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ABSTRACT
In recent years, advances in nanotechnology have significantly influenced electronics
manufacturing, industrial processes, and medical research. Various industries have
seen a surge in the use of nanomaterials. However, several researchers have raised the
alarm about the toxicological nature of nanomaterials, which appear to be quite
different from their crude forms. This altered nature can be attributed to their unique
physicochemical profile. They can adversely affect human health and the
environment. Nanomaterials that have been released into the environment tend to
accumulate over time and can cause a significant impact on the ecosystem and
organisms with adverse health effects. Increased use of nanoparticles has led to
increased human exposure in their daily lives, making them more vulnerable to
nanoparticle toxicity. Because of their small size, nanomaterials can readily cross
biological membranes and enter cells, tissues, and organs. Therefore, the effect of
nanomaterials on the human environment is of particular concern. The toxicological
effects of nanomaterials and their mechanisms of action are being researched
worldwide. Technological advances also support monitoring new nanomaterials
marketed for industrial and household purposes. It is a challenging area because of
the exceptional physicochemical properties of nanomaterials. This updated review
focuses on the diverse toxicological perspective of nanomaterials. We have discussed
the use of different types of nanoparticles and their physiochemical properties
responsible for toxicity, routes of exposure, bio-distribution, and mechanism of
toxicity. The review also includes various in vivo and in vitromethods of assessing the
toxicity of nanomaterials. Finally, this review will provide a detailed insight into nano

How to cite this article Qamar W, Gulia S, Athar M, Ahmad R, Imam MT, Chandra P, Singh BP, Haque R, Hassan MI, Rahman S. 2024.
An insight into impact of nanomaterials toxicity on human health. PeerJ 12:e17807 DOI 10.7717/peerj.17807

Submitted 12 June 2023
Accepted 3 July 2024
Published 30 September 2024

Corresponding author
Shakilur Rahman,
rshakilur25@gmail.com

Academic editor
Sonia Oliveira

Additional Information and
Declarations can be found on
page 26

DOI 10.7717/peerj.17807

Copyright
2024 Qamar et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.17807
mailto:rshakilur25@�gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.17807
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


material-induced toxicological response, which can be beneficial in designing safe
and effective nanoparticles.

Subjects Biochemistry, Toxicology, Environmental Contamination and Remediation,
Environmental Impacts
Keywords Nanotoxicology, Nanomaterials, Toxicology, Human health, Environmental health

INTRODUCTION
Toxicology is a multidimensional science branch involving the interaction of biological
organisms, chemicals, and other agents to detect possible hazards (Krewski et al., 2020).
The toxicity or toxic insult can be defined as any adverse biological effects of a product,
irrespective of its origin. Many chemicals have been studied, and their toxicity and impact
mechanisms have been published over several decades (Carlin et al., 2015; Genuis &
Kyrillos, 2017; Jaishankar et al., 2014; Lanphear, 2017). Several studies have documented
toxic events caused by nanomaterials over the past decade (Barabadi et al., 2019; Chen
et al., 2020; Ferdous & Nemmar, 2020). If we accept the declaration of the father of
toxicology, Paracelsus (1493–1541), that “All substances are poisons; there is none that is
not a poison. The right dose differentiates a poison from a remedy”, the nano-sized
materials (nanoparticles, nanomaterials) are not an exception to this statement. In the case
of nanomaterials, the surface area of the nanoparticles, relative to their general
counterparts, intensifies their effects even at lower doses (Ahmad, Khatoon & Sardar,
2014a; Ahmad et al., 2015; Ahmad & Sardar, 2015b; Khatoon, Ahmad & Sardar, 2015;
Sardar & Ahmad, 2016; Sardar, Mishra & Ahmad, 2014). Under the aegis of
‘nanotoxicology,’ the possible toxicological effects of nanomaterials are being examined.
Nanomaterials possess unique catalytic, mechanical, and optical properties and
electrical conductivity mainly due to their size in nanometers (Ahmad et al., 2023;
Ahmad & Sardar, 2015a; Ghosh et al., 2021a, 2021b; Goel et al., 2023; Khan, Saeed & Khan,
2019).

The branch of nanotoxicology may seem new, but it contains the same basic
toxicological concepts. The instruments and techniques for the analysis can vary from the
conventional ones, depending on the nature of the substance (nanomaterials in this case).
The associated health issues are also growing with the increasing demand for
nanomaterials in different industries and household goods. Toxicological approaches play
a crucial role in regulating numerous substances and products’ impacts on human and
environmental health (Malakar et al., 2021; Singh, Kumar & Jain, 2021; Stark et al., 2015).

Nano-sized materials have shown benefits over their crude forms, mainly in
formulation development. There are now recorded formulations containing one or more
nanomaterials in many cosmetic products, pharmaceuticals, paints, pigments, etc. For
example, nano-sized titanium dioxide (TiO2) is used in biocatalytic processes and
cosmetics (Ahmad et al., 2019a; Ahmad, Khatoon & Sardar, 2013), silver nanoparticles
are used for their antibacterial in making stain and odor-resistant clothing
(Montes-Hernandez et al., 2021; Rajeshkumar et al., 2021).
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Nanotoxicology can address all the health and environmental issues raised by
nano-sized materials. The physicochemical causes, exposure paths, biodistribution,
molecular determinants, genotoxicity, and regulatory aspects are incorporated into
nanotoxicology (Arora, Rajwade & Paknikar, 2012; Goel et al., 2021). The toxicity of
nanomaterials depends on the interaction of their physicochemical assets with an
organism’s cellular and molecular components. Nanomaterials are highly reactive and may
be harmful when interacting with biological systems and the environment. This can be
attributed to quantum size effects and enormous surface area to volume ratio (Ganguly,
Breen & Pillai, 2018; Sahu & Hayes, 2017). Several studies have revealed that nanoparticles
(NPs), after intake, spread to several organs, including the liver, heart, spleen, brain, lungs,
and gastrointestinal system, leading to adverse health effects (Almeida et al., 2011; Bahadar
et al., 2016; Khlebtsov & Dykman, 2011).

This review aimed to get deeper insights into the toxicity profiling of nanomaterials and
their consequential impacts on human health. It outlines the different classes of
nanomaterials and their physiochemical properties responsible for toxicity. It discusses
some commonly used nanoparticles and their associated adverse effects. It also discusses
the possible routes of exposure (for example-respiratory tract, skin, and gastrointestinal
tract) and its biodistribution. Furthermore, it discusses the detailed toxicological
perspective with genotoxicity, immunotoxicity, oxidative stress, and inflammation as a
mechanism of cellular toxicity. The discussion desk also discusses an entire section on the
methods for assessing the toxicity of nanomaterials. Importantly, the present review
summarizes the concept behind the toxicology of nano-sized materials and includes the
advancements in nanotoxicology research and methods during the past two decades.

The rationale of the study
The growing usage of nano-sized materials in various sectors and applications drove this
study on nanotoxicology and its effects on human health. Although nanoparticles have
many advantages, there are concerns about their possible negative impacts on human
health and the environment. To ensure the safe and responsible use of these materials, it is
necessary to recognize the potential hazards involved. The present study seeks to offer
more understanding of nanomaterials’ toxicity profile. Researchers can comprehend the
underlying processes of toxicity by researching the physicochemical features of
nanomaterials and their effects on cellular pathways. Nanotoxicology investigates the
toxicity of nanomaterials and their interactions with biological systems to address these
issues.

As nanotechnology develops, regulatory considerations are also crucial. Establishing
suitable regulatory standards for the responsible use and disposal of nanomaterials is
essential. This review raises these issues along with the toxicity of nanomaterials and its
evaluation. It is intended to fill the gaps in concepts and understanding of nanotoxicology
for students and researchers.

Overall, this study advances the science of nanotoxicology by shedding important light
on the possible health risks of nanomaterials. This study provides decision-making
information and aids in risk mitigation by knowing their toxicity and taking regulatory
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considerations, offering the safe application of nanotechnology to benefit human health
and the environment.

Search methodology
This study used a survey and search approach to examine nanotoxicology’s effects on
human health. The subsequent actions were taken:

Review of the literature: Using particular keywords relating to nanotoxicology,
nanomaterials, toxicity profiling, human health, and environmental consequences,
relevant scientific literature was carefully examined from databases including PubMed,
Scopus, and Web of Science. Articles were chosen based on predefined criteria, which
included an emphasis on molecular components, cellular routes, physicochemical reasons,
exposure pathways, biodistribution, genotoxicity, and regulatory issues.

Extraction of key data from chosen article on the physicochemical characteristics of
nanomaterials, experimental procedures, toxicity assessment methods, molecular
determinants, and regulatory issues.

Data were thematically analyzed to spot patterns, trends, and knowledge gaps in
nanotoxicology. The synthesis of the findings provided a thorough understanding of the
issue.

Interpretation and conclusion: The data were analyzed to reach relevant findings,
respond to study-related questions, and better understand the toxicity of nanomaterials
and their effects on human health. This study used a survey and search technique to
acquire pertinent data, pinpoint knowledge gaps, and present a thorough analysis of
nanotoxicology and its consequences for human health.

