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ABSTRACT
Hexavalent chromium (Cr(VI)) is a hazardous metallic compound commonly used in
industrial processes. The liver, responsible for metabolism and detoxification, is the
main target organ of Cr(VI). Toxicity experiments were performed to investigate the
impacts of low-dose exposure to Cr(VI) on rat livers. It was revealed that exposure
of 0.05 mg/kg potassium dichromate (K2Cr2O7) and 0.25 mg/kg K2Cr2O7 notably
increased malondialdehyde (MDA) levels and the expressions of P-AMPK, P-ULK,
PINK1, P-Parkin, and LC3II/LC3I, and significantly reduced SODactivity andP-mTOR
and P62 expression levels in liver. Electron microscopy showed that CR(VI) exposure
significantly increased mitophagy and the destruction of mitochondrial structure. This
study simulates the respiratory exposuremode of CR(VI)workers through intratracheal
instillation of CR(VI) in rats. It confirms that autophagy in hepatocytes is induced by
low concentrations of CR(VI) and suggest that the liver damage caused by CR(VI) may
be associated with the AMPK-related PINK/Parkin signaling pathway.

Subjects Biochemistry, Cell Biology, Molecular Biology, Toxicology
Keywords Chromium, Liver injury, Mitophagy, AMPK, PINK, Parkin

INTRODUCTION
Chromium (Cr) is a hard, steel-gray metal that exists in various oxidation states ranging
from Cr(II) to Cr(VI). Among these, Cr(III) and Cr(VI) are the most common and highly
stable forms. Cr(VI) compounds are identified as one of the 17 chemicals posing a threat
to humans by the United States Environmental Protection Agency (US EPA) (McCullough
et al., 1999). Cr(VI) compounds are classified by the International Agency for Research on
Cancer (IARC) as carcinogenic to humans (Group I) (IARC, 2021). Hexavalent chromium
(Cr(VI)) is widely used across industries in welding, hot working stainless steel processing,
chrome plating, spray painting, and coating activities (Ndaw et al., 2022). Cr(VI) enters
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various environmental systems (air, water, and soil) through some natural processes and
anthropogenic activities. It can lead to contamination and destruction of the ecosystem.
Exposure to Cr(VI) causes severe effects on flora and fauna (Jobby et al., 2018; Prasad et al.,
2021; Pandey, Gautam & Singh, 2023). Cr(VI) is responsible for multiorgan damage, such
as kidney damage, liver failure, heart failure, skin disease, and lung dysfunction. The liver
is considered one of the most important target organs for Cr(VI) toxicity (Chakraborty et
al., 2022; Singh et al., 2022).

Cr(VI) can exert cellar toxicity through various mechanisms, and oxidative stress is
one of the important pathways (Renu et al., 2021). The mitochondria generates energy
in the form of ATP through the process of oxidative phosphorylation. Additionally,
mitochondria are recognized as the main sources of reactive oxygen species (ROS), and
actively participate in the regulation of cellular redox processes and ROS signaling (Spinelli
& Haigis, 2018; Kuznetsov et al., 2022). Excess ROS can trigger mitochondrial dysfunction
and mitochondrial autophagy (mitophagy). Mitophagy refers to the process in which aging
or damaged mitochondria are specifically wrapped into the autophagosome under the
stimulation of various harmful factors, and then degraded by lysosomes (Sulkshane et al.,
2021). The vicious circle between mitochondrial dysfunction and oxidative stress is a key
contributor to the progression of almost all hepatic damage (Xu & Feng, 2023).

There have been few studies onCr(VI)-inducedmitophagy, and its underlyingmolecular
mechanism remains unclear. The PINK1/Parkin signaling pathway is an important
mitophagy pathway that is mediated by PTEN-induced putative kinase1 (PINK1) and E3
ubiquitin ligase PARK2 (Parkin). When cells function normally, PINK1 is maintained at
a low level due to mitochondrial import, protease cleavage, and proteasome degradation.
When cells are damaged, PINK1 is not easily degraded but stably exists in the outer
membrane of mitochondria, and recruits and activates Parkin from the cytoplasm.
The activated Parkin covers the damaged mitochondria with ubiquitin, thus activating
mitophagy (Wang, Lu & Shen, 2020; Gan et al., 2022; Gladkova et al., 2018).

