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ABSTRACT
Plantation forests enhance carbon storage in terrestrial ecosystems in China. Larix
kaempferi (Lamb.) Carrière (Lamb.) (Larix olgensis Henry) is the main species for
afforestation in the eastern Liaoning Province. Therefore, it is important to understand
the correlation between the site class and carbon sink potential of Larix kaempferi
plantations in Liaoning Province for afforestation and carbon sink in this area. The
model was fitted using three classical theoretical growth equations: the Richards model,
the Korf model, and the Hossfeld model. This study used the forest resource inventory
data for management in Liaoning Province in 2011 to build six dynamic height-
age models for a Larix kaempferi plantation in Dandong City regardless of base-age.
The optimal model derived by the generalized algebraic difference approach (GADA)
method was compared with the model derived by the algebraic difference approach
(ADA) method. The superiority of GADA was demonstrated by comparison. The
Levenberg-Marquardt algorithmwas used to fit themodel. The statistical and biological
characteristics were considered synthetically when comparing the models. The best
model was screened out by statistical analysis and graphic analysis. The results show that
the differential height-age model derived from Richards equation can well explain the
growth process of Larix kaempferi in Dandong City, Liaoning Province under different
conditions. The site index model based on Richards equation and derived by GADA
was used to calculate the site class of a Larix kaempferi plantation in Dandong City.
The net primary productivity (NPP) value from the past ten years was extracted from
the MOD17A3HGF data set. Spearman correlation analysis and Kendall correlation
analysis were used to show that there is a significant positive correlation between NPP
value and site class of Larix kaempferi plantation in Dandong City. Among them, the
highest growth occurred in 2016; NPP increased by about 3.914 gC/m2/year for every
two increases in height-age grade; the lowest increase inNPPwas in 2014;NPP increased
by about 2.113 gC/m2/year for every two increases in height-age grade; and for every two
increases in height-age grade in the recent ten years, the average NPP value increased
by about 2.731 gC/m2/year.
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INTRODUCTION
Forests are the largest carbon sequestration system on land with a total biomass of
85%–90%. They have a leading role in regional and global carbon cycles, affecting the
cycling of energy, water, and nutrients (Yao et al., 2021; Zhao et al., 2021; Morgan et al.,
2021). Further, forests critically influence all carbon stocks, giving them the potential to
decelerate or accelerate anthropogenic climate change (Chen et al., 2023; Norbert & Luiza,
2024). Because of the impacts of climate change and human disturbance, it is important
to understand the temporal and spatial changes of forest carbon sources/sinks in order
to appropriately plan for regional sustainable development and global carbon emission
reduction. Net primary productivity (NPP) refers to the difference between the gross
primary productivity (GPP) of an ecosystem and the respiratory energy consumption
of vegetation itself. NPP is a key variable to characterize vegetation growth; it is also a
direct manifestation of vegetation’s own productivity and carbon sequestration capacity
(Wang, 2020). Site refers to the living space of stand and the natural factors related to
the living space. Site quality refers to the productive potential of an established forest
or other vegetation types on a certain site (Yang et al., 2021). Within the framework of
sustainable forest management, measuring site quality and predicting carbon absorption
capacity remain a major forestry topic (Bontemps & Bouriaud, 2014). The long-term
carbon absorption capacity of a forest must be constantly monitored and assessed because
of ongoing environmental changes and the introduction of dual-carbon policy (IPCC et
al., 2013). Forest carbon absorption capacity can be quantitatively evaluated by estimating
the NPP value of the ecosystem (Jeong, You & Hong, 2022; Peng et al., 2022).

As climate change intensifies, the international community is increasingly focusing
on the unique carbon sink function of forests. The effective use of carbon absorption
capacity has become an important approach for governments to cope with climate
change and achieve sustainable economic and social development (IPCC et al., 2013;
Guo, 2015). Research on vegetation NPP started in the 1980s. This field has grown since
the implementation of the International Geosphere-Biosphere Program (IGBP) in the 20th
century (Sun et al., 2012). At present, NPP research methods are mainly divided into two
categories: field investigation/observation and model estimation (Zhou et al., 2022). Field
investigation/observation using the field investigation and eddy covariance technique (EC
methods can realize NPP research on an ecosystem scale (Fang et al., 2007; Baldocchi, 2019).
With the increasing importance of carbon sink function and the increasing demand for
forest resources, large-scale forest productivity estimation has attracted greater attention.
Among them, the model estimation methods suitable for large-scale NPP research can be
divided into three categories: the process model (Wang et al., 2009; VEMAP, 1995), the
statistical model, and the light energy utilization model (Lieth, 1972; Lieth, 1975; Zhou
& Zhang, 1995; Prince & Goward, 1995; Potter et al., 1993). The process model has many
parameters, which may be difficult to accurately obtain, thus its application is limited.
The statistical model is widely used because it is simple, intuitive, easy to implement and
requires few parameters. They are often used to describe vegetation on a regional or even
global scale (Zaks et al., 2007). However, the statistical model considers few climatic factors,
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lacks the theoretical basis of physiology and ecology, and lacks universality of statistical
laws obtained from different regions and conditions (Zhou et al., 2022). At the beginning
of the 21st century, with the rapid development of remote sensing technology, large-scale
and high-resolution remote sensing data appeared. This provided favorable conditions
for quantitatively creating spatial and temporal characteristics of solar energy utilization
models. It has become the main method for simulating and estimating large-scale and
even global NPP. The Modern Resolution Imaging Spectradiometer (MODIS) is a load
device carried on NASA’s Earth Observation System satellite. The MODIS sensor is widely
used in scientific research and applications because of its high resolution, wide coverage
and observation capabilities (Weng, Fu & Gao, 2014; Gao et al., 2015). Among them, the
MOD17A3HGF data set is an NPP product data set obtained from the solar energy
utilization model and BIOME-BGC model (biome biogeochemical model). At present,
this product has been widely tested and applied in biomass estimation, environmental
monitoring, carbon cycle and global change. It reflects the temporal and spatial changes
of the NPP value in global ecosystems (Neumann et al., 2015; Kwon & Larsen, 2013). It has
also been used in the NPP study of vegetation in northeast China Therefore, this study uses
the MOD17A3HGF data set as the NPP data in the study area (Mao et al., 2014; Running
& Zhao, 2021).

