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ABSTRACT
Stress-associated proteins (SAPs) are known to play an important role in plant
responses to abiotic stresses. This study systematically identified members of the
sunflower SAP gene family using sunflower genome data. The genes of the sunflower
SAP gene family were analyzed using bioinformatic methods, and gene expression
was assessed through fluorescence quantification (qRT-PCR) under salt and drought
stress. A comprehensive analysis was also performed on the number, structure,
collinearity, and phylogeny of seven Compositae species and eight other plant SAP
gene families. The sunflower genome was found to have 27 SAP genes, distributed
across 14 chromosomes. The evolutionary analysis revealed that the SAP family
genes could be divided into three subgroups. Notably, the annuus variety exhibited
amplification of the SAP gene for Group 3. Among the Compositae species,
C. morifolium demonstrated the highest number of collinearity gene pairs and the
closest distance on the phylogenetic tree, suggesting relative conservation in the
evolutionary process. An analysis of gene structure revealed that Group 1 exhibited
the most complex gene structure, while the majority of HaSAP genes in Group 2 and
Group 3 lacked introns. The promoter analysis revealed the presence of cis-acting
elements related to ABA, indicating their involvement in stress responses. The
expression analysis indicated the potential involvement of 10 genes (HaSAP1,
HaSAP3, HaSAP8, HaSAP10, HaSAP15, HaSAP16, HaSAP21, HaSAP22, HaSAP23,
and HaSAP26) in sunflower salt tolerance. The expression of these 10 genes were
then examined under salt and drought stress using qRT-PCR, and the tissue-specific
expression patterns of these 10 genes were also analyzed. HaSAP1, HaSAP21, and
HaSAP23 exhibited consistent expression patterns under both salt and drought
stress, indicating these genes play a role in both salt tolerance and drought resistance
in sunflower. The findings of this study highlight the significant contribution of the
SAP gene family to salt tolerance and drought resistance in sunflower.
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INTRODUCTION
Stress-associated proteins (SAPs) are found in plants and contain a zinc finger domain
with an A20 and/or AN1 type zinc finger. These zinc finger domains, namely the
N-terminal A20 domain and/or the C-terminal AN1 domain, play crucial roles in the
functioning of SAP proteins and their involvement in plant stress responses (Lee et al.,
2000; Linnen, Bailey & Weeks, 1993). The structure of the SAP family is highly conserved
across different plant species. The A20 domain typically consists of one or more tandem
C2H2 zinc finger structures, while the AN1 sequence is highly conserved (Gimeno-Gilles
et al., 2011). A previously published bioinformatics analysis of 22 organisms found that
some lower organisms only possess the AN1 zinc finger domain and lack the A20 zinc
finger domain. This observation suggests that the AN1 zinc finger may have emerged
earlier than the A20 zinc finger (Vij & Tyagi, 2008). The initial identification and
characterization of the AN1 protein were performed in Xenopus laevis hemisphere 1 (Vij &
Tyagi, 2008). The first SAP gene to be studied in plants was OsiSAP1 in rice, which is
known to be induced by various stress conditions such as abscisic acid (ABA), drought, low
temperature, high salt, and heavy metal stress. Overexpression of OsiSAP1 in tobacco has
been shown to significantly increase the plant’s resistance to drought, low temperatures,
salinity, and pathogens (Dansana et al., 2014). SAP genes have been identified and their
functionally has been studied in various plant species, including Arabidopsis thaliana, rice,
tomato, Trilicum aestivum (wheat), Solanum tuberosum (potato), and Hordeum vulgare
(barley; Vij & Tyagi, 2006; Solanke et al., 2009; Li et al., 2021; Billah et al., 2022). The
evolution of SAP in plants is highly conserved, with a frequent occurrence of intron-free
genes. Different species exhibit variations in the zinc finger types of SAP members. For
instance, the A20-A20-AN1 zinc finger is found only in rice and eucalyptus, while the A20
type is found in species such as apple, B. rapa, and Vitis vinifera (grape). The presence or
absence of specific zinc finger types in SAP genes within these genomes indicates their
essential roles in the survival of these species.

