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In recent years, advances in nanotechnology have significantly influenced electronics
manufacturing, industrial processes and medical research. Various industries have seen a
surge in the use of nanomaterials. However, several researchers have raised the alarm
about the toxicological nature of nanomaterials, which appear to be quite different from
their crude forms. This altered nature can be attributed to their unique physico-chemical
profile. They can adversely affect human health and the environment. Nanomaterials that
have been released into the environment tend to accumulate over time and can cause a
significant impact on the ecosystem and organisms with adverse health effects. Increased
use of nanoparticles has led to increased human exposure in their daily lives, making them
more vulnerable to nanoparticle toxicity. Because of their small size, nanomaterials can
readily cross biological membranes and enter cells, tissues, and organs. Therefore, the
effect of nanomaterials on the human environment is of particular concern. The
toxicological effects of nanomaterials and their mechanisms of action are being researched
worldwide. Technological advances also support monitoring new nanomaterials marketed
for industrial and household purposes. It is a challenging area because of the exceptional
physiochemical properties of nanomaterials. In this updated review, we have discussed the
diverse toxicological perspective of nanomaterials, including the use of different types of
nanoparticles and their physiochemical properties responsible for toxicity, their potential

routes of exposure in humans, their bio- distribution and mechanism of toxicity, and
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various in vivo and in vitro methods of assessing the toxicity of nanomaterials. Finally, this
review will provide a detailed insight into nonmaterial’s toxicological response, which can
be beneficial in designing safe and effective nanoparticles.
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Dear authors, hope you understand my notes, comments, and suggestions. All observed
issues and suggestions were made considering the improvement of the manuscript, which
does not invalidate the submitted work.

General aspects of the article:
It is written in adequate English.

Title: An insight into impact of nanomaterials toxicity on 1 human health

Abstract: the summary is appropriate to the article.

Keywords: Some keywords are already present in the title. | recommend changing them for
others, enhancing the paper's visibility.

General comments:
The article is presented in good condition, with proper English language.

It is possible to see a vast quantity of references read by the authors to write the submitted
manuscript. Most of the references are recent and is possible to see an effort of the authors
in searching updated articles. However, old references are still being used and could be
replaced by newer ones.

Short sentences must be used in order to make information clear.

In the entire article, the authors should only use the toxicity on non-human species to clearly
support or relate the effects on human health - the main subject of the text. If this is not the
case, avoid using the information.

Some words and expressions must be standardized, e.g. 'physicochemical' without the
hyphen, 'in vivo' and 'in vitro' without the hyphen and in italic form.

This paper has great potential and could be improved upon before Acceptance.

Detailed observations/suggestions:

1. Introduction:
This section is well presented, making the reader aware of the subject that will be addressed
in the article and the purpose of the literature review.
1.1. The rationale of the study: Important part of the manuscript, as it presents the purpose of
the review.
1.2. Search methodology: It describes how the article was constructed. As an exploratory
study, the bibliography search was quite comprehensive.

2. Classes of nanomaterials:
| understand this section as basic information on which classes of nanomaterials are divided,
being responsible to support some terms used in the article. Then, it must have a very clear
explanation.



In addition, | missed an indication of other studies for each subitem, in case the reader
desires to go deep into specific knowledge. Perhaps a figure could illustrate the different
classes of nanomaterials.

3. Physico-chemical properties of nanomaterials responsible for toxicity:
There is a good introduction part of this section, followed by subsection '3.1. Effects of
physicochemical properties of nanomaterials on a cellular level'. This subsection is quite
interesting but very concise. It could be more explored.

Table 1: It comprehends some examples of nanotoxicity towards physicochemical properties
of nanomaterials. In the text caption, it is mentioned that contains information about damage
to mammal cells, i.e., by in vitro testing. However, Demir's study is a review paper and not
original research. Liu et al. 2014a research was performed in vivo, conducted using animal
exposure (mice).

Please, review these issues, because it is expected a list of research that has tested and
shown nanotoxicity in mammal cells. | recommend restricting the cited works to the
mentioned conditions (nanotoxicity on mammal cells based on new original research).
Maybe, considering the main subject of the manuscript, it should only be based on human
cell lines.

Subsection '3.2. Effects of physicochemical properties of nanomaterials on the environment'
is out of context as the article, as mentioned in the title and previous sections, should focus
on human health. There is no indication that nanotoxicity is related to human health in this
part of the text; that humans have the same risks compared to other organisms; or even that
the harmful effects of nanomaterial to other organisms could directly or indirectly jeopardize
humans. As the purpose of this item is unclear, | recommend removing or making it clear and
coherent with the article's subject. Inserting humans into an ecosystem and as part of a
trophic web could explain this subitem, also associating this info with some exposure routes,
such as gastrointestinal.

Table 2: There is no indication of why those nanomaterials were selected to be shown in the
table. Were the most produced, used, or tested nanomaterials? Or the selection was purely
random? As the table contains important data, the criteria for selection should be mentioned
to support its objective.

4. Commonly used nanomaterial and their adverse health effects:
The starting paragraph must be revised. In this part is mentioned that nanoparticles can
'naturally occur' from diesel exhaust (line 307). As it stands, it could be understood that the
generation of nanoparticles by a combustion engine is a natural process. However, it would
be more appropriate to indicate its origin as a by-product or a derived form. Perhaps it would
be interesting to point to 'derived forms' and 'produced forms' of nanoparticles rather than
'naturally occurring' and 'artificial' forms. Please, review.

The last part of this introduction is fine, but it is not clear why only metal and carbon-based
nanoparticles were preferred to be explored in the following subsections.



Subsection '4.1. Toxicity of metal-based nanoparticles' emphasizes silver, copper, and
titanium nanomaterials. Among the metallic nanoparticles, these are the most studied, being
already recognized by their toxicity. However, the authors insist to present data on adverse
effects on other non-human species (lines 329-331). This is confusing as human health is the
aim of the discussion. Please, review.

Subsection '4.2. Toxicity of Carbon-based nanoparticles' describes information regarding the
toxicity of these nanomaterials. However, research conducted with non-human species is
mentioned again (e.g. lines 351 and 358). Despite animals and other species could indicate
harmful effects that also could happen to humans, this extrapolation must be carefully made.
So, it would be better to restrict the text to research that has tested human cell lines exposed
to carbon-based nanoparticles. Also, a major part of this subsection is based on a single
review work (lines 358-370). Please, review.

5. Routes of exposure of the nanoparticle:
In my perception, this entire section should be placed after item 3. For me, it is more logical
to describe the physicochemical properties, the main routes of exposure, and then the
toxicity induced by nanomaterials. | recommend the authors consider this suggestion to
enhance the quality of the article.

This section brings the main conceptions of exposure routes related to nanoparticles. There
are no issues.

6. Biodistribution:
It could be renamed as 'Nanomaterial toxicokinetics'. If section 5 is moved, section 6 must
follow. Info in this section is adequate and clear. However, the term 'pharmacokinetic’ is often
used for nanoparticles. | suggest the use of 'kinect' as nanoparticles are not always a
pharmaceutical.

Figure 1: This figure is relevant considering the routes of exposure and the kinect of
nanoparticles. Nevertheless, transformations in arrows line, size, and width must be indicated
below the figure.

7. Mechanisms of toxicity of nanoparticles:
This is the 'icing on the cake' section of the article. The only recommendation that | do is to
change the order of subsections to 1) oxidative stress, 2) genotoxicity, 3) immunomodulation,
and 4) inflammation.

Figure 2: The figure is only for illustration. Maybe it could be more related to the kinetics of
nanoparticles and then to cellular toxicity by ROS generation.

8. Methods for assessing the toxicity of nanomaterials:

This section is interesting to guide some researchers on how nanotoxicity can be evaluated. |
have no further suggestions on this part.

9. Conclusion and Future Prospects:



This section comprises and closes the article. However, | missed some suggestions
regarding how stakeholders and decision-makers should address nanoparticle safety. For
example, pesticides must be tested and evaluated regarding their toxicity on non-target
animals, such as bees, before being sold. Should not nanoparticles pass through the same
process? After all the presented information, | missed this author's statement.
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ABSTRACT

In recent years, advances in nanotechnology have significantly influenced electronics
manufacturing, industrial processes and medical research. Various industries have seen a surge in
the use of nanomaterials. However, several researchers have raised the alarm about the
toxicological nature of nanomaterials, which appear to be quite different from their crude forms.
This altered nature can be attributed to their unique physicochemical profile. They can adversely
affect human health and the environment. Nanomaterials that have been released into the
environment tend to accumulate over time and can cause a significant impact on the ecosystem
and organisms with adverse health effects. Increased use of nanoparticles has led to increased
human exposure in their daily lives, making them more vulnerable to nanoparticle toxicity.
Because of their small size, nanomaterials can readily cross biological membranes and enter cells,
tissues, and organs. Therefore, the effect of nanomaterials on the human environment is of
particular concern. The toxicological effects of nanomaterials and their mechanisms of action are
being researched worldwide. Technological advances also support monitoring new nanomaterials
marketed for industrial and household purposes. It is a challenging area because of the exceptional
physiochemical properties of nanomaterials. In this updated review, we have discussed the diverse
toxicological perspective of nanomaterials, including the use of different types of nanoparticles
and their physiochemical properties responsible for toxicity, their potential routes of exposure in
humans, their bio- distribution and mechanism of toxicity, and various in vivo and in vitro methods
of assessing the toxicity of nanomaterials. Finally, this review will provide a detailed insight into
nonmaterial’s toxicological response, which can be beneficial in designing safe and effective

nanoparticles.