CLASSES OF NANOMATERIALS
Depending on their practical application, nanomaterials can be classified based on size,
morphology, state, and chemical composition. Generally, nanomaterials (NMs) are ranked
based on their dimensionality, morphology, state, and chemical content (Joudeh & Linke,
2022; Saleh, 2020). This classification is also based on their size, which varies between
1–100 nm in at least one dimension.

Classification of nanomaterials based on dimensions, morphology
and state
There are numerous structural, dimensional, morphological, and compositional measures
based on which nanomaterials are classified. They provide unique properties to
nanomaterials and contribute to their fate and toxicity in the environment and human
health (Pokropivny & Skorokhod, 2007; Saleh, 2020).

Nanomaterials are further distributed into four classes based on shape and dimensions.
Zero-dimensional (0D) nanomaterials have all their dimensions <100 nm. These include
nanomaterials shaped as cubes, spheres, polygons, nanorods, and hollow and
nanomaterials existing as quantum dots (QDs). One-dimensional nanomaterials have only
one dimension on the nanoscale. Examples of 1D nanomaterials are nanorods, nanotubes,
nanofibers, nanowires, and metallics. Two-dimensional nanomaterials have two
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dimensions in the nanoscale, including thin films, nanoplates, and so on, which may be in
single or double layers. 2D nanomaterials can exist in crystalline or amorphous forms. 3D
nanomaterials have more than two dimensions. Nanotubes, fullerenes, honeycombs, and
fibers are a few examples of 3D nanomaterials (Aversa et al., 2018; Sefadi &Mochane, 2020;
Shiau et al., 2018). Morphologically, nanoparticles can be distributed based on their
formation as flat spheres and the aspect ratio (High and low), including nano zigzags,
nanopillars, nanospheres, nanopyramids, etc. Another class of nanomaterials is centered
on the states in which they can exist, such as suspension, colloid, or dispersed, e.g.,
magnetic nanoparticles. Elements of nanomaterials are an essential factor in categorizing
them (Saleh, 2020).

Classification of nanomaterials-based on the chemical composition
The largest category of nanomaterials is based on chemical composition and constitutes
single constituents, composite, and inorganic and organic nanomaterials (Saleh, 2020).
This class comprises nanomaterials like composites, carbonaceous, metallic, metallic oxide,
polymeric, etc., (Mekuye & Abera, 2023; Saleh, 2020). Four types of nanomaterials
categories are based on chemical composition: carbon-based nanomaterials,
inorganic-based nanomaterials, organic-based nanomaterials, and composite-based
nanomaterials (Majhi & Yadav, 2021). Carbon is the core constituent of carbonaceous
nanomaterials, while metallic nanomaterials are differentiated based on the metals they are
made from. Carbon-based nanomaterials include graphene, fullerene, single-walled carbon
nanotube, multi-walled carbon nanotube, carbon fiber, activated carbon, and carbon black.
The metals forming metallic nanomaterials are usually Cu, Ag, Al, Zn, Fe, etc., thus having
catalytic and adsorptive properties (Kim & Lee, 2018; Li et al., 2019; Vijayakumar et al.,
2022). Through certain processes like hydrothermal, doping, or sol-gel reactions, metallic
oxide nanoparticles (e.g., TiO2, Fe2O3, and SiO2) can be produced. This class of
nanomaterials comes with additional applications, like sensors, semiconductors, etc.,
(Saleh & Fadillah, 2019). The organic-based nanomaterials are formed from organic
materials, excluding carbon materials, for instance, dendrimers, cyclodextrin, liposomes,
and micelle. Next, bimetallic nanomaterials are a combination of metals with different
properties, such as Ag-Cu and Fe-Cu, which are further classified based on their structure
(Hao et al., 2020; Lozhkomoev et al., 2019; Saleh & Fadillah, 2019). Other nanomaterials
based on composition are branched dendrimers, ceramic nanomaterials, nanogels,
core-shell nanomaterials, and polymeric nanomaterials (Saleh, 2020). A class of
nanomaterials is designed for drug delivery known as lipid-based nanomaterials (García-
Pinel et al., 2019). These nanomaterials could target certain hydrophilic and hydrophobic
molecules in the human body and are relatively stable, less toxic, and specific, e.g.,
nanostructure lipid carriers, solid lipid nanoparticles, and liposomes. Liposomes are
mainly formed of cholesterol and phospholipid compounds (García-Pinel et al., 2019;
Zhong & Zhang, 2019). Nanomaterials also occur as quantum dots and can absorb UV
light and white light and reemit them at certain wavelengths. Hence, quantum dots come
with exclusive optical properties and electronic ones (Alavi, Jabari & Jabbari, 2021).
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PHYSICOCHEMICAL PROPERTIES OF NANOMATERIALS
RESPONSIBLE FOR TOXICITY
Studying nanomaterials from the physicochemical angle is essential for understanding the
toxic effect. The physicochemical properties are responsible for the interaction between the
nanoparticle and the target molecule or cell (Chandra, Kim & Rhee, 2013). These
properties include particle shape, size, composition, stability, structural dimensions,
concentration, nanoparticle morphology, and surface properties (area, roughness, energy,
charge), including functional groups. These interactions also determine the entry of
nanoparticles inside the cellular pathways, their translocation, exposure, and further
interactions with the molecules and entities inside the cell. Such interactions can be
exemplified as hydrophobic, electrostatic, steric, solvent, and biological interactions. There
are various mechanisms of nanoparticle toxicity. These include the release of more reactive
ionic form from nanoparticle surface, ROS generation, lipid peroxidation, protein
denaturation, inflammation, endothelial dysfunction, mitochondrial perturbation,
phagocytic function impairment, and altered cell cycle regulation (Gupta & Xie, 2018). An
in vivo study conducted by Zhang et al. (2011) demonstrates size-dependent nanoparticle
toxicity, indicating that 10 and 60 nm PEG-coated gold nanoparticles increased alanine
transaminase and aspartate transaminase levels resulting in liver injury. In an in vitro
experiment conducted by Ng et al. (2017) MRC5 lung cells treated with ZnO NP-treated
released a substantial amount of extracellular lactate dehydrogenase and had lower cell
viability, indicating cellular damage and cytotoxicity.

Effects of physicochemical properties of nanomaterials on a cellular
level
All the properties mentioned above are responsible for the toxicity displayed by
nanomaterials. Several research studies using different cell types have examined toxicity
effects due to the physicochemical properties of nanoparticles and engineered
nanomaterials. One such study reported the toxic effect of graphene family nanomaterials
on ocular cells and the possible risk of applying graphene family nanomaterials in
biomedical (Borandeh et al., 2021). Graphene family nanomaterials’ use has been proposed
in ocular drugs, contact lenses, and ocular drug delivery due to their large π-conjugated
aromatic structure and specific surface area for example, graphene oxide and reduced
graphene oxide are analogs of graphene family nanomaterial and effect cell viability
(Borandeh et al., 2021; Ge et al., 2018; Oliveira et al., 2022). Graphene oxide nanoplates
with 11 nm dimensions can enter the human mesenchymal stem cell nucleus more quickly
and cause genotoxicity than a graphene oxide nanoplate with a 3 m dimension. Also,
nanoplates higher in concentration can cause more toxicity than those at low
concentrations, as stated in studies (Borandeh et al., 2021; Ge et al., 2018; Oliveira et al.,
2022). Reduced graphene oxide nanoplates of micron size were highly toxic at a 100 mg/ml
concentration.

In contrast, the smaller-sized reactive graphene oxide nanoplate (11 nm), at a
concentration as low as 0.1–1 mg/ml, caused genotoxicity on translocation to the nucleus
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(Akhavan, Ghaderi & Akhavan, 2012). The shape of the nanomaterial is another
nanotoxicity-determining factor in living cells. In another study about the effect and
mechanism of nanotoxicity, it was concluded that there was growth inhibition and
apoptosis in primary rat osteoblasts by hydroxyapatite nanoparticles which are
needle-shaped and short. At the same time, this was less likely in the case of nanoparticles,
having spherical, long rod shapes (Jain & Patel, 2021; Xue, Wu & Sun, 2012). The chemical
composition of nanomaterials is also a nanotoxicity causal factor. Particle dissolution, for
example, can generate toxicity imparting ionic species. Nanotoxicity of nanoparticles like
CuO, CdO, and TiO2 was found to cause DNA damage, which was high in the case of CuO
but comparatively lower in TiO and CdO (Franklin et al., 2007; Zhu et al., 2013). Table 1
depicts a few examples of nanomaterials’ size, shape, and concentration-dependent toxicity
in mammalian cells.