SAP genes have been found to play an important role in plants, especially in plant
tolerance to abiotic stresses. Various studies have reported the induction of SAP genes by
different stressors and the involvement of SAP genes in the stress responses of different
plant species (Vij & Tyagi, 2006; Solanke et al., 2009; Li et al., 2021; Billah et al., 2022;
Baidyussen et al., 2020). In Arabidopsis thaliana and Zea mays, SAP genes have been found
to participate in the plants’ response to cold, salt, osmotic, and drought stresses (Vij &
Tyagi, 2006; Fu et al., 2022). Similarly, in rice, all SAP gene groups have been observed to
respond to the induction of one or more abiotic stresses, such as drought, cold, or salt
stress. Notably, the overexpression of OsiSAP1 and OsiSAP8 in both rice and tobacco has
been shown to enhance plant resistance against multiple abiotic stresses (Dansana et al.,
2014; Kanneganti & Gupta, 2008). In tomato, an expression analysis of 13 SAP genes
showed that all members of the SAP family were upregulated in response to one or more
stresses (Solanke et al., 2009). Furthermore, overexpression of the AtSAP5 gene in
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Arabidopsis thaliana and wheat seedlings has been found to enhance drought resistance
(Hozain et al., 2012), and overexpression of AtSAP10 and AtSAP13 in Arabidopsis thaliana
has been shown to improve the plant’s tolerance to various toxic metals (Dixit &
Dhankher, 2011; Dixit et al., 2018). Similarly, overexpression of SAP16 in both Arabidopsis
thaliana and soybean plants has been shown to enhance the tolerance of these transgenic
plants to drought and salt stress (Zhang et al., 2019). Moreover, overexpression of the
M. truncatula SAP1 gene has been found to improve the ability of transgenic tobacco
plants to withstand abiotic stresses (Charrier et al., 2013). These studies collectively
highlight the potential of SAP genes to increase stress tolerance in a wide range of plant
species. By understanding the mechanisms and functions of SAP genes, researchers can
explore the potential applications of these genes in improving crop resilience to various
abiotic stresses.

Sunflower (Helianthus annuus L.) plants are known for their drought and salt tolerance
and their ability to grow in barren and arid regions (Park & Burke, 2020). However, water
availability remains a crucial factor affecting sunflower yield. When subjected to drought
and salt stress, sunflower plants exhibit visual symptoms such as pale leaf color, slow
growth, wilting, and even death (Shen et al., 2023; Song et al., 2024). Drought and salt stress
can also cause physiological changes to occur, including increased proline content,
enhanced membrane permeability, and changes in protective enzyme activity. Osmotic
stress and ionic toxicity can disrupt ion and water balance within and outside plant cells
(Liu et al., 2020; Niu et al., 2022). Therefore, understanding the mechanisms of drought
and salt tolerance and developing stress-resistant sunflower varieties are important
research objectives. Genome sequencing has significantly advanced sunflower research,
enabling the systematic identification and study of gene families, including the
stress-associated protein (SAP) gene family (Badouin et al., 2017; Hübner et al., 2019).
Previous studies have shown the role of SAP genes in enhancing the stress resistance of
many plant varieties (Hozain et al., 2012; Dixit & Dhankher, 2011; Dixit et al., 2018;
Charrier et al., 2013). However, the evolution, function, and taxonomy of the SAP gene
family in sunflower plants have not been thoroughly investigated. This study aimed to
investigate various aspects of SAP genes in sunflower, including chromosomal
distribution, evolutionary relationships, gene structure, promoter cis-acting elements, and
expression profiles. This study also analyzed the expression patterns of these genes in
different tissues and their responses to salt and drought stress. The expression levels of
selected genes were assessed using qRT‒PCR in various tissues and under different stress
conditions. The findings of this study provide a foundational understanding of how SAP
genes are involved in drought resistance and salt tolerance in sunflower plants. The
findings of this study provide a better understanding of the genetic factors influencing
stress tolerance in sunflower by providing a comprehensive analysis of the SAP gene
family. These findings can also serve as a basis for further investigations into the specific
functions and regulatory mechanisms of the SAP genes involved in drought resistance and
salt tolerance in sunflower plants.
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MATERIALS AND METHODS
Identification of HaSAP gene family members and analysis of their
physicochemical properties
The genomic data of A. officinalis, O. sativa, Z. mays, A. thaliana, B. rapa, C. lanatus,
S. lycopersicum V. vinifera, and H. annuus were downloaded from Ensembl
Plants (http://plants.ensembl.org/index.html). A. lappa, C. endivia, and C. intybus
genomic and proteomic data were downloaded from the NCBI database (https://www.
ncbi.nlm.nih.gov/). C. morifolium genomic and proteomic data were downloaded from the
Chrysanthemum Genome Database (http://www.amwayabrc.com/zh-cn/). C. tinctorius
genomic and proteomic data were downloaded from the NGINX database (http://118.24.
202.236:11010/filedown/). The hidden Markov model (HMM) analysis of the SAP gene
domain (PF01754 and PF01428) in HMMER 3.2.1 software (http://HMMER.org/) was
used to identify SAP protein sequences (Potter Simon, Aurélien & Eddy Sean, 2018). The
CDD (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) database was used to
determine whether the candidate sequences had full A20 and/or AN1 functional domains,
and the sequences were finalized for subsequent analysis and named according to their
chromosomal order (Shennan, Jiyao & Farideh, 2020). The physicochemical properties of
the HaSAP proteins were predicted using the Swiss Bioinformatics Resource Portal,
ExPASy (https://web.ExPASy.org/protparam/; Julien, Davide & Alessandra, 2018).