Keywords: Nanotoxicology, Nanomaterials, Toxicology, Humamrthealth, Environmentalthealth

As these keywords already appear on the title, | recommend changing them for
others, which could enhance the paper's visibility.
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1. Introduction

Toxicology is a multidimensional science branch involving the interaction of biological organisms,
chemicals, and other agents to detect possible hazards (Krewski et al. 2020). The toxicity or toxic
insult can be defined as any adverse biological effects of a product, irrespective of its origin. Many
chemicals have been studied, and their toxicity and impact mechanisms have been published over
several decades (Carlin et al. 2015; Genuis & Kyrillos 2017; Jaishankar et al. 2014; Lanphear
2017). Several studies have documented toxic events caused by nanomaterials over the past decade
(Barabadi et al. 2019; Chen et al. 2020; Ferdous & Nemmar 2020). If we accept the declaration of
the father of toxicology, Paracelsus (1493-1541), that "All substances are poisons; there is none
that is not a poison. The right dose differentiates a poison from a remedy", the nano-sized materials
(Nanoparticles, nanomaterials) are not an exception to this statement. In the case of nanomaterials,
the surface area of the nanoparticles, relative to their general counterparts, intensifies their effects
even at lower doses (Ahmad et al. 2014a; Ahmad et al. 2015; Ahmad & Sardar 2015b; Khatoon et
al. 2015; Sardar & Ahmad 2016; Sardar et al. 2014). Under the aegis of 'nanotoxicology,' the
possible toxicological effects of nanomaterials are being examined. Nanomaterials possess unique
catalytic, mechanical, and optical properties and electrical conductivity mainly due to their size in
nanometers (Ahmad et al. 2023; Ahmad & Sardar 2015a; Ding & Chen 2009; Ghosh et al. 2021a;
Ghosh et al. 2021b; Goel et al. 2023).

However, the branch of nanotoxicology may seem new, but it contains the same basic toxicological
concepts. The instruments and techniques for the analysis can vary from the basic ones, depending
on the nature of the substance (nanomaterials in this case). The associated health issues are also
growing with the increasing demand for nanomaterials in different industries and household goods.
Toxicological approaches play a key role in regulating numerous substances and products' impacts

on human and environmental health (Klaine et al. 2008; Singh et al. 2021; Stark et al. 2015).

Nano-sized materials have shown their benefit over their crude forms and have their place in the
formulations of products. There are now recorded formulations containing one or more
nanomaterials in many cosmetic products, pharmaceuticals, paints, and pigments, etc. For

example, nano-sized titanium dioxide (TiO;) is used in biocatalytic processes and cosmetics
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(Ahmad et al. 2019a; Ahmad et al. 2013), and silver nanoparticles are used as bactericides and
make stain and odour-resistant clothing (Baker et al. 2005; Rajeshkumar et al. 2021).

Nanotoxicology can address all the health and environmental issues raised by nano-sized materials.
The physicochemical causes, exposure paths, biodistribution, molecular determinants,
genotoxicity, and regulatory aspects are incorporated into nanotoxicology (Arora et al. 2012; Goel
et al. 2021). The toxicity of nanomaterials depends on the fundamental association of the materials'
physicochemical assets with the molecular components of an organism's cellular pathways.
Nanoscale materials can negatively affect human health despite having more innovative and
distinctive physicochemical features than bulk materials. Nanomaterials are highly reactive and
may be harmful when interacting with biological systems and the environment because of quantum
size effects and enormous surface area to volume ratio (Ganguly et al. 2018; Sahu & Hayes 2017).
Studies on animals and humans have revealed that NP§ do not stay in one place after being inhaled
Describe it when written for the first time.
or consumed; instead, they spread to several organs, including the liver, heart, spleen, brain, lungs,

and gastrointestinal system, leading to adverse health effects (Bahadar et al. 2016; Takenaka et al.

2001).

This review aimed to get deeper insights into the toxicity profiling of nanomaterials and their
consequential impacts on human health. It outlines the different classes of nanomaterials and their
physiochemical properties responsible for toxicity. It discusses some commonly used
nanoparticles and their associated adverse effects. It also discusses the possible routes of exposure
to humans and animals (respiratory tract, skin, and gastrointestinal tract) and its biodistribution.
Furthermore, it discusses the detailed toxicological perspective with genotoxicity,
immunotoxicity, oxidative stress, and inflammation as a mechanism of cellular toxicity. The
discussion desk also discusses an entire section on the methods for assessing the toxicity of
nanomaterials. Importantly, the present review summarizes the overall concept behind the
toxicology of nano-sized materials and includes the advancements in nanotoxicology research and

methods during the past two decades.

The rationale of the study
Check the font size from line 120 to 133.

The growing usage of nano-sized materials in various sectors and applications drove this study on

nanotoxicology and its effects on human health. Although nanoparticles have many advantages, there are
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concerns about their possible negative impacts on human health and the environment. In order to ensure
the safe and responsible use of these materials, it is necessary to recognize the potential hazards involved.
By studying biodistribution, genotoxicity, molecular drivers, and regulatory factors, the present study seeks
to offer more understanding of nanomaterials’ toxicity profile. Researchers can comprehend the underlying
processes of toxicity and possible detrimental impacts on human health and the environment by researching
the physicochemical features of nanomaterials and their effects on cellular pathways. Nanotoxicology
investigates the toxicity of nanomaterials and their interactions with biological systems to address these

1ssues.

As nanotechnology develops, regulatory considerations are also crucial. Establishing suitable regulations
and standards for the responsible management and application of nanomaterials is essential. This study can
direct the safe and responsible development and implementation of nanotechnology by thoroughly
evaluating the toxicity of nanomaterials and including regulatory issues. It is intended to fill the gaps in
concepts and understanding of nanotoxicology for students and researchers and provides up-to-
date information covering nanoparticles' toxicological aspects, which will eventually be beneficial
to evaluating the hazards and risks of nanomaterials and developing sustainable and safe

nanotechnology.
24 Again, check the font size.

Overall, this study advances the science of nanotoxicology by shedding important light on the possible
health risks of nanomaterials. This study provides decision-making information and aids in risk mitigation
by knowing their toxicity and taking regulatory considerations, offering the safe application of

nanotechnology for the benefit of human health and the environment.

Search Methodology: | believe that ‘nanotoxicity’ would be the proper expression, as
nanotoxicology is the study area.

This study used a survey and search approach to look at the effects of fianotoxicology on human health.

The subsequent actions were taken:

Review of the literature: Using particular keywords relating to nanotoxicology, nanomaterials, toxicity
profiling, human health, and environmental consequences, relevant scientific literature was carefully
examined from databases including PubMed, Scopus, and Web of Science. Articles were chosen based on
predefined criteria, which included an emphasis on molecular components, cellular routes, physicochemical

reasons, exposure pathways, biodistribution, genotoxicity, and regulatory issues.

Extraction of key data from chosen papers on the physicochemical characteristics of nanomaterials,

experimental procedures, toxicity assessment methods, molecular determinants, and regulatory issues.
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Data were thematically analyzed in order to spot patterns, trends, and knowledge gaps in nanotoxicology.

A thorough grasp of the subject was provided by the synthesis of the findings.

Interpretation and Conclusion: The data were analyzed to reach relevant findings, respond to study-related
questions, and obtain a better understanding of the toxicity of nanomaterials and their effects on human
health. Thissstudyrusedrarsurveyrandisearchitechniquertoracquirerpertinentidata; pinpoint knowledge gaps,

and present a thorough analysis of nanotoxicology and its consequences for human health.

This information was already mentioned before, then | suggest the revision of

2. Classes of Nanomaterials this part, keeping it related mainly with the conclusion section.

For each subsection of classification, a review study could be cited. Then, if the
reader desires to go deep into this knowledge, it could be consulted.
Nanomaterials can be classified based on size, morphology, state, and chemical composition
depending on their practical application. Generally, NMS are ranked based on their dimensionality,
Describe it when written for the first time.
morphology, state, and chemical content (Gleiter 2000; Saleh 2020). This classification is also

based on their size, which varies between 1-100 nm in at least one dimension.
The above paragraph must be rewritten because the information presented is redundant.

2.1. Classification of nanomaterials based on Dimensions, morphology and state

There are numerous structural, dimensional, morphological and compositional measures based on
which nanomaterials are classified, which provide unique properties to nanomaterials that affect
their fate and toxicity in the environment and, ultimately, human health (Pokropivny & Skorokhod

2007; Saleh 2020).