Effects of physicochemical properties of nanomaterials on the
environment
The properties of nanomaterials that are accountable for nanotoxicity among living cells
are the source of nanotoxicity in the environment. These factors can affect
microorganisms, plants, soil quality, water quality, quality of air, crop production,
pollution levels, and aquatic life. To simplify this physical and chemical effect, it should be
first understood that when nanomaterials encounter water, atmosphere, or soil, a corona
forms on their outer surface. Thus, the nanomaterials interact with their corona and
molecules present on the cell wall and membrane (Docter et al., 2015; Foroozandeh & Aziz,
2015; Juárez-Maldonado et al., 2021; Nel et al., 2009). Consequently, conditional to the
corona composition, nanomaterials with the same physical and chemical properties and
the same corona composition but variable properties will unlikely affect a cell or
microorganism. Table 2 presents a few examples of nanomaterials and their
physicochemical properties affecting mammalian cells and their associated mechanism.
Although it hasn’t been understood how nanomaterials produce toxicity in flora and
microorganisms, reactive oxygen species (ROS) generation can stimulate specific defense
mechanisms in cells or microorganisms that can lead to cell death (Smerkova et al., 2020;
Zhao et al., 2020). However, ROS generation is not the only mechanism that can cause
cytotoxicity, and antimicrobial molecule Reactive nitrogen species (RNS) generation
enabled by nanomaterials can also cause extreme levels of cellular stress that can lead to
toxicity (Balážová, Baláž & Babula, 2020; Juárez-Maldonado et al., 2021; Wang et al.,
2020b; Zhao et al., 2020). Several nanoparticles are known for inducing cytotoxicity and
inhibition in soil microorganisms by acting as potent antimicrobial agents, and
cytotoxicity depends on the concentration of nanomaterials to which the microbe is
exposed (Abdulla et al., 2021; Kumari et al., 2014). A higher concentration of
nanomaterials has been reported to cause DNA damage, lipid peroxidation, ROS
generation, ion release, ATP depletion, and cell damage in soil microflora. The toxicity of
nanomaterials towards microorganisms also depends upon the type and nature of the
nanomaterial. Nanoparticles metallic in nature such as ZnO, CuO, Ag, CeO2, or Fe3O4

nanoparticles could modify the composition of soil microflora (McKee & Filser, 2016).
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Some nanoparticles like carbon nanoparticles are known to be more toxic to microbes in
soil (Chen et al., 2019). Nanomaterials have a variable effect on distinct microorganisms
depending on their concentration, size, or parent material. In a research study based on the
effect of a few engineered nanomaterials on two different organisms, it was deduced that
the growth inhibition of both microbes varied when subjected to unrelated nanomaterials
with different concentrations. Nanomaterials such as ZnO (4 mg L−1), In2O3, γ-Al2O3, and
TiO2 inhibited the growth in Skeletonoma Costatumin up to 100% (with ZnO).

In comparison, in the case of nanomaterials like a-Al2O3 and SnO2 (1,280 mg L−1),
inhibition did not occur fully, being 35% in the case of a-Al2O3 and 24% with SnO2 (Wong
et al., 2020). As a matter of size, shape, material, and coating, it has been described that
increased concentration of nanomaterials to a certain level at which it becomes toxic and

Table 1 Nanomaterials and their toxicity on mammalian cells.

S.
no.

Nanoparticle type/
nanomaterial

Size/shape/concentration
of nanomaterial

Effect on mammalian cells References

1. Silver 20 mm Cytotoxic to murine macrophage cell line has
been found in the colon and blood of patients
with colon cancer and blood cancer,
respectively

Gatti (2004), Jain et al. (2011), Soto et al.
(2005), Takenaka et al. (2001)

2. Superparamagnetic
Iron oxide

Concentration >100 mg/ml Reportedly, impairs the functions of DNA,
nucleus and mitochondria and causes
inflammation

Brunner et al. (2006), Nel et al. (2006),
Oberdörster, Stone & Donaldson (2007),
Singh et al. (2010), Sudhakar et al. (2021)

3. Zirconium dioxide 11 nm particle size Increases viral receptor expressions Lucarelli et al. (2004)

4. Cadmium nanorod 30–50 nm diameter &
50–1,100 nm length,
concentration
1,000–10,000 mg/kg.

Genotoxicity, oxidative stress and DNA damage
in Kunming mice

Demir (2021), Liu et al. (2014a)

5. Cerium oxide
nanorods

Length >200 nm Progressive pro-inflammatory effect and
cytotoxicity in Human myeloid cell line

Ji et al. (2012)

6. Hydroxyapatite
(nano-HAP)

Crystals, H-rod, H-needle,
H-sphere, H-plate

Decreased cell viability and consequent necrosis
in rat aortic smooth muscle cells

Huang, Sun & Ouyang (2019)

7. Citrate capped gold
nanoparticle

5 nm Toxicity, increased Cytokine production in
mouse fibroblast

Jia et al. (2017)

8. Nickel nanowire 33 nm diameter, 5.4 mm
length, 5 mg/ml

Cytotoxicity and decreased cell viability in
human colorectal carcinoma HCT 116 cells

Perez et al. (2016)

9. Zinc oxide
nanoparticle

4–20 nm diameter Low viability, ROS production, cytotoxicity in
human immune cells (e.g., monocyte)

Hanley et al. (2009)

10. Titanium oxide 70 nm diameter, 50 mg/ml Inflammation, elevated IL-8 in human
microvascular endothelial cells

Peters et al. (2004)

3 and 600 mg/ml Shrinking of cells, lower metabolic activity,
releasing of LDH,ROS production in mouse
fibroblastL929

Jin et al. (2008)

11. Graphene oxide Upton 25 mg/ml Effected antigen inhibition linked to
downregulated intracellular levels of immune
proteasome

Seabra et al. (2014), Tkach et al. (2013)

12. Mesoporous silica
nanoparticle

100 nm Membrane deformities and hemolysis in human
red blood cells

Lin & Haynes (2010)
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Table 2 Physico-chemical properties of nanomaterial responsible for its cytotoxicity and associated mechanism.

S.
no.

Type of nanoparticle Source of nanomaterial Physico-chemical
property responsible
for cytotoxicity

Mechanisms for cytotoxic effect References

1. Mesoporous silica
nanoparticles
(MSNs)

Tetra ethyl orthosilicate Size (∼600 nm)
dependent
cytotoxicity

Severe local membrane distortion
resulting in RBC spherocytosis,
internalization of the particles, and
ultimately hemolysis.

Zhao et al. (2011)

2. Graphene oxide (GO)
nanosheets

Oxidation of graphite oxide Concentration-
dependent
cytotoxicity

Direct interactions between the cell
membrane and GO nanosheets that
cause physical harm to the cell
membrane cause cytotoxicity due to
high absorption

Hu et al. (2011), Zhu
et al. (2020)

3. Titanium dioxide
(TiO2) nanoparticles

Titanium dioxide Concentration
(100 mg ml−1)
dependent
neurotoxicity

Tau-TiO2 NP interaction is observed
when neuroblastoma cells are
exposed to the nanoparticles.
Microtubules may become unstable
as a result of interactions between
TiO2 and tau proteins, tubule
heterodimers, and microtubules,
which increases the neurotoxicity of
TiO2 NPs

Mao et al. (2015),
Sukhanova et al.
(2018)

4. Iron oxide
nanoparticles
(IONPs)

Iron oxide Citrate and dextran
coating on the surface
of NP.

Highly reactive hydroxyl radicals are
produced by the Haber-Weiss
reaction in cells (e.g., HUVECs).
At larger intracellular quantities of
iron salts, the Fenton reaction is
detectable. The free radicals have the
potential to harm DNA, cell
membranes, the cytoskeleton, and
ECM. They can also directly or
indirectly mediate signal
transduction pathways through
bioactive mediators

Puppi et al. (2011),
Sadaf et al. (2020),
Sukhanova et al.
(2018), Wu et al.
(2010)

5. Au55 clusters Reduction of
(triphenylphosphine)gold
chloride with diborane
followed by incorporation
into SBA-15 silica mesopores

Cuboctahedral
structure and 1.4 nm
size

Cytotoxicity (necrosis) brought on by
the remarkably strong interaction of
the 1.4 nm particles with the main
grooves of DNA

Schmid (2008),
Schmid et al.
(2008).

6. Cadmium telluride
quantum dot NPs

1-thioglycerol, L-cysteine,
thioglycolic acid and Cd2+

Chemical
compostion-presence
of cadmium and
tellurium

CdTe-QDs alter the potential of the
mitochondrial membrane via
increasing Ca2+ levels. The cadmium
component of the NPs causes CdTe-
QDs’ impact on Ca2+. Increased
intracellular Ca2+ has been linked to
cadmium-induced apoptosis

Belyaeva et al.
(2012), Nguyen
et al. (2015)

7. Polystyrene NPs n-pentanol, sodium dodecyl
sulphate, ammonium
persulfate

Surface charge Positively charged nanoparticles (NPs)
more efficiently cross the membrane,
but also because they are more tightly
linked to the negatively charged
DNA, damaging it and lengthening
the G0/G1 phase of the cell cycle as a
result

Liu et al. (2011),
Sukhanova et al.
(2018)

(Continued)
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bio-stimulatory activity starts decreasing (Agathokleous et al., 2019). Similarly,
nanomaterials bigger in size have less effect on cells (Ball, 2017; Klaine et al., 2008).