Phylogenetic analysis of HaSAP
Using the ClustalW default settings in MEGA 7 software, A. officinalis, O. sativa, Z. mays,
A. thaliana, B. rapa, C. lanatus, S. lycopersicum, V. vinifera, H. annuus, A. lappa, C.
endivia, C. intybus, C. morifolium, L. sativa var. angustata, and C. tinctorius SAP protein
sequences were aligned with multiple sequences. A phylogenetic tree was constructed
using the neighbor-joining (NJ) method (the bootstrap method value was set to 1,000 and
the remaining parameters were set to default values; Sudhir, Glen & Koichiro, 2016) and
the EvolView website (https://www.evolgenius.info/evolview/).

Gene structure and motif analysis of the SAP gene family in
Compositae
The motifs of the candidate genes were analyzed using the MEME website (https://meme-
suite.org/meme/), with the number of functional domains set to 10. Gene structure
information was extracted from the genome database GFF3 file. The xml file obtained from
MEME, the nwk file of the evolutionary tree, and the GFF3 file of the gene structure were
processed and visualized using TBtools software (Chen et al., 2023).

Analysis of HaSAP cis-acting elements
The 2000 bp sequence upstream of the HaSAP start codon was selected and submitted to
the PlantCARE website (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) to
predict the cis-acting elements of the gene promoter region, which were then processed
and visualized using TBtools software (Chen et al., 2023).
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RNA-seq analysis
The transcriptome sequencing data of sunflower plants under salt stress were downloaded
from the NCBI database (PRJNA866668). The raw data were filtered and quality
controlled using fastp software (Chen et al., 2018). The filtered data were then aligned with
the sunflower genome using hisat2 software, and expression quantification was performed
using StringTie software (Pertea et al., 2016). Gene expression levels were quantified using
the fragments per kilobase of transcript sequence per million mapped reads (FPKM)
method. To visualize the expression patterns of the genes, an expression heatmap was
generated using TBtools software (Chen et al., 2023).

Plant material
The plant material used in this study was the sunflower salt-tolerant inbred line 19S05,
which was bred by the Bayannur Institute of Agricultural and Animal Sciences. This
particular inbred line was chosen based on its demonstrated tolerance to high salt
conditions. To prepare the plant material, the completed 19S05 seeds were washed with
water and then disinfected with 3% hydrogen peroxide for 10 min. The plants were
subsequently placed in plastic jars filled with disinfected soil. The incubation chamber
maintained a temperature of 24 (±2) �C and a humidity level of 60–70%. The plants were
exposed to 16 h of light with an intensity of 16,000 lx, followed by 8 h of darkness. An
incandescent lamp was used for illumination. After germination, the first pair of true leaves
was transplanted into the ordinary hydroponic solution once the leaves were fully
expanded. The Hoagland nutrient solution was replaced every 2 days. When the plants
reached the stage of having four true leaves, samples of the rhizome leaves were taken. For
the salt stress treatment, the nutrient solution was replaced with a 200 mmol/L NaCl
solution. Samples were taken at various time points after the treatment: 0, 1, 3, 6, 12, and 24
h. For drought stress, the nutrient solution was replaced with a 15% PEG6000 solution, and
samples were taken at the same time points as the salt stress treatment. Each sample was
biologically replicated in triplicate, and the samples were flash frozen with liquid nitrogen
and stored at −80 �C to preserve the biological material for subsequent analysis.

qRT–PCR analysis
The FastPure Plant Total RNA Isolation Kit (Novozan Biotechnology Co., Ltd., Nanjing,
China) was used to isolate total RNA. After RNA isolation, cDNA synthesis was performed
using PrimeScript Reverse Transcriptase (TaKaRa, Dalian, China). For quantitative
real-time PCR, primers were designed using Primer Premier 5.0 software. The primer
sequences can be found in Table S1. The sunflower Actin gene was used as an internal
control for normalization purposes. The qRT‒PCR was carried out using the ChamQ
Universal SYBR qPCR Master Mix (Novozan Biotechnology Co., Ltd., Nanjing, China).
The qRT‒PCR protocol involved an initial denaturation step at 95 �C for 30 s, followed by
denaturation at 95 �C for 10 s, annealing at 60 �C for 30 s, and extension at 72 �C for 20 s.
This cycle was repeated for a total of 40 cycles. All PCRs were performed in triplicate to
ensure the reliability of the results. The quantitative data obtained from qRT‒PCR were
analyzed using the 2−ΔΔCT method (O’Connell et al., 2017). Excel 2010 was also used for
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statistical analysis of the qRT-PCR data. The R language (version 4.2.3) ggplot2 software
package was used for data visualization. Additionally, the ggpubr software package was
used to perform a t-test on the data, specifically comparing the samples before 0 h (CK)
and after stress, and the significance level was calculated to determine if there were
statistically significant differences in gene expression between the control and stress
conditions.

