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Through the covalent attachment of functional groups or proteins, proteolytic cleavage of
regulatory subunits, or destruction of complete proteins, protein translational modifications
(PTMs) broaden the functional diversity of the proteome. These alterations, which include
phosphorylation, glycosylation, ubiquitination, methylation, acetylation, lipidation, and
lact-i'on, have an impact on nearly normai viological cell function, are significant
biological events in the development of cancer, and play vital roles in numerous biological
processes. The processes behind essential functions, the screening of clinical iliness signs,
and the identification of therapeutic targets all depend heavily on further research into the
PTMs. This j»=(e outlines the effects of several PTM types on prostate cancer (PCa)
diagnosis, therapy, and prognosis in an effort to shed fresh light on the molecular causes
and progression of the disease.
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Abstract

Through the covalent attachment of functional groups or proteins, proteolytic cleavage of
regulatory subunits, or destruction of complete proteins, protein translational modifications
(PTMs) broaden the functional diversity of the proteome. These alterations, which include
phosphorylation, glycosylation, ubiquitination, methylation, acetylation, lipidation, and lactation,
have an impact on nearly normal biological cell function, are significant biological events in the
development of cancer, and play vital roles in numerous biological processes. The processes
behind essential functions, the screening of clinical illness signs, and the identification of
therapeutic targets all depend heavily on further research into the PTMs. This page outlines the
effects of several PTM types on prostate cancer (PCa) diagnosis, therapy, and prognosis in an
effort to shed fresh light on the molecular causes and progression of the disease.

Keywords: protein post-translational modification, prostate cancer, diagnosis, treatment,
prognosis

Introduction

Only transcription and translation allow genes to become proteins, and practically all proteins
undergo PTMs such phosphorylation, methylation, acetylation, glycosylation, and ubiquitination.
Multiple PTMs can act in concert, or compete for the same sites to drive opposite outputs !> 2],
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As a result, different PTMs combinations influence the charge, conformation, and stability of
proteins, which in turn affects numerous bio'szical processes (Supplementary Materials, Table 1)
and is linked to a number of human disordczc 3. Therefore, this article examines the impact of
PTMs such as protein phosphorylation, glycosylation, ubiquitination, acetylation, methylation,
succinylation, and lipidation on the diagnosis, treatment, and prognosis of PCa, to provide a new
understanding of the molecular mechanism of its formation and development of prostate cancer.

Survey Methodology

PubMed database was used for related literature search using the keyword "prostate cancer,"

nmn nmn nmn nmn

“cancer," "protein phosphorylation," "protein glycosylation," "protein ubiquitination," "protein
acetylation," "protein methylation," "protein succinylation," and "protein lipidation."
RATIONALE

This study explores the influence of post-translational proteins on the diagnosis, treatment and
prognosis of prostate cancer, hoping to provide a new perspective for the study of the molecular
mechanism of the occurrence and development of prostate cancer, provide new targets and
screening methods for drug research and development, and promote the discovery and
development of new drugs.

AUDIENCE

This review describes the post-translational modifications of proteins related to prostate cancer in
recent years, which is conducive to readers' understanding of the development mechanism,
treatment and prognosis of prostate cancer, and also opens up ideas for the treatment of prostate
cancer. Therefore, it is considered appropriate for the journal's diverse readership.