COMMONLY USED NANOMATERIAL AND THEIR ADVERSE
HEALTH EFFECTS
NPs (with a diameter of 100 nm or less) are found in the air and some workplaces. NPs can
be either naturally occurring (like dust, protein molecules, viruses, aerosol, mineralized
natural materials, volcanic ash, etc.) or artificially produced (like titanium dioxide, carbon
black, carbon nanotubes, silver, zinc, and copper oxide) (Alshammari et al., 2023; Cho
et al., 2019; Mekuye & Abera, 2023). Engineered nanomaterials have exceptionally large
surface areas and high percentages of their component atoms on the surface because they
have at least one dimension smaller than 100 nm. Many nanoparticles acquire exceptional

Table 2 (continued)

S.
no.

Type of nanoparticle Source of nanomaterial Physico-chemical
property responsible
for cytotoxicity

Mechanisms for cytotoxic effect References

8. Casein-coated iron
oxide nanoparticles

Casein, iron chloride
tetrahydrate, and iron
chloride hexahydrate

NP shell Shell enhances durability and guards
NP against desalination and
oxidative or photolytic deterioration.
As a result, the toxicity of NP is
reduced. Due to the wide range of
modifiers, altering the NP
characteristics as well as their
particular transport and
accumulation is possible that can
increase or decrease the toxicity

Huang et al. (2013)

9. Zinc oxide NP Zinc salts Zn2+ ions ZnO NPs generate an increase in
cytoplasmic and mitochondrial Zn2+

levels, which can ultimately result in
mitochondrial damage and apoptosis
in cells

Soenen et al. (2015),
Wilhelmi et al.
(2013)

10. Gold NP Au+1 or Au3+ Plasmonic properties The cytotoxicity is caused by the ionic
interactions of the Au-NPs with the
plasma membrane. Genes including
those connected to the cell cycle,
particularly those engaged in the G1
phase and those involved in the
nucleic metabolic process, are down-
regulated

Lee et al. (2019)

11. Polystyrene latex NP Styrene, sodium hydrogen
carbonate and potassium
persulfate

Surface modification
and particle size (50
and 100 nm)

On cell membranes, there have been
reports of significant damage and
holes that have not been seen with
other kinds of NPs. Along with
enhanced CXCL8 production, this
also induces apoptotic (caspase-3/7
and caspase-9) cell death (IL-8) and
cell detachment

Ruenraroengsak
et al. (2012)
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reactivity as a result, which opens up new avenues for their application in electronics,
medicine, environmental cleanup, catalysis, and consumer goods. Concern regarding the
possible hazardous effects of nanoparticles due to their usage or inadvertent release into
the environment has grown in tandem with the growing interest in the advantages they
may provide (Kabir et al., 2018; Martínez et al., 2020; Ray, Yu & Fu, 2009).

Toxicity of metal-based nanoparticles
The elements gold, silver, copper, nickel, cobalt, zinc, and titanium dioxide have all been
used to create nanoparticles. A significant portion of the expanding nanotechnology
business is made up of metal and metal oxide nanoparticles. The use of metallic
nanoparticles is rising, and with that comes the risk that these particles will be released into
the environment.

As well as being utilized as a bactericide, silver nanoparticles have found use in the
production of stain-and odor-resistant textiles, sensors, inks, and catalysts (Baker et al.,
2005). Antimicrobial products using silver nanoparticles are becoming increasingly
popular in the Western hemisphere. More and more research points to silver
nanoparticles’ extreme toxicity to mammalian cells (Ferdous & Nemmar, 2020; Rohde
et al., 2021). Brain, liver, and stem cells are all vulnerable to the toxicity of silver
nanoparticles (Ferdous & Nemmar, 2020). Bactericidal treatments made with nanocopper
are increasingly popular (Ermini & Voliani, 2021). Coatings and sealants with these
additives have better thermal and electrical conductivity and may be used to filter air and
liquids. They can also be applied to integrated circuits and batteries. Several aquatic
species, including vertebrates and invertebrates, have had it shown that copper and silver
nanoparticles are extremely hazardous to them (Das, Xenopoulos & Metcalfe, 2013; Dube
& Okuthe, 2023). TiO2 nanoparticles are a manufactured nanoparticle with widespread
application in food colorings, sunscreens, and cosmetics. Because of their great stability,
anti-corrosion, and photocatalytic capabilities, titanium dioxide nanoparticles (TiO2-NPs)
were mass-produced and employed extensively. It is one of the most extensively utilized
nanomaterials and has lately found use in several agricultural industries. Emerging data
suggest that TiO2 nanoparticles can cause inflammatory and genotoxic reactions in various
animal and human cell lines. DNA damage is caused by the high levels of hydroxyl free
radical produced by TiO2 nanoparticles (Chen, Yan & Li, 2014; Suzuki et al., 2020).
Various mechanisms and properties through which nanoparticles exert toxicity on
mammalian cells have been mentioned in Tables 1 and 2. Due to their special properties,
metal-based nanoparticles may exhibit toxicity under specific circumstances. They are
small in size, have a large surface area, and have unique physicochemical characteristics
(Makhdoumi, Karimi & Khazaei, 2020). These characteristics may result in interactions
with biological systems that harm both the environment and human health. The size and
surface area of metal nanoparticles are two important elements that affect how toxic they
are (Saifi, Khan & Godugu, 2018). Due to their extremely small size, nanoparticles can
more easily enter cells and tissues. Furthermore, studies have shown that while larger
nanoparticles (NPs) enter cells via alternative transportation mechanisms like
phagocytosis, micropinocytosis, and non-specific translocation, smaller NPs can cross cell
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membranes through translocation (Zhang, Gao & Bao, 2015; Zhang, Xiong & Liu, 2022).
The likelihood of interactions with biomolecules is increased by their high surface area to
volume. For instance, their larger surface area makes smaller silver nanoparticles more
toxic than their larger counterparts (Recordati et al., 2015). Many different types of
nanoparticles (NPs) exist, including spheres, ellipsoids, cylinders, sheets, cubes, and rods
(Sukhanova et al., 2018). When NPs are the same size and composition, their shape can
greatly impact how they behave in terms of biodistribution, cellular uptake, deposition,
and clearance (Zare et al., 2021). Another important element is the reactive surface of
metal nanoparticles. Along with shape and size, surface chemistry also significantly
impacts toxicity (Chandran, Riviere & Monteiro-Riviere, 2017). The surface charge
influences the NP pharmacokinetics and their interactions with organelles and
biomolecules, which is closely related to NP toxicity. When these nanoparticles come into
contact with biological systems, their frequently highly reactive surfaces may cause the
production of ROS (An et al., 2014). Cells and tissues may experience oxidative stress and
damage due to ROS. For instance, when exposed to UV light, titanium dioxide
nanoparticles (TiO2 NPs) found in sunscreen lotions can produce ROS and possibly harm
skin (Musial et al., 2020). In addition, some metal-based nanoparticles have the potential
to release dangerous metal ions into the atmosphere or biological systems (Forest et al.,
2021). Cadmium-based nanoparticles, such as cadmium selenide nanoparticles, have the
potential to release toxic cadmium ions that can build up in organisms (Chen et al., 2012).
The toxicity of nanoparticles can also be affected by the surface coatings (Hwang et al.,
2018). Although the composition of these coatings can have an impact on toxicity, they are
used to improve stability and functionality (Ge et al., 2019). For instance, some coatings on
gold nanoparticles may lessen their toxicity while others may increase it (Jia et al., 2017).
Another major issue is bioaccumulation. Metal nanoparticles can be ingested by living
things, where they can build up in different tissues and cause toxicity (Lopez-Chaves et al.,
2018). As an illustration, mercury-based nanoparticles, like mercury sulfide nanoparticles
(HgS NPs), can build up in aquatic organisms and pose risks to human consumption and
the aquatic food chain (Ghoshdastidar & Ariya, 2019; Takahashi et al., 2021). Another
aspect of metal nanoparticle toxicity is their chemical reactivity with biological molecules
(Stark, 2011). For instance, silver nanoparticles may interact with proteins and enzymes
alter their activity, and result in cytotoxicity (Flores-López, Espinoza-Gómez &
Somanathan, 2019). The solubility of metal nanoparticles can also affect how toxic they
are. When in contact with moisture, poorly soluble nanoparticles like zinc oxide may
release toxic zinc ions and become cytotoxic (Pandurangan & Kim, 2015). Figure 1
summarizes the properties accountable for nanotoxicity and the mechanisms of toxicity
associated with them.