RESULTS
Identification of the SAP gene family in sunflowers
To study changes in the copy number of the SAP gene family during the evolution of
Compositae plants, the SAP genes were comprehensively searched from the genomes of
seven Compositae species (H. annuus, A. lappa, C. endivia, C. intybus, C. morifolium, L.
sativa var. angustata, and C. tinctorius) via hmmsearch. The results of the search were
verified in the NCBI-CDD database. A total of 27, 17, 19, 14, 18, 15, and 11 SAP sequences
were identified, respectively. The 27 sunflower sequences on the chromosome were named
HaSAP01–HaSAP27 (Table 1). The open reading frame (OFR) length of the HaSAP family
gene ranged from 402 to 873 bp. The encoded protein contained between 133 and 290
amino acid residues, with a relative molecular weight ranging from 14.89 to 31.74 kDa. The
theoretical isoelectric point of these proteins ranged from 7.85 to 9.71. In terms of genomic
distribution, 27 HaSAP genes were found on 14 chromosomes of sunflower (chr1, chr3,
chr4, chr6, chr7, chr8, chr9, chr10, chr11, chr12, chr13, chr14, chr16, and chr17). Among
those chromosomes, chr11 contained the highest number of HaSAP genes, with six genes.
Chr14 contained four HaSAP genes, while chr1, chr7, chr8, chr10, and chr13 each
contained two HaSAP genes. The remaining chromosomes (chr3, chr4, chr6, chr9, chr12,
chr16, and chr17) each contained one HaSAP gene.

Phytogenetic analysis of the SAP gene family in sunflower
To better understand the evolutionary relationship of sunflower SAP family genes, a
phylogenetic tree was constructed based on 238 SAP protein sequences from seven
Compositae species (H. annuus, A. lappa, C. endivia, C. intybus, C. morifolium, L. sativa
var. Angustata, and C. tinctorius), as well as eight other plant species (A. officinalis, O.
sativa, Z. mays, A. thaliana, B. rapa, C. lanatus, S. lycopersicum, V. vinifera). The
evolutionary tree was divided into three distinct groups (Fig. 1A). Group 1 consisted of 72
SAP genes, with C. endivia and B. rapa having the highest number of SAP genes (8 and 7,
respectively). A. thaliana, C. morifolium, and H. annuus each had six SAP genes, while
Z. mays only had two SAP genes (Fig. 1B). Group 2 contained a total of 68 SAP genes, with
B. rapa having the highest number (15), while A. officinalis did not have any SAP genes.
A. thaliana, A. lappa, and H. annuus each had six SAP genes. Group 3 consisted of 98 SAP
genes, with H. annuus having the highest number (15), and A. thalianas having only two
SAP genes. O. sativa and C. morifolium each contained nine SAP genes. Notably, B. rapa,
despite having the highest number of SAP genes overall (29), was mainly distributed in
Group 2. The phylogenetic tree results indicated that the SAP genes of the seven
Compositae plants were more closely related within each branch. Additionally, the number
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of SAP genes in the other seven Compositae plants showed similarity, except forH. annuus
in Group 3, which suggests that the SAP genes of H. annuus in Group 3 had undergone
amplification.

The sunflower SAP gene was used as the core gene to explore collinear relationships of
SAP genes between H. annuus and A. officinalis, O. sativa, Z. mays, A. thaliana, B. rapa, C.
lanatus, S. lycopersicum, and V. vinifera (Fig. 2). H. annuus produced three pairs of
collinearity genes with two SAP genes from A. officinalis, two pairs of collinearity genes
with two SAP genes from A. thaliana, eight pairs of collinearity genes with six SAP genes
from B. rapa, one pair of collinearity genes with one SAP gene from C. lanatus, seven pairs
of collinearity genes with four SAP genes from O. sativa, six pairs of collinearity genes with
two SAP genes from S. lycopersicum, seven pairs of collinearity genes with three SAP genes

Table 1 Sunflower SAP gene family member information.

Gene name Gene id Open reading
frame/bp

Protein
length/aa

Relative
molecular
weight (r)/kDa

Theoretical
isoelectric
point (pI)

