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ABSTRACT
The adoption and growth of functional magnetic resonance imaging (fMRI) technol-
ogy, especially through the use of Pearson’s correlation (PC) for constructing brain
functional networks (BFN), has significantly advanced brain disease diagnostics by
uncovering the brain’s operational mechanisms and offering biomarkers for early
detection. However, the PC always tends to make for a dense BFN, which violates the
biological prior. Therefore, in practice, researchers use hard-threshold to remove weak
connection edges or introduce l1-norm as a regularization term to obtain sparse BFNs.
However, these approaches neglect the spatial neighborhood information between
regions of interest (ROIs), and ROI with closer distances has higher connectivity
prospects than ROI with farther distances due to the principle of simple wiring costs
in resent studies. Thus, we propose a neighborhood structure-guided BFN estimation
method in this article. In detail, we figure the ROIs’ Euclidean distances and sort them.
Then, we apply the K-nearest neighbor (KNN) to find out the top K neighbors closest
to the current ROIs, where each ROI’s K neighbors are independent of each other.
We establish the connection relationship between the ROIs and these K neighbors
and construct the global topology adjacency matrix according to the binary network.
Connect ROI nodes with k nearest neighbors using edges to generate an adjacency
graph, forming an adjacency matrix. Based on adjacency matrix, PC calculates the
correlation coefficient between ROIs connected by edges, and generates the BFN.
With the purpose of evaluating the performance of the introduced method, we utilize
the estimated BFN for distinguishing individuals with mild cognitive impairment
(MCI) from the healthy ones. Experimental outcomes imply this method attains better
classification performance than the baselines. Additionally, we compared it with the
most commonly used time series methods in deep learning. Results of the performance
of K-nearest neighbor-Pearson’s correlation (K-PC) has some advantage over deep
learning.

Subjects Neuroscience, Cognitive Disorders, Neurology
Keywords Brain functional network, Neighborhood structure, Mild cognitive impairment,
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INTRODUCTION
Alzheimer’s disease (AD) is a persistent disorder of advanced neural activity, referring to a
serious primary degenerative brain disease of the central nervous system,which often occurs
in the elderly. The course of the disease is slow and irreversible, mainly characterized by
progressive cognitive decline. The incidence of AD is rapidly increasing globally (Martinez
& Peplow, 2019; Goedert & Spillantini, 2006; Scheltens et al., 2021). The progression of AD
has grave adverse effects on the patient’s normal life, and brings substantial economic
burden to their families and society (Supekar et al., 2008; Lei, Ayton & Bush, 2021). Until
now, people still have no way to cure AD, but it can be stopped or delayed by an early
intervention. Thus, it is of great significance to identify the latent phase of AD (mild
cognitive impairment, MCI) (Yu et al., 2017; Rostamzadeh et al., 2022; Li et al., 2019), and
carry out incipient diagnosis, timely intervention and treatment.

To identify MCI as early as possible, people have come up with lots of approaches
to measure the activity and organization of the brain (Forman et al., 2007; Drzezga
et al., 2005). In recent years, resting state functional magnetic resonance imaging (rs-
fMRI) (Huettel, Song & McCarthy, 2004), which takes the blood oxygen level dependent
(BOLD) signals for measuring nerve actions indirectly, provides a non-invasive method
for the study of neurological diseases, being generally utilized in medical and neuroscience
studies (Brunetti et al., 2006; Canario, Chen & Biswal, 2021; Kevin et al., 2008; Yang et al.,
2021). The baseline level of BOLD signal varies for each individual. For example, if a
person has a faster metabolism, their overall BOLD signal level may be higher than others.
In addition, there are differences in breathing and heartbeat among individuals, causing
difficulty in distinguishing subjects from normal controls (NC) by comparing the fMRI
time series between the subjects (Fornito, Zalesky & Bullmore, 2016). Oppositely, BFNbased
on fMRI can not only quantitatively depict the dependency between BOLD signals, but also
provide a reliable medium for exploring the internal mechanisms of the brain (Poldrack
& Farah, 2015). In practice, researchers generally first estimate BFNs through modelling
the interactions between ROIs and use them as features for downstream recognition or
classification tasks. Therefore, it is imperative to evaluate BFNs more reasonably.

