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ABSTRACT
Soil salinization significantly impacts agricultural lands and crop productivity in the
study area.Moreover, freshwater scarcity poses a significant obstacle to soil reclamation
and agricultural production. Therefore, eco-friendly strategies must be adopted for
agro-ecosystem sustainability under these conditions. A study conducted in 2022 and
2023 examined the interaction effects of various soil mulching materials (unmulched,
white plastic, rice straw, and sawdust) and chitosan foliar spray application (control,
250 mg L−1 of normal chitosan, 125 mg L−1 of nano chitosan, and 62.5 mg L−1 of nano
chitosan) on the biochemical soil characteristics and productivity of common beans in
clay-saline soil. Higher organic matter, available nutrient content, and total bacteria
count in soils were found under organic mulching treatments (rice straw and sawdust).
In contrast, the white plastic mulching treatment resulted in the lowest values of soil
electrical conductivity (EC) and the highest soil water content. Conversely, chitosan
foliar spray treatments had the least impact on the chemical properties of the soil. Plants
sprayed with 62.5 mg L−1 of nano chitosan exhibited higher chlorophyll content, plant
height, fresh weight of shoots and roots, seed yield, and nutrient content compared
to other chitosan foliar spray applications. All treatments studied led to a significant
reduction in fungal communities and Na% in plants. The combined effect of organic
mulch materials and foliar spray application of 62.5 mg L−1 nano chitosan appeared to
enhance biochemical saline soil properties and common bean productivity.
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INTRODUCTION
Soil salinization is recognized as a significant global environmental and socioeconomic
challenge, which may exacerbate with climate change (Dawood et al., 2022). Furthermore,
it has raised concerns about the sustainability of agricultural production (Morton et al.,
2019). Globally, soil salinization affects approximately one billion hectares of cultivated
land, with its expansion attributed to human activities and climate change (Hopmans et
al., 2021). In the Kafr El-Sheikh Governorate, North Nile Delta of Egypt, soil salinization
poses a problem for nearly 56% (151.05 hectares) of the total cultivated area, as reported
by Aboelsoud et al. (2022). Additionally, Egypt has experienced freshwater shortages in
recent years (Sofy et al., 2021). Salt accumulation in arid climates, such as Egypt, can
be attributed to various factors, including soil texture, seawater intrusion (Stavi, Thevs &
Priori, 2021), irrigation dependency on wastewater (Corwin, 2021), and inefficient drainage
networks. These factors contribute to soil quality degradation, leading to disruptions in
fertility, decreased microbial activity, and compromised soil structure (Al-Suhaibani et
al., 2021; Devkota et al., 2022). Consequently, the high accumulation of Na+ and Cl−

can induce osmotic stress (Van Zelm, Zhang & Testerink, 2020), reduce nutrient uptake
(Hasanuzzaman & Fujita, 2022), and cause significant damage to proteins, nucleic acids,
membrane lipids (Guo et al., 2022), and chloroplasts (Hameed et al., 2021).

Cultivated globally for its edible green pods and dry seeds, common bean (Phaseolus
vulgaris L.) is a self-pollinated, diploid legume crop within the Fabaceae family (Priya
& Manickavasagan, 2020; Jan et al., 2021). However, this crop is highly sensitive to salt
stress, with significant declines in both morphological attributes and yield (Garcia et al.,
2019; El-Beltagi et al., 2023). Therefore, managing salinity dynamics requires the adoption
of eco-friendly strategies to improve soil characteristics and increase crop productivity,
particularly under freshwater limitations.

Among eco-friendly strategies, soil mulch is known to have potential in lower soil
evaporation, thus enhancing the soil water content and reducing salt buildup in the
soil (Alkharabsheh et al., 2021). Soil mulching can involve the use of various materials,
including organic options like straws, husks, and grasses, as well as inorganic materials
such as plastic, non-woven fabrics, and paper films (Kader et al., 2017). The previous
studies indicated that the plastic mulch materials have a stronger positive impact on soil
physicochemical properties and yield than organic materials (Haque, Jahiruddin & Clarke,
2018; Qu et al., 2019; Amare & Desta, 2021; Uju et al., 2022). However, the agro-system
environment can be adversely affected by its low recycling rate (Yang et al., 2020; Dewi
et al., 2024). To address this challenge, employing organic mulch materials emerges as a
promising solution due to their cost-effectiveness and environmental friendliness (Zhao
et al., 2016a; Zhao et al., 2016b). Incorporating straw into the soil can indeed offer several
benefits, such as inhibiting salt accumulation and increasing soil water content (Song
et al., 2019; Xie et al., 2020; Li et al., 2023), enhance the accumulation of organic carbon
in the soil (Wang et al., 2021), enhance microbial activity (Zhao et al., 2016a; Zhao et al.,
2016b; Fu et al., 2020), and soil nutrients (Pi et al., 2017; Iqbal et al., 2020). However, there
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is comparatively limited research on the effects of different mulch materials on common
bean crops and traits in saline soil (Kwambe et al., 2015; El-Wahed et al., 2017).

The use of biostimulants is another alternative to mitigate the salinity effect on plants, by
enhancing plant growth and crop productivity (Cataldo, Fucile & Mattii, 2022; Fawzy et al.,
2023). This aligns with established strategies for enhancing plant growth and productivity.
Chitosan, a natural polysaccharide biopolymer, is derived from the deacetylation of chitin
(β-(1→4)-linked N-acetyl-d-glucosamine and D-glucosamine). Chitin can be sourced
fromnatural waste, such as crab and shrimp shells, or from bacterial fermentation processes
(Riaz Rajoka et al., 2019). Chitosan’s aqueous solubility typically increases with decreasing
molecular weight and increasing acidity (Seenuvasan, Sarojini & Dineshkumar, 2020). Since
chitosan is an inexpensive material that is eco-friendly and has low toxicity, it has gained
considerable attention as a potential biological resource for sustainable production (Li et
al., 2020).

