 Maximum year-2020

Rice cultivation 6.3023∗∗∗ 4.9221∗∗∗ 1.5570 2014 −1.2015
Irrigation electricity 7.0163∗∗∗ 5.7729∗∗∗ 3.8925∗∗∗ 2019 –
Fertilizer production 5.9072∗∗∗ 4.6201∗∗∗ 0.6404 2015 −2.6301∗∗∗

Agricultural film production 3.9711∗∗∗ 3.6538∗∗∗ −1.5570 2013 −3.3404∗∗∗

Machinery use 6.8371∗∗∗ 5.3775∗∗∗ 1.9521∗ 2018 –
Pesticide production 5.7096∗∗∗ 3.6538∗∗∗ −0.7785 2017 –
Cropland emissions 5.3145∗∗∗ 4.1370∗∗∗ −0.4671 2015 −2.6301∗∗∗

Total emissions 6.2628∗∗∗ 5.0429∗∗∗ 1.4013 2016 −2.2045

Notes.
Positive Z values correspond to increasing trends in carbon emissions, and vice versa; *, **, *** denotes that the trend is significant at 0.1, 0.05 and 0.01 level, respectively; – indi-
cates that the maximum value existed for less than five years.

production in 1998. Carbon emissions from fertilizer production peaked at 13.4 Mt CO2-
eq in 2015, before decreasing annually to 11.8 Mt CO2-eq in 2020. Irrigation electricity
surpassed fertilizer production to become the second largest source of carbon emissions
in 2010. Carbon emissions from irrigation electricity were 16.7 Mt CO2-eq in 2020,
which is 5.3 times higher than that in 1993. Carbon emissions from agricultural film
production, machinery use, pesticide production, and croplands were 7.9, 4.3, 3.7, and
2.6 Mt CO2-eq, respectively, in 2020. Trend analysis of the MK test (Table 4) showed that
all agricultural activities, except pesticide production and cropland emissions, exhibited
significantly increasing trends in carbon emissions during the entire study period (1993–
2020) and shorter periods (2000–2020 and 2010–2020). However, for pesticide production
and cropland emissions, the trends were not significant in the later periods. Irrigation
electricity and machinery use have not yet demonstrated significant carbon emission
reductions, indicating their mitigation potential.

LMDI decomposition
The decomposition results (Table 5) showed that the economic and labor structure effects
were the two factors that drove the overall increase in agricultural carbon emissions
overall during 1993–2020. The economic effect was the key factor, with 96.84 Mt of
agricultural carbon emissions, which was 16 times higher than the labor structure effect. In
terms of factors inhibiting agricultural carbon emissions, the agricultural carbon emission
intensity effect and demographic effect contributed –46.66 and –11.10 Mt of agricultural
carbon emissions in reducing agricultural carbon emissions in Heilongjiang. Economic and
intensity effects play decisive roles in determining the overall amount of agricultural carbon
emissions. The economic effect showed the strongest increase during 2010–2013, while the
maximum total agricultural carbon emissions did not occur in this period because of the
inhibitory effect of the intensity factor. After 2016, only the economic effect continued to
increase, and the total effect decreased the agricultural carbon emissions.
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Table 5 The decomposition results of the driving mechanism for agricultural carbon emissions in Heilongjiang (Mt).

Year Intensity effect Economic effect Labor structure effect Demographic effect Total effect