Because of the importance of BFN, people have put forward a lot of schemes for
estimating BFNs in the last few years (Pervaiz et al., 2020). In these methods, Pearson’s
correlation (PC) is renowned for its simplicity and efficiency. Considering that PC always
leads to dense BFN, which violates the biological prior of brains. Threshold is often applied
to sparse the estimated BFN through cutting off the inferior connections. Li et al. (2017)
recently invented an l1-norm regularizer for the PC model to get a sparsity BFN (namely
PCSparsity) . In addition, PC estimates BFNs through measuring the total correlation
between different ROIs, but it is inclined to involve hybrid influence from other brain
regions. Conversely, partial correlation mitigates the issue through degenerating the latent
impact from the other ROIs while computing the edge weights of BFN. Nevertheless,
partial correlation calculation concerns with a reverse conducting on the covariance
matrix, causing an ill-posed problem at most of the time. Therefore, when estimating
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BFNs, people usually introduce an l1-norm regularizer into the partial correlation model,
thus bringing about the popular sparse representation (SR) (Lee et al., 2011).

Despite their effectiveness, the approaches above did not take the spatial positional
relationship between brain regions into account. To overcome the issue, we present
a neighborhood structure-guided BFN estimation method. Specifically, based on the
obtained brain BOLD signals, we calculate the Euclidean distance between ROIs and sort
them. Then, K-nearest neighbor (KNN) algorithm (Peterson, 2009) is applied to find the
top K neighbors closest to the current ROIs, establish the connection relationship between
the ROIs and these K neighbors and construct the global topology adjacency matrix based
on the binary network. Based on adjacency matrix, PC calculates the correlation coefficient
between ROIs connected by edges, and generates the BFN. Therefore, the proposedmethod
can not only take the brain topology into account, but also generate sparse BFNS, which
is in line with the sparsity prior to brain connectivity (Sporns, 2011). For evaluating the
performance of our presented approach, we employ it to estimate BFNs first. Then we
utilize the estimated BFNs to performMCI classification. The classification results indicate
that the presented approach gets better accuracy than all the baselines.

The article is structured as follows: We begin by examining three prominent BFN
estimation methods in ‘Related Works’. This is followed by an in-depth presentation
of our method, delineating the underlying motivation and the model framework, in
‘The Proposed Method’. We then detail the data source and experimental settings in
‘Experiments’. Subsequent to this, in ‘Results’, we utilize the presented approach to
MCI identification and present our findings. ‘Discussions’ is dedicated to examining the
implications of our results and the factors influencing performance. The article culminates
with a conclusion that encapsulates our research.

RELATED WORKS
On account of the potentiality in studying neurodegenerative diseases of the brain, lots
of BFN estimation studies have been reported for the last few years (Smith et al., 2011; Tu
& Zhang, 2022; Smith et al., 2013), from the relatively simple and efficient PC to the most
complicated dynamic causal modeling (DCM) (Friston, Harrison & Penny, 2003). In this
section, we briefly look back some approaches, i.e., PC, PCSparsity and SR, which are closely
connected with our work.

Pearson’s correlation
Asmentioned earlier, PC is a relatively simple, efficient and popularmethod for establishing
BFNs (Smith et al., 2013). We assume that each brain, due to some atlas, is segmented into
n ROIs. And the edge weight matrixW = (wij)∈Rn×n of BFN is given as follows:

wij =
(xi−x i)T (xj−x j)√

(xi−x i)T (xi−x i)
√
(xj−x j)T (xj−x j)

(1)

where wij represents the estimated functional connectivity between the ith and jth ROIs,
xi ∈Rm×1 (i= 1,...,n) represents the observed time series (i.e., BOLD signal) in relation

Liang et al. (2024), PeerJ, DOI 10.7717/peerj.17774 3/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.17774


to the ith ROIs, m represents the number of the time volumes in every series. All entries
in x i ∈Rm×1 are the average values of elements in xi, xi−x i represents the centralization
of signal xi. Without loss of generality, we redefine xi = (xi− x i)/

√
(xi−x i)T (xi−x i).

Consequently, Eq. (1) can be simplified as wij = xTi xj , or an equivalent matrix form:

W =XTX (2)

where X = [x1,x2,...,xn] ∈ Rm×n represents the rs-fMRI data matrix, W = (wij) ∈ Rn×n

represents the edge weight matrix of the estimated BFN.
Practically, Eq. (2) can serve as a solution to the following optimization problem (Li et

al., 2017):

minW
∥∥W −XTX

∥∥2
F (3)

where || · ||F stands for the Frobenius norm of a matrix.

