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ABSTRACT

Soil organic carbon (SOC) is a crucial component of the global carbon cycle, playing
a significant role in ecosystem health and carbon balance. In this study, we focused
on assessing the surface SOC content in Shandong Province based on land use types,
and explored its spatial distribution pattern and influencing factors. Machine
learning methods including random forest (RF), extreme gradient boosting
(XGBoost), and support vector machine (SVM) were employed to estimate the
surface SOC content in Shandong Province using diverse data sources like sample
data, remote sensing data, socio-economic data, soil texture data, topographic data,
and meteorological data. The results revealed that the SOC content in Shandong
Province was 8.78 g/kg, exhibiting significant variation across different regions.
Comparing the model error and correlation coefficient, the XGBoost model showed
the highest prediction accuracy, with a coefficient of determination (R*) of 0.7548,
root mean square error (RMSE) of 7.6792, and relative percentage difference (RPD)
of 1.1311. Elevation and Clay exhibited the highest explanatory power in clarifying
the surface SOC content in Shandong Province, contributing 21.74% and 13.47%,
respectively. The spatial distribution analysis revealed that SOC content was higher
in forest-covered mountainous regions compared to cropland-covered plains and
coastal areas. In conclusion, these findings offer valuable scientific insights for land
use planning and SOC conservation.

Subjects Ecosystem Science, Soil Science, Environmental Impacts, Spatial and Geographic
Information Science
Keywords Soil organic carbon, Machine learning, Remote sensing, Shandong province

INTRODUCTION

Soil is considered the primary and largest terrestrial carbon reservoir, with a global carbon
stock of 1,550 Pg (Lal et al., 2018), containing carbon contents approximately two to three
times higher than those found in the atmosphere and vegetation (Scharlemann et al.,
2014). Even minor changes in terrestrial carbon pools could have significant implications
for climate change and global warming (Lin et al., 2023). Organic carbon stored in soils
below a depth of 30 cm represents an average of 33% of the total SOC stock (Lacoste et al.,
2014). The storage of SOC is a critical function of soils, influencing climate regulation and
other soil functions (Wiesmeier et al., 2019). The increase in SOC content can enhance soil
structure, improve soil water retention and fertility, stimulate plant growth, and enhance
the diversity and activity of soil microorganisms (Lehmann & Kleber, 2015). Therefore,
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acquiring information on SOC content and spatial variations is crucial for enhancing soil
structure, ensuring food security, and mitigating global climate change (Ren et al., 2021).

Conventional soil mapping methods face challenges in the collection and analysis of a
large number of sampling points (Ren et al., 2021). Remote sensing techniques can
effectively monitor the spatial and temporal dynamics of SOC, potentially enhancing
predictions by utilizing ancillary variables, scale-specific methods, and improved model
integration (Croft, Kuhn & Anderson, 2012). For instance, in global SOC and Chinese soil
attribute mapping, environmental variables and multispectral remote sensing data are
utilized (Liu et al., 2022; Hengl et al., 2017). Hyperspectral inversion methods, based on
spectral index models, are widely employed for estimating SOC content (Wei et al., 2020;
Zhao et al., 2022). Studies have also utilized Gaofen-5 (GF-5) hyperspectral remote sensing
images in conjunction with the partial least squares method to develop models for soil
sanding index, soil degradation index, normalized brightness index, and soil salinity index
for predicting surface soil organic matter content (Zhao, Cui & Liu, 2020).

