
Integrating precision medicine in the study and clinical treatment of 
a severely mentally ill person

Background: In recent years, there has been an explosion in the number of technical and medical 

diagnostic platforms being developed. This has greatly improved our ability to more accurately, and 

more comprehensively, explore and characterize human biological systems on the individual level. 

Large quantities of biomedical data are now being generated and archived in many separate research 

and clinical activities, but there exists a paucity of studies that integrate the areas of clinical 

neuropsychiatry, personal genomics and brain-machine interfaces. Methods: A single person with 

severe mental illness was implanted with the Medtronic Reclaim® Deep Brain Stimulation (DBS) 

Therapy device for Obsessive Compulsive Disorder (OCD), targeting his nucleus accumbens / anterior

limb of the internal capsule. Programming of the device and psychiatric assessments occurred in an 

outpatient setting for over two years. His genome was sequenced and variants were detected in the 

Illumina Whole Genome Sequencing Clinical Laboratory Improvement Amendments (CLIA)-certified

laboratory. Results: We report here the detailed phenotypic characterization, clinical-grade whole 

genome sequencing (WGS), and two-year outcome of a man with severe OCD treated with DBS. 

Since implantation, this man has reported steady improvement, highlighted by a steady decline in his 

Yale-Brown Obsessive Compulsive Scale (YBOCS) score from ~38 to a score of ~25. A rechargeable 

Activa RC neurostimulator battery has been of major benefit in terms of facilitating a degree of 

stability and control over the stimulation. His psychiatric symptoms reliably worsen within hours of 

the battery becoming depleted, thus providing confirmatory evidence for the efficacy of DBS for OCD

in this person. WGS revealed that he is a heterozygote for the p.Val66Met variant in BDNF, encoding 

a member of the nerve growth factor family, and which has been found to predispose carriers to 

various psychiatric illnesses. He carries the p.Glu429Ala allele in methylenetetrahydrofolate reductase 

(MTHFR) and the p.Asp7Asn allele in ChAT, encoding choline O-acetyltransferase, with both alleles 

having been shown to confer an elevated susceptibility to psychoses. We have found thousands of 

other variants in his genome, including pharmacogenetic and copy number variants. This information 

has been archived and offered to this person alongside the clinical sequencing data, so that he and 
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others can re-analyze his genome for years to come. Conclusions: To our knowledge, this is the first 

study in the clinical neurosciences that integrates detailed neuropsychiatric phenotyping, deep brain 

stimulation for OCD and clinical-grade WGS with management of genetic results in the medical 

treatment of one person with severe mental illness. We offer this as an example of precision medicine 

in neuropsychiatry including brain-implantable devices and genomics-guided preventive health care.
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Introduction
There is a substantial body of literature that highlights the breadth of human phenotypic diversity1-12. And
yet,  despite  a  body  of  scientific  work  demonstrating  significant  contributions  from  genetic  and
environmental heterogeneity to this diversity, relatively broad phenotypic categorizations still dominate
traditional medical classifications13-17. Furthermore, over the past 50 years, psychiatry, and medicine in
general, has shifted its focus toward providing pre-market proof of the overall efficacy and safety of drugs
and other interventions in randomized clinical trials involving hundreds (and sometimes thousands) of
people, despite the existence of phenotypic heterogeneity and variable expressivity in nearly every person
and every disease over  time6,8,9,18.  This  course  of  affairs  was brought  about  by a  large confluence of
societal factors, including safety concerns stemming from numerous biomedical transgressions over the
years 19, including the indiscriminate use of lobotomy in the field of psychiatry20,21. However, there is some
evidence suggesting that we might be now undergoing a transformation of the medical world22,23, with a
return  to  individual-focused  medical  care  and to  the  realization  that  each  individual  is  truly unique,
influenced by their own genetic and environmental factors3,5,24-26. 

Along  these  lines,  deep  brain  stimulation  (DBS)  has  emerged  as  a  relatively  safe  and  reversible
neurosurgical  technique  that  can  be  used  in  the  clinical  treatment  of  traditionally treatment  resistant
psychiatric  disorders.   DBS enables  the  adjustable  and stable  electrical  stimulation  of  targeted  brain
structures.  A recent paper by Hoflich et al27 notes variability in treatment outcomes for DBS patients,
which  is  likely due  to  variable  responses  to  differences  in  targeted  stimulation  regions  and  in  post-
operative stimulation parameters.  Both sources of variation, the authors note, will effect the stimulation of
different brain tissue fibers having different anatomical  and functional  connections.   Furthermore, the
authors suggest that not every target will be suitable for every person, as there exists a large degree of
inter-individual  variability of  brain region  activation during a  reward task in  healthy volunteers,  and
suggest  that  future work could (and should) focus on developing surgical  plans based on individual-
specific activations, functional connectivity and/or tractography.  This work exemplifies the large degree
of clinically relevant biological variability that exists in terms of individual clinical characteristics. 

Ongoing clinical trials testing the “Effectiveness of Deep Brain Stimulation for Treating People With
Treatment Resistant Obsessive-Compulsive Disorder”28 detail the below exclusion criteria: 

• current or past psychotic disorder, 

• a clinical history of bipolar mood disorder, and/or 

• an inability to control suicide attempts, imminent risk of suicide in the investigator's judgment, or
a  history of  serious  suicidal  behavior,  which  is  defined  using  the  Columbia-Suicide  Severity
Rating Scale (C-SSRS) as either: one or more actual suicide attempts in the 3 years before study
entry with the lethality rated at 3 or higher, or one or more interrupted suicide attempts with a
potential lethality judged to result in serious injury or death. 