Classification and clinical application of the PTMs types in prostate cancer

1 Phosphorylation

Phosphorylation modulates and controls th=-activity and function of many proteins as one of the
most common PTMs [4l. Tyrosine kinase,wad cyclin-dependent kinases, for instance, promote
the course of malignant illness by phosphorylation or participation in the phosphorylation
pathway, and the targeted phosphorylation pathway represents one of the prospective routes for
the creation of anticancer drugs 1. PI3K/Akt/mTOR and Ras/MAPK are two important signaling
pathways implicated in PCa development (Figure 1, For instance, eukaryotic translation
initiation factor 4E (elF4E) is phosphorylated by Mnk1/Z 1" response to rapamycin (mTOR). and
phosphorylation of elF4E increases oncogene translation rates and promotes drug resistan o= n
prostate cancer 6], Phosphorylation of the leukemia inhibitory factor receptor (LIFR) under the
action of extracellular signal-regulated kinase 2 (ERK2) contributes to the subsequent activation
of the protein kinase B signaling pathway (AKT) and induces the expression of genes associated
with proliferation and metastasis [’l. The COP9 complex subunit (COPS3) ‘=-highly expressed in
PCa tissues and promotes epithelial-mesenchymal (EMT) transformation . PCa by increasing
the phosphorylation level of P38 MAPK [8l. Phosphatase and tensin homolog (PTEN) can
negatively regulate the P13K/Akt pathway. When miR-92a is highly expressed in PCa, it can
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promote the proliferation, invasion, and migration of PCa cells through the ~~fivation of the
PTEN/AK! = gnaling pathway, thereby accelerating the development of PCa [°. [ii'the presence of
dehydroepiandrosterone (DHEA), bone marrow kinase on the X chromosome (BMX) is
activated and phosphorylates 3B-hydroxysteroid dehydrogenase type 1 (3BHSD1) to form an
active dimer that promotes the conversion of DHEA to dihydrotestosterone (DHT) [, Tousled-
like kinase mediates the phosphorylation of NEKI1, an amitc*~. gene A-associated kinase 1,
leading to DNA damage and promoting the development of CRL'C {!!l. ErbB-2 is phosphorylated
by Src kinase and phosphorylated by AKT, which promotes PCa cell proliferation and migration
through PI3K/AKT U2, In PCa, loss of nuclear FOXP3 is usually accompanied by low
expression of TSCI1, which induces c-Myc transcription and protein phosphorylation to
synergistically increase c-MYC expression and activate mTOR signaling!!3].

Figure 1. Schematic diagram of PI3K/Akt/mTOR signaling pathway

Note: PTEN,phosphatidylinositol 3-kinase (PI3K) and phosphatidylinositol 4,5-diphosphate
(PIP2) work .¢ sether to produce phosphatidylinositol triphosphate (PIP3). PIP3 recruits PDK1, a
protein with pleckstr ©-ilomology domain, phosphorylates and disrupts tuberculosis complex 1/2
(TSC1-TSC2) through Akt, and phosphorylates mTOR through RHEB. The two complexes that
mTOR proteins are involved in are mTOR protein complex 1 (mMTORC1) and mTOR protein
complex 2 (mTORC2). mTORCI increases protein translation by phosphorylation of its two
direct targets and P70S6K.