Toxicity of carbon-based nanoparticles
Carbon is one of the components noticed earlier and is readily available. The allotropes are
composed of diamond, graphite, amorphous carbon, carbon nanotubes (CNTs), graphene,
and fullerenes. Due to their special physicochemical and electro-mechanical properties and
biological compatibility. But they also possess harmful effects on biological processes and
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cellular compartments. Koike & Kobayashi (2006) investigated carbon-based
nanoparticles’ chemical and biological oxidative effects (CBNP) and found that CBNPs
with smaller sizes have greater oxidative potential than larger alveolar epithelial cells. In
general, nanomaterials exist in various forms and structures such as particles, tubes, fibers,
spheres, points, cubes, truncated triangles, wires, and films that influence nanoparticle
(NP) kinetics and transportation in the environment (Gonzalez-Munoz et al., 2015;
Madannejad et al., 2019;Walters, Pool & Somerset, 2016). Srikanth et al. (2015) assayed the
cytotoxicity of four types of carbon nanomaterial (carbon nanowire, carbon nanotube,
graphene, and fullerene) on L929 mouse fibroblast cancerous cells and found that
graphene was the most toxic substance with an average toxicity of 52.24% followed by

Figure 1 Investigating the intricate and harmful relationships between nanoparticles and organ
systems reveals a complicated web of possible health effects. On the respiratory, cardiovascular,
neurological, hepatic, renal, and reproductive systems, among other organ systems, nanoparticles can
demonstrate a range of toxicological effects. Determining the hazards of nanoparticle exposure and
creating plans to reduce unfavorable health effects require an understanding of these interactions.

Full-size DOI: 10.7717/peerj.17807/fig-1
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CNTs, fullerene, and CNW, based on morphology, concentration, and duration of
exposure. Srikanth et al. (2015), data indicate that toxicity variations are related to different
structural arrangements and aspect ratios. In another study, the role of surface area in
oxidative and DNA damage potential of carbon-based (CB) nanomaterial was observed.
They found that CB with smaller and larger surface areas demonstrate higher potencies for
oxidative stress and DNA damage in rats (Almaimani, 2021; Chuang et al., 2015). Carbon
nanotubes (CNTs) have drawn much scientific interest and possible applications due to
their specific physical, biological, electrical, and mechanical properties. As the production
and application of CNTs increase on a wide scale, the general public is more likely to be
directly or indirectly exposed to CNTs, prompting substantial attention to human health
and safety concerns related to CNTs. Several significant factors, such as impurities,
amorphous carbon, surface charge, form, volume, aggregation, and layer numbers, explain
the differences in the experimental results of nontoxicity. The in vivo actions and fate of
CNTs can also be affected by exposure paths, including inhalation, intravenous injection,
or dermal or oral exposure. Oxidative stress, inflammatory reactions, malignant
transformation, DNA damage and mutation (errors in chromosome number and mitotic
spindle disruption), the development of granulomas, and interstitial fibrosis are the
underlying mechanisms of CNT toxicity. These results provide valuable insights into the
de novo nature, safe application, and risk assessment of carbon nanotubes for human
health (Liu et al., 2013).

ROUTES OF EXPOSURE OF THE NANOPARTICLE
The human body is a complex structure of several organs, such as the heart, liver, lung,
kidney, etc., Any damage (cellular, biochemical, or molecular level) can disrupt the entire
system and lead to various pathological conditions. A drug has to penetrate the body
through certain routes to cause specific harm or general toxicity (Fig. 1). These are referred
to as exposure channels, which involve the skin (dermal exposure), gastrointestinal (oral
exposure), and lung (inhalation exposure) exposure (De Matteis, 2017). Oral exposure is
the most prevalent natural route of exposure to a significant range of toxicants, including
nanoparticles. However, any material with a lipophilic nature is more likely to penetrate
the body or systemic circulation when it comes into contact with the skin. In this scenario,
inhalation is the most sensitive route of exposure, and the skin is the least sensitive.
Exposure to nanomaterials in food or the atmosphere via the above routes. In addition to
these exposure pathways, numerous clinical administration pathways for various therapies
are also in operation (Romeyke & Stummer, 2012). These include administration using a
syringe through an intravenous (IV), intraperitoneal (IP), subcutaneous (SC), intradermal
(ID), transdermal (TD), intramuscular (IM), etc. These pathways are primarily used for
therapeutic administration during treatment.

Gastrointestinal tract
Nanoparticles are gradually making their place in the formulations of consumer goods.
Food, via the gastrointestinal tract, is a significant source of nanoparticle exposure. Flavor
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enhancers, food pigments, and supplementations can be part of the range of
nanomaterials. Some non-edibles can also work as a source of oral exposure to
nanomaterials. They can shed the nanomaterials used in their development. These
products may include toothbrushes, baby bottles, pacifiers, containers for processed or
unprocessed food items, and containers for processed or unprocessed food items (Bergin &
Witzmann, 2013). Possible exposures to nanomaterials include consuming marine food
(fish or shellfish) with accumulated nanomaterials for toxic waste ingestion or absorption
(Ahmad, Pranaw & Khare, 2019b; Gaiser et al., 2012; Toussaint et al., 2019; Wang et al.,
2020a). Researchers have proposed that the absorption mechanism of nanoparticles is
possibly endocytosis in the gastrointestinal tract (Frohlich & Roblegg, 2012). In contrast to
larger counterparts, nanoparticles of comparatively smaller sizes are more readily
absorbed.

Silver nanoparticles, gold nanoparticles, titanium dioxide (TiO2) nanoparticles,
copper nanoparticles, silicon dioxide (SiO2) nanoparticles, quantum dots, carbon-based
nanoparticles (multi- or single-walled carbon nanotubes) and polymer/dendrimer
nanoparticles (Bergin & Witzmann, 2013) are the materials recorded to exhibit their toxic
effects after ingestion.

Skin
Skin serves as a physical barrier for all the xenobiotics and pathogenic microorganisms. It
can prevent the entry of microorganisms and hydrophilic substances. Skin remains in
direct contact with the environment but interacts less with the toxic components in the
ambiance. It works more as a physical barrier; it has a small surface area (1.73 m2, an adult
human’s average body surface area). It has less blood supply and an upper layer of dead
cells as a physical obstruction for most hydrophilic xenobiotics. Lipophilic substances
(<600 Dalton [Da]) can easily cross the skin passively and enter systemic circulation
(Barry, 2001; Coates et al., 2019). There are several reports which dealt with the skin
penetration of the nanoparticles. Still, they show discrepancies in results likely related to
differences in techniques and methods, laboratory conditions, and the absence of
standardized evaluation protocols (Crosera et al., 2009; Ghasemiyeh & Mohammadi-
Samani, 2020).

In most cases, skin exposure to nanoparticles occurs through cosmetics. Various
personal care products contain nano-sized components like nano-emulsions and
microscopic vesicles. The issue of dermal penetration is highlighted by applying TiO2 and
ZnO nanoparticles to cosmetic products. Sunscreens contain insoluble titanium dioxide
(TiO2) or zinc oxide (ZnO) nanoparticles, which are efficient filters of ultraviolet (UV)
light (Geppert et al., 2020; Lu et al., 2015; Mohammed et al., 2019). Several in vivo toxicity
studies, including in vivo intravenous studies, showed that TiO2 and ZnO nanoparticles are
non-toxic and have excellent skin tolerance (Nohynek & Dufour, 2012). However, this may
not be the case with other nanoparticles with potential applications in cosmetics. Nohynek
and Dufour, in their review, concluded that the nanoparticles in skin care products or
sunscreens pose no or negligible threats to humans in terms of toxicity. Factors that may
affect the absorption of any agent include (i) skin integrity and regional variation,
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(ii) dimensions of orifices, aqueous pores, and lipidic fluid paths, and (iii) density of
appendages (Baroli, 2010).

Respiratory tract
Because of its importance for survival and exposure to a toxicant, inhalation deserves
special attention. Chimney smoke, car fumes, cigarette smoke, forest fire smoke, and other
harmful inhalants are inescapable in today’s world. Inhalation exposure is more significant
in environmental interactions. The lung and the skin both serve as interfaces between the
body and its external environment, but their anatomical and physiological structures and
functions are distinct. The physiology of the lungs is sensitive to even little variations in air
composition. Toxic substances in the air are taken into the lungs along with the breath.
Lung toxicities are very common due to the direct interaction of lung alveolar epithelium
with inhaled toxicants. The sensitivity of the lung toward a variety of airborne toxic agents,
including carcinogens, leads to a brisk inflammatory response (Wong, Magun & Wood,
2016).

The number and exposure of nanomaterials are rapidly increasing in the present
environment. Most of them can cause damage to the lungs. Airborne toxicants, including
nanoparticles, are significant concerns regarding human health. Many reports are available
regarding the toxicological effects of nanoparticles after inhalation (Bierkandt et al., 2018).
More specifically, several effects of inhaled nanoparticles are attributed to their (i) direct
effects on the central nervous system, (ii) their translocation from the lung into the
bloodstream, and (iii) their capacity to invoke inflammatory responses in the lung with
subsequent systemic effects (Borm & Kreyling, 2004).