Unfortunately, these study criteria exclude the most severe cases of OCD, as many people with severe
OCD also  have  severe  depression,  usually  with  passive  (and sometimes  active)  suicidal  ideation29-31.
Obsessions and compulsions can be quite severe, with very poor insight, sometimes to a delusional or
psychotic degree, and there can also be co-occurring psychoses in any individual.  Each person is to some
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degree unique  in  his  or  her  psychiatric  presentation,  and a  tailored  evaluation schema may be more
effective in clinical treatment. Indeed, categorical thresholds for clinical trials and/or general psychiatric
treatment lack the continuous gradation that would otherwise enable a high degree of treatment precision
for any one person.  Due in part to these substantial hurdles, there are unfortunately very few detailed
descriptions of the efficacy of DBS for OCD, with the number of published case studies on the efficacy of
DBS for OCD covering upwards of ~100 people 32-47. This is really quite small, given that there are 6-7
billion people on this planet, with some estimates of the prevalence of OCD ranging from 0.4-1.2% in the
community and perhaps more in military veterans 48.

There has, in parallel, been an explosive growth in exome and whole genome sequencing (WGS) 25, led in
part  by dramatic  cost  reductions.  The same is  true  for  genotyping  microarrays,  which are  becoming
increasingly denser with various markers while maintaining a relatively stable cost  49.  In the medical
world, WGS has led to the discovery of the genetic basis of Miller Syndrome 50 and in another instance, it
was used to investigate the genetic basis of Charcot-Marie-Tooth neuropathy 51, alongside a discussion of
the ‘return of results’ 52. In 2011, the diagnosis of a pair of twins with dopa (3,4-dihydroxyphenylalanine)
responsive dystonia (DRD; OMIM #128230) and the discovery through WGS that they carried compound
heterozygous mutations in the SPR gene encoding sepiapterin reductase led to supplementation of l-dopa
therapy with 5-hydroxytryptophan, a serotonin precursor, resulting in clinical improvements in both twins
53.  

As the cost of WGS decreases, evidence is emerging that exon capture and sequencing only achieves a
high depth of sequencing coverage in about 90% of the exons, whereas WGS does not involve a capture
step and thus obtains better coverage on >95% of all exons in the genome. Of course, even the definition
of the exome is a moving target, as the research community is constantly annotating and finding new
exons not previously discovered  54,55, and therefore WGS is a much more comprehensive way to assess
coding and non-coding regions of the genome. Given that WGS can impact clinical care, it is now a matter
of economics and feasibility in terms of whether and when WGS will be adopted widely in a clinical
setting 25,56. 

In  our  own efforts  to  push forward the field of  precision medicine,  we are  studying individuals  and
families with a diverse range of illnesses.  We report  here one effort  to integrate the areas of clinical
neuropsychiatry, brain machine interfaces and personal genomics in the individualized care of one person.
We evaluate and treat an individual with DBS for treatment refractory OCD and also gauge the feasibility
and usefulness of the medical integration of genetic data stemming from whole genome sequencing. To
date, there have been relatively few reports on studies detailing the effective application of DBS for OCD;
we report here one such study.  

Methods

Ethics compliance 
Research was carried out in compliance with the Helsinki Declaration. The corresponding author (GJL)
conducted all clinical evaluations and he is an adult psychiatry and child/adolescent psychiatry diplomate
of  the  American  Board  of  Psychiatry and Neurology.  GJL obtained  IRB approval  #00038522 at  the
University  of  Utah  in  2009-2010  to  evaluate  candidates  for  surgical  implantation  of  the  Medtronic
Reclaim® DBS Therapy for OCD, approved under a Humanitarian Device Exemption (HDE) for people
with chronic, severe, treatment-resistant OCD57.  The interdisciplinary treatment team consisted of one
psychiatrist (GJL), one neurologist and one neurosurgeon. Implantation ultimately occurred on a clinical
basis at another site. Written consent was obtained for phenotyping and whole genome sequencing through
Protocol  #100  at  the  Utah  Foundation  for  Biomedical  Research,  approved  by  the  Independent
Investigational Review Board, Inc. Informed and written consent was also obtained using the Illumina
Clinical Genome Sequencing test consent form, which is a clinical test ordered by the treating physician,
G.J.L.
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Evaluation and recruitment for DBS for treatment-refractory OCD
GJL  received  training  regarding  DBS  for  OCD  at  a  meeting  hosted  by  Medtronic  in  Minneapolis,
Minnesota, in September 2009. The same author attended a Tourette Syndrome Association meeting on
DBS for  Tourette  Syndrome,  Miami,  Florida,  in  December  2009.  Approximately ten candidates  were
evaluated over a one-year period in 2010. The individual discussed herein received deep brain stimulation
surgery at  another  site,  and  then  returned  for  follow-up  with  GJL.  Another  psychiatrist,  author  RR,
provided ongoing consultation throughout the course of this study.  Although other candidates have since
returned for follow-up (with GJL), no others have been surgically treated. 

CLIA Whole Genome Sequencing and the Management of Results from 
sequencing data

Whole genome sequencing was ordered on this individual as part of our ongoing effort to implement
precision medicine in the diagnosis,  treatment,  and preventive care for individuals.  His genome was
sequenced in the  Illumina Clinical Services Laboratory (CLIA-certified, CAP-accredited) as part of the
TruSight Individual Genome Sequencing (IGS) test, a whole-genome sequencing service using Illumina’s
short- read sequencing technology58. Although clinical genome sequencing was ordered by GJL on a
clinical basis (thus not  requiring IRB approval),  the clinical  phenotyping and collection of blood and
saliva for other research purposes was approved by the Institutional Review Board (iIRB) (Plantation,
Florida) as part of a study protocol at the Utah Foundation for Biomedical Research (UFBR).  Consistent
with laboratory-developed tests,  WGS has not  been cleared or  approved by the U.S.  Food and Drug
Administration59. The entire procedure included barcoded sample tracking of the blood collected by GJL
from this person, followed by DNA isolation and sequencing in the Illumina CLIA lab. Data statistics are
summarized  in  Supplemental  Fig.  S1.  For  the  bioinformatics  analyses,  Illumina  utilized  the  internal
assembler and variant  caller  CASAVA (short  for Consensus Assessment of Sequence And VAriation).
Reads were mapped to the Genome Reference Consortium assembly GRCh37.  Data for sequenced and
assembled genomes was provided on one hard drive, formatted with the NTFS file system and encrypted
using  the  open  source  cross  platform  TrueCrypt  software  (www.truecrypt.org)  and  the  Advanced
Encryption Standard (AES) algorithm (Federal Information Processing Standards Publication 197).