It is possible that Cr(VI) participates in the process of liver injury through the regulation
of mitophagy and oxidative stress in hepatocytes. However, the correlation between liver
injury induced by Cr(VI), mitophagy, and their regulations remains unclear. Therefore, we
used inhalable intratracheal instillation of Cr(VI) on rats in this study in order to explore
the role of PINK1/Parkin pathway-mediated mitophagy in liver injury due to Cr(VI)
exposure in rats.

Because of the promotion and implementation of occupational health and hygienic
environment standards, there typically is low Cr(VI) exposure in industrial and living
environments. In this study, we explored the toxic effects of low concentration and short
time Cr exposure on rat liver.

MATERIAL AND METHODS
Animals and treatment
Four-week-old adult male Sprague-Dawley (SD) rats (280 ± 50 g) were supplied by Jinan
Pangyue Laboratory Animal Breeding Co. Ltd (Jinan, China). They were housed at a
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controlled temperature (22.0 ± 1.0 ◦C) with 12 h light/dark cycle and provided with
standard food and water. After acclimation for one week, rats were randomly divided into
three groups, with four rats in each group. Sample size was selected according to the 3R
principle (Sneddon, Halsey & Bury, 2017). All procedures were conducted in accordance
with the Guidelines for the Care and Use of Laboratory Animals published by the Ministry
of Health of People’s Republic of China. All experimental protocols were approved by the
Ethics Committee of Zhengzhou University (Ethics Review Number: ZZUIRB:2022-55).

Experimental protocol
Themost common route for Cr(VI) occupational exposure is inhalation (Leese et al., 2023).
As it is simple, quick, and allows control of the applied dose, intratracheal instillation has
been employed in many studies as an alternative exposure procedure. In this study, we
adopted the method of intratracheal instillation poisoning (Gutierrez et al., 2023; Driscoll
et al., 2000). Twelve healthy rats were randomly assigned into three groups, with four rats
in each group: the saline group, the 0.05 mg/kg Cr(VI) group, and the 0.25 mg/kg Cr(VI)
group. The dosages applied here were determined from time weighted average (TWA)
and inhalation-to-drip dose conversion formula (Song et al., 2014). Random number
generation was performed using R 3.6.2 software (R Core Team, 2020). The intratracheal
instillation method and experimental process were referenced from a previous study
(Zhang et al., 2023). Rats received weekly inhalable intratracheal instillation of potassium
dichromate (K2Cr2O7) dissolved in sterile 0.9% sodium chloride solution at 0, 0.05, or 0.25
mg Cr/kg body weight for 28 days (a total of five times). The rats were fasted and abstained
from water 24 h before sacrifice. The rats were deeply anesthetized via intraperitoneal
injection of 1% sodium pentobarbital (70 mg/kg) 24 h after the final instillation. Blood
samples were collected from the abdominal aorta of the rats. The rats were euthanized by
means of cervical dislocation, and the death of the animals was confirmed by testing for
loss of pain response. Rat livers were harvested immediately. Testing and data analysis were
performed by different staff members and group allocation was blind for them.

Liver function
Liver function tests can help determine hepatic injury and liver disease diagnosis. Here, the
entire blood specimen was applied to detect liver function of the rats. The experimental
processes were described in a previous study (Li et al., 2024).

Liver tissue ultrastructure examination
Electron microscopy is one of the best approaches that can directly provide the
ultrastructure evidence for mitophagy. The liver tissues were processed into electron
microscope sections and observed using an electron microscope (TEM) (Li et al., 2024).

Liver tissue oxidative stress assay
Oxidative stress is the initial stage of liver injury, and super-oxide dismutase (SOD) and
malondialdehyde (MDA) can indicate the oxidative stress intensity. After standing for 30
min, the serum was collected by centrifugation at 3,000 rpm for 10 min. Samples were
stored at −20 ◦C and measured as soon as possible. The levels of SOD and MDA in the
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serum were determined according to the instructions of a SOD assay kit (A001-3; Nanjing
Jiancheng Institute of Biological Engineering, China), andMDA assay kit (A003-1; Nanjing
Jiancheng Institute of Biological Engineering, China).