1993–1994 −4.56 5.42 −0.23 0.18 0.81
1994–1995 1.66 0.29 0.29 0.17 2.40
1995–1996 3.01 2.05 0.58 0.19 5.84
1996–1997 3.87 −15.70 15.34 0.19 3.70
1997–1998 1.67 −0.39 −2.67 0.19 −1.21
1998–1999 4.25 −2.64 −0.82 0.16 0.95
1999–2000 3.11 −3.45 −0.15 0.13 −0.36
2000–2001 −2.39 2.52 −0.10 0.03 0.06
2001–2002 −2.14 2.65 0.13 0.02 0.66
2002–2003 −1.97 1.09 −0.50 0.02 −1.36
2003–2004 −1.43 7.04 −1.34 0.02 4.28
2004–2005 −2.59 5.23 −0.52 0.03 2.14
2005–2006 −1.34 4.87 −0.43 0.03 3.13
2006–2007 4.23 1.75 −0.93 0.01 5.07
2007–2008 −4.64 5.78 0.18 0.01 1.34
2008–2009 −1.54 3.67 0.42 0.01 2.56
2009–2010 −0.56 6.67 −0.60 0.10 5.60
2010–2011 −9.62 14.12 0.79 −0.77 4.51
2011–2012 −11.17 16.36 0.00 −0.96 4.23
2012–2013 −10.45 13.69 0.97 −1.03 3.18
2013–2014 −2.78 5.87 −0.86 −1.08 1.15
2014–2015 1.97 −1.17 0.94 −1.52 0.23
2015–2016 1.61 0.43 0.22 −1.31 0.96
2016–2017 −4.94 6.18 −0.10 −1.30 −0.15
2017–2018 −3.40 3.57 −0.37 −1.47 −1.67
2018–2019 −3.48 1.50 0.55 −1.45 −2.88
2019–2020 −3.06 9.45 −4.88 −1.69 −0.18
Total −46.66 96.84 5.92 −11.10 44.99
Percentage (%) −103.70 215.23 13.15 −24.68 100.00

Scenario analysis based on the STIRPAT model
As shown in Eq. (18), the rural population has a negative effect, with a coefficient of 0.551;
that is, for every 1% increase in the rural population, the total agricultural carbon emissions
would increase by 0.551%. Similarly, for every 1% increase in the GDP per capita of rural
residents, gross power of agricultural machinery, and the number of technology patents,
agricultural carbon emissions increased by 0.023%, 0.255%, and 0.225%, respectively. Only
the intensity of agricultural carbon emissions has a positive effect. For every 1% reduction in
the intensity of agricultural carbon emissions, total agricultural carbon emissions decreased
by 0.005%.

The predicted agricultural carbon emissions in Heilongjiang under the three scenarios
showdecreasing trends between 2020 and 2030 (Fig. 5). The reductions in 2030 for the BAU,
intensity optimization, and a slowdown in economic development scenarios compared to
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Figure 5 Agricultural carbon emission trends in Heilongjiang under different scenarios, 2021–2030.
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agricultural carbon emissions in 2021 are predicted to be −3.92%, −4.52%, and −4.29%,
respectively. A 20% improvement in intensity can produce a 45.9 × 104 t carbon emission
reduction by 2030. Slowing economic growth would offset a few advantages (0.23%)
from intensity improvement to agricultural carbon emission control. Overall, the three
scenarios suggest a limited reduction in agricultural carbon emissions over the next decade,
indicating a plateau in emission control.

DISCUSSION
Driving mechanism of agricultural carbon emissions in Heilongjiang
Province
Macro policies and the economic climate impact the trend in carbon emissions from
agriculture (Fig. 6). During the first phase (1993–1997), when China’s market economy
began to start and non-compound fertilizer value-added tax exemptions and agricultural
subsidies were implemented (MOF, 1995), the rise in agricultural carbon emissions was
matched by increased agricultural production. The decomposition results show that the
economic effect had a decreasing effect on promoting agricultural carbon emissions,
and the effects of intensity, labor structure, and demographics promoted agricultural
carbon emissions at this stage. The main features of the first stage were low efficiency and
fluctuating economic income.
The second stage (1998–2003) was the background of the Asian financial crisis, in which

the amount of agricultural film used by farmers was significantly reduced to reduce the
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cost of agricultural inputs (Xie, Cai & Huang, 2009). However, carbon emissions from
electricity used for irrigation caused by the expansion of rice cultivation increased; thus,
the overall agricultural carbon emissions did not change significantly. The intensity effect
promoted agricultural carbon emissions during the second stage, whereas the transition of
the increasing effect from economic factors was a signal of rapid agricultural development
in the next stage.

Various agricultural policies have been implemented in Heilongjiang since 2004.
Heilongjiang abolished its agricultural tax two years ahead of schedule as a prototype
province (SCIO, 2004). Moreover, there were subsidies for soybean, wheat, corn, and rice
planting based on the planting area and the purchase and renewal of agricultural machinery
for farmers in Heilongjiang. Consequently, agricultural carbon emissions in Heilongjiang
increased from 2004 to 2016 with China’s economic boom. During the third stage, the
intensity and demographic effects curbed agricultural carbon emissions by −36.87 and
−6.47, while the economic effect increased agricultural carbon emissions by 77.26. The role
of the intensity effect in reducing emissions is evident in rapid economic development. The
onset of the demographic effect suppressing agricultural carbon emissions (in 2010) and the
timing of the population decline in Heilongjiang are the same (NBS, 2022), indicating that
the decline in population plays a positive role in controlling agricultural carbon emissions
in Heilongjiang.