Genotyping  array  data  was  generated  in  parallel  of  the  CLIA whole  genome  sequencing,  using  the
Illumina  HumanOmni2.5-8 bead  chip.  The  encrypted  hard  drive  contains  several  files,  including  a
“genotyping folder” within which there is a genotyping report in a text-based tab-delimited format  (see
Supplemental File S1).  See Supplemental File 11 for more details on the genotyping array data. 

Insertions,  deletions  and structural  alterations  are  not  validated variant  types  in  the  Illumina Clinical
Services Laboratory. Insertions and deletions provided in the gVCF file are for investigative or research
purposes only. A medical report and the raw genomic data were provided back to the ordering physician
(GJL) on an encrypted hard drive as part of the Illumina Understand your Genome Symposium, held in
October 2012, which included the clinical evaluation of 344 genes (see Supplemental File S2 and S3)60. 

To perform more comprehensive downstream analyses using a greater portion of the genomic data, all of
the variants that were detected by the Illumina CLIA WGS pipeline were imported and analyzed within
the  Omicia  Opal  web-based  clinical  genome  interpretation  platform (Supplemental  Fig.  S5),  version
1.5.061. The  Omicia  system annotates  variants  and  allows  for  the  identification  and  prioritization  of
potentially  deleterious  alleles.  Omicia  Scores,  which  are  computationally  derived  estimates of
deleteriousness,  were  calculated  by  using  a  decision-tree  based  algorithm,  which  takes  as  input  the
Polyphen, SIFT, MutationTaster and PhyloP score(s), and derives an integrative score between 0 and 1.
Receiver  operating  characteristic  (ROC)  curves  are  plotted  for  that  score  based  on  annotations  from
HGMD.  For  further  details  on  the  method  and  the  program  see  the  Supplemental  File  S11  and
www.omicia.com. The  AssureRx  Health,  Inc.  annotation  and  analysis  pipeline  was  used  to  further
annotate variants (see Supplemental File S11 for more detailed methods).

We also applied a recently published method,  ERDS (Estimation by Read Depth with SNVs)  version
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1.06.0462, in combination with genotyping array data, to generate a set of CNV calls.   ERDS starts from
read depth information inferred from BAM files, but also integrates other information including paired
end mapping and soft-clip signature, to call CNVs sensitively and accurately. We collected deletions and
duplications that were >200 kb in length, with confidence scores of >300. CNVs that were detected by the
ERDS method were visually inspected by importing and visualizing the read alignment data in the Golden
Helix  Genome  Browser,  version  1.1.1.  CNVs  were  also  independently  called  from  Illumina
HumanOmni2.5-8v1 genotyping  array data.   Array intensities  were imported  and analyzed within the
Illumina GenomeStudio software suite, version 1.9.4.  LogR values were exported from GenomeStudio
and imported into Golden Helix SVS, version 7.7.5.  A Copy Number Analysis Method (CNAM) optimal
segmentation algorithm was used to generate a list of putative CNVs, which was then restricted to include
only CNVs that were >200kb in length with average segment LogR values of > 0.15 and < -0.15 for
duplications and deletions, respectively.  LogR and covariate values were plotted and visually inspected at
all  genomic  locations  where  the  CNAM method  detected  a  CNV.   CNVs  that  were  simultaneously
detected by both methods (ERDS and CNAM) were considered to be highly confident CNVs.  Highly
confident  CNVs  were,  again,  visually  inspected  within  Golden  Helix  Genome  Browser  to  further
eliminate any artefactual CNV calls.

A board-certified genetic counselor was consulted by GJL prior to returning results, and all therapy and
counseling was provided by GJL.

Results

Pertinent clinical symptoms and treatment
A 37-year old man and U.S. veteran (here named with pseudonymous initials M.A.) was evaluated by GJL
in 2010 for severe, treatment-refractory obsessive compulsive disorder (OCD), which is an illness that can
be  quite  debilitating63. M.A.  had  a  lifelong  history of  severe  obsessions  and  compulsions,  including
contamination  fears,  scrupulosity,  and  the  fear  of  harming  others,  with  much  milder  symptoms  in
childhood  that  got  much  worse  in  his  early  20’s.   His  Yale-Brown  Obsessive  Compulsive  Scale
(YBOCS)64,65 ranged from 32-40, indicating extremely severe OCD. Perhaps the worst period of OCD
included a 5-day, near continuous, period of tapping on his computer keyboard as a compulsion to prevent
harm from occurring to his family members.   M.A. had suffered throughout his life from significant
periods of depression with suicidal ideation, and he had attempted suicide at least three times. His prior
psychiatric history also includes episodes of paranoia relating to anxieties from his OCD, and he continues
to be treated with biweekly injections of risperidone.

His treatment history included over 15 years of multiple medication trials, including clomipramine and
multiple SSRIs at high doses, including fluoxetine at 80 mg by mouth daily, along with several attempts
with outpatient exposure and ritual prevention (ERP) therapy66. M.A. inquired and was evaluated by GJL
at the University of Utah and then at two other centers independently offering deep brain stimulation for
OCD.  One of these centers required (as a condition for eligibility for an ongoing clinical trial) a two-week
inpatient hospitalization with intensive ERP, which was documented as improving his YBOCS score to 24
at discharge. He maintains that he actually experienced no improvement during that hospitalization, but
rather told the therapists what they wanted to hear, as they were “trying so hard”. See the Supplemental
File S11 for other clinical details. 