The metabolism of the global ecosystem has been in state of dynamic equilibrium; the
carbon cycle had been perpetuated and the carbon storage capacity had remained basically
unchanged (Luo & Xia, 2020). After entering the industrial society, human activities have
accelerated the consumption of fossil resources and increased the emission of greenhouse
gases, creating changes in the dynamic equilibriumof the carbon cycle. The global ecosystem
has also suffered a series of damages (Feng et al., 2020). As an important carbon sink of
carbon dioxide (CO2), the terrestrial ecosystem has effectively alleviated global warming
(IPCC et al., 2013). Forests are a significant ecosystem that play an important role as a
carbon sink (Wang, Shi & Hu, 2022). According to the data of the Ninth National Forest
Inventory (China National Forestry and Grassland Science Data Center , 2018), China’s
forest area, planted area, and timber volume rank the first in the world. To some extent,
secondary forests can buffer climate change (Frelich et al., 2020). At present, China’s forests
are young growths and half-mature forests. Many studies show that young growths and
half-mature forests have higher carbon sink potential (Piao et al., 2022). The site index
calculated by the mathematical model based on historical growth data and observation
data represents the predicted growth potential of specific tree species or stand planted
in a site and can provide information about suitable tree species in a specific site and
predict their growth rate and potential (Socha et al., 2020; Rahimzadeh-Bajgiran et al.,
2020). The site index (SI) is the commonly used value to measure site productivity, that is,
the height of dominant trees at index age. The statistical model describing the relationship
between dominant tree height and index age is called the SI model. An SI model can
transform the dominant tree height of real stand into the tree height at exponential age.
The ADA is one of the main methods used to construct the SI model (Bailey & Clutter,
1974), however, this method can only construct a series of unicursal curves with multiple
horizontal asymptotic extremes or a series of polymorphic curves with only one horizontal
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asymptotic extreme (Cao & Sun, 2017). To solve this problem, Cieszewski and others
put forward generalized algebraic difference approach (GADA) (Cieszewski & Bailey,
2000). Since GADA can construct polymorphic SI curve with an asymptomatic variable
horizontal extreme, it has received widespread attention and has become the main method
to construct the SI model in recent years (Anta et al., 2011; Castillo-Lopez et al., 2018; Adan
et al., 2022). Some scholars have developed new mixed models based on the ADA method,
which have lower data collection and calculation costs (Protazio et al., 2022). In addition,
López-Álvarez, Franco-Vázquez & Marey-Perez (2023) expanded the application scope of
the GADA method. They use the GADA model to predict the annual cumulative resin
output of Pinus pinaster Ait. However, the modeling data used by GADA to build the
SI model mainly include the stem analysis data of dominant trees and the inventory data
of fixed sample plots (Souza et al., 2022; Mfilho et al., 2023). In practical application, it is
difficult to obtain the stem analysis data, which requires destructive sampling and has a
high technical threshold. As the survey data of forest resources planning and design, forest
resource inventory data for management is more macroscopic and more suitable to be
combined with remote sensing data in a larger scale. In this study, the SI model is used to
establish the model and using the data obtained from the average tree height. Therefore,
the model is the average tree height-age model, and the average tree height has a strong
correlation with land productivity (Guo et al., 2023). The height-age model was used to
approximately represent the site quality. According to the average height-age model, the
site quality grade was divided and resulted in the average height-age quality (H-AQ).

Larix kaempferi (Lamb.) Carrière (Lamb.) (Larix olgensis Henry) is the main species for
afforestation in eastern Liaoning. Therefore, understanding the correlation between the
site class and carbon sink potential of Larix kaempferi plantations in the Liaoning Province
is important for afforestation purposes and to predict carbon sink in this area.

MATERIALS & METHODS
Study area
Dandong City was used as the study area (Fig. 1). Dandong City is located in the center of
northeast Asia, with a geographical position of 123 23′–125 42′ east longitude and 39 44′–41
09′ north latitude. It is adjacent to the confluence of Yalu River and Yellow Sea and is an
important area in the southeast of Liaodong Peninsula. It is the warmest and wettest place
in Northeast China with a temperate sub-humid monsoon climate. The annual average
rainfall is between 800–1,200 mm. Affected by monsoon, seasonal changes are obvious
with four distinct seasons.

Sources of data
Sample plot
The data of this study comes from the forest resource inventory data for management in
Liaoning Province in 2011. This study is a continuation and strengthening of the fixed-point
survey and monitoring of forest area, forest species, and forest age in the Second National
Land Survey. The contents of the survey include forest area, storage capacity, timber
volume, stand structure, and ecological function. In the forest resource inventory data for
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Figure 1 Locationmap of the study area: Dandong City (grey).
Full-size DOI: 10.7717/peerj.17820/fig-1

management, 7,077 sample plots with an area greater than 2 hm2 and a canopy density
greater than 0.2 were selected for research. Figure 2 shows the shape of the woodland. Most
of the growth in the 7,077 sample plots are young growths and half-mature forests. Among
them, 6,811 sample plots have an average age of less than 40 years, accounting for 96.2% of
the total. The average height of each age class ranges from 11.5 m to 24.7 m (see Table 1).

To generate the family of H-AQ curves, pairs of observations of tree height and age of
all plots with at least two measurements were fitted to four dynamic equations expressed
under the GADA technique.We used the 2005 Liaoning Provincial Forest Resources Survey
Data to match the 2011 Liaoning Provincial Forest Resources Survey Data to obtain 5,601
sets of data for modeling. Tree ages spanned from 0∼70 years and were divided into seven
age intervals according to an age interval of 10 years. See Table 2 for stand characteristics
of sample sites.
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Figure 2 Distributionmap of the Larix kaempferi plantation in Dandong City. The black area is the
sample plots.