Sparse Pearson’s correlation
As we all know, because noises are usually included in BOLD signals, the original PC are
more prone to bringing about a BFN with intensive links (Fornito, Zalesky & Bullmore,
2016). To alleviate this problem, a threshold structure is usually applied to sparse the PC
BFNs in practical applications. However, the selection of thresholds is usually empirical
and lacks elegant mathematical representations. Therefore, Li et al. introduced the l1-norm
as regularization term (Li et al., 2017), resulting in the PCSparsity model as below:

minW
∥∥W −XTX

∥∥2
F+λ||W ||1 (4)

where λ represents a regularized parameter to controll the sparsity of W . Apparently, the
PCSparsity decreases to the original PC as λ= 0. Here, we select the l1-norm to sparse the
network since it is simple and popular.

Sparse representation
Unlike PC-based methodologies that measure the total correlation between ROIs, through
degenerating the hybrid influence of other ROIs, partial correlations may cause more
correlated BFN estimation, which depicts a relatively reliable interaction between brain
regions (Peng et al., 2009). A universal method for calculating partial correlation is founded
on the inverse covariance matrix estimation. Nevertheless, because of the singularity of the
covariance matrix, the estimation of partial correlation may be maladaptive. For acquiring
a steady estimate of BFN, an l1-norm regularization term is usually presented in the partial
correlation model. For instance, partial correlation estimation based on SR is a classic
statistical method. The mathematical model of SR is represented as below:

minwij

n∑
i=1

‖xi−∑
j 6=i

wijxj‖2+λ
∑
j 6=i

∣∣wij
∣∣

s.t .wii= 0,∀i= 1,...,n (5)
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Then, Eq. (5) can be further simplified to:

min
W
‖X−XW ‖2F+λ‖W ‖1

s.t .wii= 0,∀i= 1,...,n (6)

where || · ||F and || · ||1 represent the F-norm and l1- norm of a matrix. ‖X−XW ‖2F
represents a adapting term, ‖W ‖1 represents a l1-regularized term used to get sparse
solutions of W , λ represents the regularized parameter to control the equilibrium of two
terms in Eq. (6). The constraint wii = 0 is applied for removing xi from X to stay away
from the problem of trivial solution.

THE PROPOSED METHOD
Motivation
As described above, the classification performance of the brain disease recognition task
critically depends on the quality of the constructed BFNs. Therefore, many BFNs estimation
schemes have been proposed over the last few decades, and the three methods (i.e., PC,
PCSparsity and SR) introduced in the previous section are the most common statistical
methods. These threemethods, whether using a hard-threshold to remove weak connection
edges or introducing l1-norm as a regularization term to generate an elegant mathematical
representation to build the network, can ultimately obtain sparse BFNs, which is consistent
with the scant prior information on brain network (Sporns, 2011). Although the above
methods have been widely used in neurological diseases, the topological structure of brain
networks is ignored in estimating BFNs. Besides, recent studies have indicated that due
to the principle of simplicity in wiring costs, ROI closer in space has higher connectivity
prospects than ROI farther in space (Fornito, Zalesky & Bullmore, 2016). Due to all the
viewpoints above, we present a new BFN estimation method, which uses spatial distance
information to reconstruct the PC model. The details of our method will be introduced in
the following section.

Model and algorithm
In order to obtain sparse BFNs and incorporate the topology structure information, we
propose a neighborhood structure-guided BFN construction scheme in this article. The
whole framework is divided into the following steps.

Step1: Calculate the Euclidean distance between ROIs. There are many methods to
measure distance, including Euclidean distance, Cosine similarity, Manhattan distance,
and so on. Cosine similarity ismore suitable formeasuring the directionality and correlation
between vectors, without considering their absolute value size. The Manhattan distance,
on the other hand, is not as direct when considering the distances of various dimensions
as the Euclidean distance, in some cases, it may not be possible to capture the feature
relationships of the data. So, we choose the most suitable and commonly used Euclidean
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distance as the measurement strategy of spatial distance information between ROIs. The
mathematical calculation formula for Euclidean distance is as follows:

dij =
√(

x1,i−x1,j
)2
+
(
x2,i−x2,j

)2
+···

(
xm,i−xm,j

)2

=

√√√√ m∑
l=1

(
xl,i−xl,j

)2 (7)

where xi = (x1,i,x2,i,...,xm,i)T represents the mean time series extracted from the ith
ROIs, dij represents the distance between the ith and jth ROIs. The distance matrix
D= (dij)∈Rn×n is obtained by calculating the distance between all ROIs using Eq. (7).