Based on shape and dimensions, nanomaterials are further distributed into four classes. Zero-
dimensional (0OD) nanomaterials have all their dimensions <100 nm. These include nanomaterials
shaped as cubes, spheres, polygons, nanorods, and hollow and nanomaterials existing as quantum
dots (QDs). One-dimensional nanomaterials have only one dimension on the nanoscale. Examples
of 1D nanomaterials are nanorods, nanotubes, nanofibers, nanowires, and metallics. Two-
dimensional nanomaterials have two dimensions in the nanoscale, including thin films, nanoplates,
and so on, which may be in single or double layers. 2D nanomaterials can exist in crystalline or
amorphous forms. 3D nanomaterials have more than two dimensions. Nanotubes, fullerenes,
honeycombs, and fibres are a few examples of 3D nanomaterials (Aversa et al. 2018; Pokropivny
& Skorokhod 2007; Shiau et al. 2018). Morphologically, nanoparticles can be distributed based on
their formation as flat spheres and the aspect ratio (High and low), including nano zigzags,

nanopillars, nanospheres, nanopyramids, etc. Another class of nanomaterials is centered on the
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states in which they can exist, such as suspension, colloid, or dispersed, e.g., magnetic

nanoparticles. Elements of nanomaterials are an essential factor in categorizing them (Saleh 2020).

2.2. Classification of Nanomaterials-based on the chemical composition

The largest category of Nanomaterials is based on chemical composition and constitutes
nanomaterials that are single constituents, composite, and inorganic and organic nanomaterials
(Saleh 2020). This class comprises nanomaterials like composites, carbonaceous, metallic,
metallic oxide, polymeric, etc., and fianomatetials (Pokropivny & Skorokhod 2007; Saleh 2020).
Four types of nanomTaQL:Sri\gfsrdciasltgzggcetsh3;%? tl;lgg(sle (r)%vi?:\lllvetrrr]leicsaﬁntce(?n%%osition: carbon-based
nanomaterials, inorganic-based nanomaterials, organic-based nanomaterials, and composite-based
nanomaterials (Majhi & Yadav 2021). Carbon is the core constituent of carbonaceous
nanomaterials, while metallic nanomaterials are differentiated based on the metals they are made
from. Carbon-based nanomaterials include graphene, fullerene, single-walled carbon nanotube,
multi-walled carbon nanotube, carbon fiber, activated carbon, and carbon black. The metals
forming metallic nanomaterials are usually Cu, Ag, Al, Zn, Fe, etc., thus having catalytic and
adsorptive properties (Kim & Lee 2018; Li et al. 2019; Vijayakumar et al. 2022). Through certain
processes like hydrothermal, doping or sol-gel reactions, metallic oxide nanoparticles (e.g., TiO,,
Fe,0; and Si0,) can be produced. This class of nanomaterials comes with additional applications,
like sensors, semiconductors, etc. (Saleh & Fadillah 2019). The organic-based nanomaterials are
formed from organic materials, excluding carbon materials, for
instance, dendrimers, cyclodextrin, liposomes, and micelle. Next, Bimetallic nanomaterials are a
combination of metals with different properties, such as Ag-Cu and Fe-Cu, which are further
classified based on their structure (Hao et al. 2020; Lozhkomoev et al. 2019; Saleh & Fadillah
2019). Other nanomaterials based on composition are branched dendrimers, ceramic
nanomaterials, nanogels, core-shell nanomaterials and polymeric nanomaterials (Saleh 2020). A
class of nanomaterials is designed for drug delivery known as Lipid-based nanomaterials (Garcia-
Pinel et al. 2019). These nanomaterials could target certain hydrophilic and hydrophobic molecules
in the human body and are relatively stable, less toxic, and specific, e.g., nanostructure lipid
carriers, solid lipid nanoparticles, and liposomes. Liposomes are mainly formed of cholesterol and
phospholipid compounds (Garcia-Pinel et al. 2019; Zhong & Zhang 2019). Nanomaterials also

occur as Quantum dots and can absorb UV light, and white light and reemitting them at certain
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wavelengths. Hence, quantum dots come up with exclusive optical properties and electronic ones

(Alavi et al. 2021).

3. Physico-chemical properties of nanomaterials responsible for toxicity

Studying nanomaterials from the physicochemical angle is essential for understanding the toxic
effect. Properties such as particle shape, size, composition, stability, structural dimensions,
concentration, nanoparticle morphology, and surface properties (area, roughness, energy, charge),
including functional groups, are responsible for the interaction between the nanoparticle and the
target molecule or cell (Chandra et al. 2013). These interactions also determine the entry of
nanoparticles inside the cellular pathways, their translocation, exposure and further interactions
with the molecules and entities inside the cell. Such interactions can be exemplified as
hydrophobic, electrostatic, steric, solvent, and biological interactions. There is various mechanism
of nanoparticles toxicity by catalytic activity and cellular dysfunction like the release of more
reactive ionic form from nanoparticle surface, ROS generation, lipid peroxidation, protein
denaturation, inflammation, endothelial dysfunction, mitochondrial perturbation, phagocytic
function impairment and altered cell cycle regulation (Gupta & Xie 2018). In Vli:’\llgasstell,d|x.(:0ndu(:ted
by Zhang et al. demonstrates size-dependent nanoparticle toxicity, indicating that 10 nm and 60
nm PEG-coated gold nanoparticles increased alanine transaminase and aspartate transaminase
levels resulting in liver injury (Zhang et al. 2011). In an in vitro experiment conducted by Ng at
al., MRCS5 lung cells treated with ZnO NP-treated released a substantial amount of extracellular
lactate dehydrogenase and had lower cell viability, indicating cellular damage and cytotoxicity

(Ngetal. 2017).

3.1.  Effects of physicochemical properties of nanomaterials on a cellular level

All the properties mentioned above are responsible for the toxicity displayed by nanomaterials in
particular ways, like increased cellular uptake (endocytosis), receptor stimulation, oxidation, ionic
species generation-related toxicity, mutagenesis, ROS generation, affected metabolic activity, and
so on. Several research studies using different types of cells have been conducted to examine
nanotoxicity generated due to the physicochemical properties of nanoparticles and engineered

nanomaterials. One such study reported the toxic effect of graphene family nanomaterials on
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238 ocular cells and the possible risk of applying graphene family nanomaterials in biomedical
239 (Borandeh et al. 2021). Numerous studies currently state the possibility of the application of
240 graphene family nanomaterials in ocular drugs, contact lenses, and ocular drug delivery due to
241 their large n-conjugated aromatic structure and specific surface area. For example, graphene oxide
242  and reduced graphene oxide are analogs of graphene family nanomaterial and affect cell viability
243  (Borandeh et al. 2021; Ge et al. 2018; Oliveira et al. 2022). Graphene oxide nanoplates with 11
244 nm dimensions can enter the human mesenchymal stem cell nucleus more quickly and cause
245  genotoxicity than a graphene oxide nanoplate with af3 w dimension. Also, nanoplates higher in
246  concentration can cause more toxicity than thoF;IeeaaSte’lcf)l\)z(v' pcrcr)wr.lcentrattions, as stated in studies

247 (Borandeh et al. 2021; Ge et al. 2018; Oliveira et al. 2022). Reduced graphene oxide nanoplates of

248 micron size were highly toxic at a high concentration of 100 pg/ml.

249 In contrast, the smaller-sized reactive graphene oxide nanoplate (11 nm), at a concentration as low
250 as 0.1-1 pg/ml, caused genotoxicity on translocation to the nucleus (Akhavan et al. 2012). The
251 shape of the nanomaterial is another nanotoxicity-determining factor in living cells. In another
252  study about the effect and mechanism of nanotoxicity, it was concluded that there was growth
253 inhibition and apoptosis in primary rat osteoblasts by hydroxyapatite nanoparticles which are
254 needle-shaped and short. At the same time, this was less likely in the case of nanoparticles, having
255  spherical, long rod shapes (Jain & Patel 2021; Xue et al. 2012). The chemical composition of
256 nanomaterials is also a nanotoxicity causal factor. Particle dissolution, for example, can generate
257  toxicity imparting ionic species. Nanotoxicity of nanoparticles like CuO, CdO and TiO, was found
258 to cause DNA damage, which was high in the case of CuO but comparatively lower in TiQ and
Please, fix to O2.
259 CdO (Franklin et al. 2007; Zhu et al. 2013). Table 1 depicts few examples of nanomaterials' size,

260 shape, and concentration-dependent toxicity in mammalian cells.
261 3.2.  Effects of physicochemical properties of nanomaterials on the environment

262 The properties of nanomaterials that are accountable for nanotoxicity among living cells are the
263 source of nanotoxicity in the environment. These factors can affect microorganisms, plants, soil
264 quality, water quality, quality of air, crop production, pollution levels, and aquatic life. To simplify
265  this physical and chemical effect, it should be first understood that when nanomaterials encounter