Full-size DOI: 10.7717/peerj.17820/fig-2
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Table 1 Statistics of age distribution of the sample plots.Description of forest class characteristics based
on forest survey data in 2011.

Age class/a Sample plot number/N Age/a Average height/m

Young growth 3,590 0∼20 11.5
Half-mature forest 2,460 21∼30 14.8
Nearly mature forest 760 31∼40 17.2
Mature forest 215 41∼60 19.2
Overmature forest 52 >60 24.7

Table 2 Statistics of age distribution of the sample plots. The table summarizes the characteristics of the
data used for modeling, including the average tree height, maximum tree height, minimum tree height,
and the number of stands in each age group for the years 2005 and 2011.

Year Age interval/a Sample plot
number/N

Standard
deviation/m

Minimum
value/m

Maximum
value/m

Average tree
height/m

2005 0∼10 1,199 2.2 0.9 13.0 5.5
2005 11∼20 2,754 2.4 3.0 19.5 10.1
2005 21∼30 1,285 2.7 4.5 24.0 14.0
2005 31∼40 246 2.8 7.4 25.3 17.1
2005 41∼50 64 3.3 11.5 25.0 18.2
2005 51∼60 23 4.6 10.0 29.5 21.5
2005 >60 35 3.0 18.3 29.9 24.9
2011 0∼10 66 1.2 2.4 7.3 3.7
2011 11∼20 2,518 3.0 3.1 22.7 12.2
2011 21∼30 2,102 3.0 6.8 24.3 14.9
2011 31∼40 669 3.3 5.1 27.2 17.0
2011 41∼50 164 3.1 8.4 27.5 19.26
2011 51∼60 30 3.0 12.9 26.4 18.85
2011 >60 52 4.1 10.2 31.1 24.9

MODIS NPP
This study uses NPP remote sensing image provided by the NASA website (https:
//urs.earthdata.nasa.gov/). It is the product of MOD17A3HGF which is the MODIS image
with spatial resolution of 500 m. NPP was calculated by determining the net photosynthesis
(PSN), i.e., the difference between gross primary productivity and maintenance respiration
costs (MR) every 8 days. The original format of the data is HDF, and the temporal resolution
is annual. The data uses MODIS/TERRA satellite remote sensing parameters and simulates
the NPP data set through the BIOME-BGC ecosystem model.

The downloaded data inHDF format were spliced, resampled, and reprojected in batches
using the MRT tool. These data were multiplied by the scale factor of 0.1, and the attribute
value representing non-vegetation pixels was assigned as a null value. Finally, based on the
vector data of the study area, the remote sensing data of NPP time series of vegetation in
Dandong City from 2013 to 2022 were obtained in batches.
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Research methods
Selection of baseline model
Three methods are typically used to construct the SI curve: the guide curve method, the
parameter estimation algorithm, and ADA. Among them (Barrio, 2005), ADA has gradually
become the preferred method for site quality curve fitting (Duan & Zhang, 2004). At
present, there are three derivation methods of differential SI models (Zhao, Ni & Gordon,
2012): (1) the derivative integration method proposed by Clutter (1963); (2) the algebraic
difference approach (ADA) proposed by Bailey & Clutter (1974); (3) GADA proposed by
Cieszewski & Bailey (2000). When deducing with these three methods, ‘‘site-dependent
parameter (SDP)’’ and ‘‘site-independent parameter (SIP)’’ must be specified in advance
in the basic model (Barrio, 2005). Compared with the derivative integration method, ADA
and GADA are relatively simple and are widely used. For the SI model, the following most
important and ideal properties are needed: pleomorphism; invariance of reference age;
S-shaped growth curve with an inflection point passing through the origin of coordinates
(when the age is 0, the tree height should be 0); and multiple horizontal asymptotes
(equation curves do not decrease with age). The SI model derived from the basic equation
and constructed by GADA has excellent properties and can meet these conditions. GADA
specifies several model parameters as site-related parameters, i.e., parameter related to site,
and derives dynamic GADA formulation with variable horizontal asymptotes, so that site
quality can be accurately and effectively predicted. Three growth equations, namely the
Richards, Korf, and Hossfeld equations, are widely used in the research of forest and stand
growth models. Here, these three equations are used as the basic equations for deriving the
differential H-AQ model by GADA.

Richards equation:

h= a
(
1−e−bt

)c
. (1)

Lundqvist-Kolf equation:

h= ae−bt
−c

. (2)

Hossfeld Equation:

h=
a

1+bt−c
. (3)

In the equations: a is the limit value parameter of tree height (potential maximum tree
height) representing the maximum value of tree height under certain site conditions; b is
the growth rate parameter (or scale parameter) and affects the inflection point of the curve;
c is the shape parameter and affects the shape and inflection point of the curve (Niu, Dong
& Li, 2020).

Derivation of the difference model
In 1974, Bailey and others put forward ADA. Based on this Cieszewski suggested GADA
(Cieszewski & Bailey, 2000). GADA can be applied to several site-related parameters to
derive polymorphic dynamic GADA formulation with variable horizontal asymptotic lines,
so as to quickly and accurately predict site quality and build SI models (Cieszewski, 2001;
Cieszewski, 2002).
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Derivation of the differential SI model by GADA usually includes the following steps:
(1) Select a growth equation as the basic equation.
(2) Specify two or more parameters in the equation as parameters related to site.
(3) Propose a variable X0 related to site quality. Assume that parameters related to site

have various quantitative relationships with the variable (such as linear, inverse function,
quadratic, exponential, etc.).

(4) Substitute the above functional into the basic equation and solve X0, here defined as
(t0,h0). Among them, t0 is the specified forest age, h0 is the tree height under the specified
forest age. When t0 is the benchmark forest age, h0 is the SI.

(5) Substitute the solved X0 into the basic equation, and the differential SI derived by
GADA can be obtained.