Nanotechnology has found extensive application in various aspects of plant
improvement, where nanoparticles are increasingly replacing bulk materials (Azameti
& Imoro, 2023). Recently, nano chitosan has garnered significant attention for its capacity
to produce environmentally friendly and highly functional materials. Its molecular and
nanostructures are influenced by its physical properties (Tokatlı& Demirdöven, 2020).
These advantages, such as interface and surface effects, combined with their small size,
render them more effective than conventional chitosan (Divya & Jisha, 2018; Lee et al.,
2023). Several studies have reported that chitosan or its nanoparticles play a crucial role
in alleviating plant oxidative stress and promoting crop productivity under salinity stress.
For instance, Hidangmayum et al. (2019) found that they can alleviate the harmful effects
of salinity stress on plants by increasing the photosynthetic rate, and enhancing the
production of organic acids, sugars, and amino acids. They also upgrade several defensive
genes in plants, such aspathogenesis-related (Krupa-Małkiewicz & Fornal, 2018); regulating
cellular osmotic pressure to increase water use efficiency, mineral nutrient uptake, and
photosynthesis while reducing oxidative stress (Zhang et al., 2021; Hidangmayum &
Dwivedi, 2022; Ji et al., 2022; Balusamy et al., 2022); increasing proline levels (Aazami et al.,
2023); enhancing the activity of antioxidant enzymes and reducing malondialdehyde levels
(Attia et al., 2021), and modifying antioxidant activities, ion homeostasis, and melatonin
levels (Tabassum et al., 2024). Thus far, research on utilizing chitosan or its nanoparticles
to boost the yield of common beans remains limited. Moreover, little attention has been
given to examining potential interaction effects between mulching materials and chitosan
or its nanoparticles, particularly in the context of foliar spray applications.Therefore, this
research aims to understand the impact of different soil mulching materials combined with
a foliar spray application of chitosan or its nanoparticles on common bean productivity
and the biochemical characteristics of saline soil.

MATERIALS & METHODS
Experimental site
The experiment took place at the Soil Improvement and Conservation Greenhouse of the
Sakha Agricultural Research Station, located at coordinates 30◦56′ 53′′E, 31◦05′38′′N, with
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Figure 1 Daily of temperature and rainfall at the cultivation period of common bean crop (2022 and
2023).

Full-size DOI: 10.7717/peerj.17828/fig-1

an elevation of approximately 6 m above sea level, in the Kafr El-Sheikh Governorate,
North Nile Delta of Egypt. It was conducted during the first week of March in both 2022
and 2023.

Data on daily rainfall and temperature during the cultivation periods of 2022 and 2023
were collected from the weather station installed at the experimental site. The average
annual precipitation ranged from 62.21 to 37.84 mm, with temperatures averaging 23.2
and 24.3 ◦C, respectively (Fig. 1).

The common bean (Phaseolus vulgaris L.) cv. Giza 6 seeds were obtained from the
Horticulture Research Department at the Agricultural Research Station in Kafr El-Sheikh
Governorate. White plastic mulch (30 µm) was sourced from the Arasya Plastic Company
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Figure 2 Characterization of nano chitosan (A) particle size distribution graph, (B) scanning electron
microscope (SEM), and (C) the functional groups.

Full-size DOI: 10.7717/peerj.17828/fig-2

in Heliopolis, Cairo Governorate, while rice straw and sawdust were collected from a local
farmer and wood machinery in Kafr El-Sheikh Governorate.

Synthesis and characterization of nano chitosan
Chitosan (C6 H11 NO4)n was procured from Chitosan Egypt Company, extracted from
shrimp shells, with a deacetylation degree of 90%, purity of 95%, and a molecular weight
of less than 100 cP. The preparation of nano chitosan followed a method similar to that
described by Sari, Abraha & Suharyadi (2019). The ball milling method was employed
for 60 min to achieve nanosized particles, followed by drying for 10 min. Particle size
analysis was conducted using Bettersize (2600 Wet), and scanning electron microscopy
(SEM) images were captured using a JEOL microscope operating at 20 kV at the Nano
Research Laboratory of Alexandria University. The chemical structure of nano chitosan
was analyzed using a Fourier-transform infrared (FTIR) spectrometer (APD2000Pro) at
the Central Laboratory of Tanta University. Figure 2 presents the characterization of nano
chitosan.

The average particle size distribution of chitosan nanoparticles was determined to be
86.4 nm (Fig. 2A), indicating nanoscale dimensions. SEM images revealed the formation
of spherical nanoparticles (Fig. 2B), confirming the desired morphology. Furthermore,
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the functional groups of nano chitosan were identified using FTIR spectra (Fig. 1C).
The stretching vibration of O-H, methylene and methyl, C =O, and the C–N stretching,
indicating the acetyl group, CN (NH2) stretching as evidence of amine groups, and CN (H2)
stretching, were observed at wavenumbers 3,852.39–3,449.47 cm−1; 2,923.05–2,855.04 and
2,877 cm−1; 1,634.71 and 1,076.53 cm−1; 1,423.67 cm−1, 1,149.52 cm−1, and 1,076.53
cm−1, respectively. The presence of strong intermolecular hydrogen bonds in the structure
was confirmed by the observed absorptions.

Experiment setup
Lysimeters were arranged in a randomized block design with three replications. The
treatments consisted of two factors: (1) four soil mulching materials, namely un-mulched
(UNM), white plastic (WPM), rice straw (RSM), and sawdust (SDM); and (2) four chitosan
foliar spray applications: control (distilled water, Ch0); 250 mg L−1 of normal chitosan
(Ch1); 125 mg L−1 of nano chitosan (Ch2); and 62.5 mg L−1 of nano chitosan (Ch3). A
total of forty-eight lysimeters were utilized, each with dimensions of 0.64 m2 (80× 80 cm)
by 70 cm deep. Each lysimeter was filled with approximately 450 kg of clay soil, with a layer
of gravel and sand 10 cm thick at the bottom to aid drainage.