The teams at the University of Utah and two other centers declined to perform surgery due to his prior
history of severe depression, suicide attempts and possible psychoses with paranoia.  Through substantial
persistence of M.A. and his family members, a psychiatrist and neurosurgeon at a fourth center decided
that he was an appropriate candidate for surgical implantation of the Medtronic Reclaim® DBS Therapy
device for  OCD, approved under  a  Humanitarian Device Exemption (HDE) for  people  with chronic,
severe, treatment-resistant OCD57, and he was implanted in January of 2011 (Fig. 1). The device targets
the nucleus accumbens / anterior limb of the internal capsule (ALIC). A detailed account of the surgical
procedure can be found in the Supplemental File 11.
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Clinical results for DBS for treatment-refractory OCD
After  healing  for  one  month,  the  implanted  device  (equipped  with  the  Kinetra  Model  7428
Neurostimulator)  was  activated  on  February 14,  2011,  with  extensive  programming  by an  outpatient
psychiatrist, with bilateral stimulation of the ALIC.  Final settings were case positive, contact 1 negative
on the left side at 2.0 V, frequency 130 Hz, and pulse width 210 usec, and case positive, contact 5 negative
on the right side with identical settings.

Over the next few months, his voltage was increased monthly in increments of 0.2-0.5 V by an outpatient
psychiatrist. He returned to one of the author’s (GJL) for psychiatric treatment in July 2011, at which time
his voltage was set at 4.5 V bilaterally. His depression had immediately improved after the surgery, along
with many of his most irrational obsessions, but his YBOCS score still remained in the 35-38 range. From
July 2011-December 2011, his voltage was increased bilaterally on a monthly basis in increments of 0.2 V,
with steady improvement with his OCD until his battery started to lose charge by December 2011. This
caused him considerable anxiety, prompting him to turn off his battery in order to “save battery life”,
which unfortunately led to a complete relapse to his baseline state in a 24 hour period, which was reversed
when he turned the battery back on. The battery was surgically replaced with a rechargeable  Activa RC
neurostimulator  battery  in  January  2012,  and  the  voltage  has  been  increased  monthly  in  0.1-0.2  V
increments until the present time (May 2013). 

At every visit,  M.A. has  reported improvements,  with reductions of  his obsessions and compulsions,
marked by a steady decline in his YBOCS score (Fig. 3). M.A. has started to participate in many activities
that he had never previously been able to engage in. This includes: exercising (losing 50 pounds in two
years) and volunteering at the church and other organizations. In fact, M.A. started dating and recently
became engaged to be married, highlighting his improvement in daily functioning. New issues that M.A.
reports  are  consistent  tenesmus,  occasional  diarrhea  (which  he  can  now  tolerate  despite  prior
contamination obsessions) and improved vision (going from 20/135 to 20/40 vision, as documented by his
optometrist), with him no longer needing to wear glasses. It is unknown whether the DBS implant has
contributed to any of these issues. Attempts to add fluoxetine at 80 mg by mouth daily for two months to
augment any efficacy from the DBS and ERP were unsuccessful, mainly due to no discernible benefit and
prominent sexual side effects. M.A. still receives an injection of 37.5 mg risperidone every two weeks for
his past history of psychoses; otherwise, he no longer takes any other medications. There has not been any
exacerbation of psychoses in this individual during the two years of treatment with DBS.

CLIA certified Whole Genome Sequencing results
The Illumina WGS clinical evaluation included manual annotation of 344 genes  (see Supplemental Fig.
S2, Supplemental File S2 and S3), which led to the following conclusion: 

“No pathogenic  or  likely  pathogenic  variants  were  found in  the  344 genes  evaluated  that  are
expected to be clinically significant for the patient. The coverage for these 344 genes is at least
99%. Therefore, significant variants could exist that are not detected with this test.”

The clinical evaluation did, however, identify M.A. as a carrier for a variant (c.734G>A ,p.Arg245Gln) in
PHYH,  which  has  been  associated  in  the  autosomal  recessive  or  compound heterozygote  states  with
Refsum disease, which is an inherited condition that can lead to vision loss, anosmia, and a variety of
other signs and symptoms67. In silico prediction programs suggest little impact; however, the variant is
rare with a 1000 Genomes frequency of ~0.18%. In this regard, it is worth noting that M.A. has always
had poor night vision and enlarged pupils, and, as a result of this genetic finding, we met with M.A.’s
treatment  team at  his  Veteran’s  Affair’s  (V.A.)  medical  center  and learned  that  he  had  recently been
diagnosed with bilateral cataracts, enlarged pupils, and vision loss. We also learned that M.A.’s mother
and  maternal  grandfather  have  a  history  of  enlarged pupils  with  poor  vision,  and  we  are  currently
following up whether this might be related in any way to this particular variant and Refsum disease.  This
finding is one example of why it is important to archive and re-interpret his genome going forward, as any
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number of variants could influence his medical care over the course of his life.  To achieve this, one of us
(GJL) has previously argued in favor of an analytic-interpretive split in the area of clinical genomics, in
which WGS is discrete deliverable clinical unit, allowing for multiple downstream interpretive analyses,
by  any number  of  people,  including  the  individual  and/or  his/her  health  care  providers59.  We  have
implemented that model here with M.A. by archiving and offering to him and his health care providers the
encrypted hard drive containing his “raw” sequencing data, along with analyzing the data with several
downstream pipelines (Fig. 2). 