The nano-sized particles that can be inhaled and pose a serious threat to human health
include suspended particulate matter (SPM), combustion-derived nanoparticles (CDNP),
asbestos fibers, and silicon nanoparticles (Borm et al., 2006). CDNPs are generated in some
scenarios, including internal combustion engines, large-scale coal burning for power
generation, and industrial processes where they often could be produced along with larger
particles. CDNPs may include diesel exhaust particulates, welding fumes, nanoparticulated
carbon black, and coal fly ash. These all cause oxidative stress and lung inflammation after
inhalation (Diabaté et al., 2011). Asbestosis results from inhalation exposure to nano-sized
asbestos fibers, resulting in mesothelioma (cancer of the pleural lining of the lung), lung
cancer, and laryngeal cancer (Offermans et al., 2014; Ross, 2014). Most lung ailments are
associated with acute or chronic inflammation. The main reason behind the sensitivity of
the lung lies in its anatomy, which is constituted by a large number of alveoli, increasing its
surface area up to 75 m2, and a large number of vasculatures. High blood flow in the lungs
makes it more vulnerable to inflammatory responses and the primary organ responsible
for most nanoparticle-related toxicities. Chronic obstructive pulmonary disease (COPD),
an accumulation of emphysema, bronchitis, and fibrosis, is primarily a chronic
inflammatory disease. Other examples of lung inflammatory ailments include
bronchiolitis, asthma, acute inflammation after toxic exposure, pneumonitis, etc. Most of
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the lung cancer cases are also associated with chronic lung inflammation-related episodes.
It has been found that COPD and lung cancer positively correlate in most cases. Such an
episode’s exposure to any nano-sized particle may impose similar or more serious
consequences. Several studies have indicated that nanoparticles react aggressively when
exposed to biological systems due to their physic-chemical properties being different from
their normal forms (Cheng et al., 2013).

BIODISTRIBUTION
Due to their physicochemical properties, which are different from their crude
counterparts, the nanomaterials may have a different distribution pattern in a biological
system. Several pharmacokinetics studies provide a set of their distribution pattern, and
the information is efficiently applied in the nanomaterials’ medical diagnostics,
pharmacology, and toxicology (Madru et al., 2013; Singh & Pai, 2014). Studies indicate that
the distribution of the nanoparticles initially depends on the particle shape and size
(Kreyling et al., 2014; Toy et al., 2014). The dependence of the biodistribution of
nanoparticles on their physical properties signifies the role of the physicochemical nature
of the nanomaterials in toxicological effects and the different toxicological nature of the
nanomaterials when compared with their crude forms (Duan & Li, 2013). Reports also
indicate the dependency of the biodistribution of nanoparticles on phagocytosis. In a rat
model, Li et al. (2014) showed that the distribution of polyethylene glycol-coated
polyacrylamide nanoparticles across highly perfused organs depends on phagocytosis. In
their study, various target organs include the spleen, liver, bone marrow, lungs, heart, and
kidneys. However, apart from phagocytosis, the nanoparticles also interact with the plasma
proteins as soon as they enter the physiological environment. According to their specific
functions, adsorbed proteins can be divided into opsonin and dysopsonins. Opsonin often
induces the rapid blood clearance of nanoparticles, while dysopsonins benefit prolonged
blood circulation (Gao & He, 2014). Nanoparticle-protein interactions can greatly
influence biodistribution (Baimanov, Cai & Chen, 2019; Ovais et al., 2020). Though
biological tools like phagocytosis and plasma proteins contribute to the pharmacokinetics
of nanoparticles, the physicochemical properties of the nanoparticles themselves and the
way how they are modified for delivery into the system also directly influence their
distribution in the organ system (Ahmad et al., 2021; Patra et al., 2018). In certain cases,
polyethylene glycol (PEG) density and lipids on the nanoparticle surface, such as lipid-
calcium-phosphate (LCP) nanoparticles, can influence the pharmacokinetics and
biodistribution of the nanoparticle. Liu, Hu & Huang (2014b) reported that delivering LCP
nanoparticles to hepatocytes depends on the concentration of PEG and the surface lipids.
LCP nanoparticles could be directed from hepatocytes to Kupffer cells by decreasing PEG
concentration on the particle surface. This study signifies the role of the physical
characteristics of the nanoparticles in their pharmacokinetics and biodistribution. It boils
down to that a complex array of interrelated, physicochemical, and biological factors of the
nanoparticles control the biodistribution of nanoparticles. These factors should be
considered while planning a pharmacokinetics study of any nano-sized material. A
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schematic representation of the factors and mechanism of nanoparticle toxicity is given in
Fig. 2.

MECHANISMS OF TOXICITY OF NANOPARTICLES
Nanoparticle causes adverse health effects by different means. Some possible toxicity
mechanisms include oxidative stress, inflammation, genetic damage, and immune system
dysfunction (Crisponi et al., 2017; Manke, Wang & Rojanasakul, 2013). Lysosomes often
target NP toxicity because most pass into the cells by endocytosis. NPs produce lysosomal
dysfunction by cytoskeleton disruption, alkalization of the lysosomal lumen, or NP
overload (Crisponi et al., 2017; Stern, Adiseshaiah & Crist, 2012).

Genotoxicity
Like any other general chemical forms, nanomaterials have the very same potential to
modulate immune responses in an organism and the potential to alter the constitution of
genetic material. Several researchers have proposed disturbances in nucleic acid sequences

Figure 2 Summary of properties responsible for nanotoxicity and mechanisms involved. Size.
interaction, solubility, accumulation, and chemical reactivity of nanoparticles play crucial roles in
nanotoxicity. Full-size DOI: 10.7717/peerj.17807/fig-2
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or simple damage to the DNA strands by nanoparticles (Akhtar et al., 2016; Ghosh, Ahmad
& Khare, 2018; Ghosh, Ahmad & Khare, 2019; Jeevanandam et al., 2018; Kumar &
Dhawan, 2013). The main mechanism of genotoxicity by nanomaterials in in-vitro or
in-vivo studies is oxidative damage, which is proposed to be the main mechanism of most
nanomaterials for their toxic potential (Akhtar et al., 2016; Dobrzynska et al., 2014; Kumar
& Dhawan, 2013; Powell et al., 2010; Xia, Li & Nel, 2009). Reactive oxygen species and
other free radicals/oxidative species are very well known to cause DNA damage (Juan et al.,
2021; Kunwar & Priyadarsini, 2011; Shi & Dansen, 2020). Other mechanisms may include
the direct interaction of nanomaterials with DNA/RNA and the release of toxic ions. A
range of nanoparticles is reported or suggested to exhibit genotoxic potentials in in-vitro,
in-vivo, or in-silico studies (Kumar & Dhawan, 2013). The reported nanoparticles for their
genotoxic potential include but are not limited to, nano-sized silver, titanium dioxide,
nickel, copper oxide, carbon nanotubes, etc.

Immunomodulation
Activation of neutrophils is considered the central event in acute inflammation episodes
(Dwivedi et al., 2011; Rahman et al., 2011; Rahman et al., 2008). Goncalves, Chiasson &
Girard (2010) reported the in-vitro activation of the human neutrophils by titanium
dioxide (TiO2) nanoparticles. The same study also demonstrated that TiO2 markedly and
rapidly induced tyrosine phosphorylation events, including phosphorylation of two key
enzymes significantly. The nanoparticles exhibit their immune-modulatory properties.
Because of their small size, nanoparticles can penetrate and accumulate much deeper
cellular and even sub-cellular boundaries, which can cause many undesirable and
uncharacterized effects. Nanoparticles may bind to serum proteins and act as haptens to
induce an immunological response, including activation of the complement system and
disturbance in the balance of the helper T cells. They may escape the phagocytic activity of
macrophages. They may discompose the adaptive or innate immunity leading to a
hyper-activated immune state or even a suppressed immune phenotype, p38
mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases-1/2
(Erk-1/2) (Goncalves, Chiasson & Girard, 2010). However, this in-vitro study exhibits the
influence of the TiO2 nanoparticles on the molecular pathways involved in regulating
inflammation and other immunological events. The probabilities of such incidences can be
extrapolated to the in-vivo conditions. Different types of materials may have different
effects on the immune system. For instance, cobalt and nickel nanoparticles have
inflammatory effects, whereas hydroxyapatite crystals release TNF-a from macrophages,
activating other phagocytes (Dwivedi et al., 2009). A hyperactive immune state or even a
suppressed immunophenotype may result from nanoparticles that evade the phagocytic
activity of macrophages, bind to serum proteins and act as haptens, activate complement
cascades, upset the Th1/Th2 balance, cause hemolysis or thrombogenicity, or disrupt
adaptive or innate immunity (Dwivedi et al., 2011). Certain NPs build up in local lymph
nodes, where dendritic cells can take them up and process them. They then interact with
self-proteins to change their antigenicity, which in turn causes altered immunological
reactions, including autoimmunity (Di Gioacchino et al., 2011; Dwivedi et al., 2009).
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Studies conducted in vitro showed that NPs could direct the production of cytokines
toward either Th1 (Pl, Pd, Ni, Co) or Th2 (Ti, mw, and sw Carbon) production patterns
(Di Gioacchino et al., 2011). Delogu et al. (2012) investigated the impact of functionalized
CNTs on immune cells and found strong activation of NK cells. Thus, considerable data
suggest that NPs exert immunotoxicity by affecting different immune system effector cells.