Soil samples were collected from a depth of 30 cm before planting and after harvest,
at two time points during the growing seasons of 2022 and 2023. These samples were
prepared and analyzed to assess soil characteristics and microbial communities following
the protocols outlined by Page, Miller & Keeney (1982), Nelson & Sommers (1983), and
Allen (1958).

The soil analysis revealed that the soil texture was classified as heavy clay soil, with clay
content at 57.97%, silt at 25.37%, and sand at 18.66%. Additionally, the soil had a high
electrical conductivity (EC) of 7.78 dS m−1, pH of 8.16, exchangeable sodium percentage
(ESP) of 14.76, bulk density of 1.42 mg m−3, soil water content of 27.48%, organic carbon
content of 0.620 g g−1, and available soil nutrients including nitrogen (N) at 23.09 mg
kg−1, potassium (K) at 204.46 mg kg−1, and phosphorus (P) at 11.77 mg kg−1. Bacterial
and fungal counts were recorded at 5.45 × 103 CFU and 4.07 × 102 CFU per gram of dry
soil, respectively.

Common beans were planted on the 1st of March in both 2022 and 2023. One ridge per
lysimeter was prepared, measuring 60 cm long, 40 cm wide, and 15 cm high. Two seeds
were placed in hills 20 cm apart on two sides (6 hills in ridge), later thinned to form a single
plant per hill (6 plants per lysimeter). Irrigation water with a pH of 7.08 and an electrical
conductivity (ECw) of 2.51 dS m−1 was used, and irrigation was adjusted to a depth of 70
cm.

One week after sowing in both seasons, 30-micron white plastic mulch, a five cm thick
layer of rice straw, and sawdust were applied to the ridges.

Foliar spraying with chitosan or its nanoparticles commenced 15 days after planting
and was repeated twice at intervals of 30 and 45 days in both seasons. Different doses
of chitosan or its nanoparticles (250, 125, and 62.5 mg L−1) were dissolved in 800 ml
of distilled water containing 1% acetic acid. The solution was stirred continuously until
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completely dissolved, then topped up to one liter. Finally, the solution was alkalized to pH
6 using a 1 M NaOH solution (Van, Minh & Anh, 2013).

Fertilization and agricultural practices followed common bean cultivation practices in
the North Nile Delta region of Egypt (49 kg N ha−1 as ammonium sulfate, 71.4 kg P ha−1

as calcium super phosphate, and 57.1 kg K ha−1 as potasium sulfate, in two equal doses).
Upon reaching full maturity, the plants were harvested on July 18th of both seasons.

Growth characters and seed yield of common beans analysis
After 60 days of planting, samples were collected from all plants in each experimental
unit in both growing seasons (576 samples) for various measurements during the growing
seasons of 2022 and 2023. The measurements included:
I. Chlorophyll content in flag leaves (top leaflet petiole), measured using a Chlorophyll

Content Meter (Model CCM-200 plus GPS, USA).
II. Plant height (cm).
III. Shoot and root fresh weight per plant in grams (totaling 288 samples), randomly

sampled from three plants per experimental unit during both seasons.
Upon reaching full maturity, the remaining three plants from each experimental unit

during both seasons, totaling 288 samples, were weighed to determine seed yield (kg
ha−1). Additionally, plant samples were dried, ground, and wet-digested following the
method described byWolf (1982). Chemical analysis was then conducted to determine the
percentages of nitrogen (N), phosphorus (P), potassium (K), and sodium (Na) according
to the standard methods outlined byMotsara & Roy (2008).

Data analysis and processing
The analysis of variance (ANOVA) for the two-way factorial design can be conducted using
the aov() function in R software for Windows (ver. 4.3.1) and Tukey HSD test to conduct
multiple comparisons between different treatments (R Core Team, 2010). Differences
between treatment interactions are denoted with ggbarplot packages; principal component
analysis (PCA) with Factoextra packages; and Visualize Correlation Matrix with corrplot
packages (Wei & Simko, 2021; Kassambara & Mundt, 2023).

RESULTS
The results of a two-way ANOVA show soil mulch, chitosan foliar spray treatments, and
co-applications affect the investigated soil characteristics across two seasons (2022–2023),
as depicted in Table 1.

Soil characteristics
The investigated soil characteristics included soil water content (SWC), soil electrical
conductivity (EC), soil organic carbon (SOC), available soil nitrogen (Ava. N), phosphorus
(Ava. P), and potassium (Ava. K). Compared to the unmulched treatment, white plastic
mulch (WPM) increased SWC by 22.98% and decreased soil EC by 10.37% on average
across the growing seasons (Table 2). The use of organic soil mulch increased the average
levels of SOC, Ava. N, P, and K in both seasons (Table 2). SOC content increased by 0.159
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Table 1 Results of two-way ANOVA of investigated soil characteristics under the main and co applications effects of soil mulch and chitosan foliar spray applica-
tions in two seasons.

Parameters Treatments Season 2022 2023

Df Sum Sq Mean Sq Pr(>F) Sum Sq Mean Sq Pr(>F)

Mulching 3 322.4 107.5 <0.001*** 350.3 116.8 <0.001***

Chitosan foliar spray 3 2.6 0.87 0.667 3.3 1.09 0.856
Interaction 9 0.4 0.05 1.000 ns 0.5 0.05 1.000 ns

SWC (%)

Residuals 30 39.1 1.31 111.99 3.73
Mulching 3 2.35 0.78 <0.001*** 5.85 1.9489 <0.001***

Chitosan foliar spray 3 0.45 0.15 0.0029** 0.354 0.1181 <0.001***

Interaction 9 0.029 0.003 0.0294* 0.029 0.0032 0.99 ns
EC (dS m−1 )

Residuals 30 0.152 0.005 0.500 0.0167
Mulching 3 0.169 0.056 <0.001*** 0.236 0.0785 <0.001***