Step2: Construct the adjacency matrix with topological structure. The distance between
each ROIs and other ROIs is sorted from smallest to most significant according to the
distance matrix D. Then, the KNN algorithm is used to find the k ROIs closest to the
current ROIs (that is, the top k ROIs with the smallest distance) as neighbors and connect
them with edges to generate an adjacency graph. The details are shown in Fig. 1. This graph
can be represented by the following adjacency matrix S= (sij)∈Rn×n:

sij =

{
1, eij exists
0, otherwise

(8)

where eij is the edge between the ith and jth ROIs. Eq. (8) indicates that if an edge is
connected between the ith and jth ROIs, the edge weight sij is regarded as 1. Otherwise,
the edge weight sij is 0. In this way, the adjacency matrix S that only distinguishes between
connected and unconnected networks is obtained. This is in line with the previous
introduction that ROIs with close spatial distance are more inclined to be connected by
edges. The selection of k value in KNN algorithm will be discussed in ‘Discussions’.

Step3: Estimating BFNs based on adjacency matrix S. According to matrix S, we propose
a new sparse PC model for estimating BFNs. Specifically, the calculation formula of this
model is as follows:

wij =


ll

(xi−x i)T (xj−x j)√
(xi−x i)T (xi−x i)

√
(xj−x j)T (xj−x j)

, if sij = 1

0, otherwise

(9)

where wij represents the edge weight between the ith and jth ROIs. According to Eq. (9),
the correlation coefficients between all ROIs with edges connected can be calculated as the
edge weights wij . As a result, the sparse BFN containing topology can be finally generated.
For facilitating the subsequent description, the BFN constructed by the KNN is abbreviated
as K-BFN.
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Figure 1 The visualization diagram of the K-nearest neighbor (KNN) algorithm.
Full-size DOI: 10.7717/peerj.17774/fig-1

EXPERIMENTS
Data acquisition and preprocessing
For evaluating the performance of the presented approach, we conduct MCI recognition
task in accordance with the benchmark database, i.e., Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset in the experiment. Concretely, 137 subjects (68 MCIs, 69 NCs)
were participated as in the researches (Zhou et al., 2018;Van der Haar et al., 2023; Sun et al.,
2021). All these data are publicly available in the ADNI database (http://adni.loni.usc.edu/).
All subjects were scanned through a 3.0T Philips scanner, with the scanning time of 7 min,
equivalent to 140 volumes. Table 1 shows the demographic information of these subjects.

For decreasing the impact of interference signals, the preprocessing pipeline in SPM8
toolbox (http://www.fil.ion.ucl.ac.uk/spm/) was applied to enhance the quality of fMRI data
before BFN estimation. Especially, the first 3 volumes of one subject in the fMRI time
course were removed to keep the signal stability. Next, the volumes leave behind were
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Table 1 Demographic and clinical information of subjects in the ADNI datasets.Values are reported as
mean± standardard deviation. M/F: Male/Female.

Dataset Class Age (Years) Gender(M/F)

MCI 76.50± 13.50 39/29
ADNI

NC 71.50± 14.50 17/52

handled based on a popularly-used framework. The major stages were (1) modifying slice
timing and head movement (Friston et al., 1996); (2) fitting the ventricle and white matter
signals with Friston 24-parameters of head movement; (3) enrolling the modified rs-fMRI
graphics to Montreal Neurological Institute (MNI) standard space (Brett et al., 2001); (4)
performing spatial smoothing on the signal with a maximum half width of four mm and
using a bandpass filter (0.015–0.15 Hz) on it. In the end, each brain was divided into 116
ROIs due to the Automated Anatomical Labeling (AAL) template (Tzourio-Mazoyer et al.,
2002). The average time series of each ROI for each subject were extracted and placed in
the data matrix X ∈R137×116 which is just used to estimate BFNs.