Chromosome location

HaSAP1 HanXRQr2_Chr01g0012971 837 278 30.40 8.21 chr1:59710103-59712466

HaSAP2 HanXRQr2_Chr01g0026611 477 158 17.58 8.72 chr1:105451161-105451965

HaSAP3 HanXRQr2_Chr03g0131611 510 169 17.92 8.42 chr3:166637451-166640007

HaSAP4 HanXRQr2_Chr04g0162551 504 167 17.66 8.27 chr4:90388855-90391859

HaSAP5 HanXRQr2_Chr06g0239681 462 153 16.70 8.72 chr6:2309799-2310425

HaSAP6 HanXRQr2_Chr07g0300041 495 164 17.89 8.42 chr7:113724033-113724878

HaSAP7 HanXRQr2_Chr07g0304921 468 155 17.16 9.18 chr7:126846796-126847575

HaSAP8 HanXRQr2_Chr08g0328831 507 168 18.29 8.38 chr8:22597092-22597901

HaSAP9 HanXRQr2_Chr08g0339381 411 136 15.14 9.11 chr8:57517545-57517955

HaSAP10 HanXRQr2_Chr09g0402491 666 221 24.41 9.11 chr9:160504365-160505517

HaSAP11 HanXRQr2_Chr10g0433481 633 210 22.51 8.05 chr10:61719246-61723474

HaSAP12 HanXRQr2_Chr10g0433941 873 290 31.47 8.9 chr10:65483981-65486466

HaSAP13 HanXRQr2_Chr11g0474691 462 153 16.73 8.72 chr11:16460312-16460773

HaSAP14 HanXRQr2_Chr11g0476111 438 145 16.33 8.77 chr11:20557190-20557671

HaSAP15 HanXRQr2_Chr11g0498351 477 158 17.46 9.71 chr11:124647832-124649071

HaSAP16 HanXRQr2_Chr11g0498361 513 170 18.30 8.21 chr11:124671225-124681661

HaSAP17 HanXRQr2_Chr11g0498391 513 170 18.30 8.21 chr11:124746910-124749236

HaSAP18 HanXRQr2_Chr11g0498401 510 169 18.06 7.85 chr11:124749238-124751974

HaSAP19 HanXRQr2_Chr12g0528291 576 191 21.59 8.66 chr12:13265031-13265736

HaSAP20 HanXRQr2_Chr13g0580381 426 141 15.17 8.77 chr13:67896332-67896757

HaSAP21 HanXRQr2_Chr13g0589391 705 234 26.25 8.93 chr13:92129218-92130772

HaSAP22 HanXRQr2_Chr14g0657111 459 152 17.04 8.69 chr14:149655111-149655813

HaSAP23 HanXRQr2_Chr14g0660821 480 159 17.28 8.36 chr14:157564421-157564900

HaSAP24 HanXRQr2_Chr14g0669051 411 136 15.28 8.64 chr14:170604046-170604456

HaSAP25 HanXRQr2_Chr14g0669061 402 133 14.89 8.94 chr14:170611582-170611983

HaSAP26 HanXRQr2_Chr16g0759421 417 138 15.67 9.15 chr16:153746976-153747563

HaSAP27 HanXRQr2_Chr17g0817861 477 158 17.67 8.72 chr17:139420663-139421368
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from V. vinifera, and 12 pairs of collinearity genes with two SAP genes from Z. mays.
Although the most collinearity gene pairs were found between H. annuus SAP and
Z. mays, only two ZmSAP genes (ZmSAP1 and ZmSAP4) were formed.
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The collinear relationships of SAP genes were also analyzed for seven Compositae
plants (H. annuus, A. lappa, C. endivia, C. intybus, C. morifolium, L. sativa var. Angustata,
and C. tinctorius; Fig. 3). The H. annuus genome contains 16 collinearity SAP gene pairs.
H. annuus produced 10 collinearity pairs with eight SAP genes from A. lappa, nine
collinearity pairs with six SAP genes from C. endivia, 10 collinearity pairs with six SAP
genes from C. intybus, 12 collinearity pairs with seven SAP genes from C. morifolium, six
collinearity pairs with three SAP genes from C. tinctorius, and eight collinearity pairs with
five SAP genes from L. sativa. H. annuus contained the most collinearity gene pairs with
C. morifolium, and H. annuus and C. morifolium had the closest distance in the
phylogenetic tree. The collinearity of SAP gene pairs between sunflower and other
Compositae plants was not much different, and the number of branches in the
phylogenetic tree was relatively similar, indicating that the SAP gene family was conserved
in the evolution of Compositae plants.

Evolution, gene structure, and motif analysis of the Compositae spe-
cies SAP gene family
A phylogenetic tree was created and gene structure and motif analyses were performed
based on the full-length, CDS, and protein sequences of SAP genes in seven Compositae
plants to further understand the composition and structure of sunflower SAP genes
(Fig. 4). The phylogenetic tree revealed that the SAP genes from the seven Compositae
plants could be divided into three subgroups. This subdivision in subgroups is consistent
with similar research conducted on other plant species, indicating a certain level of
evolutionary conservation within the SAP gene family. A motif is a structural component
of a protein molecule with a specific spatial conformation and a specific function and is a
subunit of the domain. Members of the same subgroup exhibited similar motifs. Groups 2
and 3 displayed the simplest gene structure and the least number of motifs. Except for
CmSAP3, the SAP genes in Group 1 contained at least two exons and four motifs (motif 4,
motif 5, motif 6, and motif 7). In Group 2, with a few exceptions (CiSAP1, CeSAP1,
LsSAP1, HaSAP3, HaSAP6, HaSAP9, and HaSAP24), the SAP genes contained one exon
and four motifs (motif 1, motif 3, motif 4, and motif 9). In Group 3, excluding a few genes
that contained two exons (HaSAP7, HaSAP11, HaSAP17, CmSAP5, CmSAP11, CmSAP15,
CmSAP18, CeSAP6, CeSAP17, CiSAP7, LsSAP8, and AlSAP15), the remaining SAP genes
had one exon and seven motifs (motif 1, motif 2, motif 3, motif 5, motif 8, motif 9, and
motif 10). These findings suggest that the three subgroups of SAP genes may have
undergone genetic structure changes during the evolutionary process, potentially resulting
in different biological functions.