Different models also influence the estimation accuracy of remote sensing retrieval of
SOC. Machine learning (ML) algorithms have significant advantages in data processing,
model construction, and optimization. They allow for better handling of issues such as
model uncertainty and nonlinearity. These algorithms include support vector machine
(SVM), random forest (RF), extreme gradient boosting (XGBoost), and Cubist, etc.
Taghizadeh-Mehrjardi et al. (2020) compared the accuracy of six machine learning
algorithms in SOC estimation and found that deep learning neural networks (DNN), RF,
and XGBoost achieved higher accuracy than SVM, artificial neural network (ANN), and
Cubist. In a previous study (Wang et al., 2023), the RF model showed the highest
simulation accuracy for forest areas, while the XGBoost model performed best for
farmland areas. In a study by Yuan et al. (2021), two combinations of environmental
variables were used as input datasets to simulate the prediction and accuracy of SOC
content in the surface layer of arable land. The study employed the RF algorithm and
compared it with the Ordinary Kriging (OK) interpolation model. Meliho et al. (2023) used
four ML algorithms to predict SOC stock (SOCS) in the Ourika Basin of Morocco: Cubist,
RF, SVM, and Gradient Boosting Mechanism (GBM). The results showed that Cubist
(R* = 0.86, RMSE = 11.62 t/ha) and RF (R* = 0.79, RMSE = 13.26 t/ha) had the highest
predictive ability for SOCS

In addition, some research has developed supervised machine learning methods for
predicting marine biochemical processes and acquired advantages in accuracy and
effectiveness (Adhikary et al., 2024), and Gradient Boosting Regression had most effective
with an R? of 0.904 and MSE of 0.0001. Adhikary et al. (2021) also applied various machine
learning regression algorithms (random forest, extra trees, bagged, and gradient boosted
regressors) to forecast phytoplankton levels globally, which found that the extra tree
regression model performed the best, with an R* of 0.96. Machine learning and deep
learning techniques were used to study the relationship between marine chlorophyll and
physicochemical features, and found that random forests performed the best among all
teatures, with a classification accuracy of 93.92% (Tiwari, Adhikary ¢» Banerjee, 2022).
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Table 1 Main references comparison table.

Author Dataset used

Advantages

Disadvantages Model used

Results

Hengl et al. 150,000 soil profiles,

(2017) MODIS land
products, Climate
Taghizadeh- 154 soil profiles from
Mehrjardi  arid and 99 from
et al. semi-humid areas,
(2020) SRTM DEM, Landsat-
8 and Sentinel-2
images
Ye et al. 295 soil samples, GF-6,
(2021) Landsat8 images,
SRTM image data
Yuan et al. 1,257 SOC measured
(2021) data points, Landsat8
OLI images, ASTER
GDEM, 22 climate
stations data
Liu et al. 5,000 soil profiles
(2022) during 2010 and 2018,
Landsat, SRTM DEM,
climate
Nguyen Field survey soil
et al. samples from Western
(2022) Australia, binary land
use map generated
from 266 digitized
points
Meliho et al. 420 soil samples, soil
(2023) properties, climate,

terrain, and remote
sensing

158 remote sensing-based
soil covariates. Procuct
SoilGrids 250 m data

Model stacking, improves
prediction accuracy,
effectively handles
complex multivariate
datasets

GF-6 multispectral
satellite data suitable for
SOM retrieval, improves
precision agriculture
policy-making

Based on a multivariate
combination (remote
sensing + climate + soil
properties), improves
SOC prediction accuracy

The time matching
between remote sensing
data and soil data is
good.

Optical and SAR data
fusion, advanced
machine learning
techniques, improves
SOC estimation
robustness

Multiple environmental
covariates improve SOC
prediction accuracy

Time matching between
soil sampling data with
remote sensing data is
poor. Lack human
activities variables

RF and gradient
boosting and/or
multinomial
logistic regression

LSTM, RF, ANN,
XGBoost,
AvNNet, DNN

Model input data lacks
climate, soil
properties, and
socio-economic data

Lacks climate and
human activity
variables

RF, LightGBM,
GBDT, XGBoost

Potential dataset errors,
model applicability
limitations

RF algorithm

Lack human activities
variables

Quantile regression
forest

Only uses remote XGBoost, RF, SVM
sensing data, lacks
environmental

covariates

Cubist, RF, SVM,
Gradient Boosting
Mechanism

Complex methodology,
choice of modeling
predictor variables
may affect
performance

All soil sampling data was used
to build soil properties
prediction. No accuracy
validation

RMSE values after model
stacking are 17% and 9% in
arid and semi-humid areas,
lower than the best individual
models

XGBoost model using
feature-optimized dataset
performed better than other
models with R* = 0.771

The RF model using all variables
performed best, and its model
prediction accuracy
significantly improved
compared with the model
without soil attributes (R
increased by 7.95%, RMSE
decreased by 45.13%)

R* ranged from 0.36 to 0.71.
Product 90 m spatial resolution
SOC mapping of China.