Experimental setting
Brain functional network estimation
The pre-processed time series form adatamatrix for each subject to estimate the BFN. In our
experiments, we first compare the proposed approach K-PC with three typical baselines for
BFN construction, i.e., PC, PCSparsity and SR. And each BFN construction baseline involves
a free parameter. Due to the significant impact of modeling parameters on the structure
and classification performance of the network model, the optimal parameters were selected
through large-scale grid search. Specially, in terms of the regularized parameters(i.e., λ
in PCSparsity, λ in SR), the range of candidate values is [2−5,2−4,...,24,25]. In specific,
the presented approach K-PC has a hidden parameter k, which controls the number of
neighbors in the KNN algorithm when estimating the BFN. Firstly, we appoint a value to k
by experience. Secondly, we study the significance of k in the range of [110,100,...,20,10]
in ‘Discussions’. In regard to PC, themodel itself does not involve free parameters. Towards
a reasonable comparison with the baselines and modification of its flexibility, we present
a threshold parameter into PC to cut off the weakly connected edges in the estimated
BFNs. For the sake of fairness, we use 11 thresholds corresponding to varying degrees of
sparsity [0,10%,...,90%,99%], where the percentage represents the percentage of weak
connections removed.

Feature selection and classification
After gaining the BFNs, the follow-up mission is identifying MCI and NC due to the
estimated BFNs. Now, the issue becomes the decision of which features and classifiers
are going to be selected for MCI recognition. Given that feature selection and classifier
design have significant effects on the identification performance, it’s ambiguous to tell
whether the BFN estimation approaches or the follow-up steps in the follow-up pipeline is
beneficial for the outcome. Hence, we merely take a relatively simple and efficient feature
selection way (t -test with four accepted p-values) and a very popular used support vector
machine (SVM) classifier (Chang & Lin, 2011), as our primary focus is BFN estimation.
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Figure 2 TheMCI identification pipeline based on the estimated BFNs.
Full-size DOI: 10.7717/peerj.17774/fig-2

Figure 2 shows the basic procedure to classify MCI and NC using our designed pipeline.
In the experiment, weights between ROIs are regarded as features for identification. As the
AAL atlas contains 116 ROIs, there will be 116×(116−1)/2= 6670 connections/attributes
for each BFN, which is far greater than the sample size (the number of subjects applied in
the experiment), resulting in the collapse of dimensionality. For overcoming the issue, we
apply two-sample t -test for feature selection in advance of MCI identifications.

Further, to make full use of the limited samples, i.e., the estimated BFNs of distinct
subjects, during the training phase, we use 5-fold cross validation 100 times to investigate
the effectiveness of the relevant approaches (Qiu et al., 2020;Diogo, Ferreira & Prata, 2022).
Specifically, the 137 subjects of ADNI are first divided into five folds, each containing nearly
the equivalent amount of connections the samples. Then, four folds are applied for training,
and the other one is for testing. Note that the same linear SVM with default parameter
C = 1 is applied in every method used in this work for fair. As shown in Fig. 2, an inner
5-fold CV is operated through grid-search to choose the optimal parameters. The accuracy
is computed by averaging the outcomes of all subjects.
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Figure 3 The adjacency matrices of the same subject estimated by four different methods, i.e., (A) PC,
(B) PCSparsity, (C) SR, and (D) K-PC.

Full-size DOI: 10.7717/peerj.17774/fig-3

RESULTS
Network visualization
Using the preprocessed rs-fMRI data, we get the modified BFNs with the presented
K-PC methods. Moreover, we construct BFNs for comparison according to the baselines
including PC, PCSparsity and SR. Figure 3 shows the adjacency matrices of BFNs constructed
by four various approaches for MCI recognition (the K = 40). From Fig. 3, we can observe
that BFNs estimated based on PCSparsity, SR and K-PC methods are very clear compared
with PC. The adjacency matrices of PC based BFNs are too divergent, and compared to
them, the adjacency matrices of the other three methods are more clustered in a certain
type of linear regression. And the BFN is not sparse, as pairwise complete correlation
is applied for modelling the network adjacency matrix. Consequently, it results in new
incorrect connections, affecting the final classification accuracy. Conversely, the networks
on the basis of PCSparsity and SR are sparse because of the introduction of the l1-norm
regularizer. Besides, it is worth noting that the BFN estimated through K-PC exhibits a
more pronounced module topological architecture than other methods. To evaluate the
modularity of BFNs, the signed modularity maximization method is applied for calculating
the modularity scores of BFNs constructed through various approaches (Gómez, Jensen
& Arenas, 2009; Rubinov & Sporns, 2011). Moreover, for keeping off the randomness of
the results, 28 subjects are selected equidistantly. As Fig. 4 shown, the BFN estimated by
K-PC is significantly more modular than the other three baseline methods, indicating that
K-PC tends to achieve cleaner networks. Additionally, modularization of BFN estimated
by PCSparsity, SR and K-PC acquire higher scores than that by PC in most cases, suggesting
that moderate sparsity promotes the modularity architecture of the network.