Chitosan foliar spray 3 0.006 0.002 0.0272* 0.0158 0.0053 0.0104*

Interaction 9 0.003 0.0004 0.8554 ns 0.0055 0.0006 0.8566 ns
SOC (g g−1 )

Residuals 30 0.022 7.20e−04 0.035 0.0012
Mulching 3 607 202.3 <0.001*** 657.1 219.03 <0.001***

Chitosan foliar spray 3 12.1 4.02 0.338 ns 17.68 5.895 0.0103*

Interaction 9 0.2 0.02 1.000 ns 24.4 2.72 0.704 ns
Ava. N (mg g−1 )

Residuals 30 98.84 3.295 83.49 2.783
Mulching 3 147.4 49.13 <0.001*** 135.8 45.25 <0.001***

Chitosan foliar spray 3 4.04 1.35 0.294 6.8 2.27 0.0761*

Interaction 9 0.22 0.02 1.000 ns 1.67 0.19 0.9915 ns
Ava. P (mg g−1 )

Residuals 30 30.35 1.012 26.98 0.899
Mulching 3 4,555 1,519 <0.001*** 47,293 15,764 <0.001***

Chitosan foliar spray 3 11 4 0.894 ns 18 66 0.722 ns
Interaction 9 5 1 1.000 ns 5 17 1.000 ns

Ava. K (mg g−1 )

Residuals 30 513.2 17.11 434.34 14.48
Mulching 3 27.59 9.196 <0.001*** 34.76 11.586 <0.001***

Chitosan foliar spray 3 3.38 1.126 <0.001*** 6.22 2.073 0.0339*

Interaction 9 0.51 0.056 0.0126* 2.11 0.234 0.941 ns
TBC (log CFU g−1 )

Residuals 30 0.580 0.019 17.92 0.597
Mulching 3 8.953 2.9844 .00673** 23.724 7.908 <0.001***

Chitosan foliar spray 3 2.411 0.8037 0.288 ns 4.495 1.498 0.0016**

Interaction 9 0.072 0.008 0.000 ns 0.334 0.037 0.9999 ns
TFC (log CFU g−1 )

Residuals 30 15.66 0.522 16.72 0.558

Notes.
SWC, soil water content; EC, soil salinity; SOC, soil organic carbon content; Ava. N, P, and K, available N, P and K content; TBC, total bacteria count; TFC, total fungi count.

*,**,***Significant codes: *** 0.001, ** 0.01, * 0.05, and ns not statistically significant.
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Table 2 Statistical results for the main effects of mulching treatment and chitosan foliar spray applications on soil parameters in two seasons
(2022–2023).

Season 2022
Parameters SWC

(%)
EC
(dSm−1)

SOC
(g g−1)

Ava. N
(mg g−1)

Ava. P
(mg g−1)

Ava. K
(mg g−1)

TBC
(log CFU g−1)

TFC
(log CFU g−1)

Mulching materials
UNM 27.14c 7.77a 0.598d 27.26c 12.57b 201.19d 5.92d 3.61a
WPM 33.54a 7.15c 0.643c 33.61b 13.68b 256.36c 6.96c 3.06ab
RSM 29.63b 7.51b 0.695b 36.33a 16.89a 266.13b 7.45b 3.15ab
SDM 32.94a 7.40b 0.757a 35.50ab 16.10a 283.55a 7.98a 2.40b
Chitosan foliar spray
Ch0 31.15 7.61a 0.659b 32.32 15.30 251.03 6.64c 3.43
Ch1 30.87 7.47b 0.669ab 33.35 14.74 251.86 7.10b 3.03
Ch2 30.72 7.41b 0.676ab 33.44 14.66 252.09 7.26ab 2.92
Ch3 30.51 7.35c 0.690a 33.59 14.55 252.26 7.31a 2.85
Season 2023
Mulching materials
UNM 27.89b 7.60a 0.602d 27.56c 12.38c 201.34d 5.96c 3.31a
WPM 34.13a 6.63d 0.660c 34.60b 14.19b 257.31c 7.23b 2.47b
RSM 29.16b 7.16b 0.732b 36.90a 16.82a 268.91b 7.49ab 2.31b
SDM 33.55a 7.01c 0.786a 36.17ab 15.82a 284.63a 8.33a 1.33c
Chitosan foliar spray
Ch0 31.58 7.23a 0.668b 32.77b 15.42 252.05 6.66c 2.86a
Ch1 31.22 7.12ab 0.691ab 34.03a 14.74 253.11 7.28ab 2.33b
Ch2 31.08 7.05bc 0.705ab 34.14a 14.61 253.31 7.45ab 2.15b
Ch3 30.86 7.00c 0.716a 34.29a 14.43 253.71 7.62a 2.08b

Notes.
SWC, soil water content; EC, soil salinity; S.O.C, soil organic carbon content; Ava. N, P, and K, available N, P and K content; TBC, total bacteria count; TFC, total fungi
count; UNM, un-mulched; WPM, white plastic mulching; RSM, rice straw mulching; SDM, sawdust mulching; Ch0, Control (distilled water); Ch1, 250 mg L−1 of normal
chitosan; Ch2, 125 mg L−1 of nano chitosan; Ch3, 62.5 mg L−1 of nano chitosan.
The means that do not share a common letter are considered significantly different at 0.05.