XGBoost obtained higher
estimation effective than RF
and SVM (R? = 0.870,
RMSE = 1.818 tC/ha)

RF (R* = 0.79, RMSE = 1.2) and
Cubist (R* = 0.77, RMSE = 1.2)
obtained higher retrieval
accuracy than other models

In addition, soil type and vegetation cover type also have a significant impact on SOC
sequestration. As shown in previous studies, soil mineralization levels are closely related to

SOC content, with soils having low mineralization levels typically having higher SOC

content, while soils with high mineralization levels tend to have relatively lower SOC
content (Jobbdgy ¢ Jackson, 2000).
Many studies have been conducted both domestically and internationally on remote

sensing retrieval of SOC content and spatial distribution using machine learning models

combined with covariates. The following table summarizes the datasets used in the
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literature, their advantages and disadvantages, the models used, and their results in some
previous study (Table 1). According to these previous study, multi-source remote sensing
data is suitable for SOC predication in global or region research, and SAR data input can
improve prediction accuracy, RF and gradient boosting machine learning model can
obtain higher accuracy than other models.

Above all, in this study, Shandong Province was selected as the study area. Multi-source
data including optical, SAR, climate, socio-economic data, and soil properties data were
used to build SOC prediction model using RF, XGBoost, and SVM model. Moreover,
spatial distribution characteristic of SOC wasanalyzed in combination with land use types.
This research aims to deepen the understanding of the spatial distribution and variation
patterns of SOC, providing a scientific basis for soil quality assessment and sustainable
land management.

MATERIALS AND METHODS
Study area

Located in the eastern coastal region of China, Shandong Province spans geographic
coordinates from 32°18'28"N to 38°23'23"N and 114°19'50"E to 122°43'36"E, covering a
total land area of approximately 157,900 km?. Shandong Province exhibits a complex and
diverse topography, including plains, mountains, hills, and coastal areas. The central part
is characterized by high-altitude mountainous areas, while the western and northern
regions consist of plain areas formed by the Yellow River’s alluvial deposits. Shandong
Province falls within the temperate monsoon climate zone, primarily influenced by marine
and monsoon climates, leading to notable variations in annual average temperature and
precipitation levels among different regions (Fig. 1).

Shandong Province boasts a diverse range of agricultural land types, such as paddy
fields, drylands, orchards, forests, and grasslands. The main soil types in Shandong
Province include brown soil, cinnamon soil, tidal soil, saline soil, among others. Various
land use types and conversions between farmland, forests, grasslands, buildings, and
unused land significantly influence the accumulation and stability of SOC. Agricultural
management practices, including fertilization, tillage, and irrigation, can impact the
fluctuations in SOC content. Furthermore, socio-economic factors like fertilizer and
pesticide usage, land ownership patterns, and rural economic development levels may
affect the distribution and variability of SOC content.

Data resources

Sampling SOC data

The collected data were from the Shandong volume of “China Soil Systematics” published
in 2019, totaling 123 and covering the whole Shandong region more evenly (Zhao, Song ¢
Zhang, 2019). The acquired SOC content dataset underwent several processing steps to
ensure data quality and suitability for analysis. These steps included data cleaning,
handling missing values, converting data format, selecting relevant features, and
partitioning the dataset for training and evaluation.
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Figure 1 The spatial location of the study area and the spatial distribution of sampling points. Map
source credit: ALOS PALSAR RTC: ONASA (2015), ©JAXA, METI (2015), DOI: 10.12078/
2023010103. Full-size k] DOI: 10.7717/peerj.17836/fig-1