The SI model constructed by this method can satisfy two attributes: multiple horizontal
asymptotes and polymorphism. Taking Eq. (1) as an example, the parameters a and b in
Eq. (1) are set as parameters related to site. Then set a linear relationship between parameter
a and X0, and an inverse proportional function relationship between parameter b and X0.
That means a= eX0 , c = c1+ c2X0. Equation (1) can be transformed into:

h= eX0
(
1−e−bt

)(c1+c2X0)
. (4)

Then the following can be derived:

X0=
lnh− c1 ln

(
1−e−bt

)
1+ c2 ln

(
1−e−bt

) . (5)

In Eq. (5), t = t0, h= h0, of which t0 is the reference age and h0 the tree height at the
specified age. When t0 is the reference age, h0 will be the SI. Make Eq. (4) be t = t1, h= h1,
of which t1 is the predict age and h1 the tree height under that age. Substitute Eq. (5) into
Eq. (4), and the differential SI model based on Eq. (3) can be obtained by GADA. The
representation is:

h1= eX0
(
1−e−bt1

)(c1+c2X0)
. (6)

Among them, X0:

X0=
lnh0− c1 ln

(
1−e−bt0

)
1+ c2 ln

(
1−e−bt0

) . (7)

In order to compare the difference between GADA and ADA, based on Richards
equation, difference model E0 can be derived by ADA (Table 3).

The methods SI model was used, and the average tree height was used as the data. The
final model was the mean height -age model.

Model fitting and validation
The model parameter estimation uses the nlsLM function in the minpack.lm package of R
language. This function uses the Levenberg–Marquardt algorithm to solve the nonlinear
least squares problem (Arias-Rodil et al., 2014). There are two main aspects for testing the
goodness of the model: One is the biological meaning of the model and the parameters,
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Table 3 Difference site index equations and base equations. E0 is ADA model as control, and E1, E2, E3 and E4 are GADA models.

Base equation Parameter
related to site

Solution for X Dynamic GADA/ADA formulation No.

a=X0 X0= h0
(
1−e−bt0

)−c h1= h0
(1−e−bt1)

c

(1−e−bt0)
c E0

Richards:
h= a(1−e−bt )c

a = eX0
c = b1+1/X0

X0= 1/2(lnh0−b1F+
√
(b1F− lnh0)2−4F)

F= ln(1−e−bt0 )
h1= eX0 (1−e−bt1 )(b1+1/X0) E1

a = eX0
c = c1+ c2X0

X0=
lnh0−c1 ln(1−e−bt0 )
1+c2 ln(1−e−bt0 )

h1= eX0 (1−e−bt1 )(c1+c2X0) E2

Lundqvist-Kolf:
h= ae−bt−c

a = eX0
b= b1+b2/X0

X0 =
1
2 (b1t

−c
0 + lnh0 + F)

F =
√
(b1t−c0 + lnh0)2+4b2t

−c
0

h1= eX0e(−(b1+b2/X0t
−c
1 )) E3

Hossfeld:
h= a/(1+bt−c )

a= b1+X0

b= b2X0

X0=
h0−b1

1+b2h0t
−c
0

h1= b1+X0
1+b2X0t

−c
1

E4

and the other is the actual fitting effect of the model characterized by statistical indicators.
This study uses three statistical indicators commonly used in regression analysis: the
determination coefficient (R2), bias (BIAS), root mean square error (RMSE). Fitting
samples are used to calculate the above three indicators; the closer the determination
coefficient is to 1, the smaller the bias, the smaller the root mean square error and the
smaller the mean absolute error, the better the prediction effect of the model. The formulas
of indicators are as follows:

R2
= 1−

∑n
i=1
(
hi− ĥi

)2∑n
i=1
(
hi−h

)2 (8)

BIAS=
∑n

i=1
(
hi− ĥi

)
n

(9)

RMSE =

√∑n
i=1
(
hi− ĥi

)2
n

(10)

in which: hi is the measured value of the tree height; ĥi is the estimated value the tree height;
h is the average of the measured values of tree height; n is the number of samples.

According to the above indicators, several models were evaluated and the best fitting
model of the height-age curve cluster was chosen to verify whether the model met the
properties of an ideal height-age model. All statistical analyses above were performed in
R4.2.3 using R Studio (R Core Team, 2022; RStudio Team, 2002).

Selection of base age and H-AQ class interval
The tree heights of stands should be stable at the reference age and there should be obvious
differences in the tree heights in different site conditions. There is no obvious influence
of tree age on the site quality evaluation results of most tree species (Clutter, Fortson &
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Pienaar, 1983). Generally, the following aspects are considered: (1) the age class after the
growth tends to be stable; (2) cutting age; (3) half of the natural maturity age; (4) the age
when the average volume or tree height is maximum, etc. (Guo, Zhang & Zhang, 2007).
However, China typically uses 1 m or 2 m as the SI interval and the number of index
levels rarely exceeds 10 (Meng & Chen, 2001). Height-age grades also adopt this method.
Therefore, combined with sample data, we set the reference age to 30 years (tb), the H-AQ
class interval 2 m, and the range of H-AQ from 10 m to 26 m.

NPP resolution of forest land under different site quality
Resolution (R) is an indicator to measure the degree of data separation. In this study, we
use R to calculate whether the NPP value shows a separation trend under different site
qualities and evaluate the influence of different site qualities on NPP value. If the result of
R is positive, it indicates that the absolute data increases, and vice versa. The greater the
absolute value, the higher the degree of data separation. Here, the influence of site quality
on NPP of forest land was analyzed by calculating the NPP resolution of forest land with
different site qualities. Its calculation formula is as follows:

R= 2∗
T2−T1

WB1+WB2
(11)

in which: T is the average NPP, and WB is 2.354 times of NPP standard deviation. The
numbers 1 and 2 represent different site qualities.

Correlation analysis between H-AQ and NPP
To explore the changes of NPP under different site categories, we drew a box diagram of
the average NPP in the past ten years and made a linear regression analysis between the
average NPP in the past ten years and H-AQ. Spearman correlation analysis and Kendall
correlation analysis were used to deeply study the correlation between H-AQ and NPP. All
the above tests and analyses were carried out in OriginLab, (2021).