Analysis of promoter cis-acting elements of the SAP gene family in
sunflower
The analysis of the 2000 bp upstream promoter region of the HaSAP gene provided
insights into its potential functions. The cis-acting element analysis revealed an uneven
distribution of cis-acting elements associated with stress and hormonal responses. Four
cis-acting elements related to stress responses were identified; among them, the most
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Figure 4 Phylogenetic tree, gene structure, and motif analysis of the SAP family in seven Compositae
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abundant element was the anaerobic response element (ARE), which plays a crucial role in
anaerobic induction. The majority of HaSAP genes (25 out of 27) contained at least one
ARE. Additionally, HaSAP18 had eight low-temperature responsiveness (LTR) elements,
suggesting its potential involvement in low-temperature tolerance. The promoter region of
the HaSAP gene contained nine cis-acting elements associated with five hormones: auxin
(TGA-element and AuxRR-core), abscisic acid (ABRE), MeJA (TGACG-motif and
CGTCA-motif), gibberellin (P-box, GARE-motif and TATC-box), and salicylic acid
(TCA-element; Fig. 5). These cis-acting elements suggest the HaSAP gene is involved in
various hormone signaling pathways. Notably, the largest number of cis-acting elements
was associated with abscisic acid responses, with a total of 64 elements identified,
suggesting that the HaSAP gene family may primarily function through synergistic effects
on ABA biosynthesis or signal transduction genes.

Analysis of the expression patterns of the SAP gene family in sun-
flower plants under salt stress
The expression patterns of HaSAP genes were investigated by analyzing RNA-seq data
under salt stress conditions (Fig. 6). Out of all the HaSAP genes analyzed, a subset of 10
genes (HaSAP1, HaSAP3, HaSAP8, HaSAP10, HaSAP15, HaSAP16, HaSAP21, HaSAP22,
HaSAP23, and HaSAP26) exhibited significant changes in expression in response to salt
stress. These 10 genes showed specific induction upon exposure to high salt levels, while
the remaining HaSAP genes either displayed minor changes in expression or remained
relatively stable under salt stress conditions. This suggests that these 10 genes may be
specifically involved in the plant’s response to salt stress. The expression levels of the five
genes with the most significant changes (HaSAP3, HaSAP10, HaSAP15, HaSAP16, and
HaSAP26) reached their minimums at 3 h. However, since RNA-seq data were only
measured for a duration of 12 h, it is possible that the expression levels of these genes
continued to change beyond the 12-h time point. These results showed that approximately
one-third of the HaSAP family genes demonstrated significant changes in expression levels
under salt stress conditions, indicating that the HaSAP family genes may play a role in the
plant’s response to salt stress.

qRT-PCR analysis of candidate gene expression under drought and
salt stress and tissue-specific expression
The qRT‒PCR analysis of the selected genes (HaSAP1, HaSAP3, HaSAP8, HaSAP10,
HaSAP15, HaSAP16, HaSAP21, HaSAP22, HaSAP23, and HaSAP26) under salt stress
conditions validated the findings of the expression analysis. The transcript levels of the
selected genes were measured at different time points after stress treatment. Compared to
the expression levels at 0 h under salt stress, significant changes in transcript levels were
observed for all ten genes (Fig. 7). Four genes (HaSAP1, HaSAP3, HaSAP16, and
HaSAP26) showed a significant decrease in expression after salt stress, reaching their
minimum levels at 6 or 12 h, while five genes (HaSAP8, HaSAP10, HaSAP21, HaSAP22,
and HaSAP23) exhibited a significant increase in expression after salt stress, reaching their
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maximum levels at 1, 6, or 12 h. The expression of HaSAP15 under salt stress was
particularly notable as it showed a significant increase after 1 h of salt stress, followed by a
significant decrease after 3 h, reaching its lowest expression level at 6 h.
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Figure 5 The number of cis-acting elements in the promoter region of the HaSAP gene, including
the type and number of cis-acting elements involved in stress response and hormone response.
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The expression patterns of the 10 genes (HaSAP1, HaSAP3, HaSAP8, HaSAP10,
HaSAP15, HaSAP16, HaSAP21, HaSAP22, HaSAP23, and HaSAP26) were further
investigated under drought stress conditions using qRT‒PCR analysis (Fig. 8). Under
drought stress, eight genes (HaSAP1, HaSAP3, HaSAP8, HaSAP15, HaSAP16, HaSAP21,
HaSAP23, and HaSAP26) exhibited significant increases in transcript levels compared to
their expression levels at 0 h, indicating that these eight genes were strongly induced at the
transcriptional level in response to drought stress. Under salt stress, the expression levels of
two genes (HaSAP1 and HaSAP8) significantly decreased, reaching their lowest levels at
6 h, while the expression levels of six genes (HaSAP3, HaSAP15, HaSAP16, HaSAP21,
HaSAP23, and HaSAP26) increased significantly after salt stress. HaSAP1, HaSAP21, and
HaSAP23 all displayed consistent expression patterns under both salt and drought stress
conditions. These findings suggest that these three genes may play crucial roles in the
mechanisms of salt tolerance and drought resistance in sunflowers.