Acquisition and processing of remote sensing data
The Sentinel-1A VV, VH polarization data, Normalized Difference Vegetation Index
(NDVT) data, and Enhanced Vegetation Index (EVI) data for 2015 were obtained from the
Google Earth Engine (GEE) platform (Google Earth Engine Team, 2015). In GEE, we apply
speckle filtering to process the VV and VH polarization data of Sentinel-1A. The Sentinel-
1A VV and VH polarization data are subjected to speckle filtering with a window size of 3
x 3 pixels. The blue band (B2), red band (B4), and near-infrared band (B8) of Sentinel-2
are selected to calculate NDVI and EVI. And a 30-day median composite image was
generated to reduce the impact of noise and outliers, with a focus on capturing seasonal
changes in vegetation indices.

The spatial reference is uniformly converted to WGS 1984, with an Albers projection
and a spatial resolution of 1,000 m.

This study combines optical images and radar data to provide a richer set of surface
information with different scales and features. This integration improves the accuracy and
reliability of estimating SOC content.

Other geographical data

In this study, environmental covariates were used to build models. Advanced Land
Observing Satellite (ALOS) DEM (Laurencelle, Logan ¢» Gens, 2015) of ALOS DEM.
We first verify the integrity of the data by cross referencing the original metadata provided
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by Laurencelle, Logan ¢» Gens (2015). Then, we clean up the data by removing any errors
that may affect model performance. The spatial resolution meets the requirements of our
research; However, if there are differences, we use bilinear interpolation to adjust the
resolution to match our 1,000 m target scale.

The annual mean temperature and precipitation data were obtained from the Resources
and Environmental Science and Data Center of the Chinese Academy of Sciences (RESDC)
(http://www.resdc.cn) with 1 km resolution. We use spatial interpolation techniques to
estimate missing data points, ensuring the final dataset is complete and spatially coherent.

Soil texture data were obtained from National Earth System Science Data Center (http://
soil.geodata.cn/data/). We use a standard soil classification system to classify the data and
convert units as necessary to maintain consistency in the dataset.

Land use/cover change data (LUCC) were obtained from the Resource and
Environment Science Data Center of the Chinese Academy of Sciences (Xu et al., 2018)
(http://www.resdc.cn/), which included six primary categories: cropland, forestland,
grassland, water bodies, urban and rural residential and industrial land, and unused land.
We convert classified land use data into a format suitable for integration with other
datasets, ensuring that the six main land use categories are clearly defined and mutually
exclusive.

Population density data utilized in this study were obtained from the Center for
Resource and Environmental Science and Data (https://www.resdc.cn/), providing
national population distribution data at a spatial resolution of 1,000 m. We use area
weighted interpolation to resample population density data from the original resolution to
match our target resolution of 1,000 m. This process ensures that population data is
spatially consistent with other environmental covariates.

The basic map used in this study comes from the Resource and Environmental Science
Data Registration and Publishing System (RESDC). The specific dataset used is “China’s
multi-year provincial administrative boundary data” (Xu, 2023).

Screening of environmental factors

There are many environmental factors that affect SOC content, so it is important to screen
the model variables before training the model. Since machine models are often referred to
as “black boxes” that do not directly reveal the functional relationship between
environmental factors and target variables, each variable needs to be eliminated one by one
in order to determine its effect on the model. Variables were screened by increasing or
decreasing the RMSE, retaining the variable when the RMSE increased, and excluding it
when the RMSE increased.

Retrieval model of SOC

In this study, SVM, RF, and XGBoost machine learning models were selected to retravel
SOC content. On the one hand, these machine learning models can effectively handle
multidimensional datasets and Collinearity problem. On the other hand, these models
were widely used in SOC retrieval and obtained good simulation effect (Hengl et al., 2017;
Liu et al., 2022; Zhou et al., 2023). For example, SVM exhibits significant advantages in
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addressing small sample problems. It maintains robust classification performance even
with limited sample sizes by constructing an optimal hyperplane to separate different data
categories (Yao, 2022). RF enhances prediction accuracy and robustness by integrating
multiple decision trees (Momade et al., 2020), while XGBoost supports various objective
functions and evaluation metrics, enabling outstanding performance in diverse prediction
tasks (Sagi & Rokach, 2021). Although studies indicate that deep neural networks (DNN)
are more accurate than RF and SVM in SOC simulations in some areas, neural networks
require extensive parameter settings and more sample data (Raczko & Zagajewski, 2017);
given that a small sample size may not be optimal for this study, deep learning was not
chosen.