Further  downstream  analyses  identified  and  prioritized  several other  potentially  clinically  relevant
variants.  Variants that were imported into the Omicia Opal system were filtered to include those that had a
high likelihood of being damaging (as defined by an Omicia score > 0.7) and those that have supporting
Online  Mendelian  Inheritance  in  Man  (OMIM;  an  online  database  of  human  genetics  and  genetic
disorders) evidence.  We chose to filter based on an Omicia Score of > 0.7 as this value derives a slightly
more  inclusive  list  of  variants  which  still  cannot  be  dismissed,  but  for  which  we  have  additional
corroborating  evidence  (i.e.,  Illumina  Genome  Network  (IGN)  validation  and  annotation).  These
prioritized variants were further annotated and evaluated by the AssureRx Health, Inc. annotation and
analysis pipeline. Prioritized variants are shown in Supplemental File S4 and  Supplemental Fig.  S3. A
longer list of variants, which were required only to have supporting evidence within the OMIM database,
is shown in Supplemental File S5. We highlight here some of the findings:

M.A. was found to be a heterozygote for a p.Val66Met change in BDNF, which encodes a protein that is a
member of the nerve growth factor (NGF) family.  The protein is  induced by cortical  neurons,  and is
deemed necessary for the survival of striatal neurons in the brain. In drug naïve patients, BDNF serum
levels were found to be significantly decreased in OCD patients when compared to controls (36.90 ± 6.42
ng/ml  versus  41.59  ±  7.82  ng/ml;  p  =  0.043)68,  suggesting  a  link  between  this  protein  and  OCD.
Moreover, a study including 164 proband-parent  trios with obsessive-compulsive disorder69 uncovered
significant  evidence  of  an association between OCD and all  of  the  BDNF markers  that  were  tested,
including the exact variant found here in this person, p.Val66Met.  This particular variant has been further
studied in a sample of 94 nuclear families70, which included 94 probands with schizophrenia-spectrum
disorders and 282 family members. The results of this study suggest that the p.Val66Met polymorphism
may play a role in the phenotype of psychosis. Similar anxiety-related behavioral phenotypes have also
been observed among mice  and humans  having  the  p.Val66Met  variant  in  BDNF71.   In  humans,  the
amygdala  mediates  conditioned fear72,  normally inhibited  by ‘executive  centers’ in  medial  prefrontal
cortex73. Deep brain stimulation of  the  pathways  between medial  prefrontal  cortex and the amygdala
increased the extinction of conditioned fear in a rat model of OCD74. Studies using functional magnetic
resonance imaging (fMRI)  demonstrate  that  humans with the  p.Val66Met  variant  exhibit  exaggerated
activation of the amygdala in response to an emotional stimulus in comparison to controls lacking the
variant75,76. It is thought that this variant may influence anxiety disorders by interfering with the learning
of  cues  that  signal  safety rather  than  threat  and  may also  lessen  efficacy of  treatments  that  rely on
extinction mechanisms, such as exposure therapy71. In this regard, it is interesting to note that this person
did indeed obtain very little benefit from exposure therapy prior to surgery.

M.A heterozygously carries  the  p.Glu429Ala allele  in  MTHFR, encoding a  protein that  catalyzes  the
conversion  of  5,10-methylenetetrahydrofolate  to  5-methyltetrahydrofolate,  a  co-substrate  for
homocysteine remethylation to methionine, and which has been shown to confer an elevated susceptibility
to  psychoses.  Variants  in  MTHFR influence  susceptibility  to  occlusive  vascular  disease,  neural  tube
defects,  colon  cancer  and  acute  leukemia.  Variants in  this  gene  are  associated  with  methylenetetra-
hydrofolate reductase deficiency.  In addition, a meta-analysis comparing 1,211 cases of schizophrenia
with  1,729 controls  found that  the  MTHFR p.Glu429Ala  allele  was  associated  with  susceptibility to
schizophrenia77 (odds ratio, 1.19; 95% CI, 1.07- 1.34; p = 0.002). According to the Venice guidelines for
the assessment of cumulative evidence in genetic association studies, the MTHFR association exhibited a
strong degree of epidemiologic credibility78. Pharmacogenetic studies have found a consistent association
between the MTHFR p.Glu429Ala allele and metabolic disorder in adult, adolescent and children taking
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atypical antipsychotic drugs79,80.

M.A. is heterozygous for a c.19G>A p.Asp7Asn allele in ChAT, encoding choline O-acetyltransferase,
which  synthesizes  the  neuro-transmitter  acetylcholine  (Supplemental  Fig.  S5).  This  particular  variant
(rs1880676)  is  significantly  associated  with  both  risk  for  schizophrenia  in  Caucasians  (P =  0.002),
olanzapine response (P = 0.02) and for other psychopathology (P = 0.03)81. 

M.A. is also heterozygous for the p.Val108Met  variant in catechol-O-methyltransferase(COMT), which
catalyzes the transfer of a methyl group from S-adenosylmethionine to catecho- lamines, including the
neurotransmitters dopamine, epinephrine, and norepinephrine. The minor allele A of this 472G>A variant
produces a valine to methionine substitution, resulting in a less thermostable COMT enzyme that exhibits
a 3-fold reduction in activity. A substantial body of literature implicates this variant as possibly elevating
the risk for various neuropsychiatric disorders in some Caucasian populations but not necessarily in other
genetic backgrounds82-88. There is some evidence that MTHFR x COMT genotype interactions might also
be occurring in M.A. to influence his neuropsychiatric status89, and the same is true for BDNF x COMT
interactions90.

Pharmacogenetic analyses were performed using the Omicia Opal platform.  Pharmacogenetic variants
were identified and prioritized by activating the “Drugs and Pharamcology” track within the Opal system
and by requiring these variants to have prior evidence within any one of several supporting databases (i.e.,
OMIM, HGMD, PharmGKB, LSDB and GWAS).  Prioritized variants are shown in Supplemental File S6
and Supplemental Fig. S4.  A longer, more inclusive list is shown in Supplemental File S7; variants in this
file are only required to be detected by the “Drugs and Pharmacology” track in Opal.  Variants within
Supplemental File S6/S7 were further annotated and analyzed by the AssureRx Health, Inc. pipeline (see
Supplemental File S8).