The exponential order derived by GADA was divided into three levels to classify site
quality. Specifically, lands with an exponential order of 10∼14 are classified as inferior
sites, lands with 16∼20 as average-quality sites, and lands with 22∼26 as high-quality sites.

To explore the relationship between age class and NPP, we selected the data of 2013 for
analysis, which was divided into an age class every ten years with 0–10 years as Grade I,
10–20 years as Grade II, and so on. Because there are few trees over 50 years old, trees over
50 years old were classified as Grade VI.

RESULTS
Model fitting results
Model selection and evaluation
Modeling samples from a Larix kaempferi (Lamb.) Carrière (Lamb.) plantation (Table 2)
were used to fit each differential H-AQ equation (Table 3). The results of parameter
estimation, P-value and determination coefficient (R2), bias (BIAS), root mean square
error (RMSE) are shown in Table 4.
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Table 4 Parameter estimates and goodness of fit of the difference height-age equations for Larix kaempferi (Lamb.) Carrière (Lamb.) Carr.

Model Parameter Estimation p-value R2 BIAS RMSE

b 0.0495215 <0.0001***
E0

c 1.4466216 <0.0001***
0.9702468 0.02548458 0.6806003

b 0.0507173 <0.0001***
E1

b1 1.1624718 <0.0001***
0.9707875 0.01423038 0.6743881

b 0.0518524 <0.0001***

c1 2.0926676 <0.0001***E2

c2 −0.1844717 <0.0001***
0.9709394 0.005271001 0.6726317

b1 2.326745 0.0003
b2 22.538452 <0.0001***E3

c 0.373826 <0.0001***
0.9635747 −0.03073686 0.7530557

b1 66.842234 <0.0001***

b2 0.104840 <0.0001***E4

c 1.263434 <0.0001***
0.9671859 −0.03708711 0.7147521

Notes.
***Indicates that the significance level is extremely significant.
R2 indicates the coefficient of determination. BIAS indicates the bias. RMSE indicates the root mean square error.

In the standard of model fitting, the closer the R2 value is to 1, the stronger the
explanatory power of the model to the actual data, and the smaller the BIAS and RMSE,
the smaller the difference between the predicted results of the model and the real observed
values, and the higher the prediction accuracy. Graphically, it is better for the model’s
growth curve to be more in line with the actual growth of trees. The above two conditions
were considered when selecting the model.

Finally, several models were evaluated according to all the above indicators and the best
fitting model of the height-age curve cluster was used to verify whether the model met the
properties of an ideal height-age model. All statistical analyses above were performed in
R4.2.3 using R Studio.

By comparison, it can be seen from Table 4 that the parameter estimation of the four
models was highly significant (<0.01). All of the R2 are above 0.96, which shows that the
four models have good fitting effect for modeling data. Among them, the BIAS value of
E2 model is closer to 0, which means that the prediction BIAS of E2 model is smaller, the
dispersion is lower, and the root mean square error (RMSE) is below 0.76. The RMSE
of E2 is the smallest and therefore the fitting effect is the best, followed by the E2 model
derived by GADA. These results show that all the above models have good forecasting
ability. Considering the various indicators, the E2 model was selected for further testing.

Comparison of models derived from GADA and ADA
To reveal the advantages of GADA, we selected the E0 model based on the same Richards
equation using ADA for subsequent comparative analysis. The H-AQ curve clusters of E0
and E2 were drawn (Fig. 3) and a comparative graph was created for the three site index
curve clusters (10 m, 18 m, 26 m) of the twomodels with good or bad performance (Fig. 4).

The growth processes of the trees in the two models are basically the same under average
site conditions (18 m; Fig. 4). In trees over 35 years, the curve at the minimum H-AQ of
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Figure 3 Site index curves generated with the difference mean height-age models E0 and E2, (A) model
E0; (B) model E2. Scattered points in the figure show the relationship between age and tree height of
stands in 2011. 10 m–26 m is H-AQ grade, H-AQ stands for the average height-age quality.

Full-size DOI: 10.7717/peerj.17820/fig-3

Figure 4 Comparison of difference mean height-age models E0 and E2. The black line segment is the
growth curve of model E0 when the H-AQ is 10, 18 and 26, and the red curve is the growth curve of model
E2 when the H-AQ is 10, 18 and 26. Scattered points in the figure show the relationship between age and
tree height of stands in 2011.

Full-size DOI: 10.7717/peerj.17820/fig-4

Chang et al. (2024), PeerJ, DOI 10.7717/peerj.17820 13/30

https://peerj.com
https://doi.org/10.7717/peerj.17820/fig-3
https://doi.org/10.7717/peerj.17820/fig-4
http://dx.doi.org/10.7717/peerj.17820


Table 5 Comparison betweenmodel E0 andmodel E2 in terms of inflection, annual maximum height growth rate and dominant tree height at
influence. The inflection point of the curve is at the maximum slope.

H-AQ/m E0 E2

Inflection/
year

Annual maximum
height growth rate/m

Dominant tree height
at inflection/m

Inflection/
year

Annual maximum height
growth rate/m

Dominant tree height
at inflection/m

10 7.4 0.4246 2.6238 9 0.4207 3.0196
12 7.4 0.5096 3.1486 8.6 0.5070 3.5093
14 7.4 0.5945 3.6734 8.3 0.5940 4.0045
16 7.4 0.6794 4.1982 8.0 0.6816 4.4609
18 7.4 0.7644 4.7229 7.7 0.7698 4.8764
20 7.4 0.8493 5.2477 7.5 0.8587 5.3354
22 7.4 0.9343 5.7725 7.2 0.9482 5.6737
24 7.4 1.0192 6.2973 7.0 1.0382 6.0709
26 7.4 1.1041 6.8220 6.8 1.1289 6.4402