In this study, SVM modeling was implemented using the “svm” function in the “e1071”
package, with the “importance” parameter set to TRUE to calculate variable importance
and the “proximity” parameter set to TRUE to calculate sample proximity.

RF modeling was implemented using the “randomForest” and “caret” packages in
the R programming language. The default value of “ntree” was set to 500, and the
“expand.grid()” function in the “caret” package is used, which determines the optimal
value of the parameter mtry through grid search. Specifically, we performed a grid search
on the mtry parameter, traversing a series of possible values and evaluating the impact of
each value on model performance. The role of the expand.grid() function is to generate all
possible parameter combinations for grid search.

XGBoost incorporates regularization techniques, efficient parallel processing, feature
selection, and missing value handling, among other optimization techniques. The
“xgboost” library was loaded using the “library(xgboost)” command. In this model,
learning rate and depth of tree were gbtree, 0.4 and 7, respectively. In this study, a grid
search strategy was used to fine-tune all parameters using the caret package in R software.
The dataset was divided into a training set and a test set with a ratio of 7:3.

Model accuracy validation

In this study, the accuracy and stability of the models were evaluated using three
commonly used metrics: coefficient of determination (R?), root mean square error
(RMSE), and relative percent difference (RPD). Higher modeling accuracy indicates
stronger stability and predictive capability of the model. A value of R* closer to 1 indicates
a higher explained variance of the target variable, indicating better model fit. A lower
RMSE value indicates smaller prediction errors and better model fit. As for RPD, its
classification is detailed in Viscarra Rossel, Taylor ¢» McBratney (2007).

1
RMSE = \/;Zi_l (P — M;)? (1)

_ > (M; — M)(P; — P)
VI (M MY (P~ P’

RZ

(2)
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SDo

RPD = (3)

In the equation, P; and M; represent the simulated and measured values of SOC content
(g/kg), respectively, while SDO represents the standard deviation of the observed values.

RESULTS AND DISCUSSION

Statistical analysis of SOC content

The average SOC content of the soil samples in this study was 8.78 g/kg. According to the
national soil nutrient classification standards, it can be classified as a moderate level
(6-12 g/kg). The coefficient of variation (CV) of SOC content in the collected samples was
55.75%, which was a moderate level of variation (Table 2).

Meanwhile, SOC content of different vegetation was different as showed in Table 3.
Forest had highest SOC content, mean value of SOC was 18.2 g/kg, but also has the
maximum CV (88.7%). Reasons may be that the forest covered large area in Shandong
Province, the elevation fluctuated greatly and the sampling site was sparse. SOC of
Farmland and grassland was lower with a mean value of 8.5, and 8.1 g/kg, and has the
moderate CV (belongs to 49.6-54.3%).

Accuracy comparison analysis

XGBoost demonstrates the highest predictive accuracy in the validation set, with an R* of
0.7548, RMSE of 7.6792, and RPD of 1.1311 (Table 4). This indicates that the model can
account for 75.48% of the variance in the test data. XGBoost also exhibits the highest R*
value of 0.9573 and RPD value of 3.1859 in the training set, suggesting exceptional
predictive capability and accuracy. These findings are consistent with previous research
results (Emadi et al., 2020; Nguyen et al., 2022; Ye et al., 2021). While all three models
perform well on the training set, they show poor performance on the test set or new data.
This highlights our limitation, as the insufficient training samples lead to overfitting.
Due to the lower generalization error of the RF model, which is more robust to noise
(Breiman, 2001) and capable of handling non-linear and hierarchical relationships
between SOC and predictor variables (Zhang et al., 2017), some studies (Lamichhane,
Kumar ¢ Wilson, 2019) suggest that the RF model can better simulate SOC content. This
contrasts with our study, which can be attributed to differences in research fields, feature
variable selection, and spatial resolution choices.