266 water, atmosphere or soil, a corona forms on their outer surface. Thus, the nanomaterials interact
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267 with their corona and molecules present on the cell wall and membrane (Docter et al. 2015;
268 Foroozandeh & Aziz 2015; Judrez-Maldonado et al. 2021; Nel et al. 2009). Consequently,
269 conditional to the corona composition, nanomaterials with the same physical and chemical
270 properties and the same corona composition but variable properties will unlikely affect a cell or
271 microorganism. Table 2 presents a few examples of nanomaterials and their physicochemical
272 properties affecting mammalian cells and their associated mechanism. Although it hasn't been
273 understood how nanomaterials or nanoparticles produce toxicity in flora and microorganisms,
274  reactive oxygen species (ROS) generation can stimulate specific defence mechanisms in cells or
275 microorganisms that can lead to cell death (Smerkova et al. 2020; Zhao et al. 2020). However,
276 ROS generation is not the only mechanism that can cause cytotoxicity, and antimicrobial molecule
277 Reactive nitrogen species (RNS) generation enabled by nanomaterials can also cause extreme
278 levels of cellular stress that can lead to toxicity (Balazova et al. 2020; Juarez-Maldonado et al.
279 2021; Wang et al. 2020b; Zhao et al. 2020). Several nanoparticles are known for inducing
280 cytotoxicity and inhibition in soil microorganisms by acting as potent antimicrobial agents, and
281 cytotoxicity depends on the concentration of nanomaterials to which the microbe is imperilled
282 (Abdulla et al. 2021; Kumari et al. 2014). A higher concentration of nanomaterials has been
283 reported to cause DNA damage, lipid peroxidation, ROS generation, ion release, ATP depletion
284 and cell damage in soil microflora which is directly associated with reduced nitrification, growth
285 inhibition, enzyme activity decrease and alterations in microbial structure. Toxicity of
286 nanomaterials towards microorganisms also depends upon the type and nature of the nanomaterial,
287 e.g., nanoparticles metallic in nature such as ZnO, CuO, Ag, CeO, or Fe;0,4 nanoparticles could
288 amend the composition of soil microflora (McKee & Filser 2016), but some nanoparticles like
289 carbon nanoparticles are known to be more toxic to microbes in soil (Chen et al. 2019).
290 Nanomaterials have a variable effect on distinct microorganisms depending on their concentration,
291 size or parent material. In a research study based on the effect of a few engineered nanomaterials
292  on two different organisms, it was deduced that the growth inhibition of both microbes varied
293  when subjected to unrelated nanomaterials with different concentrations. Nanomaterials such as
294 7ZnO (4 mg L), In,0;, y-Al,O5 and TiO, inhibited the growth in Skeletonoma Costatumin up to

295  100% (with ZnO). Please, pay attention to scientific name and follow the
recommendation of use italic font.
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In comparison, in the case of nanomaterials like a-Al,03; and SnO, (1280 mg L!) inhibition did
not occur fully, being 35% in the case of a-Al,0; and 24% with SnO, (Wong et al. 2020). As a
matter of size, shape, material, and coating, it has been described that increased concentration of
nanomaterials to a certain level at which it becomes toxic and bio-stimulatory activity starts
decreasing (Agathokleous et al. 2019). Similarly, nanomaterials bigger in size have less effect on

cells (Ball 2017; Klaine et al. 2008).

4. Commonly used nanomaterial and their adverse health effects
Please, fix the redundancy.

Nanotechnology, the study of creating particles with sizes on the fianoscalerscale, is a fast

developing field of study. NPs (with a diameter of 100 nm or less) are found in the air and in some
) This should be explained earlier. Please, revise. ) )

workplaces, exposing humans to them. Nanoparticlesi(INPs) can be either naturally occurring (like

dust, dieselrexhaust, and welding fumes) or artificially produced (like titanium dioxide, carbon

Is this a natural source of NPs?

black, carbon nanotubes, silver, zinc, and copper oxide) (Buzea et al. 2007). Engineered
nanomaterials have exceptionally large surface areas and high percentages of their component
atoms on the surface because they have at least one dimension smaller than 100 nm. Many
nanoparticles acquire exceptional reactivity as a result, which opens up new avenues for their
application in electronics, medicine, environmental cleanup, catalysis, and consumer goods.
Concern regarding the possible hazardous effects of nanoparticles due to their usage or inadvertent
release into the environment has grown in tandem with the growing interest in the advantages they

may provide (Dreher 2004; Moore 2006; Nowack & Bucheli 2007).

4.1. Toxicity of metal-based nanoparticles

The elements gold, silver, copper, nickel, cobalt, zinc, and titanium dioxide have all been used to
create nanoparticles. A significant portion of the expanding nanotechnology business is made up
of metal and metal oxide nanoparticles. The use of metallic nanoparticles is rising, and with that

comes the risk that these particles will be released into the environment.

As well as being utilized as a bactericide, silver nanoparticles have found use in the production of

stain- and odor-resistant textiles, sensors, inks, and catalysts (Baker et al. 2005). Antimicrobial
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products using silver nanoparticles are becoming increasingly popular in the Western Hemisphere.
More and more research points to silver nanoparticles' extreme toxicity to mammalian cells
(Braydich-Stolle et al. 2005; Gopinath et al. 2008). Brain, liver, and stem cells are all vulnerable
to the toxicity of silver nanoparticles (Braydich-Stolle et al. 2005; Panyala et al. 2008). Bactericidal
treatments made with nano copper are increasingly popular (Cioffi et al. 2005). Coatings and
sealants with these additives have better thermal and electrical conductivity and may be used to
filter air and liquids and can be applied to integrated circuits and batteries. Several aquatic species,
including zebrafish, have had it shown that copper and silver nanoparticles are extremely
hazardous to them (Griffitt et al. 2008). TiO, nanoparticles are one type of manmade nanoparticle
with widespread application in food colorings, sunscreens, and cosmetics. Because of their great
stability, anti-corrosion, and photocatalytic capabilities, titanium dioxide nanoparticles (TiO,-
NPs) were mass-produced and employed extensively. It is one of the most extensively utilized
nanomaterials and has lately found use in several agricultural industries. Emerging data suggest
that TiO, nanoparticles can cause inflammatory and genotoxic reactions in various animal and
human cell lines (Reeves et al. 2008; Xu et al. 2009). Damage to DNA is caused by the high levels
of hydroxyl free radical produced by TiO, nanoparticles (Reeves et al. 2008; Zhu et al. 2008).

4.2. Toxicity of Carbon-based nanoparticles

Carbon is one of the components noticed earlier and is readily available. Diamond, graphite,
amorphous carbon, carbon nanotubes (CNTs), graphene, and fullerenes compose the allotropes.
Due to their special physicochemical and electro-mechanical properties and biological
compatibility? But, they al-srg isp%e;rswéesr;c%;snlggﬁe i:nfftgcispacz?lg@ﬁ)qbgical processes and cellular
compartments. Koike and Kobayashi, 2006 investigated carbon-based nanoparticles' chemical and
biological oxidative effects (CBNP) and found that CBNPs with smaller sizes have greater
oxidative potential than larger alveolar epithelial cells (Koike & Kobayashi 2006). In general,
nanomaterials exist in various forms and structures such as particles, tubes, fibers, spheres, points,
cubes, truncated triangles, wires, and films that influence nanoparticle (NP) kinetics and
transportation in the environment (Gonzalez-Munoz et al. 2015; Madannejad et al. 2019; Walters
et al. 2016). Srikanth et al., 2015 assayed the cytotoxicity of four types of carbon nanomaterial

(carbon nanowire, carbon nanotube, graphene, and fullerene) on L929 mouse fibroblast cancerous

cells and found that graphene was the most toxic substance with average toxicity of 52.24%
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followed by CNTs, fullerene, and CNW, based on morphology, concentration, and duration of
exposure. Srikanth et al., 2015, data indicate that toxicity variations are related to different
structural arrangements and aspect ratios (Srikanth et al. 2015). In another study, observe the role
of surface area in oxidative and DNA damage potential of carbon-based (CB) nanomaterial. They
found that CB with smaller and larger surface areas demonstrate higher potencies for oxidative
stress and DNA damage in rats (Almaimani 2021; Chuang et al. 2015). Carbon nanotubes (CNTs)
have drawn much scientific interest and possible applications due to their specific physical,
biological, electrical and mechanical properties. As the production and application of CNTs on a
wide-scale increase, the general public is more likely to be directly or indirectly exposed to CNTs,
prompting substantial attention to human health and safety concerns related to CNTs. Several
significant factors, such as impurities, amorphous carbon, surface charge, form, volume,
aggregation, and layer numbers, explain the differences in the experimental results of nontoxicity.
The in vivo actions and fate of CNTs can also be affected by exposure paths, including inhalation,
intravenous injection, or dermal or oral exposure. Oxidative stress, inflammatory reactions,
malignant transformation, DNA damage and mutation (errors in chromosome number and mitotic
spindle disruption), the development of granulomas, and interstitial fibrosis are the underlying
mechanisms of CNT toxicity. These results provide valuable insights into the de novo nature and

safe application and risk assessment of carbon nanotubes for human health (Liu et al. 2013).
5. Routes of exposure of the nanoparticle