and 0.184 g g−1 under sawdust mulch (SDM) treatment, followed by rice straw mulch
(RSM) treatment, which increased by 0.097 and 0.130 g g−1 compared to unmulched soil
in both seasons, respectively. We did not find statistically significant differences in SWC
and soil available nutrients except for Ava. N and P in 2023 with chitosan foliar spray
application (Table 1). Chitosan foliar spray applications had an impact on soil EC in both
2022 and 2023 (Table 1). Moreover, treatment Ch3 had a lower value of soil EC compared
to other foliar application treatments and a higher value of SOC (0.690 and 0.716 g g−1)
in both seasons, respectively (Table 2). Regarding the interaction effect, the co-application
of soil mulch treatment and chitosan foliar spray applications did not show significance
in the investigated soil characteristics during the two growing seasons (Table 1); only
significant differences between treatments were observed in soil EC in 2022 (Fig. 3). The
co-application of WPM with Ch3 resulted in a lower value of soil EC (7.04 dS m−1).
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Figure 3 Soil EC (dSm−1) for the interaction affect of mulching treatment with chitosan foliar
spray applications in 2022 and 2023. UNM, un-mulched; WPM, white plastic mulching; RSM, rice
straw mulching; SDM, sawdust mulching, Ch0, Control (distilled water); Ch1, 250 mg L−1 of normal
chitosan; Ch2, 125 mg L−1 of nano chitosan; Ch3, 62.5 mg L−1 of nano chitosan. ‘*’ is significant, and ‘ns’
is insignificant at p< 0.05. Mean value± standard error.

Full-size DOI: 10.7717/peerj.17828/fig-3

Soil microbial community
There was a significant change in the investigated soil microbial community under
different soil mulch treatments (Table 1). The sawdust mulch (SDM) treatment exhibited
significantly greater bacterial communities (7.98 and 8.33 log CFU g−1) in both seasons,
respectively, but no differences were found compared to rice straw mulch (RSM) in 2022
(Table 2). Additionally, a lower fungi community was observed under SDM compared to
unmulched (UNM) soil in both seasons (Table 2). The results also showed that insignificant
differences were found between soil mulch treatments.

The effect of foliar spray applications of chitosan or its nanoparticles, compared with
the control treatment (Ch0), resulted in a statistically significant increase in bacterial
communities in 2022 and 2023 (Table 2). Compared to the control treatment, whole
chitosan or its nanoparticles foliar spray application treatment decreased the average fungi
community in the growing seasons of 2022 and 2023. These reductions were 18.53%,
24.83%, and 27.27% for Ch1, Ch2, and Ch3, respectively, in 2023.

Regarding the co-application effect, the data in Table 1 indicate that the only significant
differences in bacterial communities between treatments were observed in 2022. The SDM
with two doses of foliar spraying by nano chitosan (Ch2 and Ch3) had a higher value of
bacterial communities (8.11 and 8.13 log CFU g−1, respectively) in 2022 (Fig. 4). The fungi
community was insignificantly different across treatments in 2022 and 2023.
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Figure 4 Bacteria community (log CFU g−1) for the interaction effect of mulching treatment with chi-
tosan foliar spray applications in 2022 and 2023. UNM, un-mulched; WPM, white plastic mulching;
RSM, rice straw mulching; SDM, sawdust mulching; Ch0, Control (distilled water); Ch1, 250 mg L−1 of
normal chitosan; Ch2, 125 mg L−1 of nano chitosan; Ch3, 62.5 mg L−1 of nano chitosan. ‘*’ is significant,
and ‘ns’ is insignificant at p< 0.05. Mean value± standard error.

Full-size DOI: 10.7717/peerj.17828/fig-4

Morphological attributes and seed yield of common beans
The two-way ANOVA results showed that the main soil mulch treatments and chitosan
foliar spray applications significantly affected the investigated morphological attributes
and seed yield of common beans in both seasons (Table 3). Co-application results in
the investigated morphological attributes and seed yield of common beans revealed that
insignificant differences were found in both seasons.

Different soil mulch materials showed significantly higher chlorophyll content and
plant height compared with the unmulching treatment (UNM) during both seasons, but
no differences in the values of chlorophyll content and plant height were found between
mulching treatments in 2022 (Table 4). In the 2023 season, RSM had higher values of
chlorophyll content and plant height than the soil mulch treatment. Relative to UNM, the
plant height was decreased by 13.44%, 16.46%, and 13.60% in plants mulched by WPM,
RSM, and SDM, respectively. Organic mulching materials gradually increased the fresh
weight of shoot and root compared to WPM in both seasons (Table 4), with the minimum
values recorded with the unmulched treatment (UNM). The seed yield increased under all
soil mulch treatments compared to UNM. Moreover, insignificant differences in seed yield
were observed between WPM, RSM, and SDM in both seasons (Table 4).

Furthermore, chlorophyll content was substantially enhanced with Ch3 application
compared to Ch0 in 2022 and 2023 (Table 4). The reduction in plant height in control
plants (Ch0) were 18.99%, 20.07%, and 20.98% compared with Ch1, Ch2, and Ch3,
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Table 3 Results of two-way ANOVA of investigated common bean parameters under the main and co applications effects of soil mulch and chi-
tosan foliar spray applications in two seasons.

Parameters Treatments Season 2022 2023

Df Sum Sq Mean Sq Pr(>F) Sum Sq Mean Sq Pr(>F)

Mulching 3 270.6 90.2 <0.001*** 304.9 101.7 <0.001***

Chitosan foliar spray 3 378.9 126.3 <0.001*** 404.4 134.8 <0.001***

Interaction 9 11.7 1.3 0.617 ns 9.4 1.04 0.657 ns
Chlorophyll (mg g−1 f.w)

Residuals 30 31.3 1.04 28.2 0.94

Mulching 3 120.7 40.2 <0.001*** 143.97 47.99 <0.001***

Chitosan foliar spray 3 207.5 69.2 <0.001*** 213.04 71.01 <0.001***

Interaction 9 1.83 0.20 0.969 ns 2.54 0.28 0.883 ns
Plant height (cm)

Residuals 30 4.1 0.14 3.44 0.12

Mulching 3 248.5 82.83 <0.001*** 300.49 100.16 <0.001***

Chitosan foliar spray 3 262.5 87.51 <0.001*** 290.01 96.67 <0.001***

Interaction 9 0.79 0.09 0.998 ns 0.83 0.09 1 ns
Shoot FW (g plant−1 )