M.A. is homozygous for a p.Ile359Leu change in CYP2C9, and this variant has been linked to a reduction
in the enzymatic activity of CYP2C991. CYP2C9 encodes a member of the cytochrome P450 superfamily
of enzymes. Cytochrome P450 proteins are mono-oxygenases, which catalyze many reactions associated
with drug metabolism as well as reactions associated with the synthesis of cholesterol, steroids and other
lipids92. CYP2C9  localizes  to  the  endoplasmic  reticulum and  its  expression  is  induced  by  rifampin.
CYP2C9 is known to metabolize xenobiotics, including phenytoin, tolbutamide, ibuprofen as well as S-
warfarin. Studies identifying individuals who are poor metabolizers of phenytoin and tolbutamide suggest
associations between metabolism and polymorphisms found within this gene. CYP2C9 is located within a
cluster of cytochrome P450 genes on chromosome 1093. Fluoxetine is commonly used in the treatment of
OCD; it has been shown to be as effective as clomipramine and causes less side effects 94,95. CYP2C9 acts
to  convert  fluoxetine  to  R-norfluoxetine96,  and  so  M.A.  may not  be  able  to  adequately biotransform
fluoxetine97. However, CYP2C9 does not play a rate-limiting role for other SSRIs or clomipramine. In his
own treatment experience, M.A. had no response to an 80 mg daily dose of fluoxetine, although he did
experience sexual side effects at that dosage.

The protein encoded by DPYD is a pyrimidine catabolic enzyme and it acts as the initial and rate-limiting
factor in uracil and thymidine catabolism pathways.  M.A. was found to be a carrier of two variants in this
gene, p.Ile543Val and p.Arg29Cys, for which he is a heterozygote and homozygote, respectively. Variants
within  DPYD result in dihydropyrimidine dehydrogenase deficiency, an error in pyrimidine metabolism
associated  with  thymine-uraciluria  and  an  increased  risk  of  toxicity  in  cancer  patients  receiving  5-
fluorouracil chemotherapy. Two transcript variants encoding different isoforms have been described for
DPYD98,99.

A copy number variant (CNV) analysis was performed using the estimation by read depth with single-
nucleotide  variants  (ERDS)  method62 in  combination  with  the  Golden Helix  Copy Number  Analysis
Method (CNAM) optimal  segmentation algorithm applied to  Illumina HumanOmni2.5-8v1 genotyping
array data.  ERDS identified 60 putative CNVs, all of which were visually inspected within the Golden
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Helix Genome Browser.  Many of the CNVs detected by the ERDS method were found to be located
within chromosomal boundary regions and were determined to be false positives due to highly variable
read  depth  in  these  regions.   The  CNAM  method  detected  35  putative  CNVs,  which  were  visually
inspected  by  plotting  the  LogR  and  covariate  values  in  Golden  Helix  SVS.  Only  six  CNVs  were
simultaneously detected by both the ERDS and CNAM methods, and were visually inspected as further
confirmation to be included among the set of highly confident CNVs.   High-confidence CNVs are shown
in Supplemental File S9. To our knowledge, these CNVs have not been previously associated in any way
with M.A.’s disease phenotype.

Although we believe in archiving and managing all genetic results and not just a small subset of genes, we
did analyze the 57 genes that are currently recommended for “return of results” by the American College
of Medical Genetics100. These results are shown in Supplemental File S10.

Lastly, in an ongoing effort to develop ways to incorporate genomic data into clinical electronic health
records, we collaborated with the team of Karen Eilbeck to convert the data into the GVFclin format (see
Supplemental File S12). The Genome variant format (GVF), which uses Sequence Ontology to describe
genome variation101, has been extended for use in clinical applications. This extended file format, called
GVFClin102, adds the necessary attributes to support Health Level 7 compatible data for clinical variants.
The GVF format represents genome annotations for clinical applications using existing EHR standards as
defined  by the  international  standards  consortium:  Health  Level  7.  Thus,  GVFclin  can  describe  the
information that defines genetic tests, allowing seamless incorporation of genomic data into pre-existing
EHR systems. We did contact the physicians and other officials at the U.S. Veterans Affairs office to offer
to incorporate these data into the electronic medical record for M.A., but we were informed that the VistA
health information system (HIS)103-106 does not currently have the capability to incorporate any genomic
variant data. 

Discussion
DBS for treatment-refractory OCDDeep brain stimulation for M.A.’s treatment refractory OCD has
provided a quantifiable and significant improvement in the management of his symptoms (Fig. 3). M.A.
has regained a quality of life that he had previously not experienced in over a decade, which is highlighted
by him participating in regular exercise, working as a volunteer in his local church and becoming engaged
to be married, all of which act to illustrate a dramatic improvement in his daily functioning since receiving
DBS treatment for his OCD.

One significant aspect of this  study is the rechargeable, and hence  depleteable, nature of the  Activa RC
neurostimulator battery, which serves to illustrate the efficacy of DBS for OCD for this individual.  On
one such illustrative occasion, M.A. forgot to take the recharging device on a four-day weekend trip. Once
his battery was depleted, all of his symptoms gradually returned to their full level over a ~24 hour period,
including severe OCD, depression and suicidality. Since that episode, M.A. always takes his recharging
device with him on extended trips, but there have been other such instances in which his battery has
become depleted for several hours, with the noticeable and intense return of his OCD symptoms and the
cessation of his tenesmus. The electrical stimulation is having  a demonstrable effect on his OCD, and
these data are complementary to other data-sets involving turning DBS devices off for one week at a
time45. 

There are many ethical and regulatory issues relating to deep brain stimulation that have been discussed
elsewhere107-113, and we  report  here  our one positive experience, made possible when the US Food and
Drug Administration granted a Humanitarian Device Exemption (HDE) to allow clinicians to use this
intervention. The rechargeable nature of the new battery has been reassuring to M.A., as he is able to exert
self-control  over his battery life,  whereas he previously had no control  with the original  “single-use”
battery that must be replaced when the battery depletes (usually at least once annually). We assume that
other persons treated with DBS for OCD will likely also start receiving rechargeable batteries.  In this
regard,  it  is worth  noting  that  the  recent  development  of  an  injectable class  of  cellular-scale
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optoelectronics paves the way for implanted wireless devices114, and we fully expect that there will be
more brain-machine neural interfaces used in humans in the future115-119. 