The human body is a complex structure of several organs, such as the heart, liver, lung, kidney,
etc. Any damage (cellular, biochemical, or molecular level) can disrupt the entire system and lead
to various pathological conditions. A drug has to penetrate the body through certain routes to cause
specific harm or general toxicity. These are referred to as exposure ¢hanniels, which involve the
‘Route’ is a better term.
skin (dermal exposure), gastrointestinal (oral exposure), and lung (inhalation exposure) exposure
(De Matteis 2017). Oral exposure is the most prevalent natural route of exposure to a significant
range of toxicants, including nanoparticles. However, any material with a lipophilic nature is more
likely to penetrate the body or systemic circulation when it comes into contact with the skin. In
this scenario, inhalation is the most sensitive route of exposure, and the skin is the least sensitive.
Exposure to nanomaterials in food or the atmosphere via either of the above routes. In addition to

This sentence is loose in the para?racPh., ) . . .
these exposure pathways, numerous clinical pathways of administration for various therapies are
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383 also in operation (Romeyke & Stummer 2012). These include administration using a syringe
384 through an intravenous (IV), intraperitoneal (IP), subcutaneous (SC), intradermal (ID),
385 transdermal (TD), intramuscular (IM), etc. These pathways are primarily used for therapeutic

386 administration during treatment.
387 5.1. Gastrointestinal tract

388 Nanoparticles are gradually making their place in the formulations of consumer goods. Food, via
389 the gastrointestinal tract, is a significant source of nanoparticle exposure. Flavour enhancers, food
390 pigments and supplementations can be part of the range of nanomaterials. As a source of oral
391 exposure to nanomaterials, some non-edibles can also work. They can shed the nanomaterials used
392 in their development. These products may include toothbrushes, baby bottles, pacifiers, containers
393 for processed or unprocessed food items, and containers for processed or unprocessed food items
394 (Bergin & Witzmann 2013). Possible exposures ‘[0]c rrcl)arlrr]lomaterials include consuming marine food
395 (fish or shellfish) with accumulated nanomaterials for toxic waste ingestion or absorption (Ahmad
396 et al. 2019b; Gaiser et al. 2012; Toussaint et al. 2019; Wang et al. 2020a). Researchers have
397 proposed that the absorption mechanism of nanoparticles is possibly endocytosis in the

398 gastrointestinal tract (Frohlich & Roblegg 2012). In contrast to larger counterparts, nanoparticles

399 of comparatively smaller sizes are more readily absorbed.

400 Silver nanoparticles, gold nanoparticles, titanium dioxide (TiO,) nanoparticles, copper
401 nanoparticles, silicon dioxide (SiO;) nanoparticles, quantum dots, carbon-based nanoparticles
402 (multi- or single-walled carbon nanotubes) and polymer/dendrimer nanoparticles (Bergin &

403 Witzmann 2013) are the materials recorded to exhibit their toxic effects after ingestion.
404 5.2. Skin

405 Skin serves as a physical barrier for all the xenobiotics and pathogenic microorganisms. It can
406 prevent the entry of microorganisms and hydrophilic substances. Skin remains in direct contact
407 with the environment but provides less interaction with the toxic components present in the
408 ambience. It works more as a physical barrier; it has a small surface area (1.73 m?, an adult human's
This sentence should be better explained and directly completed by the following sentence.
409 raverage body surfacerarea): It has less blood supply and an upper layer of dead cells as a physical

410 obstruction for most hydrophilic xenobiotics. Lipophilic substances (<600 Dalton [Da]) can easily
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cross the skin passively and enter systemic circulation (Barry 2001; Coates et al. 2019). There are
several reports which dealt with the skin penetration of the nanoparticles. Still, they show
discrepancies in results likely related to differences in techniques and methods, laboratory
conditions, and the absence of standardized evaluation protocols (Crosera et al. 2009; Ghasemiyeh

& Mohammadi-Samani 2020).

In most cases, skin exposure to nanoparticles occurs through cosmetics. Various personal care
products contain nano-sized components in the form of nano-emulsions and microscopic vesicles.
The issue of dermal penetration is highlighted by applying TiO, and ZnO nanoparticles to cosmetic
products. Sunscreens contain insoluble titanium dioxide (TiO,) or zinc oxide (ZnO) nanoparticles,
which are efficient filters of ultraviolet (UV) light (Geppert et al. 2020; Lu et al. 2015; Mohammed
et al. 2019). Several in vivo toxicity studies, including in vivo intravenous studies, showed that
Ti0, and ZnO nanoparticles are non-toxic and have excellent skin tolerance (Nohynek & Dufour
2012). But, this may not be the case with other nanoparticles with potential applications in
cosmetics. Nohynek and Dufour, in their review, concluded that the nanoparticles in skin care
products or sunscreens pose no or negligible threats to humans in terms of toxicity. Factors that
may affect the absorption of any agent include (i) skin integrity and regional variation, (ii)
dimensions of orifices, aqueous pores, and lipidic fluid paths, and (iii) density of appendages

(Baroli 2010).

5.3. Respiratory tract

Because of its importance for survival and exposure to a toxicant, inhalation deserves special
attention. Chimney smoke, car fumes, cigarette smoke, forest fire smoke, and other harmful
inhalants are inescapable in today's world. Inhalation exposure is more significant in
environmental interactions. The lung and the skin both serve as interfaces between the body and
its external environment, but their anatomical and physiological structures and functions are
distinct. The physiology of the lungs is sensitive to even little variations in air composition. Toxic
substances in the air are taken into the lungs along with the breath. Lung toxicities are very
common due to the direct interaction of lung alveolar epithelium with inhaled toxicants. The
sensitivity of the lung toward a variety of airborne toxic agents, including carcinogens, leads to a

brisk inflammatory response (Wong et al. 2016).
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The number and exposure of nanomaterials are rapidly increasing in the present environment. Most
of them can cause damage to the lung. Airborne toxicants, including nanoparticles, are significant
concerns regarding human health. Many reports are available regarding the toxicological effects
of nanoparticles after inhalation (Bierkandt et al. 2018). More specifically, several effects of
inhaled nanoparticles are attributed to their (i) direct effects on the central nervous system, (ii)
their translocation from the lung into the bloodstream, and (iii) their capacity to invoke

inflammatory responses in the lung with subsequent systemic effects (Borm & Kreyling 2004).

The nano-sized particles which can be inhaled and pose a serious threat to human health include
suspended particulate matter (SPM), combustion-derived nanoparticles (CDNP), asbestos fibres
and silicon nanoparticles (Borm et al. 2006). CDNPs are generated in some scenarios, including
internal combustion engines, large-scale coal burning for power generation, and industrial
processes where they often could be produced along with larger particles. CDNPs may include
diesel exhaust particulates, welding fumes, nanoparticulated carbon black, and coal fly ash. These
all cause oxidative stress and lung inflammation after inhalation (Donaldson et al. 2005).
Asbestosis results from inhalation exposure to nano-sized asbestos fibers, resulting in
mesothelioma (cancer of the pleural lining of the lung), lung cancer, and laryngeal cancer
(Offermans et al. 2014; Ross 2014). Most lung ailments are associated with acute or chronic
inflammation. The main reason behind the sensitivity of the lung lies in its anatomy, which is
constituted by a large number of alveoli, increasing its surface area up to 75 m?, and a large number
of vasculature. High blood flow in the lungs makes it more vulnerable to inflammatory responses
and the primary organ responsible for most nanoparticle-related toxicities. Chronic obstructive
pulmonary disease (COPD), an accumulation of emphysema, bronchitis, and fibrosis, is primarily
a chronic inflammatory disease. Other examples of lung inflammatory ailments include
bronchiolitis, asthma, acute inflammation after toxic exposure, pneumonitis, etc. Most of the lung
cancer cases are also associated with chronic lung inflammation-related episodes. It has been found
that COPD and lung cancer positively correlate in most cases. Such an episode's exposure to any
nano-sized particle may impose similar or more serious consequences. Several studies have
indicated that nanoparticles react aggressively when exposed to biological systems due to their

physic-chemical properties being different from their normal forms (Cheng et al. 2013).
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6. Biodistribution