Oxidative stress
Oxidative stress is caused either by an increase in the production of reactive oxygen species
(ROS) depletion in the ability of cells to destroy ROS, or a combination of both. Several in
vivo and in vitro studies have pointed out that ROS generation and oxidative stress are
essential in NP-induced toxicity (Manke, Wang & Rojanasakul, 2013;Oberdörster, Stone &
Donaldson, 2007; Shvedova et al., 2012). Federici, Shaw & Handy (2007), found increased
ROS generation in rainbow trout by exposure to TiO2 NPs in a concentration-dependent
manner. Nanoparticles induce oxidative stress in several ways (Crisponi et al., 2017). It can
be generated directly from the surface of nanoparticles (Huang, Cambre & Lee, 2017).
Transition metal (iron, copper, chromium, vanadium, etc.) nanoparticles can generate
reactive oxygen, acting as catalysts in Fenton-type reactions (Risom, Møller & Loft, 2005).
Nanoparticles may enter mitochondria (Crisponi et al., 2017; Nguyen et al., 2015) and alter
their function, producing ROS. Activation of inflammatory cells, such as alveolar
macrophages and neutrophils, induced by phagocytosis of nanoparticles, can lead to the
generation of reactive oxygen species and reactive nitrogen species (Völs et al., 2022).
Oxidative stress corresponds with the physicochemical reactivity of NP. It involves
mitochondrial dysfunction, depletion of antioxidant enzymes, lipid peroxidation of
cellular membranes, protein modification, and DNA damage associated with cell and
tissue injury (Samrot & Noel Richard Prakash, 2023; Pacheco & Buzea, n.d.; Crisponi et al.,
2017). NP-driven ROS generation also contributes to the activation of cell signaling
pathways, inflammatory cytokine and chemokine expressions, and specific transcription
factor activation, which may lead to pathological consequences (Crisponi et al., 2017;
Manke, Wang & Rojanasakul, 2013; Medina et al., 2007). A schematic representation of
the toxic effects of nanoparticles at the cellular level is given in Fig. 3.

Inflammation
ROS and inflammation demonstrate an interdependent relationship in the case of
exposure to NP (Manke, Wang & Rojanasakul, 2013). Inflammation is the typical response
of the body to injury. When generated in moderation, inflammation helps fight against
infection and eliminate foreign invaders; however, in excess and chronic conditions, it can
lead to pathological conditions leading to the cause of many diseases (Jeong et al., 2022).
Various in vitro and in vivo experiments suggest that exposure to nanoparticles is
associated with mild to severe forms of inflammation, depending upon the size and
composition of the nanoparticle (Aldayel et al., 2023; Zhou, Jin & Ma, 2023).

An intricate cascade of intracellular and extracellular processes regulates inflammation.
Pro-inflammatory mediators, also known as cytokines, are secreted in response to
oxidative stress and are largely responsible for the immune system’s activation
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(Wolf-Grosse et al., 2017; Rahman et al., 2015). Inflammation has also been demonstrated
to directly cause toxicity and increase cell death through the development of toxic
by-products of inflammation such as ROS and complement proteins and through
receptor-induced necrosis (Khanna et al., 2015; Wallach, Kang & Kovalenko, 2014).
Increased production of pro-inflammatory proteins IL-6, IL-8, and MCP-1, as well as
activation of the JNK and p53 pathways, have been linked to silica nanoparticle toxicity
(Liu & Sun, 2010). The PI3-K/Akt/mTOR signaling cascade is vital for cell survival and
proliferation because it controls the cell cycle. PI3-K signaling was reported to promote the
upregulation of Cox-2, iNOS, and pro-inflammatory cytokines (IL-6, IFN-γ, TNF-a, IL-
17, and regulatory cytokine IL-10) in macrophages with exposure to zinc oxide
nanoparticles (Khanna et al., 2015; Roy et al., 2014). As a result, there is evidence that NPs
can have an inflammatory effect by activating many signaling pathways and producing
reactive oxygen species.

METHODS FOR ASSESSING THE TOXICITY OF
NANOMATERIALS
To assure a responsible and sustainable growth of nanotechnology, the health, and safety
associated issues of engineered nanomaterials and related products need to be addressed at
a rate commensurate with nanotechnology’s expansion. The toxicity assessment of any
nano-sized material follows the same path as any other chemical. Both in-vitro and in-vivo
approaches are considered while assessing the safety of a nano material-related product

Figure 3 Toxicity of nanoparticles at the cellular level. A human is exposed to these nanoparticles by
different means, which enters into the cells by lysosomes mediated endocytosis, which results in lysosome
dysfunction and ROS generation. These ROS inside the cells causes lipid peroxidation of the membrane,
protein modification, mitochondrial dysfunction, and DNA damage.

Full-size DOI: 10.7717/peerj.17807/fig-3
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(Table 3). The related safety concerns are also increasing with the emerging applications of
nanotechnology in industries and household products. Human health concerns for
nanomaterials have been established historically by epidemiological and clinical studies on
naturally occurring fibers and particles such as asbestos and silica (Ahmad, Mishra &
Sardar, 2014b; Alam et al., 2018; Ghosh, Ahmad & Khare, 2019; Hillegass et al., 2010;
Mohajerani et al., 2019). The nano-sized fibers of asbestos and silica enter the
body through inhalation and cause a range of ailments, including lung fibrosis and

Table 3 Aspects of assessment of characterization of nanomaterials.

S.
no.

Aspect of
assessment

Description References

1. Nanomaterial
characterization

Characterization of Nanomaterials describing the size, shape, surface
area, surface chemistry, composition, stability, and other physical and
chemical characteristics of nanomaterials. This facilitates
understanding of the possible relationships with biological systems.

Jayawardena et al. (2021), Banerjee et al. (2016)

2. In vitro studies Testing the toxicity of nanomaterials through cell culture experiments.
This involves evaluating different cell types’ inflammatory responses,
genotoxicity, oxidative stress, proliferation, apoptosis, and viability.

Ganguly, Breen & Pillai (2018), Verma et al.
(2021).

3. In vivo studies Animal studies evaluate nanomaterials’ pharmacokinetics,
biodistribution, and toxicity after exposure via various routes (e.g.,
ingestion, injection, or inhalation). This aids in comprehending
long-term toxicity and systemic effects.

Lopez-Chaves et al. (2018), De Matteis (2017).

4. Genotoxicity
assessment

Assessing the effects of immune system exposure to nanomaterials,
including cytokine production, immune cell activation, and
hypersensitivity reactions. To evaluate the possible
immunomodulatory effects of nanomaterials is essential.

Landsiedel et al. (2022), Siivola et al. (2022),
Elespuru et al. (2018).

5. Neurotoxicity
assessment

Investigating how exposure to nanomaterials affects the nervous system,
including how it affects behavior, neuronal viability, morphology, and
neurotransmitter release. This is critical for assessing the possible
neurotoxic impact of nanoparticles.

Boyes & van Thriel (2020), Sofranko et al.
(2021), Liu et al. (2020)

6. Environmental fate
and transport

Examining the aggregation, sedimentation, bioaccumulation, and
possible ecological effects of nanomaterials in environmental matrices
like soil, water, and air. This aids in determining exposure pathways
and environmental risks.

Suhendra et al. (2020), Baalousha et al. (2016),
Rawat et al. (2018).

7. Risk assessment and
management

Integrating data from toxicological research to evaluate possible risks of
exposure to nanomaterials and create risk-reduction plans. This covers
exposure assessment, dose-response modeling, and regulatory
compliance.

Trump et al. (2018), Laux et al. (2018).

8. Nanomaterial
interactions with
biomolecules

Investigation of how nanomaterials interact with biomolecules such as
proteins, lipids, and nucleic acids, which can affect their biological
behavior and toxicity. This helps in gaining an understanding of their
mode of action and potential adverse effects.

Nienhaus, Wang & Nienhaus (2020), Fadeel
(2019), Wang, Cai & Chen (2019).

9. Long-term exposure
studies

Analyzing the interactions between biomolecules, including proteins,
lipids, nucleic acids, and nanomaterials, can influence these materials’
toxicity and biological activity. This aids in comprehending their
mechanism of action and possible side effects.

Abarca-Cabrera, Fraga-García & Berensmeier
(2021), Auría-Soro et al. (2019), Casalini et al.
(2019).

10. Standardization and
guidelines

Establishing standardized protocols and guidelines for evaluating
nanotoxicology to guarantee the coherence and comparability of study
findings. This makes evaluating risk and making regulatory decisions
about nanomaterials easier.

Rasmussen et al. (2019), Fernández-Cruz et al.
(2018), Potthoff et al. (2015).
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cancer. Table 3 depicts the various aspects of assessment of the characterization of
nanomaterials.

In vitro methods
The in vitro model, which mainly includes cultured cells, provides a rapid and effective
assessment of some toxicological endpoints associated with nanomaterial exposure (Eskes
et al., 2017; Natoli et al., 2012). In-vitro assessments allow mechanism-based toxicity
evaluations and provide precise information on how nanoparticles interact with biological
systems in many ways (Gupta & Xie, 2018; Savage, Hilt & Dziubla, 2019). In-vitro assays
include (i) cell viability/cytotoxicity assay, mechanistic estimations, (ii) microscopic
analyses, (iii) gene expression evaluation, and (iv) genotoxicity estimations etc.