Therefuic, targeting these ph_< horylation targets and pathways can be developed for clinical
applications in prostate cancer. Phosphorylation controls the androgen receptor (AR) and the
PTEN/PI3K/AKT/mTOR axis ['4l. Cyclin-dependent kinase 1(“'DK1) and AKT phosphorylate
Ser81 and Ser213 of AR, respectively, while phenethyl caffeic acid (CAPE) reduces the protein
levels and activity of CDK1 and AKT a i nhibits the phasphorylation of Ser81 and Ser213 on
AR, thereby regulating the stability of AR 1'>]. Under hypoi.c conditions, the proviral integration
site for Moloney murine leukemia virus-1 (PIM1) promotes prostate cancer invasion by directly
phosphorylating ABI intc:2<tant 2 (ABI2). However, the use of PIM inhibitors can reduce
prostate cancer metaste si< 116171, DHT i 1 interact with AR to promote PCa to CRPC, the BMX
inhibitor zanubrutinib can effectively block androgen biosynthesis ['8], so this is also a treatment
for CRPC. ErbB-2 can be used as a biomarker for invasive PCa when hyperphosphorylated [°]
Antiandrogen inhibits ErbB-Z . hich is rarely overexpressed in patients with advanced PCa, so
trastuzumab clinical trials in men with advanced PCa have <52 wn little efficacy. However, when
castration or antiandrogen is combined with trastuzumab or the mTOR inhibitor everolimus, the
risk of recurrence of PCa xenografted = nors was significantly reduced [?°1. Ther o e, using
ErbB-2 as the target, combining various methods to treat PCa is worthy of further study. LQB-
118 is a sandalquinone with antitumor activity on prostate cancer cells [>!], which regulates the
proliferation, death and migration/invasion of PCa cells via a negative regulator of the Akt/GSK3
signaling pathway and is used to treat metastatic PCa in LQB can -118 is used alone or in
combination with another chemotherapy drug [??l. Serine/threonine protein phosphatase 5
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(PPP5C) is highly expressed in PCa tissues, and knockdown.~* PPP5C can inhibit the
proliferation of PCa cells and promote the phosphorylation of JNK"u:.d ERK. Therefore, PPP5C
may become a new diagnostic biomarker and therapeutic target for PCa [23l. Combined
administration of c-MYC and mTOR inhibitors (Torinl) can overcome the resistance to mTOR
inhibition that is common in prostate cancer cells, creating a new therapeutic target for prostate
cancer patients with both signaling defects '3]. For a summary of studies on the impact of protein
phosphorylation on the diagnosis, treatment, and prognosis of PCa, please refer to the
Supplementary Materials Table 2.

2 Glycosylation

The modification of glycosylatic is mainly catalyzed and regulated by various
glycosyltransferases and glycosidases 41, which play an important role in the origin and
development of ‘iulignant tumors. Most tumor markers used in clinical applications are
glycoproteins 251" swdies on the influence of glycosylation modification on the occurrence and
development of prostate cancer mainly include 2,6-sialylation, nuclear fucosylation, branched N-
sugar, and Lacdinac glycosylation [l The structures and types of these glycosylation
modifications are illustrated in Figure 2.

Figure 2. Some types and structures of glycosylation.
St6-galactoside-2,6-sialtransferase 1 (STOGAL1) is an enzyme that catalyzes the addition of 2,6-

linked sialic acids to terminal N-linked sugars. Its upregulation in prostate cancer has been
found to promote tumor growth and metastasis 2> 281, Another protein, growth differentiation
factor 15 (GDF15), is associated with low survival rate in prostate cancer patients. Its N-
glycosylation at the N70 site activates the epidermal growth factor receptor (EGFR) signaling
pathway, which provides a potential target for the. development of selective GDF15
glycosylation-based inhibitors for the treatment of CRI'C ?°1. ¢ (1,6) Fucosylaminotransferase
(FUTS), an enzyme involved in N-glucosylfucosylation, has been implicated in tumor metastasis
and immune escape B3%. FUTS8 mediates glycosylation of several proteins including EGFR,
TGF-beta receptor (TGFBR), E-cadherin, PD1/PD-L1, and B1-integrin, and plays an important
role in promoting the malignant phenotype of tumor cellsB3%,