Due to their physicochemical properties, which are different from their crude counterparts, the
nanomaterials may have a different distribution pattern in a biological system. Several
pharmacokinetics studies provide a set of their distribution pattern, and the information is
efficiently applied in the nanomaterials' medical diagnostics, pharmacology, and toxicology
(Madru et al. 2013; Singh & Pai 2014). Studies indicate that the distribution of the nanoparticles
initially depends on the particle shape and size (Kreyling et al. 2014; Toy et al. 2014). The
dependence of the biodistribution of nanoparticles on their physical properties signifies the role of
the physicochemical nature of the nanomaterials in toxicological effects and the different
toxicological nature of the nanomaterials when compared with their crude forms (Duan & Li
2013). Reports also indicate the dependency of the biodistribution of nanoparticles on
phagocytosis. In a rat model, Li et al.,(2014 showed that the distribution of polyethylene glycol-
coated polyacrylamide nanoparticles across highly perfused organs depends on phagocytosis (Li
et al. 2014). In their study, various target organs include the spleen, liver, bone marrow, lungs,
heart, and kidneys. However, apart from phagocytosis, the nanoparticles also interact with the
plasma proteins as soon as they enter the physiological environment. According to their specific
functions, adsorbed proteins can be divided into opsonins and dysopsonins. Opsonins often induce
the rapid blood clearance of nanoparticles, while dysopsonins benefit prolonged blood circulation
(Gao & He 2014). Biodistribution can greatly be influenced by nanoparticle-protein interactions
(Baimanov et al. 2019; Ovais et al. 2020). Though biological tools like phagocytosis and plasma
proteins contribute to thephagmagekinetics of nanoparticles, the physicochemical properties of the
nanoparticles themselves and the way how they are modified for delivery into the system also
directly influence their distribution in the organ system (Ahmad et al. 2021; Patra et al. 2018). In
certain cases, polyethylene glycol (PEG) density and lipids on the nanoparticle surface, such as
Lipid-Calcium-Phosphate (LCP) nanoparticles, can influence the phasmaeekinetics and
biodistribution of the nanoparticle. Liu et al.(2014)reported that the delivery of LCP nanoparticles
to hepatocytes depends on the concentration of PEG and the surface lipids (Liu et al. 2014b). LCP
nanoparticles could be directed from hepatocytes to Kupffer cells by decreasing PEG
concentration on the particle surface. This study signifies the role of the physical characteristics of

the nanoparticles in their pha#maeekinetics and biodistribution. It boils down to that the
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biodistribution of nanoparticles is controlled by a complex array of interrelated, physicochemical
and biological factors of the nanoparticles. These factors should be taken into consideration while
planning a ph@gmasekinetics study of any nano-sized material. A schematic representation of the

toxic fate of nanoparticles is given in Fig. 1.

7. Mechanisms of toxicity of nanoparticles

Nanoparticle causes adverse health effect by different means. Some possible toxicity mechanisms
include oxidative stress, inflammation, genetic damage, and immune system dysfunction (Crisponi
et al. 2017; Manke et al. 2013; Nel et al. 2006). Lysosomes often target NP toxicity because most
pass into the cells by endocytosis. NPs produce lysosomal dysfunction by cytoskeleton disruption,

alkalization of the lysosomal lumen, or NP overload (Crisponi et al. 2017; Stern et al. 2012).

7.1. Genotoxicity

Like any other general chemical forms, nanomaterials have the very same potential to modulate
immune responses in an organism and the potential to alter the constitution of genetic material.
Several researchers have proposed disturbances in nucleic acid sequences or simple damage to the
DNA strands by nanoparticles (Akhtar et al. 2016; Ghosh et al. 2018; Ghosh et al. 2019;
Jeevanandam et al. 2018; Kumar & Dhawan 2013). The main mechanism of genotoxicity by
nanomaterials in in-vitro or in-vivo studies is oxidative damage, which is proposed to be the main
mechanism of most nanomaterials for their toxic potential (Akhtar et al. 2016; Dobrzynska et al.
2014; Kumar & Dhawan 2013; Powell et al. 2010; Xia et al. 2009). Reactive oxygen species and
other free radicals/oxidative species are very well known to cause DNA damage (Cooke et al.
2003; Kunwar & Priyadarsini 2011). Other mechanisms may include the direct interaction of
nanomaterials with DNA/RNA and the release of toxic ions. A range of nanoparticles is reported
or suggested to exhibit genotoxic potentials in in-vitro, in-vivo or in-silico studies (Kumar &
Dhawan 2013). The reported nanoparticles for their genotoxic potential include, but are not limited

to, nano-sized silver, titanium dioxide, nickel, copper oxide, carbon nanotubes etc.

7.2. Immunomodulation
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Activation of neutrophils is considered the central event in acute inflammation episodes (Dwivedi
et al. 2011; Rahman et al. 2011; Rahman et al. 2008). Gongalves et al. 2010 reported the in-vitro
activation of the human neutrophils by titanium dioxide (TiO,) nanoparticles. The same study also
demonstrated that TiO, markedly and rapidly induced tyrosine phosphorylation events, including
phosphorylation of two key enzymes significantly. The nanoparticles exhibit their immune-
modulatory properties. Because of their small size, nanoparticles can penetrate and accumulate
much deeper cellular and even sub-cellular boundaries, which can cause many undesirable and
uncharacterized effects. Nanoparticles may bind to serum proteins and act as haptens to induce an
immunological response, including activation of the complement system and disturbance in the
balance of the helper T cells. They may escape the phagocytic activity of macrophages. They may
discompose the adaptive or innate immunity leading to a hyper-activated immune state or even a
suppressed immune phenotype, p38 mitogen-activated protein kinase (MAPK) and extracellular
signal-regulated kinases-1/2 (Erk-1/2) (Goncalves et al. 2010). However, this in-vitro study
exhibits the influence of the TiO, nanoparticles on the molecular pathways involved in regulating
inflammation and other immunological events. The probabilities of such incidences can be
extrapolated to the in-vivo conditions. Different types of materials may have different effects on
the immune system. For instance, cobalt and nickel nanoparticles have inflammatory effects,
whereas hydroxyapatite crystals release TNF-a from macrophages, activating other phagocytes
(Dwivedi et al. 2009). A hyperactive immune state or even a suppressed immunophenotype may
result from nanoparticles that evade the phagocytic activity of macrophages, bind to serum proteins
and act as haptens, activate complement cascades, upset the Th1/Th2 balance, cause hemolysis or
thrombogenicity, or disrupt adaptive or innate immunity (Dwivedi et al. 2011). Certain NPs build
up in local lymph nodes, where dendritic cells can take them up and process them. They then
interact with self-proteins to change their antigenicity, which in turn causes altered immunological
reactions, including autoimmunity (Di Gioacchino et al. 2011; Dwivedi et al. 2009). Studies
conducted in vitro showed that NPs could direct the production of cytokines toward either Th1 (PL,
Pd, Ni, Co) or Th2 (Ti, mw, and sw Carbon) production patterns (Di Gioacchino et al. 2011).
Delogu et al. (Delogu et al. 2012) investigated the impact of functionalized CNTs on immune cells
and found strong activation of NK cells. Thus, considerable data suggest that NPs exert

immunotoxicity by affecting different effector cells of the immune system.
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7.3. Oxidative stress

Oxidative stress is caused either by an increase in the production of feactiveexygetrspeciestROS)
or depletion in the ability of cells to destroy ROS, or a combination of both. Several in vivo and in
vitro studies have pointed out that ROS generation and oxidative stress play an essential role in
NP-induced toxicity (Manke et al. 2013; Oberdorster et al. 2007; Shvedova et al. 2012). Federici
et al., 2007, found increased ROS generation in fainbowstrout by exposure to TiO, NPs in a
concentration-dependent manner (Federici et al. 2007). Nanoparticles induce oxidative stress in
several ways (Crisponi et al. 2017; Risom et al. 2005). It can be generated directly from the surface
of nanoparticles (Buzea et al. 2007; Risom et al. 2005). Transition metal (iron, copper, chromium,
vanadium, etc.) nanoparticles can generate reactive oxygen, acting as catalysts in Fenton-type
reactions (Risom et al. 2005). Nanoparticles may enter mitochondria (Crisponi et al. 2017; Li et
al. 2003) and alter their function, producing ROS. Activation of inflammatory cells, such as
alveolar macrophages and neutrophils, induced by phagocytosis of nanoparticles, can lead to the
generation of feactiveroxygenispecies and feactivermitrogenispecies (Buzea et al. 2007; Risom et
al. 2005). Oxidative sgggsthc%?rléggg%(?;eg&}iigﬂq%geatl))kl)l?s\/i?éiggémical reactivity of NP. It involves
mitochondrial dysfunction, depletion of antioxidant enzymes, lipid peroxidation of cellular
membranes, protein modification, and DNA damage associated with cell and tissue injury (Buzea
et al. 2007; Crisponi et al. 2017). NP-driven ROS generation also contributes to the activation of
cell signaling pathways, inflammatory cytokine and chemokine expressions, and specific
transcription factor activation, which may lead to pathological consequences (Crisponi et al. 2017;
Manke et al. 2013; Medina et al. 2007). A schematic representation of the toxic effects of

nanoparticles at the cellular level is given in Fig. 2.