Several assays have been mentioned to assess the effects of nanomaterials on cell
viability or cytotoxicity. The review of the in-vitro studies by Hillegass et al. (2010)
recommends collecting standard growth curve data to determine the baseline growth
properties of selected cells. Various in-vitro estimations are performed to estimate a
chemical or agent (Including nanomaterials). The assays include (i) trypan blue exclusion
assay, (ii) microculture tetrazolium assay (MTA), (iii) clonogenic assay or colony-forming
efficiency (CFE), (iv) lactate dehydrogenase (LDH) Assay, (v) TdTdUTP nick end labeling
(TUNEL) and apostate assays. However, several other assays can also be employed to
estimate cytotoxicity (Balouiri, Sadiki & Ibnsouda, 2016). Other in vitro nanotoxicity
assays include the examination of lipid peroxidation to elucidate the role played by
oxidative stress and methods to investigate apoptosis, including cytochrome c release from
mitochondria and caspase activation (Hillegass et al., 2010).

In-vitro assays can also be exploited to estimate the nanomaterials’ cytotoxicity and
their probable effect on cell proliferation (Leudjo Taka et al., 2021). For cellular
proliferation estimation, the assays that have been recommended include (i) DNA content
estimation, (ii) Incorporation of Bromodeoxyuridine (BrdU), (iii) Ki-67 nuclear antigen
estimation, (iv) proliferating cell nuclear antigen (PCNA).

The genotoxicity of the nanomaterials can be evaluated in both in-vitro and in-vivo
systems. Estimations in in-vitro are much simpler and easier when compared with the
in-vivo systems. In-vitro systems are less time-consuming, and one can get the results in a
short period (Barabadi et al., 2019; Elespuru et al., 2018). The in-vitro assays for
genotoxicity include (i) Ames assay in Salmonella typhimurium, and Escherichia coli, (Pan,
2021) (ii) oxidized guanine bases estimation, (Cui et al., 2013) (iii) analysis of
chromosomal aberration, (Clare, 2012) (iv) micronuclei assay (Doherty, 2012) (v) single
cell gel electrophoresis (comet) assay (Karlsson, 2010).

In-vivo methods
Over the last decade, nanotoxicology methods have mostly relied on in vitro cell-based
estimations, which provide a good amount of information related to mechanistic
approaches. Still, they do not account for the complexity of in vivo systems concerning
biodistribution, metabolism, hematology, immunology, target organs, and neurological
consequences. Compared to many reports published about nanoparticles, only 3% are
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devoted to studying their critical biological effects in vivo (Greish, Thiagarajan &
Ghandehari, 2012; Hussain et al., 2020).

Various nanotoxicological studies incorporate the traditional in-vivo models for safety
evaluation. The models include zebrafish, Xenopus embryos, mice, rats, and sometimes a
primate (Macaque) (Yong et al., 2013).

Zebrafish (Danio rerio) is extensively used as an animal model for toxicological studies
(Hill et al., 2005; Sipes, Padilla & Knudsen, 2011). The Zebrafish genome project has placed
zebrafish in an attractive position for use as a toxicological model. The zebrafish embryo is
also a useful small model for investigating vertebrate development because of its
transparency, low cost, transgenic and morpholino capabilities, conservation of cell
signaling, and similarities with mammalian developmental phenotypes (Sipes, Padilla &
Knudsen, 2011). The zebrafish has also been proposed and used as an animal model in
toxicological studies associated with nano-sized materials (Bohnsack et al., 2012; Fako &
Furgeson, 2009).

Mouse and rat models have been used in life science research for several decades. They
are also used for toxicological evaluations of industrial and environmental chemicals. The
main reason for the selection of mice as a model is its genomic similarity with humans, and
it makes the primary base for the wide use of mice in the life sciences, pharmacological and
toxicological research; the mouse as a mammalian model provides corresponding
experimental conditions and analogous results to humans, though with certain limitations.
The use of animal models sometimes raises certain ethical issues. However, it has been
proven a successful animal model for preclinical research. Nanotoxicological studies have
also adopted the mouse as a model for estimating the toxic potential of nanomaterials
(Bahadar et al., 2016; Ferreira, Cemlyn-Jones & Cordeiro, 2013; Lam et al., 2004). Rats are
also used for experimental purposes similarly (Devoy et al., 2020; Ferreira, Cemlyn-Jones &
Cordeiro, 2013; Konoeda et al., 2020; Mendonca et al., 2016; Warheit, 2004). Animal
models are required to estimate the absorption of material into the biological system, its
distribution in the body, its fate after metabolism, and, ultimately, its modes of elimination
from the body (ADME studies). Absorption, distribution, metabolism, excretion,
pharmacokinetics (ADME/PK), and carcinogenic and teratogenic studies are also required
to evaluate nanomaterial toxicity (Greish, Thiagarajan & Ghandehari, 2012; Raja et al.,
2017; Zielinska et al., 2020). While studying the toxicological effects of nanoparticles, one
should cautiously consider the physicochemical properties that include size, shape, surface
area, surface charge, charge density, chemical composition, the density of structure,
presence of pores, and surface activating sites. These characteristics of nanomaterials may
influence their toxicological effects.

CONCLUSION AND FUTURE PROSPECTS
In conclusion, worries regarding nanomaterials’ possible negative impacts on the
environment and human health have grown as a result of their rapid development across a
variety of industries. To allay these worries, the safe development and use of nanomaterials
must come first. To ensure the proper use of nanomaterials and to promote their creation,
regulatory rules must be established and reinforced. Ensuring the safety of nanomaterials,
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especially those destined for medical and diagnostic applications, requires meticulous
evaluation of their physicochemical properties during the fabrication process. This
thorough characterization helps identify possible hazards and provides information for the
creation of safer nanomaterials. Further investigation into the appropriate handling, use,
and storage of recently developed nanomaterials is essential to reduce exposure in the
workplace and avoid accidental release into the environment. Toxicologists are actively
looking into the dangers and hazards that come with nanomaterials, and developing
sophisticated toxicological methodologies is crucial to a quicker and more precise
assessment. The toxicity of nanomaterials is greatly influenced by their physicochemical
characteristics, including size, chemical composition, surface shape, and aggregation state.
This emphasizes the need to develop environmentally benign, non-toxic nanoparticles.
Furthermore, targeted research efforts, the application of systems biology methodologies,
and in-silico techniques are needed to comprehend the intricate relationships between
these features and nanoparticle toxicity. These cutting-edge techniques can aid in the
creation of stricter safety laws and safer nanomaterials by offering insightful information
about anticipating and reducing potential risks related to nanoparticles. In summary,
companies, regulatory agencies, and scientists must work together to protect the
environment and public health as nanotechnology advances. Responsible nanomaterial
design, in-depth characterization, and creative research are key components of our
approach to ensuring the safe and sustainable advancement of nanotechnology for the
good of society. In summary, companies, regulatory agencies, and scientists must work
together to protect the environment and public health as nanotechnology advances.
Responsible nanomaterial design, in-depth characterization, and creative research are key
components of our approach to ensuring the safe and sustainable advancement of
nanotechnology for the good of society. Understanding the interdisciplinary nature of
nanotoxicology research and its dynamic character is crucial. To thoroughly evaluate the
safety of nanomaterials, nanotoxicology incorporates concepts from several scientific
disciplines, including toxicology, materials science, chemistry, biology, and environmental
science. This assessment also recognizes that nanotechnology is a dynamic field, with quick
developments producing new nanomaterials with a wide range of uses. When novel
nanomaterials are created and released into the market, it is critical to methodically and
proactively assess any possible dangers. Furthermore, this review emphasizes how crucial it
is to take into account nanomaterials’ possible indirect effects on ecosystems and public
health in addition to their direct toxicity. This entails evaluating nanomaterials’
environmental fate and transit, environmental persistence, and potential for
bioaccumulation in food chains. The regulatory elements of nanotoxicology are also
covered in this review, emphasizing the necessity of strong risk assessment frameworks
and regulatory rules to guarantee the safe use of nanomaterials. Global regulatory bodies
are becoming more aware of the special difficulties that nanoparticles provide and are
attempting to develop uniform guidelines for handling and evaluating them. The
introduction concludes by highlighting the contribution that cooperation and knowledge
exchange make to the advancement of nanotoxicology research. Together, scientists,
engineers, regulators, and politicians can tackle the multifaceted issues surrounding the
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safety of nanomaterials and advance responsible nanotechnology innovation by cultivating
interdisciplinary cooperation. In conclusion, this review offers a thorough review of
nanotoxicology, addressing important ideas, difficulties, and future directions in the
discipline. The review article establishes the framework for a thorough investigation of
nanomaterial toxicity and its consequences for human health and the environment by
recognizing the multidisciplinary nature of nanotoxicology research, the ever-changing
field of nanotechnology, and the significance of regulatory oversight.
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