These studies suggest that further research into protein glycosylation may lead to the
development of new biomarkers o' <iugs for the diagnosis and treatment of prostate cancer. The
level of cofucosylated diantennacan in the serum of prostate cancer patients is significantly
increased, and cofucosylated prostate-specific antigen (PSA) shows potential as a diaenostic
biomarker for distinguishing prostate cancer from other prostate diseases, such as BP1'." 1. 32],
Serum prostate-specific antigen (sPSA) could not distinguish between poorly differentiated,
moderately differentiated, and highly differentiated PCa. The integration of N-glycosylation
profiles and prostate volume changes into a single urinary glycosylation profile marker (UGM)
capable of distinguishing between BPH, PCa and prostatitis has high potential as a PCa
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biomarker(®3 34, Matrix-assisted laser desorption ionization time-of-flight mass spectrometry
(MALDI-TOF-MS) has been employed to detect changes in O-glycans in prostate cancer cells,
including increased O-glycan levels, decreased complex O-glycans, and increased salivary flow
of O-glycans 331, The polypeptide N-acetylgalactosaminyltransferase 7. (GALNT7) is a
polypeptide that can alter the O-glycosylation of membrane and secreted proteins. It has been
found that the levels of GALNT?7 in urine and blood of patients with CRPC are higher than
normal, and its diagnostic value exceeds that of PSA alone [3¢l, AC5GaINTGc is a small
molecule inhibitor of O-linked glycosylation, and can effectively inhibit O-glycan biosynthesis.
Furthermore, it has been shown to exhibit anti-inflammatory properties 7], Treatment with Myc
inhibitors (10074-G5 or 10058-F4) induces the IRE-a-XBPIls pathway to trigger fructose-6-
phosphoamidotransferase-1 (GFAT1) and increased protein glycosylation. When Myc inhibitors
are used in combination with GFAT-1 inhibitors (DON), there is a synergistic effect in inhibiting
prostate cancer cell proliferation and migration, suggesting that targeting Myc and GFAT-1 is a
novel approach that may represent a strategy for the treatment of prostate cancer 381,

3 Ubiquitination and deubiquitination

Ubiquitination is the process of attaching ubiquitin to a target protein, involving three enzymes:
ubiquitin-activating enzyme E1, ubiquitin-conjugating enzyme E2, and ubiquitin ligase E3.
Proteins can undergo either monoubiquitination or multiubiquitination. Multiubiquitination
occurs when one of the seven lysine residues of ubiquitin is linked to another ubiquitin 3°l. The
process of ubiquitination is a reversible ATP-dependent reaction, with the removal of ubiquitin
from the target protein referred to as deubiquitination 24, The biological processes of
ubiquitination and deubiquitination are shown in Figure 3.

Figure 3. Biological processes of protein ubiquitination and deubiquitination.

Note: Under the action of ATP energy supply, ubiquitin molecules combine with Cys of EI to
activate ubiquitin. E1 transfers ubiquitin to E2 and then transfers ubiquitin to the target protein
under the action of E3, resulting in the target protein ubiquitin. The target protein can carry one
or more ubiquitin molecules and the target protein with ubiquitin molecules is degraded on the
one hand under the action of the proteasome. On the other hand, ubiquitin molecules are
removed from the target protein under the action of deubiquitination enzymes, and ubiquitin
molecules enter the next ubiquitination process.

Spot-type POZ protein (SPOP), the most commonly mutated tumor suppressor gene in human
primary prostate cancer(’], is an E3 ubiquitin ligase that inhibits tumor growth by breaking down
cancer-promoting substrates. WT-SPOP induces the expression of caprinl,3-phosphoinositol-
dependent protein kinase-1 (PDK1) [, SPOP can hinder tumor growth by inhibiting the activity
of AKT kinase 4?1, Additionally, it can facilitate the degradation of HnRNPK by promoting its
ubiquitination, thereby inhibiting the proliferation of prostate cancer cells 1. The
SPOP/CUL3/RBX1 complex inhibits PCa progression through ubiquitination of cyclin E1 441,
However, mutant SPOP has different effects. It promotes the degradation of transcription factor
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2 (ATF2), leading to the proliferation and migration of prostate cancer cells*?l. Additionally,
mutant SPOP can increase androgen production, AR activation, and the growth of PCa cells [4¢].
The ubiquitin-binding enzyme E2S (UBE2S) regulates the stability of p16 and B-catenin through
K11-linked ubiquitination, thereby promoting the migration and invasion of PCa cells [*71. The
ubiquitination process requires ATP and hexokinase (HK) is the first rate-limiting enzyme in
glycolysis [8]. Docetaxel can activate the expression of hypoxia-inducing factor 1 (HIF-1) and
thereby increase the expression of SUMO-specific protease 1 (SENP1), which mediates HK2
desumoylation and promotes HK2 binding to mitochondria [4°], Melatonin reduces the expression
of SENP1, which mediates the desumoylation of HDACI, a key factor in AR transcription
activityl>%l. Furthermore, F-box and WD repeat domain containing 2 (FBXW?2) can target EGFR
for ubiquitination and degradation, thereby inhibiting the proliferation and metastasis of PCa
cells P11, USP16 and USP33, as the deubiquitinating enzymes of c-Myc, regulate the
proliferation of PCa cells by deubiquitinating and stabilizing the expression of c-Myc. By down-
regulating the expression of USP16 and USP33, the growth of PCa cells in vitro was
significantly inhibited in vivo B2 33 Ovarian tumor deubiquitinase 6A (OTUDG6A) is highly
expressed in prostate cancer tissues, and OTUDG6A stabilizes Brgl and AR expression by
removing FBXW7-mediated multiubiquitination of the K27 junction of Brgl and the SPOP-
mediated K11 junction of AR B4, Brcal-associated protein 1 (BAP1) is a deubiquitinating
enzyme that can inhibit prostate cancer progression by stabilizing the expression of PTEN and
downregulating the PI3K-Akt pathway [331.