Classification performance
An array of quantitative mensuration is conducted to test the performance of different
approaches, like classification accuracy (ACC), sensitivity (SEN), specificity (SPE), positive
predictive value (PPV) and negative predictive value (NPV). The definitions of eachmethod
are shown in Table 2, where TP, TN, FP, and FN represent true positive, true negative,
false positive and false negative.
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Figure 4 Modularity scores of BFN constructed by different methods.Note that the abscissa indicates
the label of the participant.

Full-size DOI: 10.7717/peerj.17774/fig-4

Table 2 Definitions of the performance metrics involved in this study.

Performance metric Abbreviation Definition

Accuracy ACC TP+TN
TP+TN+FP+FN

Sensitivity SEN TP
TP+FN

Specificity SPE TN
TN+FP

Positive Predictive Value PPV TP
TP+FP

Negative Predictive Value NPV TN
TN+FN

Table 3 reports the MCI recognition outcomes of different approaches under five
evaluation metrics. As shown in Table 3, our presented K-PC exceeds the baselines
according to the average ACC score under the circumstance that p-values are 0.01, 0.05
and 0.001 in accordance with 5-fold CV. Note that our K-PC gets the ACC of 81.75%,
SEN of 83.09%, SPE of 80.43%, PPV of 80.70% and NPV of 82.87% when p-value is 0.05,
which are significantly better than the baselines. Regarding the situation where the p-value
is 0.005, our K-PC, i.e., even if the ACC, SEN and NPV performances are not satisfactory,
also gets prominently better results than the other compared approaches on SPE and PPV.
The outcome of the experiments evidence that the presented K-PC framework can enhance
the baselines, i.e., at least the discrimination of the estimated BFNs.

For verifying the validity of the presented approach, we compared it with the most
commonly used time series methods in deep learning. We chose classic BiGRU, BiLSTM,
and Transformer for comparison. From Table 4, it can be seen that among these methods,
Transformer performs the best in terms of five performance indicators. The time series
methods such as Transformer typically directly model raw data without an accurate feature
selection process. They rely on the learning ability of the model to learn the most relevant
features from the raw data. When selecting the appropriate p-value, the K-PC method
outperforms the traditional time series prediction methods. The common algorithms for
deep learning exhibit unstable stability, with significant performance differences between
each fold, indicating poor generalization ability and excellent performance in capturing
complex relationships in MCI data. Among the five evaluation metrics (i.e., ACC, SEN,
SPE, PPV and NPV), the degree of variation in the K-PC method was 1 / 7 to 1 / 5 that of
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Table 3 The classification performance (mean± standard deviation) of different BFN estimationmethods based on five performance metrics
(i.e., ACC, SEN, SPE, PPV and NPV) using 5-fold CV.

p-value Method ACC SEN SPE PPV NPV

PC 0.6905± 0.0052 0.7015± 0.0312 0.6797± 0.0205 0.6834± 0.0064 0.6991± 0.0179
PCSparsity 0.7394± 0.0206 0.7000± 0.0104 0.7783± 0.0307 0.7588± 0.0255 0.7241± 0.0151
SR 0.7336± 0.0052 0.7426± 0.0312 0.7246± 0.0205 0.7268± 0.0064 0.7412± 0.0179

p= 0.01

K-PC 0.7993± 0.0103 0.8015± 0.0104 0.7971± 0.0102 0.7964± 0.0112 0.8029± 0.0096
PC 0.7664± 0.0155 0.7721± 0.0104 0.7609± 0.0410 0.7607± 0.0312 0.7723± 0.0016
PCSparsity 0.7810± 0.0118 0.7676± 0.0197 0.7942± 0.0171 0.7868± 0.0125 0.7768± 0.0147
SR 0.7591± 0.0103 0.7868± 0.0312 0.7319± 0.0102 0.7426± 0.0029 0.7794± 0.0251