Analysis of relevant protein levels by Western blotting (WB)
The PINK1/Parkin pathway proteins and marker proteins of autophagy were detected
using WB. The WB analysis methods were described in a previous study (Li et al., 2024).
WB kits were purchased from Jiangsu Kegel Biotechnology Co., Ltd., China. The following
antibodies were used: Mouse Anti-PINK1 (ab186303; Abcam, Cambridge, UK), Rabbit
Anti-P-Parkin (PA5-114616; Thermo Fisher Scientific, Waltham, MA, USA), Rabbit
Anti-P-AMPK (AF5908; Beyotime, Jiagsu, China), Mouse Anti-P-mTOR (67778-1-Ig;
Proteintech, Rosemont, IL, USA), Rabbit Anti-P-ULK1 (ab203207; Abcam, Cambridge,
UK), Rabbit Anti-LC3I (18722-1-AP; Proteintech, Rosemont, IL, USA), Rabbit Anti-LC3II
(81004-1-RR; Proteintech, Rosemont, IL, USA), Rabbit Anti-P62 (ab91526; Abcam,
Cambridge, UK), Rabbit Anti-Beclin (ab207612; Abcam, Cambridge, UK), and Rabbit
Anti-GAPDH (KGAA002; KeyGEN, Seattle,WA, USA). The target proteins were developed
using enhanced chemiluminescence (ECL) reagents. Imaging was performed using the
ChemiDoc MP Imaging System and the results were analyzed in grayscale using Gel-Pro32
software.

Statistical analysis
All statistical analyses were performed using SPSS 25.0 (IBM, Armonk, NY, USA). If
normality and equal variance passed, differences among groups were analyzed using one-
way analysis of variance (ANOVA). Nonparametric data were analyzed by the Kruskal-
Wallis ANOVA-based test on ranks followed by Dunn’s post-hoc test. A difference was
considered significant when P < 0.05 and highly significant when P < 0.01. Data were
graphed with GraphPad PRISM 8.0 software, and bar graphs generated from this analysis
demonstrate means ± SD.

RESULTS
Biochemical indices after Cr(VI) exposure
Figure 1 shows the changes of biochemical indices in the serum after rats were exposed
to Cr(VI). Compared with the saline group, aspartate aminotransferase/ alanine
aminotransferase (AST/ALT), albumin (ALB), and total biliary acid (TBA) levels exhibited
no significant difference.

Oxidative stress indices in liver tissue
In the 0.05 mg/kg Cr(VI) group and 0.25 mg/kg Cr(VI) group, SOD activity was decreased.
MDA increased in the 0.25 mg/kg Cr(VI) group (Fig. 2). Results suggested that the
continuous accumulation of Cr(VI) in livers induced liver cell oxidative stress.

TEM images of liver tissues
In the saline group, mitochondria showed good morphology and mitochondrial cristae
were arranged neatly. In the 0.05 mg/kg Cr(VI) group and 0.25 mg/kg Cr(VI) group,
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Figure 1 Serum biochemical indices of liver function in rats. (A–C) Detection of serum AST/ALT, ALB,
and TBA levels in rats. Data are expressed as the M± SD (n= 4).

Full-size DOI: 10.7717/peerj.17837/fig-1

some mitochondrial cristae were ruptured and disordered (red arrows indicate disrupted
mitochondrial cristae) and the number of autophagosomes increased in a dose-dependent
manner (yellow arrows indicate autophagosomes) (Fig. 3).

PINK1/Parkin pathway expression
To further investigate the level of PINK/Parkin pathway after treatment with Cr(VI), we
measured the levels of PINK and P-Parkin using WB. Figure 4 shows that compared with
those of the saline group, the protein levels of PINK1 and P-Parkin of the 0.05 mg/kg
Cr(VI) and 0.25 mg/kg Cr(VI) groups were significantly increased.

AMPK/mTOR/ULK1 pathway expression
We measured the levels of related proteins AMP-activated protein kinase (P-AMPK),
P-mTOR (rapamycin), and UNC-51-like kinase 1 (P- ULK1) using WB. Figure 5 shows
that the protein levels of P-AMPK and P-ULK1 in the 0.05 mg/kg Cr(VI) and 0.25 mg/kg
Cr(VI) groups were significantly increased compared with those of the saline group. The
expression of P-mTOR was significantly lower in the 0.05 mg/kg Cr(VI) and 0.25 mg/kg
Cr(VI) groups than that in the saline group.