Residuals 30 4.52 1.51e−01 23.39 0.78

Mulching 3 50.61 16.87 <0.001*** 84 28 <0.001***

Chitosan foliar spray 3 83.3 27.767 1 <0.001*** 99.9 33.3 <0.001***

Interaction 9 0.39 0.043 0.996 ns 0.57 0.06 0.984 ns
Root FW (g plant−1 )

Residuals 30 6.25 0.21 6.90 0.23

Mulching 3 2,644 8,812 <0.001*** 2,682 8,940 <0.001***

Chitosan foliar spray 3 1,660 5,534 <0.001*** 1,800 5,999 <0.001***

Interaction 9 1,166 130 1 ns 483 53 1 ns
Seed yield (Kg ha−1 )

Residuals 30 1,565.3 5,215.7 1,589.8 5,296.3

Mulching 3 5.22 1.75 <0.001*** 5.642 1.88 <0.001***

Chitosan foliar spray 3 4.16 1.39 <0.001*** 1.992 0.664 <0.001***

Interaction 9 0.15 0.017 <0.001*** 0.525 0.058 <0.001***
N (%)

Residuals 30 0.032 0.0011 0.047 0.0016

Mulching 3 0.324 0.108 <0.001*** 0.376 0.125 <0.001***

Chitosan foliar spray 3 0.473 0.158 <0.001*** 0.601 0.200 <0.001***

Interaction 9 0.009 0.001 .0267* 0.013 0.0014 0.0017**
P (%)

Residuals 30 0.0017 5.65e−05 0.0012 4.09e−05

Mulching 3 5.75 1.92 <0.001*** 7.524 2.508 <0.001***

Chitosan foliar spray 3 3.58 1.19 <0.001*** 2.407 0.802 <0.001***

Interaction 9 0.22 0.025 <0.001*** 0.317 0.035 <0.001***
K (%)

Residuals 30 0.013 0.0005 0.021 0.0007

Mulching 3 0.100 0.033 <0.001*** 0.113 0.038 <0.001***

Chitosan foliar spray 3 0.274 0.091 <0.001*** 0.281 0.094 <0.001***

Interaction 9 0.027 0.003 <0.001*** 0.027 0.004 <0.001***
Na (%)

Residuals 30 0.009 0.0003 0.009 0.0003

Notes.
FW, fresh weight.
Significant codes: ‘***’0.001, ‘**’0.01, ‘*’0.05, and ‘ns’ not statistically significant.

respectively. In addition, the fresh weight of the shoot was increased by 38.76% and
37.17% with Ch3 application, and the increases in fresh root weight were 42.36% and
44.04% during the seasons of 2022 and 2023, respectively, compared with the control
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Table 4 Statistical results for the main effects of mulching treatment and chitosan foliar spray applications on investigated common bean pa-
rameters in two seasons (2022–2023).

Season 2022
Parameters Chlorophyll Ph Shoot

FW
Root
FW

SY N P K Na

(mg g−1 f.w) (cm) (g) (g) (kg ha−1 ) (%) (%) (%) (%)

Mulching
materials

UNM 40.84b 24.81b 29.58c 8.58c 1,450.44b 2.65d 0.461d 2.06c 0.458a

WPM 45.88a 28.14a 33.98b 10.20b 1,981.35a 3.23c 0.607c 2.75b 0.352b

RSM 46.86a 28.89a 35.15a 11.35a 2,003.96a 3.51a 0.673a 2.91a 0.349bc

SDM 46.05a 28.18a 34.38ab 10.70ab 1,991.04a 3.39b 0.647b 2.89a 0.358a
Chitosan
foliar spray

Ch0 40.23c 23.92c 26.37d 7.98c 1,543.36c 2.74d 0.441d 2.23d 0.499a

Ch1 46.28b 28.46b 34.68c 10.58b 1,918.59b 3.14c 0.588c 2.60c 0.384b

Ch2 45.46ab 28.72a 35.44b 10.91ab 1,933.92b 3.36b 0.655b 2.81b 0.337c

Ch3 47.65a 28.93a 36.59a 11.36a 2,030.93a 3.53a 0.705a 2.96a 0.298c
Season 2023
Mulching
materials

UNM 41.29c 24.91c 30.25c 8.88d 1,481.24b 2.76d 0.525d 2.09d 0.435a

WPM 46.36b 28.42ab 34.64b 10.74c 2,014.03a 3.28c 0.686c 2.74c 0.323b

RSM 47.88a 29.37a 35.70a 12.50a 2,040.54a 3.63a 0.761a 3.01b 0.319b

SDM 46.65b 28.70b 34.90a 11.48b 2,025.55a 3.55b 0.714b 3.11a 0.326b
Chitosan
foliar spray

Ch0 40.64c 24.22c 26.93b 8.47c 1,565.80c 2.98d 0.494d 2.38d 0.471a

Ch1 46.85b 28.75b 36.03a 11.24b 1,942.63b 3.30c 0.667c 2.72c 0.359b

Ch2 46.48b 29.09ab 36.53a 11.69ab 1,977.14b 3.41b 0.732b 2.87b 0.306c

Ch3 48.21a 29.33a 36.94a 12.20a 2,075.77a 3.53a 0.793a 2.97a 0.268c

Notes.
Ph, plant height; FW, shoots and roots fresh weight; SY, seed yield; UNM, un-mulched; WPM, white plastic mulching; RSM, rice straw mulching; SDM, sawdust
mulching; Ch0, Control (distilled water); Ch1, 250 mg L−1 of normal chitosan; Ch2, 125 mg L−1 of nano chitosan; Ch3, 62.5 mg L−1 of nano chitosan.
The means that do not share a common letter are considered significantly different at 0.05.

plants (Table 4). Foliar spray application of 62.5 mg L−1 of nano-chitosan (Ch3) had
higher seed yields (2030.93 and 2075.77 kg ha−1) in 2022 and 2023, respectively (Table 4).