Driving factors of SOC simulation analysis
RF was selected to analyze the explanatory power of each variable in predicting the surface
SOC content. RF was chosen for feature variable analysis because it can handle a larger
number of variables, improve the accuracy and performance of the classification task,
efficiently identify correlated variables (Chen et al., 2020a), and generate p-values to
determine significantly correlated features while controlling the false discovery rate
(Paul & Dupont, 2015).

Figure 2 illustrates the significance of each independent variable in the analysis.
The results show that elevation had the highest explanatory power at 21.74% in explaining
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Table 2 SOC content statistical description.

Sample set Sample size ~ Maximum value ~ Minimum value = Mean value  Standard deviation  Coefficient of variation (%)
Whole dataset 123 27.8 22 8.78 4.89 55.75
Modeling dataset 86 27.8 22 8.63 4.07 47.19
Validation dataset 37 27.6 3.1 9.15 6.47 70.78
Table 3 SOC content statistical description for different vegetation.
Vegetation types  Sample size =~ Maximum value  Minimum value = Mean value  Standard deviation  Coefficient of variation (%)
Farmland 89 27.8 2.6 8.5 4.2 49.6
Forest 5 47.6 6.1 18.2 16.1 88.7
Grassland 14 17.8 2.2 8.1 44 54.3
Table 4 Comparison of model performance for SOC prediction.
RF XGBoost SVM
R’ RMSE RPD R’ RMSE RPD R’ RMSE  RPD
Training 0.9203 1.4275  2.4298  0.9573 1.0887  3.1859  0.6013  2.2822 1.5198
Validation  0.7379  8.0292  1.0818 0.7548 7.6792  1.1311  0.7484  8.0274  1.0821
SAR imagery
) Optical imagery
Silt I Soil texture
Sand 12.7% M Environmental covariates
Clay 1%
Population density
] Precipitation
= .
,% I'emperature 29.3%
> Elevation

novi{ ]
evi4{ ]
wH ]

10

20

Relative importance (%)

Figure 2 Relative importance analysis of variables using RF model.
Full-size K&l DOT: 10.7717/peerj.17836/fig-2
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Figure 3 SOC content mapping based on the XGBoost model. Map source credit: DOIL: 10.12078/
2023010103. Full-size kal DO 10.7717/peer;j.17836/fig-3

SOC content. This suggests that altitude plays a crucial role in predicting SOC content,
consistent with previous studies (Wang, 2021). Precipitation and temperature had
explanatory powers of 11.12% and 5.58%, respectively, indicating a moderate effect on
SOC prediction. Precipitation and temperature, as major climatic factors, influence SOC
content and its spatial distribution, affecting crop growth and plant net primary
productivity (Wang et al., 2018). SOC decomposition and accumulation are
significantly influenced by climatic hydrothermal conditions. Climate warming
accelerates the decomposition of SOC by microorganisms (Schuur et al., 2015). Regarding
soil type, clay and silt soils exhibit higher explanatory power, amounting to 13.47% and
11.65%, respectively (Zinn, Lal & Resck, 2005). Nevertheless, clay content shows
relatively weak explanatory power in predicting soil organic matter content,

possibly due to the consideration of additional soil physicochemical factors (Rasmussen
et al, 2018).

The explanatory power of other characterizing variables should also be considered.
Population density demonstrates an explanatory power of 8.58%. Regarding the
vegetation index, EVI had an explanatory power of 4.38%, while NDVTI had 6.6%. In terms
of microwave remote sensing, VH had an explanatory power of 7.64%, while VV had
5.05%. These results suggest that besides elevation, precipitation, temperature, soil type,
and other environmental factors play significant roles in the spatial distribution of SOC
content.