p= 0.05

K-PC 0.8175± 0.0155 0.8309± 0.0104 0.8043± 0.0205 0.8070± 0.0191 0.8287± 0.0123
PC 0.6496± 0.0103 0.6103± 0.0312 0.6884± 0.0102 0.6586± 0.0041 0.6422± 0.0150
PCSparsity 0.6701± 0.0166 0.6206± 0.0351 0.7188± 0.0079 0.6855± 0.0111 0.6579± 0.0242
SR 0.6971± 0.0258 0.7353± 0.0624 0.6594± 0.0102 0.6799± 0.0119 0.7183± 0.0449

p=0.001

K-PC 0.7445± 0.0103 0.7574± 0.0208 0.7319± 0.0410 0.7357± 0.0235 0.7537± 0.0003
PC 0.6241± 0.0258 0.6471± 0.0416 0.6014± 0.0102 0.6151± 0.0213 0.6341± 0.0313
PCSparsity 0.7095± 0.0140 0.7206± 0.0197 0.6986± 0.0130 0.7021± 0.0125 0.7179± 0.0169
SR 0.7226± 0.0052 0.7279± 0.0104 0.7174± 0.0205 0.7191± 0.0113 0.7271± 0.0045

p= 0.005

K-PC 0.7117± 0.0052 0.6765± 0.0208 0.7464± 0.0102 0.7240± 0.0024 0.7019± 0.0154

Notes.
Note that the bold value indicates the best result.

Table 4 The classification performance (mean± standard deviation) of our method and traditional time series classification method based on
five performance metrics using 5-fold CV result.

Method ACC SEN SPE PPV NPV

BiGRU 0.6638± 0.0728 0.7494± 0.0835 0.5802± 0.1253 0.6411± 0.0699 0.7011± 0.0769
BiLSTM 0.7008± 0.0293 0.7241± 0.0882 0.6659± 0.0847 0.6873± 0.0411 0.7263± 0.0526
Transformer 0.7659± 0.0867 0.7791± 0.0748 0.7538± 0.1188 0.7623± 0.1008 0.7743± 0.0809

Notes.
Note that the bold value indicates the best result.

other traditional time-series approaches. In the field of MCI identification outcome, we
can consider the K-PC method superior to deep learning traditional temporal methods.

DISCUSSIONS
In this section, we study the influence of feature selection and networkmodeling parameters
on the identification outcome (Jiang et al., 2019; Zhang et al., 2022; Xue et al., 2020; Jiao et
al., 2022). Then, we discuss themost representative features obtained through the proposed
approach to study the relationship with brain diseases.

Parameter analysis
It is well known that feature selection is a widely used dimensionality reduction technique,
which can effectively reduce redundant features in data. Therefore, it is also generally
applied in the research of neurological diseases as per fMRI data. Now, there are many
proposed feature selection approaches. In this article, we only focus on two-sample t -test,
since it is relatively simple and efficient in practice. Specifically, we conducted comparative
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Figure 5 TheMCI classification results based on four methods (i.e., PC, PCSparsity, SR and K-PC) under
optimal parameter values. In particular, each subgraph represents the classification results under five
performance metrics based on different p. In particular, each subgraph represents the classification re-
sults under five performance metrics based on different p-values (0.01, 0.05, 0.001, 0.005) involved in the
t -test.

Full-size DOI: 10.7717/peerj.17774/fig-5

analysis based on the t -test with four various p-values, i.e., 0.01, 0.05, 0.001, 0.005, k =
40, in the experiment, and then show the classification results in Fig. 5. Compared with
the outcomes, we can see the following facts: when using t -test under the p= 0.05, our
method can obtain the best classification accuracy, of 86.13%. However, we note that
compared with other methods, the SR-based method can achieve a better final accuracy
of 93.43% with p-values of 0.01, and even the classification performance is much higher
than our K-PC. The phenomenon suggests that the selection of the P value is crucial to the
classification outcomes, so in the following discussion, we choose p= 0.05 as the parameter
of t -test for feature selection. In conclusion, appropriate p-value selection has a positive
impact on achieving better identification outcomes.

Sensitivity to network modelling parameters
Virtually, in addition to the p-values applied in the feature selection stage, the network
modeling parameters usually have an essential impact on the structure of BFN and the
subsequent classification accuracy. For studying the sensitivity of distinct approaches to
relevant parameters, we calculate the evaluation metric with various parameters (we set
p= 0.05 in this part for better performance according to the result from 6.1).