HaSAP7
HaSAP2
HaSAP18
HaSAP4
HaSAP11
HaSAP15
HaSAP3
HaSAP16
HaSAP21
HaSAP22
HaSAP24
HaSAP13
HaSAP17
HaSAP20
HaSAP25
HaSAP14
HaSAP9
HaSAP19
HaSAP8
HaSAP6
HaSAP23
HaSAP1
HaSAP26
HaSAP10
HaSAP27
HaSAP5
HaSAP12

0h 3h 12
h

-2

0

2

Figure 6 RNA-seq expression analysis of the HaSAP genes under salt stress conditions.
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Tissue-specific expression patterns of the 10 genes (HaSAP1, HaSAP3, HaSAP8,
HaSAP10, HaSAP15, HaSAP16, HaSAP21, HaSAP22, HaSAP23, and HaSAP26) were also
analyzed in the roots, stems, and leaves (Fig. 9). Six genes (HaSAP1, HaSAP3, HaSAP15,
HaSAP16, HaSAP22, and HaSAP26) displayed significantly higher expression levels in the
roots compared to levels in the stems and leaves, indicating that these genes are likely
involved in root-specific functions, including some functions related to the plant’s
response to salt stress. Conversely, the HaSAP8, HaSAP10, and HaSAP23 genes exhibited
significantly higher expression levels in the leaves compared to levels in the roots and
stems, indicating that these genes may play specific roles in leaf-related processes,
including some processes associated with the plant’s response to drought stress. Notably,
the HaSAP21 gene displayed the lowest expression in stems, and had similar expression
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levels in the roots and leaves. This suggests that HaSAP21 may have a more uniform
expression pattern across different tissues than the other genes. The significant changes
observed in the expression of HaSAP genes in plant leaves and roots after stress treatment
likely contribute to improved drought and salt tolerance in sunflower plants. These
findings highlight the importance of the HaSAP gene family in the stress tolerance traits of
sunflower plants. These findings also provide a foundation for validating the functional
roles of these genes and investigating the underlying molecular mechanisms involved in
plant stress resistance.

DISCUSSION
SAPs, which are characterized by zinc finger proteins with an A20/ANI domain, have been
identified in various species, including rice, A. thaliana, and maize. These genes have been
found to play a role in plant responses to both biotic and abiotic stresses. Research on SAP
genes and their functions in stress resistance has gained considerable attention in the
scientific community (Dansana et al., 2014; Vij & Tyagi, 2006; Fu et al., 2022).
Understanding the SAP gene family across different plant species contributes to the
knowledge of plant stress adaptation strategies and provides opportunities for improving
crop resilience to environmental stresses (Dansana et al., 2014; Vij & Tyagi, 2006; Solanke
et al., 2009; Li et al., 2021; Billah et al., 2022). In this study, a total of 27 SAP genes were
identified in sunflower, which is a higher number of SAP genes than has been found in
other species such as A. officinalis, O. sativa, Z. mays, A. thaliana, C. lanatus, S.
lycopersicum, V. vinifera, andH. annuus. A conserved domain analysis revealed that all the
sunflower SAP proteins contained AN1 domains, with 74% of the genes being A20-AN1
zinc finger proteins, similar to SAP family members in other species (Fig. S1). The absence
of SAP genes with only the A20 domain in Arabidopsis thaliana and grape and the
presence of only one gene (OsSAP18) with the A20 domain in rice suggests that the AN1
domain may be older than the A20 domain in terms of evolutionary origins (Vij & Tyagi,
2006; Sun, Xia & Guan, 2022). This observation indicates that the AN1 domain likely
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predates the emergence of the A20 domain in the evolution of SAP proteins. The AN1
domain is more widely conserved among SAP proteins in plants, whereas the A20 domain
is less prevalent as a standalone domain in SAP genes. However, it is important to note that
this inference is based on the current knowledge and understanding of SAP genes in
different plant species. Further research and analysis is necessary to gain a more
comprehensive understanding of the evolutionary relationships and origins of the AN1
and A20 domains within the SAP gene family.