Nobiletin, a compound, has the ability to specifically promote the degradation of AR-V7 through
the K48 ubiquitination form of the AR splice variant 7. It achieves this by preventing the
interaction of the deubiquitinating enzymes USP14 and USP22 with AR-V7. In addition,
Nobiletin also enhances the sensitivity of CRPC to enzalutamide, effectively inhibiting the
growth of CRPCP%. UBC9 mediates the SUMOylation of transcriptional activator 4 (STAT4).
Inhibiting UBC9 with 2-D08 can promote the activation of tumor-associated macrophage (TAM)
and CD8 T cells, preventing the progression of PCa 71, USP14 is one of the related proteins of
driver protein family member 15 (KIF15) and acts as a deubiquitination enzyme, preventing AR
and AR-V7 degradation, thereby increasing prostate cancer resistance to enzalutamide [81. At the
same time, IncRNA PCBPI1 antisense RNA 1 (PCBP1-AS1) can also stabilize USP22-AR/AR-
V7 complex formation, enhance AR and AR-V7 deubiquitination, and promote CRPC
progression and resistance to enzalutamide [*°1. The ubiquitin-specific peptidase 1 (USP1)
functions functionally as the deubiquitin enzyme, while SNS-032 functions as a kinase inhibitor,
inducing apoptosis and downregulating USP1 expression, thereby inhibiting PCa
proliferationl®. In addition, overexpression of USP7, USP10 and USPI2 in PCa cells is
associated with poor prognosis in PCa patients and may be used as prognostic markers in PCa
patients!®!l, In addition, one of the induced degradation techniques developed for target proteins
is PROTAC (Proteolytic Targeted Chimera) technology by forming ternary complexes that link
the target proteins with E3 ligases [°2]. AR degraders developed using PROTAC technology, such
as ARD-61, ARV-110, ARD-2128, and ARD-266, have shown significant inhibitory effects on
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cancer cell proliferation and have the potential to overcome drug resistance 93 %4, Most prostate
cancer patients treated with docetaxel develop resistance to docetaxel, and nuclear protein 1
(NUPR1) confers docetaxel resistance to prostate cancer cells, suggesting that NUPRI1 plays a
role in docetaxel resistance (9], Additionally, some RNAs are involved in the ubiquitination
process. For instance, circ_ 0006156 regulates SI00A9 protein expression via the ubiquitination
process, thereby inhibiting R transfer in PCa cells (0], Detailed studies on the impact of protein
ubiquitination on prostate cancer diagnosis, treatment, and prognosis can be found in the
Supplementary Materials Table 3.