Spatial distribution analysis of SOC content

The spatial distribution mapping of SOC content was conducted based on the XGBoost
simulation results (Fig. 3). To exclude regions with minimal soil coverage, an NDVI mask
was applied to the land use classification image. The NDVI mask, established from
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literature (Yang, Di Girolamo ¢» Mazzoni, 2007), used a threshold value of 0.2 for the
NDVI image. Pixels with NDVI values below this threshold were considered to have low
vegetation cover and were then masked out from the land use classification image. This
process ensured effective exclusion of areas with limited soil presence, leading to a surface
SOC content mapping that accurately represents soil-dominant regions.

The study results revealed that in the mountainous areas of central Shandong Province,
the highest SOC content was observed in regions with high altitude and steep slopes. These
regions, characterized by forest cover, exhibited higher SOC content, consistent with
previous research (Guo et al., 2020), reaching up to 24.34 g/kg. This can be attributed to the
dense vegetation cover, organic matter release by trees during growth (Zhang et al., 2019),
favorable climatic conditions, and limited anthropogenic impacts, promoting organic
matter accumulation and preservation (Wang, 2019; Wiesmeier et al., 2013). Furthermore,
traditional land management practices, like terracing and agroforestry, passed down
through generations, aid in soil erosion prevention and organic matter accumulation in the
soil (Chen et al., 2020b; Wei et al., 2019). Cropland areas at low elevations in the western
and northern parts of Shandong Province exhibit low SOC content. Common intensive
agricultural practices in these areas, such as ploughing and fertilizer application, result in
the loss and degradation of soil organic matter (Wang, Amundson ¢ Niu, 2000). Adopting
sustainable agricultural practices like conservation tillage and organic farming could
potentially alleviate the decline in SOC levels in these areas and enhance long-term soil
quality (Martinez-Mena et al., 2020). The economically developed coastal areas of
Shandong Province exhibit lower soil organic matter content attributed to distinct
environmental conditions and human activities like urbanization, industrialization, and
agricultural development, resulting in land degradation and soil organic matter loss
(Wang, 2019). Furthermore, the rise in sea levels can cause erosion and degradation of soil
carbon reserves (Haywood et al., 2020). The proximity to the ocean can result in seawater
intrusion, adversely impacting soil quality and the preservation of organic matter
(Morrissey et al., 2014). Our results align with those of Dai et al. (2017), indicating that
surface SOC density distribution follows a pattern of low levels in coastal areas, medium
levels in the northwestern plains and eastern hills, and high levels in the mountainous
regions of south-central Shandong Province.

Furthermore, in combination with Fig. 4, the study demonstrates variations in how
different land use types impact SOC content. Land use in Shandong Province is
predominantly cropland, with garden land and woodland following, while grassland,
commercial and service land, industrial and mining land are less common. Significantly,
woodland and garden land exhibited higher SOC content compared to cropland, aligning
with previous studies (Edmondson et al., 2014; Fang et al., 2014, 2012) and clarifying the
lower SOC content in Shandong Province. This phenomenon may be attributed to the
over-utilization of cropland in Shandong Province (Liu et al., 2005) and extensive history
of repeated ploughing, resulting in decreased SOC content. Optimal practices such as
irrigation, fertilizer application, stubble return, and reduced tillage can enhance soil
organic carbon storage and agricultural sustainability (Zhao et al., 2013).
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The spatial distribution pattern reveals the dynamics of SOC accumulation and loss
across various regions, offering crucial insights for formulating land management policies
and executing land conservation strategies.

CONCLUSIONS

This study used 123 SOC sampling points and RF, SVM and XGBoost machine learning
algorithm to construct SOC content retrieval model. Through comparative analysis of the
simulation accuracy and stability of the models, the model combination with the best SOC
content inversion accuracy was determined. The results showed that: (1) SOC content of
Shandong Province was only 8.78 g/kg, and with a high level of variation. (2) Among the
three simulation models, XGBoost model obtained the highest predictive accuracy. (3)
Among all the influence factors of SOC content, elevation and Clay were identified as the
most influence factors, and the explanation reaching to 21.74%, 13.47%. (4) Spatial
distribution of SOC content showed that there was a higher SOC content in mountains
covered with forest, than plain region covered with croplands, and coast region.
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