model E2 was above model E0, while the curve at the maximum H-AQ was below model
E0. From the scattergram, it can be observed that the height growth of Larix kaempferi
plantations is slow when the age is less than 5. However, after the age of 5, the height
growth showed an obvious upward trend. At this point, model E2 shows a slow upward
trend first and then a rapid upward trend. In trees over 35 years, the curve at the minimum
H-AQ of model E2 was below model E0, while the curve at the maximum H-AQ was
above model E0; model E2 contains more data points. This indicates that in younger trees,
model E2 better fits the growth process of Larix kaempferi in Dandong under different site
conditions. Compared with ADA, the equations derived by GADA have two properties:
multiple horizontal asymptotes and pleomorphism. To further verify this, we compared the
inflection point position, the slope at the inflection point (the maximum annual growth)
and the function value at the inflection point (the tree height at the inflection point) of
the two curves to further illustrate the differences between the two methods after drawing
the H-AQ curve clusters of E0 and E2. If a group of curves satisfies multiple horizontal
asymptotes, the curves under different H-AQ will have different maxima, that is, different
asymptotes; if a group of curves satisfies pleomorphism, the curves under different H-AQ
will have different inflection points, and there should be no simple proportional relationship
between curves. It can be seen in Table 5 that the differential H-AQ model E0 obtained
by ADA only has a simple proportional relationship between the extreme values of curves
under different H-AQ; their inflection points are exactly the same, while the slope at the
inflection points is also proportional to the predicted values. This indicates that it satisfies
the properties of multiple horizontal asymptotes but does not satisfy pleomorphism. In
the differential H-AQ model E2 established by GADA, with the increase of H-AQ, the
difference of extreme value between adjacent curves decreases gradually, the position of
inflection points shifts obviously to the left, and the difference of slope at inflection point of
adjacent curves increases gradually; at the same time, it satisfies the properties of multiple
horizontal asymptotes and pleomorphism. Therefore, it can better predict the growth
process of Larix kaempferi (Lamb.) plantation under different site conditions.
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Figure 5 Number distribution of each site class.Grading site quality: height-age quality (H-AQ), and
the unit of H-AQ is the meter.

Full-size DOI: 10.7717/peerj.17820/fig-5

Site quality of a Larix kaempferi (Lamb.) Carrière (Lamb.) plantation
in Dandong City
The area of forest land in each site was calculated and the results are shown in Fig. 5. The
NPP values of sample plots in recent ten years was extracted by ArcMap 10.8 (the data
comes from MOD17A3HGF-NPP data set), and its spatial distribution pattern is shown
in Fig. 6. Forest land was divided into three site types according to status grade. This
classification can evaluate ecological environment, resource utilization and productivity
level according to site quality levels and provide reference for rational management and
utilization of forest land resources. At the same time, this classification also meets the actual
needs; it is simple, feasible, and has wide applicability. Among them, inferior sites account
for 22%, average-quality site 58%, and high-quality sites 20%.

Figure 6 shows the spatial distribution of Larix kaempferi ’s site quality in Dandong City.
It can be seen from the map that the compartments with better site qualities are mainly
located in the west and north, showing a spatial distribution of regular dispersion and
partial aggregation.
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Figure 6 Spatial distribution of site qualities of Larix kaempferi (Lamb.) Carrire (Lamb.) com part-
ments in Dandong City. H-AQ stands for the average height-age quality.

Full-size DOI: 10.7717/peerj.17820/fig-6
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Figure 7 Annual NPP relationship with H-AQ. The curve in the diagram represents the changing trend
of annual average NPP under each level of H-AQ, and the relationship between NPP and H-AQ is ana-
lyzed by linear regression. The right side of the graph shows the year corresponding to the curve and the
determining coefficient R2 of linear fitting. The unit of NPP is gC/m2/year.

Full-size DOI: 10.7717/peerj.17820/fig-7

Different driving factors affecting NPP value
Correlation analysis between site class and NPP value
To verify the correlation between site class and NPP value, we drew a curve of the
relationship between site class and average annual NPP value from 2013 to 2022 (Fig. 7).
The results show that there is a good linear relationship between annual site classes and the
average annual NPP value. Among them, the year with the highest determination coefficient
(R2) is 2016, at 0.9401, while the lowest year is 2020, at 0.7657. Average determination
coefficient (R2) is 0.86275. As can be seen from Table 6, there is a strong linear relationship
between NPP and H-AQ, with the slope ranging from 10.5668 to 19.5745, with the highest
slope in 2016 and the lowest in 2014. We also calculated the Spearman’s rank correlation
coefficient and Kendall’s correlation coefficient for each year. The results are presented
in Table 7. It can be observed from Table 7 that there was a positive correlation between
NPP and H-AQ; the value of NPP increased with the promotion of H-AQ. The above
results indicate that the NPP value of the Larix kaempferi plantation in Dandong City was
significantly correlated with site class.

As can be seen from the linear fitting relationship between NPP and H-AQ in the last ten
years (Fig. 8), the results show that its determination coefficient (R2) is 0.92006, indicating
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Table 6 Table of parameters of the relationship between NPP and H-AQ for the year. Prob > |t| indi-
cates the significance of Pearson correlation coefficient.

Age Parameter Value Prob> |t|

2013a Intercept 5403.7360 1.63213E−13
2013a Slope 15.8647 7.89518E−5
2014a Intercept 4967.6172 2.34027E−13
2014a Slope 10.5668 7.905E−4
2015a Intercept 4994.4732 1.61517E−13
2015a Slope 11.5183 3.54753E−4
2016a Intercept 5285.6117 1.46458E−13
2016a Slope 19.5745 1.56785E−5
2017a Intercept 5205.7895 1.68817E−12
2017a Slope 16.8432 3.47941E−4
2018a Intercept 5693.6831 8.09517E−13
2018a Slope 18.8428 1.57789E−4
2019a Intercept 5388.7499 8.33928E−14
2019a Slope 16.0164 3.92166E−5
2020a Intercept 5685.6829 6.67134E−13
2020a Slope 11.9316 0.00201
2021a Intercept 5853.6045 2.76978E−13
2021a Slope 14.5043 3.66374E−4
2022a Intercept 5986.2488 9.29418E−13
2022a Slope 15.7865 7.11769E−4

Table 7 Annual NPP and H-AQ correlation analysis.