4 Acetylation and deacetylation

The acetylation of proteins is the transfer of the acetyl group to the protein by the acetyl donor
(e.g., acetyl-coA) under the catalysis of acetyltransferase. The reverse process is called
deacetylation 241,

Tumor protein D52 (TPD52) can be acetylated by lysine acetyltransferase 2B (KAT2B), creating
antagonism with histone deacetylase 2 (HDAC?2) and preventing the interaction between TPD52
and the HSPA8 member, resulting in tumor growth impairment. This represents a target for PCa
treatment [%7]. Lysine acetyltransferase 2A (KAT2A) acetylates AR and induces AR translocation
from the cytoplasm to the nucleus, resulting in increased transcription activity of the AR target
gene PSA, thereby increasing resistance to abiraterone (%81, CBP/P300 mediates the acetylation of
HOXB13, AR, IMID1A, SKP2 and other proteins and promotes the emergence and development
of PCa, making it the key point of antiandrogen resistance of CRPCI®®-721. CBP/P300-related
factors can promote the degradation of B-catenin through acetylation and thus inhibit prostate
cancer progression [73l. Furthermore, in CRPC, carnitine palmitoyltransferase 1A (CPT1A)
provides acetyl groups for histones to promote tumor growth and anti-androgen resistance (e.g.,
enzalutamide) (74l In patients with advanced PCa, the degree of acetylation of the H3 in their
tissues is significantly increased [7°l. Furthermore, N-acetyltransferase 10 (NAA10) has been
found to promote the proliferation and migration of prostate cancer cells, as well as induce
autophagy [76l. On the other hand, acetylase acetyl-CoA acetyltransferase 1 (ACAT1), known as
a protumor factor in prostate cancer, has been shown to promote the occurrence and development
of the disease by inhibiting autophagy and eliminating reactive oxygen species [77l. SIRTS
inhibits PI3K and mediates PI3K/AKT/NF-B signaling to suppress prostate cancer metastasis [78,
Moreover, SIRTS promotes the activity of the MAPK signaling pathway through ACATI,
enhancing the proliferative, migratory, and invasive abilities of prostate cancer cells [7],
Docetaxel, a semisynthetic taxane, has exhibited significant single-agent activity against
prostatic tumors 8%, However, drug resistance and toxicity often occur during treatment 81, It is
therefore clear that acetylation and deacetylation of proteins affect the sensitivity of prostate
cancer to drugs. Transforming growth factor-p (TGF-B) can induce a process known as
acetylation of Kruppel-like factor 5 (KLF5) (Ac-KLF5), which promotes bone metastasis in PCa
by activating the C-X-C chemokine receptor type 4 (CXCR4). The use of the CXCR4 inhibitor
AMD?3100 has been shown to increase tumor sensitivity to docetaxel and inhibit bone metastasis
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in PCa 821, Ac-KLF5 also plays a role in regulating prostate development [#3]. Nitazoxanide
which is an anti-parasitic drug with potent antiviral activity as an inhibitor can suppress Ac-
KLF5-induced bone metastasis in PCa by regulating KLF5 function 34, SIRT3 is involved in
regulating the acetylation level of various proteins (such as HSD17B4, ACO?2, etc.) to affect
protein stability, and it can serve as a diagnostic marker for predicting PCa progression [83].
Notably, the activity of ACO?2 is significantly increased in prostate cancer tissues. AR can
regulate the expression of SIRT3 by binding to steroid receptor coactivator 2 (SRC-2). In the
absence of SRC-2, the expression of SIRT3 is enhanced, and the acetylation of ACO2 is reduced.
Increased expression of SRC-2 and decreased expression of SIRT3 serve as genetic markers for
the accumulation of prostate cancer metastases [#%l. Phosphoenolpyruvate carboxykinase subtype
2 (PCK2) reduces acetyl-CoA levels by shortening the TCA cycle, thereby promoting

tumourigenesis. PCK2 is therefore a potential therapeutic target for aggressive prostate tumours
[87],

5 Methylation

Protein methylation is an important epigenetic modification [#l]. Studies have shown that some
key genes in prostate cancer cells are altered by methylation modification, such that a change in
the activity of the genes leads to the development of prostate cancer 8],