Clinical Whole Genome Sequencing
During  our  study,  we found  that  M.A.  carries  at  least  three  alleles  that  have  been  associated  with
neuropsychiatric  phenotypes,  including  variants  in  BDNF,  MTHFR,  and  ChAT  (Table  1).  There  are,
however, still many challenges in showing how any one mutation can contribute toward a clear phenotype,
particularly in the context of genetic background and possible environmental influences 120. Bioinformatics
confounders,  such as poor data quality  121,  sequence inaccuracy,  and variation introduced by different
methodological  approaches122 can  further  complicate  biological  and  genetic  inferences.  Although  the
variants discussed in the results section of our study have been previously associated with mental disease,
we  caution  that  the  data  presented  are  not  sufficient  to  implicate  any particular  mutation  as  being
necessary or sufficient to lead to the described phenotype, particularly given that mental illness results
from  a  complex  interaction  of  any  human  with  their  surrounding  environment  and  social  support
structures.   The  genetic  architecture  of  most  neuropsychiatric  illness  is  still  largely  undefined  and
controversial  123-126,  and  our  data  also  does  not  allow us  to  exclude  the  possibility  of  polygenic  and
epistatic modes of inheritance 127-134.  We provide our study as a cautionary one: WGS cannot act as a
diagnostic  and  prognostic  panacea,  but  instead  could  act  to  elucidate  potential  risk  factors  for  some
illnesses. There are certainly other variants and/or environmental interactions that have influenced or will
influence  the  clinical  course  of  M.A.,  and  there  will  likely  be  many  more  gene-gene  and  gene-
environment interactions occurring and impacting various phenotypes developing over the course of his
life135-147. 

In the context of the incomplete, and sometimes proprietary, nature of human gene mutation databases, it
is likely that analyses and medical guidance gleaned from these WGS data will differ from institution to
institution. It is therefor important that people be given the opportunity, like with many other traditional
medical  tests,  to  obtain “second opinions”.  For  this  to  be possible,  one must  accurately describe the
contents of short-read sequencing data in terms of the existing electronic medical health standards, so that
these data can be incorporated into an electronic medical health record. Accurately describing the contents
of next generation sequencing (NGS) results is particularly critical for clinical analysis of genomic data.
However,  genomics  and  medicine  use  different,  often  incompatible  terminologies  and  standards  to
describe sequence variants and their functional effects. In our efforts to treat this one person with severe
mental illness, we have implemented the GVFclin format for the variants that were discovered during the
sequencing of his whole genome (see Supplemental File S12).  We hope to eventually incorporate his
genetic data into his electronic health record, if and when the VistA health information system (HIS)103-106

is upgraded to allow entry of such data. We did already counsel M.A. regarding several genetic variants
that may be clinically relevant to predisposing him to his psychiatric disorder148.  

There is,  however,  considerable controversy in the field of medical  genetics concerning the return of
genetic  results  to  people,  particularly  in  the  context  of  “secondary”,  “unrelated”,  “unanticipated”  or
“incidental” findings stemming from new high-throughput sequencing techniques.  Some people worry
about returning the results of such tests, due to their concerns regarding clinical utility, and in response
have  advocated  for  selectively  restricting  the  returnable  medical  content.  One  such  set  of
recommendations  has  been  provided  by  the  American  College  of  Medical  Genetics  which  recently
released guidelines in which they recommended the “return of secondary findings” for 57 genes, without
detailed  guidance  for  the  rest  of  the  genome  149.  These  types  of  recommendations  can  take  a  more
paternalistic approach in returning test results to people, and generally involve a deciding body of people
that can range in size from a single medical practitioner to a committee of experts. We believe that anyone
should be able to access and manage their own genome data150, just like how anyone should be able to
own and manage their medical and radiology test results151, particularly if the testing is performed with
suitably appropriate clinical standards in place, i.e. CLIA in America56,152. 
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We tend to think that whole genome sequencing will eventually become like many other laboratory tests,
without the risks inherent to many surgical procedures and other medical interventions. There is currently
an ongoing project in America to collect phenotype and genetic data on one million U.S. veterans 153. We
have readily demonstrated herein that it is possible to sequence the whole genome of a veteran in a CLIA-
certified laboratory,  so that  these results  can be offered to  this  veteran,  and we are  working now to
determine if we can incorporate any of these results into his electronic medical record at the VA. We also
note that there are efforts underway to create “a national resource with linked genealogy and phenotypic
data: the Veterans Genealogy Project”, and the authors of that paper note the potential of linking this with
the genetic information obtained via the Million Veteran Program154.

Conclusions
One can learn a substantial amount from detailed study of particular individuals (for just a small sampling,
see155-162), and we believe that we are entering an era of precision medicine in which we can learn from and
collect substantial data on informative individual cases. Incorporating insights from a range of scientific
and clinical disciplines into the study and treatment of any one person is therefore beginning to emerge as
a tractable, and more holistic, approach, and we document here what we believe to be the first integration
of  deep  brain  stimulation  and  whole  genome  sequencing  for  precision  medicine  in  the  evaluation,
treatment and preventive care for one severely mentally ill individual, M.A. We have shown that DBS has
been successful in aiding in the care and beneficial clinical outcome of his treatment refractory OCD, and
we have also demonstrated that it is indeed feasible, given current technologies, to incorporate health
information from WGS into the clinical care of one person with severe mental illness, including with the
return of these health information to him directly.  On a comparative level, deep brain stimulation has thus
far been a more direct and effective intervention for his mental illness than anything discovered from his
whole  genome  sequencing,  although the detection  and preventive care  for  his  bilateral  cataracts  was
brought about by the WGS. Of course, the genomic data would have been more helpful if obtained much
earlier in his medical course, as it could have provided guidance on which medications to avoid or to
provide in increased doses, such as fluoxetine.