Autophagy protein expression
WB shows that, compared with those in the saline group, the levels of the autophagymarker
microtubule-associated protein 1 light chain 3 (LC3)II/LC3I and the early autophagy
proteins Beclin1 were significantly higher in the Cr(VI) exposure groups. Cr(VI) exposure
significantly decreased P62 level compared with those in the saline group. The expression
of P62 was significantly lower in the 0.05 mg/kg Cr(VI) group than that in the 0.25 mg/kg
Cr(VI) group (Fig. 6).
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Figure 2 Intracellular MDA contents and SOD activity of liver tissues. (A) MDA contents of liver tis-
sues. (B) SOD activity of liver tissues. MDA contents and SOD activity are expressed as the M± SD (n =
4). Statistical significance is indicated by *, P < 0.05, **, P < 0.01.

Full-size DOI: 10.7717/peerj.17837/fig-2

DISCUSSION
Cr(VI) is the most common and toxic valence state of Cr. Many studies have shown that
the liver is the main target organ for Cr(VI) toxicity (Anandasadagopan et al., 2017; Xiao et
al., 2018). This study revealed that Cr(VI) exposure notably increased the MDA level and
expressions of P-AMPK, P-ULK, PINK1, P-Parkin, and LC3II/LC3I, while significantly
reduced SOD activity and P-mTOR and P62 expression levels. The results of electron
microscopy showed that Cr(VI) exposure caused a significant increase in mitophagy and
the destruction of mitochondrial structure. In brief, this study found that exposure to
Cr(VI) could lead to liver oxidative stress and mitophagy.

Cr(VI) is water-soluble and easily penetrates the cell membrane into the cell. Under the
action of reducing agents such as glutathione in the cell, Cr(VI) is reduced to Cr(III). At
the same time, oxygen free radical ROS is induced to cause cell lipid peroxidation, which is
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Figure 3 TEM images of liver tissues. (A) Ultrastructure changes of nucleus (scale bars, 5 µm). (B) Ul-
trastructure changes of the mitochondria and autophagosomes (scale bars, 1 µm). Red arrows indicate
disrupted mitochondrial cristae and yellow arrows indicate autophagosomes.

Full-size DOI: 10.7717/peerj.17837/fig-3

Figure 4 Western blot analysis of the expression of PINK1 and P-Parkin proteins in rat liver tissues.
(A) A representative immunoblotting of PINK1 and P-Parkin. GADPH was used as an internal refer-
ence for proteins. (B–C) The ratio of PINK1 and P-Parkin respectively. Protein levels are expressed as the
M± SD (n= 4). Statistical significance is indicated by *, P < 0.05, **, P < 0.01.

Full-size DOI: 10.7717/peerj.17837/fig-4
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Figure 5 (A) A representative immunoblotting of P-AMPK, P-mTOR, and P-ULK1. GADPHwas used
as an internal reference for proteins. (B–D) The ratio of P-AMPK, P-mTOR, and P-ULK1 respectively.
Protein levels are expressed as the M± SD (n = 4). Statistical significance is indicated by *, P < 0.05, **,
P < 0.01.

Full-size DOI: 10.7717/peerj.17837/fig-5

Figure 6 Western blot analysis of the expression of autophagy-related proteins in rat liver tissues. (A)
A representative immunoblotting of Beclin-1, LC3II/LC3I, and P62. GADPH was used as an internal ref-
erence for proteins. (B–D) The ratio of Beclin-1, LC3II/LC3I, and P62 respectively. Protein levels are ex-
pressed as the M± SD (n= 4). Statistical significance is indicated by *, P < 0.05, **, P < 0.01.

Full-size DOI: 10.7717/peerj.17837/fig-6

one of the most important reasons for Cr(VI) to cause liver damage. MDA is the product
of hepatic lipid peroxidation and reflects the intensity of hepatic oxidative stress. In this
experiment, MDA in 0.25 mg/kg Cr(VI) group was significantly higher than that in saline
group (P < 0.05), suggesting that after Cr(VI) enters the liver and causes lipid peroxidation,
resulting in product accumulation. To reduce oxidative stress, cells activate antioxidant
enzymes to protect against this oxidative damage. SOD is an important antioxidant enzyme
in the body. In this study, SOD activity in 0.05 mg/kg Cr(VI) and 0.25 mg/kg Cr(VI) groups

Li et al. (2024), PeerJ, DOI 10.7717/peerj.17837 8/17

https://peerj.com
https://doi.org/10.7717/peerj.17837/fig-5
https://doi.org/10.7717/peerj.17837/fig-6
http://dx.doi.org/10.7717/peerj.17837


decreased significantly (P < 0.05), suggesting that oxidative stress occurred in the liver,
resulting in a decrease in antioxidant enzyme activity.