SET domain protein 2 (SETD2) mediates the expression of Zeste homolog 2 (EZH2) and
promotes EZH2 degradation, which prevents PCa metastasis. However, metastasis is promoted
when SETD?2 is absent [°°l. As a methyltransferase, EZH2 mediates the methylation of ERG and
enhances its transcriptional and carcinogenic activity [°'l.  The administration of the EZH2
inhibitor GSK343 inhibits ERG methylation and tumor growth in PCa mouse models [’ DNA
methyltransferase 1 (DNMT1) promotes the emergence and metastasis of PCa by inhibiting the
transcription of tumor necrosis factor receptor-associated factor 6 (TRAF6), which mediates
EZH2 ubiquitination [88],

Histone methyltransferase has become an important therapeutic target in oncology. Telomere
silencing 1-like disruptor (DOTIL) is overexpressed as a histone methyltransferase in PCa
tissues and is associated with a poor prognosis [°3l. Tt impairs the mobility of PCa cells and
organoids. When DOTIL is knocked out or the inhibitors EPZ004777 or EPZ5676 are used, the
expression of MYC decreases and the expression of HECTECT domain E3 ubiquitin protein
ligase 4 (HECTD4) and MYCBP2 is regulated, ultimately promoting the degradation of AR and
MYC 31, Methylated H3 blocks antiandrogen resistance [*31.

6 Succinylation

Succinylation by transferring a succinyl group to a residue of the target protein in an enzymic or
non-enzymic manner Y, Therefore, the level of succinylation is mainly regulated by succinyl
donor, succinyltransferase, and desuccinylase [*3l. Succinylation alters rates of enzymes and
pathways, especially mitochondrial metabolic pathways [°6], thus linking metabolic
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reprogramming with various pathological disorders including cancers [*Yl. However, little has
been reported on the role and value of succinylation modification of the lysine site in prostate
cancer.

The level of succinylation in PCa tissues was significantly increased and the level of
succinylation correlated with the Gleason score and PDL1 expression level 7], C-terminal
binding protein 1 (CTBP1) is a corepressor in gene transcription regulation and is highly
expressed in prostate cancer tissues. CTBP1 promotes migration of prostate cancer cells. E-
cadherin (CDHI), a transmembrane glycoprotein that connects epithelial cells at adherent
junctions, exerts its tumour suppressing role mainly by sequestering B-catenin from its binding to
LEF (Lymphoid enhancer factor)/TCF (T cell factor)®®l. CDH1 functions as a substrate of
CTBPI1. KAT2A mediates succinylation of CTBP1 and inhibits the transcription activity of
CTBP1 on CDHI and thus play a role in cancer promotion [*°l, In addition, desuccinylation also
plays an important role in prostate cancer. For example, SIRTS, a nicotinamide adenine
dinucleotide (NAD)-dependent desuccinylase, significantly reduced expression levels of SIRTS
and significantly increased succinylation at lactate dehydrogenase A (LDHA) lysine 118
(K118su) in aggressive PCa cells. As a substrate of SIRTS, LDHA-K118su significantly
increased migration and invasion of PCa cells 1901,

Fish oil (FO) composed of omega-3 polyunsaturated fatty acids (omega-3 PUFA) affects the
succinylation of glutamate-oxaloacetic aminotransferase 2 (GOT2), which may inhibit PCa
progression by interfering with aspartate synthesis and nucleotide production. This provides the
basis for further investigation of succinylation and GOT?2 as potential drug targets for future PCa
treatment [101],

7 Lipidization

Protein lipid modification mainly includes cysteine palmitoylation, n-terminal glycine
myristoylation, and cysteine isoprene 4. The common protein lipidization modifications in
prostate cancer mainly include the dysregulated expression of fatty acid synthase (FASN) and
activated protein kinase (AMPK) 192! (Figure 4). FASN catalyzes the synthesis of malonyl
coenzyme A (MCoA) and acetyl coenzyme A (ACoA) from procondensation and stores the
palmitate by converting excess carbon uptake into fatty acids. It is responsible for the acylation
of key regulatory switches in most signal transduction energy pathways and plays a central role
in energy homeostasis [193],