7.4. Inflammation

ROS and inflammation demonstrate an interdependent relationship in the case of exposure to NP
(Manke et al. 2013). Inflammation is the typical response of the body to injury. When generated
in moderation, inflammation helps fight against infection and eliminate foreign invaders; however,
in excess and chronic conditions, it can lead to pathological conditions leading to the cause of
many diseases (Buzea et al. 2007; Donaldson & Stone 2003). Various in vitro and in vivo

experiments suggest that exposure to nanoparticles is associated with mild to severe forms of
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inflammation, depending upon the size and composition of the nanoparticle (Buzea et al. 2007;

Risom et al. 2005).

An intricate cascade of intracellular and extracellular processes regulates inflammation. Pro-
inflammatory mediators, also known as cytokines, are secreted in response to oxidative stress and
are largely responsible for the immune system's activation (Buzea et al. 2007; Long et al. 2004;
Rahman et al. 2015). Inflammation has also been demonstrated to directly cause toxicity and
increase cell death through the development of toxic by-products of inflammation such as ROS
and complement proteins and through receptor-induced necrosis (Khanna et al. 2015; Wallach et
al. 2014) (hannesetal=2015=Wallaeh=etal=2014) Increased production of pro-inflammatory
proteins IL-6, IL-8, and MCP-1, as well as activation of the JNK and p53 pathways, have been
linked to silica nanoparticle toxicity (Liu & Sun 2010). The PI3-K/Akt/mTOR signaling cascade
is vital for cell survival and proliferation because it controls the cell cycle. PI3-K signaling was
reported to promote the upregulation of Cox-2, iNOS, and pro-inflammatory cytokines (IL-6, IFN-
Y, TNF-a, IL-17, and regulatory cytokine IL-10) in macrophages with exposure to zinc oxide
nanoparticles (Khanna et al. 2015; Roy et al. 2014). hennectal=2045+Reyetal=2014). As a
result, there is evidence that NPs can have an inflammatory effect by activating many signaling

pathways and producing reactive oxygen species.

8. Methods for assessing the toxicity of nanomaterials

To assure a responsible and sustainable growth of nanotechnology, the health, and safety
associated issues of engineered nanomaterials and related products need to be addressed at a rate
commensurate with nanotechnology's expansion. The toxicity assessment of any nano-sized
material follows the same path as any other chemical. Both in-vitro and in-vivo approaches are
considered while assessing the safety of a nano material-related product. The related safety
concerns are also increasing with the emerging applications of nanotechnology in industries and
household products. Human health concerns for nanomaterials are established historically by
epidemiological and clinical studies on naturally occurring fibers and particles such as asbestos
and silica (Ahmad et al. 2014b; Alam et al. 2018; Ghosh et al. 2019; Hillegass et al. 2010;
Mohajerani et al. 2019). The nano-sized fibers of asbestos and silica enter the body through

inhalation and cause a range of ailments, including lung fibrosis and cancer.
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8.1. In vitro methods

In vitro model, which mainly includes cultured cells, provides a rapid and effective assessment of
some toxicological endpoints associated with nanomaterial exposure (Eskes et al. 2017; Natoli et
al. 2012). In-vitro assessments allow mechanism-based toxicity evaluations and provide precise
information on how nanoparticles interact with biological systems in many ways (Gupta & Xie
2018; Savage et al. 2019). In-vitro assays include (i) cell viability/cytotoxicity assay, mechanistic
estimations, (ii) microscopic analyses, (ii1) gene expression evaluation and (iv) genotoxicity

estimations etc.

Several assays have been mentioned to assess the effects of nanomaterials on cell viability or
cytotoxicity. The review of the in-vitro studies by Hillegas et al., 2010 recommends collecting
standard growth curve data to determine the baseline growth properties of selected cells (Hillegass
et al. 2010). Various in-vitro estimations are performed to estimate a chemical or agent (Including
nanomaterials). The assays include (i) trypan blue exclusion assay, (ii) microculture tetrazolium
assay (MTA), (iii) clonogenic assay or colony-forming efficiency (CFE), (iv) lactate
dehydrogenase (LDH) Assay, (v) TdTdUTP nick end labeling (TUNEL) and apostate assays.
However, several other assays can also be employed to estimate cytotoxicity (Balouiri et al. 2016).
Other in vitro nanotoxicity assays include the examination of lipid peroxidation to elucidate the
role played by oxidative stress and methods to investigate apoptosis, including cytochrome c

release from mitochondria and caspase activation (Hillegass et al. 2010).

In-vitro assays can also be exploited to estimate the nanomaterials' cytotoxicity and their probable
effect on cell proliferation (Leudjo Taka et al. 2021). For cellular proliferation estimation, the
assays which have been recommended include (i) DNA content estimation, (ii) Incorporation of
Bromodeoxyuridine (BrdU), (ii1) Ki-67 nuclear antigen estimation(iv)proliferating cell nuclear

antigen (PCNA).

The genotoxicity of the nanomaterials can be evaluated in both in-vitro and in-vivo systems.
Estimations in in-vitro are much simpler and easier when compared with the in-vivo systems. In-
vitro systems are less time-consuming, and one can get the results in a short period (Barabadi et

al. 2019; Elespuru et al. 2018). The in-vitro assays for genotoxicity include (i) Ames assay in
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Salmonella typhimurium, and Escherichia coli, (Pan 2021) (ii) oxidized guanine bases estimation,
(Cui et al. 2013) (iii) analysis of chromosomal aberration, (Clare 2012) (iv) micronuclei assay

(Doherty 2012) (v) single cell gel electrophoresis (comet) assay (Karlsson 2010).

8.2. In-vivo methods

Over the last decade, nanotoxicology methods have mostly relied on in vitro cell-based
estimations, which provide a good amount of information related to mechanistic approaches. Still,
they do not account for the complexity of in vivo systems concerning biodistribution, metabolism,
hematology, immunology, target organ, and neurological consequences. Compared to many
reports published about nanoparticles, only 3% are devoted to studying their critical biological

effects in-vivo (Greish et al. 2012; Hussain et al. 2020).

Various nanotoxicological studies incorporate the traditional in-vivo models for safety evaluation.
The models include zebrafish, Xenopus embryos, mice, rats, and sometimes a primate (Macaque)

(Yong et al. 2013).

Zebrafish (Danio rerio) is extensively used as an animal model for toxicological studies (Hill et
al. 2005; Sipes et al. 2011). The Zebrafish genome project has placed zebrafish in an attractive
position for use as a toxicological model. The zebrafish embryo is also a useful small model for
investigating vertebrate development because of its transparency, low cost, transgenic and
morpholino capabilities, conservation of cell signaling, and similarities with mammalian
developmental phenotypes (Sipes et al. 2011). The zebrafish has also been proposed and used as
an animal model in toxicological studies associated with nano-sized materials (Bohnsack et al.

2012; Fako & Furgeson 2009).

Mouse and rat models have been used in life science research for several decades. They are also
used for toxicological evaluations of industrial and environmental chemicals. The main reason for
the selection of mice as a model is its genomic similarity with humans, and it makes the primary
base for the wide use of mice in the life sciences, pharmacological and toxicological research; the
mouse as a mammalian model provides corresponding experimental conditions and analogous
results to humans, though with certain limitations. The use of animal models sometimes raises

certain ethical issues. However, it has been proved a successful animal model for preclinical
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research. Nanotoxicological studies have also adopted the mouse as a model for estimating the
toxic potential of nanomaterials (Bahadar et al. 2016; Ferreira et al. 2013; Lam et al. 2004). Rats
are also used for experimental purposes similarly (Devoy et al. 2020; Ferreira et al. 2013; Konoeda
et al. 2020; Mendonca et al. 2016; Warheit et al. 2004). Animal models are required to estimate
the absorption of material into the biological system, its distribution in the body, its fate after
metabolism and ultimately, modes of its elimination from the body (ADME studies). Absorption,
distribution, metabolism, excretion, pharmacokinetics (ADME/PK) and carcinogenic and
teratogenic studies are also required to evaluate nanomaterial toxicity (Greish et al. 2012; Raja et
al. 2017; Zielinska et al. 2020). While studying the toxicological effects of nanoparticles, one
should cautiously consider the physicochemical properties that include size, shape, surface area,
surface charge, charge density, chemical composition, the density of structure, presence of pores
and surface activating sites. These characteristics of nanomaterials may influence their

toxicological effects.

9. Conclusion and Future Prospects

In conclusion, as the application of nanomaterials has expanded many times in recent years, there
are increasing concerns regarding its potential adverse effect on human health and the
environment. Therefore, regulatory guidelines should emphasize the safer design of nanomaterials.
Also, extensive characterization of the physicochemical properties during the manufacturing of
nanoparticles for therapeutic and diagnostic purposes must be emphasized to prevent adverse
health effects. Proper storage, handling, and use of newly designed nanomaterials should be well-
researched and investigated before marketing. This will minimize occupational exposure and
environmental release of nanomaterials. Toxicologists are working to investigate the risks and
hazards of nanomaterials. Developing advanced and sensitive toxicological methods contributes
to a faster and more effective assessment of nanomaterials, toxicology in general, and safety
pharmacology. The physicochemical characteristics of anthropogenic and artificial NMs, such as
size, chemical content, crystal structure, surface morphology, surface charge and energy, and
aggregation state, may be closely related to their toxicity. Therefore, more environmentally
favorable and nontoxic NPs need to be developed. The circumstances of synthesis, processing,
chemical makeup, and doses are additional elements that influence the levels of risk. Therefore,

focused research on the interaction between physicochemical characteristics and the toxicity of
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nanoparticles needs to be developed. Additionally, in-silico methods should be explored for

nanotoxicology and systems biology approaches.
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Legend to Figure:

Fig. 1. Toxic interactions of nanoparticles in human and animal bodies.