Under the stimulation of oxidative stress and other factors, the mitochondria in the
cell undergo depolarization damage. The damaged mitochondria are wrapped into the
autophagosome by specific membranes mediated by autophagy proteins and bind to
lysosomes, thus completing mitochondrial degradation. Mitophagy is an evolutionarily
conserved cellular process in which cells maintain energy metabolic balance by removing
dysfunctional or redundant mitochondria (Palikaras, Lionaki & Tavernarakis, 2018) and
contribute to mitochondrial quality improvement (Pickles, Vigié & Youle, 2018; Kiriyama
& Nochi, 2017).

Mitochondria are the main source of ROS in cells, and the mitochondria itself is a very
sensitive target of ROS (Kuznetsov et al., 2022). Mitophagy may function more broadly to
limit the deleterious effects of ROS on cellular functions (Ma et al., 2020). However, other
data suggest that the process of mitophagy may, in some cases, increase mitochondrial
ROS (mtROS) levels that might trigger a cell to further induce mitophagy and therefore
propagate the elevation in mtROS levels through a positive feedback loop (Schofield &
Schafer, 2021). The vicious circle between mitochondrial dysfunction and oxidative stress
is a key contributor to liver injury.

The PINK1/Parkin pathway is the important mechanism of mitophagy (Killackey,
Philpott & Girardin, 2020). When the body is stimulated by factors such as toxicity and
aging, the structure and function of mitochondria are disturbed, resulting in oxidative
stress. Excessive production of ROS can activate PINK1 kinase activity (Xiao et al., 2018;
Xiao et al., 2017a; Xiao et al., 2017b). PINK1 then phosphorylates and activates Parkin’s
ubiquitin E3 ligase activity, which labels damaged mitochondria with ubiquitin prior
to mitophagy (McWilliams & Muqit, 2017; Pickles, Vigié & Youle, 2018). ROS induces
mitophagy by activating the PINK1/Parkin pathway and removing excess mitochondria
to maintain the healthy operation of the mitochondrial system. Mitophagy is essential for
mitochondrial redox balance, mitochondrial function, and cell homeostasis. In this study,
PINK1 protein in the Cr(VI) exposed groups was significantly higher than in the saline
group (P < 0.05), which proved that liver tissue was damaged after Cr exposure, causing
the retention of undegraded PINK1 protein in the mitochondrial outer membrane. At the
same time, P-Parkin is an activated Parkin protein, and P-Parkin is significantly increased
in the Cr(VI) exposed groups (P < 0.05), also confirming that autophagy was initiated by
hepatocytes through the PINK1/Parkin pathway.

AMPK is a key regulator of PINK1/Parkin dependent mitophagy. Egan et al. (2011)
first revealed that AMPK is involved in mitophagy. AMPK is a highly conserved cellular
energy volume and nutrient status sensor in eukaryotic cells. AMPK monitors the ratio of
AMP/ATP (or ADP/ATP) and acts to restore energy homeostasis by switching on alternate
catabolic pathways that produce ATP, while shutting down biosynthetic pathways and
other non-essential processes that consume ATP (Sharma et al., 2023; Hardie, 2014).
mTOR is a mechanistic target at the intersection of synthesis and catabolism, promoting
cell growth by stimulating the biosynthetic pathway and inhibiting catabolism by reducing
autophagy. Its close signaling interplay with the energy sensor AMPK dictates whether the
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cell favors anabolic or catabolic processes to maintain cellular homoeostasis (Rabanal-Ruiz,
Otten & Korolchuk, 2017). The AMPK-mTOR pathway is an important signaling pathway
in autophagy because AMPK suppresses mTOR activity and mTOR inhibits ULK1.
Additionally, AMPK directly phosphorylates ULK1 to trigger autophagy. AMPK controls
ULK1 via a two-pronged mechanism (Tamargo-Gómez & Mariño, 2018; Zhang & Lin,
2016). The results of this experiment confirm that Cr(VI) exposure activates this pathway.