2013 2014 2015 2016 2017

Spearman 0.12099* 0.04030* 0.05904* 0.11995* 0.08439*

Kendall 0.08661* 0.02854* 0.04191* 0.08527* 0.05981*

2018 2019 2020 2021 2022
Spearman 0.11895* 0.08701* 0.08545* 0.10476* 0.11079*

Kendall 0.08439* 0.06191* 0.06063* 0.07460* 0.07890*

Notes.
Two-tailed significance test was used.
*The correlation is significant at the level of 0.05.

a highly significant linear correlation between NPP and H-AQ. When H-AQ increased by
2, the average NPP value in recent ten years increases by about 2.731 gC/m 2/year.

NPP resolution of under different site quality
The NPP quantity distribution of high-quality, average-quality, and inferior sites is shown
in Fig. 9. The R of the NPP values for forest land with inferior quality and forest land with
average quality, and forest land with average quality and high quality was calculated using
Eq. (11).

According to the results in Table 8, there was a separation trend in the NPP value of
forest land with different site qualities, but the separation trend was weak. Moreover, the
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Figure 8 The relationship between NPP and H-AQ in the past ten years. The table in the upper left cor-
ner shows the linear regression results between the ten-year average NPP and H-AQ, and the red line in
the figure indicates the fitting curve. The box plot displays the distribution of the ten-year average NPP
under different H-AQ levels.

Full-size DOI: 10.7717/peerj.17820/fig-8

Figure 9 NPP distribution in inferior, average-quality, and high-quality sites. Lands with an exponen-
tial order of 10∼14 are classified as inferior sites, lands with 16∼20 as average-quality sites, and lands with
22∼26 as high-quality sites.

Full-size DOI: 10.7717/peerj.17820/fig-9
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Table 8 Resolution. Lands with an exponential order of 10∼14 are classified as inferior sites, lands with
16∼20 as average-quality sites, and lands with 22∼26 as high-quality sites.

R Inferior and average-quality R average-quality and high-quality

0.057666 0.068485

forest land with better site quality showed an overall increasing trend compared with the
forest land with poorer site quality.

Effect of stand age on NPP value
According to correlation analysis between the H-AQ and NPP values, there is a significant
positive correlation between the NPP value and site classes in Dandong City. However,
the variance of NPP value was relatively large under each site class, despite an overall
growth trend (Fig. 8). According to Fig. 10 which shows the relationship between age
class and average annual NPP, it can be observed that the maximum NPP values of Larix
kaempferi in Dandong City, Liaoning Province in 2013 all appears in II (10-20 age class). By
observing the age class-NPP curve of Larix kaempferi in Dandong City, Liaoning Province
in Fig. 5, it can be seen that the rapid growth period occurs between 5 and 20 years. At
this stage, the growth rate of Larix kaempferi is very fast. Therefore, the average NPP value
of forest land of corresponding age class is the highest. This observation is also supported
by Fig. 10. In addition, the age classes III and IV show low NPP values, which indicates
that the growth of trees enters the mature stage and therefore the growth activity decreases
(Fig. 10). Therefore, our observations were consistent with the growth characteristics of
Larix kaempferi, showing that there is rapid growth between 5 and 20 years, after which
trees grow slowly.

DISCUSSION
SI models developed using the GADA are preferred in many countries with developed
forestry management (Aydin, Turan & Klaus, 2018). Various studies have been done on
SI modeling with GADA (Adan et al., 2022; Guerra et al., 2021; Cieszewski, 2002; Cao &
Sun, 2017; Richards, 1959; Arias-Rodil et al., 2014; Yang et al., 2021; Aydin, Turan & Klaus,
2018). The dynamic SI equations acquired using GADA produced successful results
consistent with the expected growth laws and age-dominant height relationships. The SI
model can be developed from different data sources, such as stem analysis, repeated data of
permanent sample plots established for experimental purposes, or survey data in the context
of the National Forest Inventory (Scolforo et al., 2016). The accuracy of height growth data
varies, and the stem analysis data is usually more accurate than that of permanent sample
plot data (García, 2018). However, experimental sites are often built on well-managed
stands, and permanent sample plots in the National Forest Inventory usually represent
large areas of growth conditions. In this study, the average height is used to replace the
height of dominant trees, and the mean height-age model is derived. The derivedmodel has
advantages (Cieszewski & Bailey, 2000) such as age invariance and pleomorphism. Since
the basic model derived from GADA is more complex than from ADA, inventory for forest
planning and design replaces commonly used stem analysis data with the average age and
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Figure 10 The relationship between NPP and age class in 2013. The age classes are as follows: 0–10 years
old is I, 10–20 years old is II, 20–30 years old is III, 30–40 years old is IV, 40–50 years old is V, and over 50
years old is VI.

Full-size DOI: 10.7717/peerj.17820/fig-10

average tree height of the sample plot, resulting in a larger range and quantity of differences
in forest stand characteristics and site conditions and higher data variability. Therefore,
some basic models using GADA may result in poor model fitting. However, the mean
height-age model derived from GADA is still superior to that from ADA through statistical
and graphical analysis. Moreover, the research results of Sharma et al. (2011) show that
some stem analysis data can be further added to the National Forest Inventory to improve
accuracy.

The results of the correlation analysis between site class and NPP value show that there is
a positive correlation between H-AQ and NPP. The H-AQ comprehensively considers the
influence of stable factors (such as climate and topography), comparatively stable factors
(such as soil texture and hydrology) and unstable factors (such as pH value, moisture
and nutrient content) (Cieszewski & Bailey, 2000; Farrelly, Ni Dhubhain & Nieuwenhuis,
2011). The NPP value in forest land is affected by climate, topography, soil, water and
nutrients (Chen, 2019; Adams, White & Lenton, 2004). Therefore, the convergence between
the H-AQ and NPP can be understood as that they both considered factors related to
forest land and forest land productivity when evaluating forest land quality. In this study,
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NPP increased with the increase of site quality, and the growth rates were different in
different years with an unobvious interannual change. The highest growth was in 2016:
NPP increased by about 3.914 gC/m2/year for every 2 increases inH-AQ; the lowest increase
in NPP was in 2014: NPP increased by about 2.113 gC/m2/year for every 2 increased in
H-AQ; and for every 2 increases in H-AQ in the past ten years, the average NPP increased
by about 2.731 gC/m2/year. Ji et al. (2020) shows that the change of forest net productivity
in China is mainly due to the change of precipitation, followed by a change in temperature.
Therefore, the obvious interannual change of NPP value may be related to climatic factors
such as precipitation and temperature.