Nutrient concentrations in common bean plants
Based on the two-way ANOVA analysis, the effects of different mulch materials, chitosan
spray foliar applications, and their interaction on N, P, and K concentrations in plants
were observed (Table 3). The use of organic mulch materials in the soil increased
NPK concentrations in plants. Specifically, SDM had a positive effect on reducing Na
concentration in plants compared to the unmulched (UNM) treatment in 2022, although
no difference in Na% values among mulching treatments was observed in 2023 (Table 4).
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Figure 5 N, P, N, and Na concentration in common bean plants for the co-application affect of soil
mulch treatment with chitosan foliar spray applications in 2022 and 2023. (A) N concentration in com-
mon bean plants; (B) P concentration in common bean plants; (C) K concentration in common bean
plants; (D) Na concentration in common bean plants. UNM: un-mulched; WPM, white plastic mulching;
RSM, rice straw mulching; SDM, sawdust mulching; Ch0, Control (distilled water); Ch1, 250 mg L−1 of
normal chitosan; Ch2, 125 mg L−1 of nano chitosan; Ch3, 62.5 mg L−1 of nano chitosan. ‘*’ is significant,
and ‘ns’ is insignificant at p< 0.05. Mean value± standard error.

Full-size DOI: 10.7717/peerj.17828/fig-5

In comparison to control plants, chitosan spray foliar applications significantly reduced
Na% in common bean plants and increased NPK concentrations, particularly with Ch3
applications (Table 4).

Considering the co-application effect, both organic mulch materials and 62.5 mg L−1 of
nano-chitosan increased NPK concentrations in common bean plants (Figs. 5A, 5B, and
5C), while Na% decreased significantly compared to control plants (Fig. 5D).

Relationships between the parameters studied of soil and common
bean plants
The PCA biplot (Fig. 6) illustrates two dimensions explaining 75.5% of the total variance:
Dim1 = 60% and Dim2 = 10.5%. Dim1 indicates a strong negative association between
soil EC and total fungi community with soil water content, available N, P, and K, soil
organic carbon, total bacteria community, and K% in common bean plants. On the other
hand, Dim2 demonstrates a negative correlation between Na% in common bean plants
and seed yield, chlorophyll content, plant height, fresh weight of shoot and root, N%,
and P% in common bean plants. Differences are more distinctly noticeable for treatments
than for seasons. The interaction between un-mulching and different chitosan foliar spray
application treatments (Ch0, Ch1, Ch2, and Ch3) exhibited negative variables, such as
soil EC, fungi community, and Na% in common bean plants. The correlation results
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Figure 6 PCA biplot had response to co-application affect of soil mulch treatment with chitosan foliar
spray applications on the parameters studied of soil and common bean plants. * SWC, soil water con-
tent; EC, soil salinity; S.O.C, soil organic carbon content; Ava. N, P, and K, available N, P and K content;
TBC, total bacteria count and TFC, total fungi count. UNM, un-mulched; WPM, white plastic mulching;
RSM, rice straw mulching; SDM, sawdust mulching; Ch0, Control (distilled water); Ch1, 250 mg L−1 of
normal chitosan, Ch2, 125 mg L−1 of nano chitosan, Ch3, 62.5 mg L−1 of nano chitosan.

Full-size DOI: 10.7717/peerj.17828/fig-6

indicate that improved soil characteristics have a significant influence on common bean
productivity.

DISCUSSION
In this study, we observed that both mulching treatments and nano chitosan foliar spray
applications influenced all parameters under investigation, while their interaction had
minimal impact, particularly on soil parameters. Furthermore, the year 2023 experienced
an overall freshwater shortage, higher temperatures, and lower precipitation compared to
2022. These climatic changes significantly affected soil quality and yield production in the
study area. Our findings confirmed that organic mulching materials, such as rice straw or
sawdust, led to higher soil organic carbon (SOC), increased availability of soil nutrients,
and enhanced bacterial community in the soil during the growing seasons. Additionally,
white plastic mulching reduced significantly soil electrical conductivity (EC), while both
white plastic and sawdust mulching increased soil water content (SWC).

Moreover, nano chitosan foliar spray application at a concentration of 62.5 mg L−1

resulted in elevated chlorophyll content, increased plant height, enhanced fresh weight
of shoot and root, and higher nutrient content in common bean plants. The interaction
effect contributed to increased bacterial community in soil, enhanced plant height, and
higher NPK concentration in common bean plants, attributed to lower soil EC and reduced

Khalifa et al. (2024), PeerJ, DOI 10.7717/peerj.17828 15/25

https://peerj.com
https://doi.org/10.7717/peerj.17828/fig-6
http://dx.doi.org/10.7717/peerj.17828


sodium uptake by plants. However, there was a decrease in the fungi community due to
the use of different mulch materials and chitosan foliar spray applications.

Overall, our study suggests that the use of organic mulch materials (such as rice straw
or sawdust) and nano chitosan foliar spray application at a concentration of 62.5 mg L−1

could serve as effective and eco-friendly strategies for mitigating the effects of saline soil,
because of (1) could enhance soil water content, available N, P, and K, soil organic carbon,
total bacteria community lead to decrease on the soil electrical conductivity (EC), fungal
communities and sodium uptake by plants. (2) These factors contribute to greater NPK
absorption from the soil and lower Na content in common bean plants (3) resulted in
enhancements in growth attributes and seed yield of common beans (Fig. 6).

Although the interaction between different soil mulching materials and chitosan foliar
spray applications had a statistically low significant impact on biochemical soil parameters,
it notably influenced soil electrical conductivity (EC) and total bacteria count in soil.
Additionally, there was a general trend towards slightly higher average soil water content,
organic carbon, and available nitrogen (N), phosphorus (P), and potassium (K), while the
fungi community in soil showed a lower abundance.