Fig. 2. Toxicity of nanoparticles at the cellular level. A human is exposed to these nanoparticles
by different means, which enters into the cells by lysosomes mediated endocytosis, which results
in lysosome dysfunction and ROS generation. These ROS inside the cells causes lipid
peroxidation of the membrane, protein modification, mitochondrial dysfunction, and DNA

damage
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Toxicity of nanoparticles at the cellular level. A human is exposed to these nanoparticles by

different means, which enters into the cells by lysosomes mediated endocytosis, which

results in lysosome dysfunction and ROS generation. These ROS inside the cells causes lipid

peroxidation of the membrane, protein modification, mitochondrial dysfunction, and DNA
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Table 1. Nanomaterials and their toxicity on mammalian cells

mg/kg.

S. No. Nanoparticle Size/shape/concentration of Effect on mammalian cells References
Type/Nanomaterial Nanomaterial
1. Silver 20 pm Cytotoxic to murine macrophage cell line (Gatti 2004;
has been found in the colon and blood of Jain et al.
patients with colon cancer and blood 2011; Soto et
cancer, respectively al. 2005;
Takenaka et al.
2001)
2. Superparamagnetic Iron ~ Concentration >100 pg/ml Reportedly, impairs the functions of DNA,  (Brunner et al.
oxide nucleus and mitochondria and causes 2006; Nel et al.
inflammation 2006;
Oberdorster et
al. 2007; Singh
et al. 2010;
Sudhakar et al.
2021)
3. Zirconium dioxide 11 nm particle size Increases viral receptor expressions (Lucarelli et al.
2004)
4. Cadmium nanorod 30-50 nm diameter & 50- Genotoxicity, oxidative stress and DNA (Demir 2021;
1100 nm length, damage in Kunming mice Liu et al.
concentration 1000-10000 2014a)
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5. Cerium oxide Nanorods ~ Length >200 nm Progressive pro-inflammatory effect and (Jietal. 2012)
cytotoxicity in Human myeloid cell line
6. Hydroxyapatite (nano- Crystals, H-rod, H-needle, Decreased cell viability and consequent (Huang et al.
HAP) H-sphere, H-plate necrosis in rat aortic smooth muscle cells 2019)
7. Citrate capped gold 5nm Toxicity, increased Cytokine production in (Jia et al.
nanoparticle mouse fibroblast 2017)
8. Nickel Nanowire 33 nm diameter, 5.4 um Cytotoxicity and decreased cell viability in (Perez et al.
length, 5 pg/ml human colorectal carcinoma HCT 116 cells 2016)
9. Zinc oxide Nanoparticle ~ 4-20 nm diameter Low viability, ROS production, cytotoxicity  (Hanley et al.
in human immune cells (e.g., monocyte) 2009)
10. Titanium oxide 70 nm diameter, 50 pg/ml Inflammation, elevated IL-8 in human (Peters et al.

microvascular endothelial cells 2004)
3 and 600pg/ml Shrinking of cells, lower metabolic (Jin et al.
activity, releasing of LDH{ROS production 2008)

in mouse fibroblastl2929 Please, fix and add a space.
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11. Graphene oxide Upton 25ug/ml Effected antigen inhibition linked to (Seabra et al.
downregulated intracellular levels of 2014; Tkach et
immune proteasome al. 2013)
12. Mesoporous Silica 100 nm Membrane deformities and hemolysis in (Lin & Haynes
nanoparticle human red blood cells 2010)
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Physico-chemical properties of nanomaterial responsible for its cytotoxicity and
associated mechanism

Physico-chemical properties of nanomaterial responsible for its cytotoxicity and associated

mechanism
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Table 2: Physico-chemical properties of nanomaterial responsible for its cytotoxicity and associated mechanism.

S. Type of Source of nanomaterial Physico-chemical Mechanisms for Cytotoxic effect  References
No. Nanoparticle property

responsible for

cytotoxicity

1. Mesoporous Tetra ethyl orthosilicate ~ Size (~ 600 nm) severe local membrane distortion (Zhao et al.
silica dependent resulting in RBC spherocytosis, 2011)
nanoparticles cytotoxicity internalization of the particles, and
(MSNs) ultimately hemolysis.

2. Graphene oxide Oxidation of graphite concentration- Direct interactions between the cell (Huetal. 2011;
(GO) oxide dependent membrane and GO nanosheets that Zhu et al. 2020)
nanosheets cytotoxicity cause physical harm to the cell

membrane cause cytotoxicity due to
high absorption

3. Titanium Titanium dioxide Concentration (100  Tau-TiO, NP interaction is observed (Mao et al.
dioxide (TiO,) ug ml!) dependent  when neuroblastoma cells are 2015;
nanoparticles neurotoxicity exposed to the nanoparticles. Sukhanova et al.

Microtubules may become unstable 2018)
as a result of interactions between

TiO, and tau proteins, tubule
heterodimers, and microtubules,

which increases the neurotoxicity of

TiO, NPs

4. Iron oxide Iron oxide Citrate and Dextran ~ Highly reactive hydroxyl radicals (Puppi et al.
nanoparticles coating on the are produced by the Haber-Weiss 2011; Sadaf et
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(IONPs) surface of NP. reaction in cells (e.g., HUVECs). At al. 2020;
larger intracellular quantities of iron Sukhanova et al.
salts, the Fenton reaction 1is 2018; Wuetal.
detectable. The free radicals have 2010)
the potential to harm DNA, cell
membranes, the cytoskeleton, and
ECM. They can also directly or
indirectly mediate signal
transduction  pathways through
bioactive mediators

5. Au5S5 clusters Reduction of cuboctahedral Cytotoxicity(necrosis) brought on  (Schmid 2008;
(triphenylphosphine)gold structure and 1.4nm by the remarkably strong interaction ~ Schmid et al.
chloride with diborane size of the 1.4 nm particles with the main 2008)
followed by grooves of DNA
incorporation into SBA-
15 silica mesopores

6. Cadmium 1-thioglycerol, L- Chemical CdTe-QDs alter the potential of the (Belyaeva et al.

telluride cysteine, thioglycolic compostion- mitochondrial ~ membrane  via 2012; Nguyen et
quantum dot acid and Cd** presence of increasing  Ca?"  levels. The al. 2015)
NPs cadmium and cadmium component of the NPs
tellurium causes CdTe-QDs' impact on Ca2+.
Increased intracellular Ca2+ has
been linked to cadmium-induced
apoptosis
7. Polystyrene n-pentanol, sodium Surface charge Positively charged nanoparticles (Liu et al. 2011;
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NPs dodecyl sulphate,
ammonium persulfate,

(NPs) more efficiently cross the
membrane, but also because they are
more tightly linked to the negatively
charged DNA, damaging it and
lengthening the GO/G1 phase of the
cell cycle as a result

Sukhanova et al.
2018)

Shell  enhances  durability and
guards NP against desalination and
oxidative or photolytic
deterioration. As a result, the
toxicity of NP is reduced. Due to the
wide range of modifiers, altering the
NP characteristics as well as their
particular transport and
accumulation is possible that can
increase or decrease the toxicity

(Huang et al.
2013)

ZnO NPs generate an increase in
cytoplasmic and mitochondrial Zn**
levels, which can ultimately result in
mitochondrial damage and apoptosis
in cells

(Soenen et al.
2015)

8. Casein-coated Casein, iron chloride NP Shell
iron oxide tetrahydrate, and iron
nanoparticles chloride hexahydrate
9. Zinc oxide NP Zinc salts 7Zn*" ions
10. Gold NP Au'! or Au?* Plasmonic
properties

The cytotoxicity is caused by the
ionic interactions of the Au-NPs
with the plasma membrane. Genes
including those connected to the cell
cycle, particularly those engaged in
the G1 phase and those involved in

(Lee et al. 2019)
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the nucleic metabolic process, are
down-regulated

11.

Polystyrene
latex NP

Styrene, sodium Surface

hydrogen carbonate and  modification and

potassium persulfate particle size (50 nm
and 100 nm)

On cell membranes, there have been
reports of significant damage and
holes that have not been seen with
other kinds of NPs. Along with
enhanced CXCLS8 production, this
also induces apoptotic (caspase-3/7
and caspase-9) cell death (IL-8) and
cell detachment

(Ruenraroengsak
et al. 2012)
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