In addition to the environmental factors such as climate, topography, soil, and water,
the NPP value was also affected by other factors including the ecological attributes of
trees in forest land. From the results of the NPP values under different site classes, it
can be concluded that the NPP values in the same site quality are very different, even
though the NPP values under different site qualities are separable. This indicates that NPP
values of forest land are also affected by other factors besides site quality-related factors.
When studying ecosystem functions such as carbon stock and NPP in temperate forest
ecosystems, the effects of stand density and species richness should be considered. Cai et
al. (2016) showed that forest carbon stock and aboveground NPP are affected by stand
density, species richness, and stand succession. Wang et al. (2011) showed that the NPP
value was affected by tree age. The NPP value first increased and then decreased with an
increase of age. The forest with higher yield shows earlier growth peak and steeper growth
decline. This is because the NPP value was affected by other factors besides site class. Many
studies have found that in addition to site quality-related factors, stand age will also have
an impact on NPP. It should be noted that the forest land data in this study was based on
the forest resource inventory data for management in 2011, the NPP in 2013 was used as
an example for analysis, and ten years is taken as an age class. The curve between NPP and
stand age in this study also shows that the NPP value is affected by age; the NPP value is
the highest in the middle and half-mature age of Larix kaempferi. Since the NPP value of
forest land is also affected by other non-site factors, the NPP value of sample plots in the
same site class is quite different. At the same time, the results of Figs. 10 and 3 show that
Larix kaempferi grows vigorously during young age in Dandong City, Liaoning Province;
and it can be seen from Fig. 3 that its growth rate was the highest between years 5–20.
During the high-speed growth period (5–20 years) (Kim et al., 2013), the corresponding
NPP value also reached a high level (Fig. 10). This indicates that during this period, the
trees are in rapid growth and therefore the fixed NPP value for tree growth is also high. It
has been shown that when Larix kaempferi enters the overmature stage, the growth trend
of tree height will tend to stagnate (Fig. 3). Correspondingly, in Fig. 10, the NPP value of
this period is also low. This indicates that, after 50 years of growth, the growth rate of Larix
kaempferi slows. This is consistent with the results of Jiang (2004). Therefore, it is clear that
young and half-mature Larix kaempferi grows most vigorously between the ages of 5–20;
however, growth rate gradually slows down after the tree age exceeded 50 years. According
to the current carbon sequestration afforestation plan, Larix kaempferi is a suitable tree
species in Dandong City. However, choosing a suitable site is very important for this tree
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species. The carbon sequestration effect of newly planted afforestation is faster when the
trees are younger, but it will gradually weaken with the growth of tree age. Therefore, it is
particularly important to cut and renew the stand (Pauls et al., 2024). In addition, replacing
some fossil fuels with wood can also help to alleviate climate change. The dominant height
is used in the mean height-age model because it can more accurately represent the potential
height growth of trees in the stand for the following reasons: it is relatively easy to estimate
in the field, it is related to mass production, it does not depend on afforestation, and
its value will not change during harvesting (at least during low thinning). By using the
dominant height, the position index model focuses on the trees that best represent the
growth potential of the site (Teixeira et al., 2023). However, in this study, we used the
average height of the stand instead of the dominant height to calculate the position index.
Although this method may affect the accuracy of the position index, it is difficult to obtain
the dominant tree height of a large number of woodlands in a large area. In this study, the
relationship between NPP and site quality over a large range of woodland was explored to
provide a new perspective for forest carbon sink estimation. Therefore, although using the
average stand height as the basis may bring some influence, it provides a practical starting
point for us to analyze the relationship between NPP and site quality, which is expected
to promote the development of forest ecology and carbon cycle research. In the future
research plan, we will consider using the height of dominance tree and more accurate
NPP data to discuss the interaction between them more deeply. This improved method
will help us understand the growth potential of forest and its role in the global carbon
cycle more comprehensively, thus providing a more scientific and accurate basis for forest
management and carbon sink estimation.

NPP is highly complex and is affected by more factors than just site quality. Here,
we attempted to optimize the model and to include some new mixed model methods
(Protazio et al., 2022). Some scholars have inserted climate factors into the GADA equation
to improve the fitting degree of the model (Sharma et al., 2011). Future research should
include climate factors in the parameterization method and NPP related factors, such as
density, in the GADA method to improve the accuracy of the position index model. These
changes may better establish the correlation between NPP and site quality.

CONCLUSIONS
This study utilized the GADAmethod to construct a mean height-age model and compared
it with themodel developed by the ADAmethod. Unlike traditional modelingmethods that
mainly rely on analytic tree data, this research used the Forestry Resources Second Class
Survey to develop the mean height-age model, demonstrating the significant statistical
advantages of the GADA method. This study also validated the effectiveness of the Second
Class Survey in fitting the mean height-age model as well as the correlation between H-AQ
and NPP. We found that the higher the H-AQ, the more useful its carbon sequestration
capacity. The results showed that an increase of two classes corresponded with an elevated
H-AQ and the average NPP increased about 2.731 gC/m2/year over almost a decade. This
finding is of crucial importance for understanding the carbon sequestration potential
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of forests. This study also can provide theoretical support for the estimation of carbon
sinks in Larix kaempferi forests on a large scale. By analyzing the relationship between
different site qualities and NPP values and establishing a linear relationship between H-AQ
and NPP, we can assess the growth potential and carbon sink capacity of Larix kaempferi
under different stand conditions. Thus, it provides important guidance for silvicultural
planning and forest carbon sink management of Larix kaempferi. It will also help promote
the sustainable utilization of forest resources and ecological conservation.
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