As a master sensor of cellular stress, AMPK is activated and downstream substrate
ULK1 are phosphorylated, which leads to specific Parkin phosphorylation to activate
mitophagy (Guo et al., 2023). AMPK can activate both PINK1 kinase and Parkin E3 ligase
through phosphorylation (Wang et al., 2018; Lee et al., 2019). In short, there are complex
interactions between PINK1/Parkin pathways and AMPK/mTOR/ULK1 pathway that
affect mitophagy.

Autophagy is a highly dynamic, multi-step biological process. LC3 is divided into LC3II
and LC3I, which is a key protein in the formation of mammalian autophagosomes. When
autophagy occurs, LC3I binds to phosphatidyl ethanolamine and transforms into LC3II,
which is located in the outer membrane of autophagy, so LC3II is generally considered to
be the signature protein of autophagy (Martinez et al., 2015). The increase of LC3II/LC3I
ratio indicates the activation of autophagy flow and is also an important indicator for
evaluating autophagy level (Gong et al., 2020). The results of this study showed that
compared with the saline group, the LC3II/LC3I ratio was significantly increased in both
dose groups (P < 0.05), suggesting that liver damage caused by Cr(VI) exposure may
promote the activation of autophagy. Beclin1 is an essential molecule in the formation
of autophagosomes, which can mediate the localization of other autophagy proteins to
autophagosomes, thereby regulating the formation and maturation of autophagosomes
(Xu & Qin, 2019). In our experimental study, Cr(VI) toxicity caused a significant increase
in Beclin1 protein (P < 0.05), also confirming that the activation of autophagy is caused
by exposure. Ubiquitin-binding protein P62 decrease in the Cr(VI) exposed groups in
our study was another proof of autophagy. Transmission electron microscopy (TEM)
observation is a powerful method used to verify mitophagy (Chakraborty et al., 2020).
The results of TEM observation in this experiment showed that mitophagy increased
significantly in the two Cr(VI) exposed groups, suggesting that Cr(VI) exposure can
induce mitochondrial disruption and mitophagy in hepatocytes.

Cr is a toxic heavy metal. In recent years, the few studies on mitophagy caused by Cr(VI)
have been in vitro (Zhang et al., 2020; Xu et al., 2020). Similar to our findings, these in vitro
experiment findings indicate that Cr(VI) may contribute to mitochondrial morphology
and function damage and may therefore lead to mitophagy. Mitophagy is closely related to
tissue damage, immune response, aging, and tumor growth inhibition (Onishi et al., 2021).
Mitophagy is the stress and self-rescue of liver cells after Cr(VI) infection, and even further
apoptosis and necrosis, resulting in more serious liver damage and even liver diseases (Ke,
2020). In fact, occupational exposure to Cr(VI) does pose a health hazard (Hessel et al.,
2021; den Braver-Sewradj et al., 2021). There are many regulatory pathways for mitophagy,
and it is of great significance to determine the role of proteins in these pathways to find
suitable marker proteins for Cr exposure effects and suitable molecular targets for health
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Figure 7 Schematic diagram of the molecular mechanism. An arrow (→) indicates possible promoting
effect;⊥ indicates possible inhibiting effect.

Full-size DOI: 10.7717/peerj.17837/fig-7

intervention of Cr-exposed workers. This study shows the poisoning of Cr(VI) workers via
inhalable intratracheal instillation of Cr(VI), that the autophagy of hepatocytes is caused
by low concentration Cr(VI) poisoning, and that liver damage caused by Cr(VI) may be
related to the AMPK-related PINK/Parkin signaling pathway. It provides experimental
basis and theoretical basis for liver injury caused by Cr pollution and health monitoring of
workers.

However, our study had several limitations. The exposure time was not very long, and
further studies are needed to explore the correlation between liver injury and PINK/Parkin
signaling pathway proteins and autophagy by extending the exposure time according to the
results of this experiment. As a result, further experiments andmore in-depth investigations
are required to find the effect markers of PINK/Parkin pathway in liver injury, and their
application to the health monitoring of workers with occupational exposure to Cr(VI) will
be our future work direction.

CONCLUSION
In summary, our findings demonstrate that low concentration Cr(VI) could activate the
PINK1/Parkin pathway and up-regulate mitophagy in rat liver (the possible mechanisms
are shown in Fig. 7). Therefore, we concluded that the PINK1/Parkin-pathway via AMPK
might play an important role in Cr-induced liver injury and can be used as a potential
target for the treatment of Cr-induced liver injury.
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