There are still only sparse data on the effectiveness of DBS for treatment refractory OCD, and current
trials and treatment criterion make difficult  the implementation and application of this  technology for
people with severe and treatment refractory forms of OCD, despite clinical promise in this realm (as
demonstrated here in our own study). There is currently an intense drive toward individualized data-driven
medical care, with the field of cancer medicine being the canonical example, as it is no longer  enough to
say that  a person has cancer,  as this  distinction is  uninformative due to the fact  that  there are many
different well defined molecular etiologies of cancer163. This allows for more precise and targeted therapy,
and we fully expect  this  to  occur  in  the  field  of  psychiatry as  hundreds to  thousands  of  psychiatric
illnesses become better defined by more precise, molecular, means.  This is of particular interest for brain
implantable devices that allow for adjustable treatment, such as DBS, as each person could be individually
treated (and perhaps even self-tuned) in a precise way to maximize efficacy. 

We have also found that there are still many challenges in incorporating high-throughput genomics data
into the medical health record of any individual, given that many electronic medical record systems are
not  yet  fully compatible  with  these  data.   There  are  also  other  more  fundamental  difficulties  in  the
application of genomics guided medicine, as the causal influence of any one, or set, of genetic variant is
not  at  all  clear in most  cases.   Many have proposed using WGS or other genomics data in terms of
informing health risk profiles at the individual level164,165, and still others claim that these data lead to a
diagnosis  in  up  to  27% of  some  rare  disease  cases  in  which  they are  used166.   We  find  that  health
information stemming from WGS cannot currently act as a diagnostic and prognostic panacea, particularly
in this case of severe mental illness where the genetic architecture of this class of diseases is unknown.
We did find, however, that health information stemming from these data were nevertheless immediately
useful in the care of this person, as a variant associated with his ophthalmologic phenotype did indeed
inform and  enrich  his  care,  and  we  expect  that  these  data  will  continue  to  inform his  care  as  our
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understandings of human biology and the genetic architecture of disease improves.
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Figure 1

Sagittal and transverse computed tomography (CT) images of the brain and skull of M.A.

We show here sagittal and transverse sections taken from CT scans. Imaging was performed before 

(A) and after (B) M.A. received deep brain stimulation surgery for his treatment refractory OCD. Two 

deep brain stimulator probes can be seen to be in place from a bifrontal approach (B), with tips of the 

probes located in the region of the hypothalamus. Leads traverse through the left scalp soft tissues. 

Streak artifact from the leads somewhat obscures visualization of the adjacent bifrontal and left 

parietal parenchyma. We did not observe any intracranial hemorrhage, mass effect or midline shift or 

extra-axial fluid collection. Brain parenchyma was normal in volume and contour.
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Figure 2

Implementation of the analytic-interpretive split model for the clinical incorporation of a whole 

genome.

We have implemented the analytic-interpretive split model here with M.A., with WGS being 

performed in a CLIA certified and CAP accredited lab at Illumina as part of the Individual Genome 

Sequencing test developed by them. The WGS acts as a discrete deliverable clinical unit from which 

multiple downstream interpretive analyses were performed. We used the ERDS CNV caller, the 

Golden Helix SVS CNAM for CNV calling, and the Omicial Opal and the AssureRx Health Inc. 

pipelines for variant annotation and clinical interpretation of genomic variants. By archiving and 

offering to him the encrypted hard drive containing his “raw” sequencing data, any number of people, 

including the individual and/or his/her health care providers can analyze his genome for years to come.

Abbreviations are as follows: CLIA, Clinical Laboratory Improvement Amendments; CAP, College of

American Pathologists; CASAVA, Consensus Assessment of Sequence and Variation; ERDS, 

Estimation by Read Depth with SNVs; CNAM, Copy Number Analysis Method; WGS, Whole 

Genome Sequencing.
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Figure 3

Yale Brown Obsessive Compulsive Scale (YBOCS) scores were measured for M.Aover a three 

year and seven months period of time.

A time series plot (A) shows a steady decline in YBOCS scores over the period of time spanning his 

DBS surgery (s) and treatment. Incremental adjustments to neurostimulator voltage are plotted over a 

period of time following DBS surgery. Mean YBOCS scores are plotted for sets of measurements 

taken before and after Deep Brain Stimulation (DBS) surgery (B). A one-tailed unpaired t test with 

Welch’s correction results in a p value of 0.0056,demonstrating a significant differencebetween 

YBOCS scores measured before and after the time of surgery.
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Table 1(on next page)

A summary of three clinically relevant alleles found in the sequencing results of M.A.

Variations in MTHFR, BDNF, and ChAT were found to be of potential clinical relevance for this 

person, as they are all implicated in contributing to the susceptibility and development of many 

neuropsychiatric disorders that resemble those present within M.A. A brief summary of the 

characteristics of each variation is shown, including the gene name, genomic coordinates, amino acid 

change, zygosity, variation type, estimated population frequency and putative clinical significance.
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Gene name
Genomic 
coordinates

Amino acid
change

Zygosity
Variation 
type

Population 
Frequency

Clinical significance

MTHFR
chr1: 
11854476

Glu>Ala heterozygous non-synon T:77% G:23%

Susceptibility to psychoses, 
schizophrenia occlusive 
vascular disease, neural tube 
defects, colon cancer, acute 
leukemia, and 
methylenetetra-hydrofolate 
reductase def-iciency 

BDNF
chr11: 
27679916

Val>Met heterozygous non-synon C:77% T:23%
Susceptibility to OCD, 
psychosis, and diminished 
response to exposure therapy 

CHAT
chr10: 
50824117

Asp>Asn heterozygous non-synon G:85% A:15%
Susceptibility to 
schizophrenia and other 
psychopathological disorders.
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