As the experimental outcomes shown in Fig. 6, the variation in classification accuracy
corresponds to that in parametric values, suggesting that themajority of the BFN estimation
approaches are easily affected by the free parameters. In terms of PC, it can be found that
moderate sparsity inclines to lead to higher classification accuracies. Interestingly, the
dense BFNs without thresholding operation (parameter value = 0) can achieve high
accuracy as well, which may be due to the use of a t -test to remove weak discriminative
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Figure 6 Classification accuracy by PC, PCSparsity, SR and the proposed method K-PC based on differ-
ent parametric values.

Full-size DOI: 10.7717/peerj.17774/fig-6

connections before classification. Compared with PC, PCSparsity can obtain relatively high
recognition results of brain diseases in the parameter interval [2−5,2−1], indicating that the
sparsified BFNs can effectively remove the redundant connections in PC, thus improving
the recognition accuracy of patients with brain diseases. However, when the parameter is
20, the accuracy of PCSparsity is reduced to 50.36%, and the accuracy of PCSparsity does not
change when the parameter is more than 20, which proves that being too sparse can actually
lead to a decrease in classification accuracy. For SR, l1-regularizer in the BFN estimation
model is applied to remove the weak connections and control the estimated BFN density.
From Fig. 6C, it can be found that the best value of λ is 23 for SR, and the corresponding
accuracy is 85.43%. In particular, according to Fig. 6D, we can find that although the
classification performance of K-PC fluctuates with the number of neighbors k, it is least
affected by the parameters compared with the three baseline methods. More importantly,
K-PC obtains no less than 78% results in the entire parameter range [110,100,...,20,10],
which indicates that its recognition performance is more advantageous relative to other
methods.
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Figure 7 The most discriminative features (network connections) involved in the classification tasks
by using a t -test with p< 0.005.

Full-size DOI: 10.7717/peerj.17774/fig-7

Top discriminative features
Beyond the evaluation metrics, it is more enlightening to find which features/connections
in BFN will result in better recognition performance. For BFNs based on K-PC, we study
some favorable clues to recognize subjects with MCI from NCs. Particularly, we choose 80
connections whose p-values are lower than 0.005. As can be seen from Fig. 7, the gauge of
the arc is in reverse proportion to the p-value, suggesting the discriminative ability of the
corresponding edge. In terms of MCI identification, we sort the brain regions according to
the chosen discriminative features and identify the first three, hippocampus, left cerebellum
6, and amygdala. They are generally considered to have biological significance for MCI
identification, according to the researches (Greicius, 2008; Albert et al., 2011) for the last
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few years, which further validates the effectiveness of our K-PC method in constructing
reliable functional brain networks for MCI identification.

However, this method also has its limitations because the p-value indicates the degree
of influence of this feature. If the p-value is smaller, the significance of the feature’s
influence is higher. Therefore, features with a p-value less than 0.005 are selected. However,
the smaller the threshold value, the fewer features will be selected, whichmay impose certain
restrictions on forming a more accurate, clearer, and continuous boundary highlighting
MCI features.

From the perspective of algorithm optimization, deep neural network (DNN) offers
notable advantages over KNN in terms of feature learning, handling high-dimensional
data, generalization ability, and computational efficiency. However, in the context of this
study involving small-scale datasets and interpretability requirements, KNN remains a
viable option. Nevertheless, further optimization is necessary to strike a balance in defining
feature boundaries.

CONCLUSION
In this work, we present a neighborhood structure-guided BFN construction approach,
K-PC, which considers the brain topology and can achieve sparsity, making the estimated
BFN more discriminant. To prove the validity of K-PC, we utilize our model to recognize
subjects with MCI from NCs. Furthermore, we select PC, PCSparsity and SR as the baselines,
and the classification performance shows that K-PC outperforms the baseline methods.
Finally, it is worthwhile mentioning that although the proposed method is helpful to the
final classification performance, it involves the problem of artificially selecting the optimal
parameters. Therefore, from now on, we are going to exploit BFN algorithms that can
automatically learn parameters to obtain more discriminative features, thus improving
the final classification accuracy. When compared to three representative traditional time
series classification methods (Transformer, BiLSTM, and BiGRU), the results indicate that
the K-PC method outperforms traditional time series classification methods and exhibits
greater robustness and stability.
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