The observed effect of plastic mulch aligns with findings from previous studies, which
have consistently reported a decrease in soil electrical conductivity (EC) alongside
an increase in soil water content (SWC) (Haque, Jahiruddin & Clarke, 2018; Qu et al.,
2019; Amare & Desta, 2021; Uju et al., 2022; Dewi et al., 2024). This relationship is logical
since higher soil moisture levels lead to reduced soil evaporation and increased water
content, facilitating salt leaching and subsequently lowering salt accumulation in the soil.
Additionally, research has highlighted the benefits of mulching in arid regions prone to
salinity issues, as it mitigates the capillary rise process, further aiding in salt management
(Zhao et al., 2016a; Zhao et al., 2016b).

The increase of SOC and the availability of soil nutriments can be attributed to the
elevated organic matter content in the soil resulting from the use of organic mulching
materials. This finding is consistent with research by Paunović, Milinković & Pešaković
(2020), which demonstrated that sawdust mulching treatments led to an increase in soil
organic carbon levels. Moreover, the rise in organic matter content may be linked to
the decomposition rate of organic mulching materials, which enhances organic carbon
accumulation (Fu et al., 2020). The increased availability of nutrients can be attributed to
heightened biological activity, facilitating organic matter mineralization processes (Pi et
al., 2017).

Interestingly, the impact of differentmulchingmaterials on the soilmicrobial community
was somewhat contradictory. While the bacterial community flourished due to the buildup
of organic carbon in the soil, the fungal community experienced a decline as a consequence
of the mulching treatments. These results are in line with those reported by Iqbal et al.
(2020).

The results indicated a positive impact of chitosan foliar application on soil salinity and
carbon content. This could be attributed to its role in facilitating root penetration through
soil layers, thereby aiding in the leaching of soil salts. Additionally, the presence of root
residues in the soil contributed to increased organic matter, subsequently enhancing soil
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organic carbon levels and bacterial populations. Chitosan has been studied for its ability to
enhance soil bacterial activity, leading to improved plant growth (Hallmann et al., 2001).

However, it was observed that the fungal community in the soil decreased significantly
following chitosan foliar spray applications. Previous studies have suggested that this
decline in fungal growth might trigger defense responses in plants against pathogens. This
could be due to external electrostatic interactions between the positively charged amino
glucosamine groups of chitosan and phospholipids in fungal cell membranes, resulting in
changes in cell permeability, leakage of intracellular electrolytes, and ultimately cell death
(Divya et al., 2017; Ma, Garrido-Maestu & Jeong, 2017).

Common bean (Phaseolus vulgaris L.) is known to be sensitive to salt stress, with
significant reductions observed in its morphological attributes and yield when soil salinity
exceeds 1.0 dS m−1 (Garcia et al., 2019). This reduction in yield can be attributed to
oxidative damage caused by salt stress (El-Beltagi et al., 2023). Our findings corroborate
this, as we observed lower values for morphological attributes, seed yield, and NPK content
in common bean plants during the growing seasons, which can be attributed to soil salinity
leading to high Na concentrations in the plants.

The use of different soil mulching materials resulted in enhancements in chlorophyll
content, plant height, fresh weight of shoot and root, seed yield, and NPK content in plants.
This improvement can be attributed to the enhancement of soil parameters, including a
decrease in soil salinity and an increase in soil fertility and moisture availability. These
factors contribute to greater NPK absorption from the soil and lower Na content in
common bean plants (Kwambe et al., 2015; El-Wahed et al., 2017).

Chitosan foliar spray applications have been shown to significantly improve
morphological attributes and seed yield while alleviating the adverse effects of salinity
stress, as reported by Krupa-Małkiewicz & Fornal (2018). This improvement can be
attributed to the action of chitosan, which is known to be more effective against salt
stress by reducing oxygen free radicals or blocking ROS activity, promoting cell division,
increasing ionic transport, polyamine content, and membrane stabilization under stress
conditions (Balusamy et al., 2022). Chitosan also enhances water availability to plant and
nutrient uptake by adjusting cell osmotic pressure and reducing harmful accumulation
of free radicals through increased antioxidants and enzyme activities (Hidangmayum &
Dwivedi, 2022).

Studies by Safikhan et al. (2018) have indicated that the application of nano-chitosan
enhances salt tolerance in plants by slowing down chlorophyll reduction, increasing catalase,
ascorbate peroxidase, and glutathione reductase activities, influencing the expression of
mitogen-activated protein kinases, promoting geissoschizine synthesis, and reducing
malondialdehyde levels. Previous research on the role of nano chitosan in salt-stressed
common beans has shown improvements in chlorophyll content and plant metabolism,
as evidenced by reductions in malondialdehyde and H2O2 contents (Sen et al., 2020),
increased leaf area and root length, elevated chlorophyll levels, and carotenoid content
(Santo Pereira et al., 2017), as well as increased plant height and shoot dry weights due
to enhanced antioxidant enzymes (Zayed et al., 2017). Alenazi et al. (2024) have also
demonstrated that nano chitosan has a more beneficial effect on common beans compared
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to normal chitosan, whereas it enhances yield, photosynthetic pigment fractions, total
carbohydrate content, and the antioxidant system and biochemical traits of common
beans.

CONCLUSIONS
In summary, this study has demonstrated the effectiveness of soil mulching materials in
inhibiting salt accumulation and improving saline soil quality. Additionally, the foliar
application of 62.5 mg L−1 of nano chitosan at 15, 30, and 45 days after sowing (DAS)
mitigated salt stress and enhanced the growth of common bean plants. For the promotion
of a sustainable ecosystem, the combined application of soil organic mulching materials
with foliar chitosan spray can be an effective practice for inhibiting salt accumulation and
improving common bean plants cultivated in saline soil. However, future research should
address concerns regarding the impact of nano chitosan on soil microbial communities.
To further our understanding of the impacts of mulching and chitosan, long-term studies
are required to monitor soil microbial communities, including fungi and actinomycetes,
to determine the turnover time and rate of the soil microbial community.
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