The variation in exon‒intron numbers and conserved motifs within gene families often
provides valuable insights into the evolutionary mechanisms of those gene families
(Abdullah-Zawawi et al., 2021; Song et al., 2022). In the investigation of SAP genes across
seven Compositae species, it was observed that members of the same subfamily exhibited
similar exon‒intron numbers and conserved motifs, suggesting shared biological functions
within subfamilies. One characteristic of SAP family members is the tendency to exhibit a
lack of introns in various plant species (Vij & Tyagi, 2006; Xie et al., 2022; Jalal et al., 2022).
For example, approximately 61% of rice SAP genes have no introns, and 33% of soybean
and rice SAP genes have only one intron (Vij & Tyagi, 2006). In A. thaliana, 64% of AtSAP
genes have no introns, and 28% have one intron (Vij & Tyagi, 2006). The present study
found that 72% of the SAP genes in Compositae species were intron-free, and 20%
contained one intron. Previous studies in A. thaliana and rice have suggested that SAP
genes without introns or with an intron deficiency are more likely to be involved in salt and
drought stress responses (Nguyen et al., 2016; Gimeno-Gilles et al., 2011). The presence of
the four SAP subfamily genes in multiple monocots and dicots suggests that the
differentiation among SAP family members occurred prior to the divergence of these plant
species. This indicates that the evolutionary history of the SAP gene family predates species
differentiation. During biological evolution, gene duplication events and subsequent
functional diversification have played significant roles in shaping genome and species
evolution (Bryant & Aves, 2011). These mechanisms contribute to the expansion and
diversification of gene families, allowing for the acquisition of new functions and
adaptations over time. Sixteen pairs of tandem repeats were found in sunflower HaSAP
genes, which may be the main reason for the expansion of the sunflower SAP family. This
expansion is considered a survival strategy that enables sunflower to adapt to its
environment. The HaSAP family of genes is relatively conserved evolutionarily, which
helps maintain its functionality. Furthermore, multiple orthologous genes (more than 8
pairs) were identified between sunflower and other Compositae species (A. lappa, C.
endivia, C. intybus, C. morifolium, L. sativa var. angustata, and C. tinctorius), indicating
significant expansion of SAP genes during polyploidy events before these species
differentiated. Overall, these findings provide valuable insights into the evolutionary
mechanisms and expansion of the SAP gene family, highlighting the importance of gene
duplication and diversification in shaping plant genomes and species adaptation.

Cis-regulatory elements are crucial molecular switches involved in regulating gene
expression and controlling various biological processes, including responses to hormones,
abiotic stresses, and developmental processes. These elements are typically found within
the promoter regions of genes and control gene expression by interacting with
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transcription factors and other regulatory proteins (Mao et al., 2022; Mishra et al., 2018;
Yamaguchi-Shinozaki & Shinozaki, 2005). The present study found that the highest
number of cis-acting elements in the HaSAP gene bind to ABA, a well-known regulator of
abiotic stress responses in plants (Asad et al., 2019). The substantial changes in the
transcript levels of selected HaSAP genes in response to drought and salt stress observed in
the qRT-PCR analysis provide strong evidence for the potential involvement of these genes
in plant drought and salt stress responses. The changes in gene expression observed
suggest that the HaSAP genes may play a role in the molecular response of sunflower
plants to these abiotic stresses. Previous studies have shown that the overexpression of
AtSAP10 and AtSAP13 in A. thaliana enhances the plant’s tolerance to various toxic metals
(Dixit & Dhankher, 2011; Dixit et al., 2018). Similarly, the overexpression of soybean
SAP16 in both A. thaliana and soybean plants has been shown to increase the tolerance of
these plants to drought and salt stress (Zhang et al., 2019). In addition, the overexpression
of the M. truncatula SAP1 gene increased transgenic tobacco’s ability to resist abiotic
stresses (Charrier et al., 2013) and the overexpression of MdSAP15 enhanced the osmosis
and drought resistance of transgenic A. thaliana plants compared to wild-type plants
(Dong et al., 2018). In sunflower plants, the expression profiles of HaSAP1, HaSAP21, and
HaSAP23 remained consistent under salt and drought stress conditions, indicating that
these genes may play a role in the salt tolerance and drought resistance traits of sunflower
plants. The altered expression of HaSAP genes in response to drought and salt stress may
trigger the expression of ABA-related genes, leading to improved resistance to stress in
sunflower plants. Overall, these findings highlight the potential involvement of SAP genes
in the abiotic stress responses of plants and suggest that the regulation of gene expression
through cis-regulatory elements and ABA-related pathways plays a role in the
physiological and developmental responses of plants to environmental challenges.

CONCLUSIONS
This study comprehensively analyzed the number, structure, collinearity, and phylogeny of
the SAP gene family in 15 plant species. The phylogenetic analysis revealed that the genes
in the SAP family could be divided into three subgroups, and these subgroup genes were
found in both monocots and dicots, suggesting that the differentiation of SAP family
members occurred earlier than species differentiation. Notably, the sunflower and Z. mays
SAP genes exhibited the highest number of collinear gene pairs, indicating a close
relationship between these two species within the Compositae family. The promoter
analysis indicated the presence of several cis-acting elements related to ABA, suggesting
that SAP genes may be involved in ABA-mediated stress responses in sunflower plants.
The expression analysis revealed that HaSAP1, HaSAP21, and HaSAP23 displayed
consistent expression patterns under salt and drought stress conditions. This consistency
suggests that these genes may play a role in the salt tolerance and drought resistance of
sunflower plants. Overall, the results of this study provide important insights and clues for
further research on the role of SAP genes in the salt tolerance and drought resistance of
sunflower plants. These findings help elucidate the molecular mechanisms underlying the
stress responses of sunflower plants and can guide future investigations in this area.
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