China advocated ‘‘zero growth’’ in fertilizer use and green development in 2015
(CPMMOAC, 2015). Our results show that carbon emissions from fertilizer production
in Heilongjiang have decreased annually since 2015. In 2016, the government proposed
a reform plan to create an environmentally conscious and green agricultural subsidy
system. These regulations marked the beginning of the agricultural sector’s shift toward
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low-carbon practices. Only the economic effect promoted agricultural carbon emissions
after peaking in 2016, indicating the high efficiency and better labor structure of agriculture
in Heilongjiang.

As indicated above, in addition to its direct relationship with the scale of production,
agricultural carbon emissions are closely related to policy guidance, indicating the
important role of policymaking in the future for further emission reduction goals.

Future perspectives and policy implications
Heilongjiang Province’s agricultural carbon emissions peaked in 2016, comparable to
China’s agricultural carbon emissions, which peaked in 2015 (Wu et al., 2023a). The
average annual decline rate was −1.80% after peaking in Heilongjiang in 2016 and
2020, which was similar to the national level of −1.56% (Wu et al., 2023a). Based on the
anticipated scenarios, it is projected that agricultural carbon emissions in Heilongjiang
will continue to decrease gradually over the forthcoming decade, indicating the constraints
of existing means of emission reduction. Among the influencing factors, an increase in
the number of technology patents did not inhibit carbon emissions, which differs from
the results of other Chinese provincial studies (Li, Liu & Li, 2015; Yang et al., 2023). This
may indicate that technological upgrading has not yet played a significant role in reducing
agricultural emissions. Moreover, it implies that more can be done in this area in the future
to help reduce agricultural carbon emissions.

Through a review of historical and current agricultural emission reduction policies, it is
evident that the approach of optimizing cropping systems to control carbon emissions has
not been explicitly mentioned. Heilongjiang Province, which has the largest rice cultivation
area, contributes significantly to methane and carbon emissions from irrigation electricity,
accounting for 53% of the total emissions in 2020. Reducing the rice cultivation area
appropriately, encouraging rotation between dryland crops and rice, or guiding farmers
toward the cultivation of upland rice varieties could contribute significantly to mitigating
overall agricultural carbon emissions. The GHG emission intensity of upland rice is only
23%–54% of that of ordinary rice paddies (Nishimura et al., 2011; Sun et al., 2020; Weller
et al., 2016).

Limitations
This study had certain limitations. First, owing to the availability of data, the driving factors
used in the STIRPAT model may not be sufficiently comprehensive. Second, agricultural
carbon emissionswere accounted for based on agricultural activities as recorded in statistical
yearbooks. New insights can be gained by accounting for carbon emissions according to
specific crop types.

CONCLUSIONS
In this study, we adopted a decomposition analysis and trend prediction to examine the
relationship between grain production and agricultural carbon emissions in Heilongjiang
Province from 1993 to 2030. Decomposition analysis indicated that the economic effect was
the key factor driving the overall increase in agricultural carbon emissions overall during
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1993–2020. In contrast, the intensity effect is the major factor controlling agricultural
carbon emissions. Population reduction is favorable for achieving agricultural emission
reductions in Heilongjiang. In 2020, CH4 emissions from rice cultivation and carbon
emissions from irrigation electricity were the main components of agricultural carbon
emissions in Heilongjiang Province, accounting for 27.3% and 25.9%, respectively. Carbon
emissions from irrigation electricity and machinery did not peak in the trend analysis. The
agricultural carbon emissions in Heilongjiang Province reached a peak in 2016, with the
total emissions being 3.5 times higher than those in 1993. According to scenario predictions,
agricultural carbon emission reductions over the next decade would be−3.92% to−4.52%
yet achieving carbon neutrality remains a significant challenge. Overall, the methods and
conclusions offered in Heilongjiang case study not only provide useful implications in
analyzing the factors that drives carbon emissions at the provincial level but also propose
measures to formulate low-carbon plans for policymakers. Such a systematic analysis an
be extended to other regions by considering their realities.
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