Figure 4. Main metabolic pathways of FASN and AMPK in PCa cells.
Note: The condensation of MCoA and ACoA produces FASN, which plays a central role in
energy homeostasis by converting excess carbon uptake into fatty acids for storage. Activation of
AMPK can inhibit these pathways by direct phosphorylation of key lipoblast and key kinases
(such as ACC or TSC1/TSC2) or by regulating SREBP1c¢ transcription.
The elevated expression of FASN is associated with a poor prognosis of PCa, and the 5-
reductase inhibitor (dutasteride) can inhibit the expression of FASN in prostate cancer cells [103],
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Caveolin-1 promotes androgen resistance by upregulating acetyl-CoA carboxylase-1 (ACCI)
and FASN expression and lipid synthesis and promotes the proliferation and metastasis of PCa
cells 194, FASN inhibitor (IPI-9119) and demonstrated that selective FASN inhibition
antagonises CRPC growth through metabolic reprogramming and leads to decreased protein
expression and transcriptional activity of full-length AR (AR-FL) and AR-V7 [03]
Overexpression of miR-107 alters key invasive characteristics of PCa cells and regulates the
expression of lipid metabolism. Therefore, miR-107 may represent a novel and useful biomarker
for personalised diagnosis and prognosis [1%],. AMPK plays an on-off role in glucose and lipid
metabolism. Therefore, drugs that induce AMPK activation have potential benefits in the
prevention and treatment of prostate cancer [197], For example, when AMPK is activated by 5-
aminoimidazole-4-formamide riboside (AICAR) or thiazolidinedione rosiglitazone, AICAR
inhibits mTOR and p70S6 expression, as well as ACC and FASN expression in LNCaP cells,
thereby inhibiting cell growth [108],

8 Lactation

Lactic acid is an abundant metabolite in the tumor microenvironment, is secreted by cancer-
related fibroblasts, and can be absorbed by cancer cells to maintain mitochondrial metabolism
(1091 However, lactate modification is a novel protein modification that was only reported in
20191101 5o there are relatively few studies. HIF1 introduces lactic acid into PCa cells via
monocarboxylate transporter 1 (MCT1), and HIF1 lactation enhances transcription of KIAA1199
and promotes prostate cancer angiogenesis [!'!l. In addition, regulation of histone lactation is
also a potential PCa therapy target [''2]. For example, tumor cells treated with PI3K inhibitors or
anti-PD-1 antibodies (aPD-1) reduce lactate production and inhibit lactation of histone proteins
within tumor-associated macrophages (tams), resulting in phagocytic activation (1131, Absence of
the Numb/Parkin pathway in prostate cancer leads to metabolic reprogramming, a significant
increase in lactic acid production and subsequent upregulation of histone lactation and
neuroendocrine-associated gene transcription, a promising therapeutic target for cancer cell
plasticity modulation of histone lactation [112],

9 Interaction of various PTMs

There are many forms of mutual regulation of PTMs between proteins, such as the interaction
between ubiquitination and phosphorylation, the interaction between acetylation and
ubiquitination, and the interaction between phosphorylation and lipidation.

In PCa tissues, overexpression of prostatic leucine zipper (PrLZ) can promote cell growth and
migration !4 and Cullin 3/SPOP can mediate ubiquitination and degradation of PrLZ, thereby
regulating prostate cancer progression (il - 6th ) Activation of ERK1/2 expression prevents
SPOP-mediated degradation of PrLZ phosphorylation at Ser40 [!!3], Protein acetylation is also
associated with protein degradation. Early studies demonstrated that proteins with free a-amino
groups can be degraded by ATP-dependent ubiquitin degradation, and that ubiquitin-mediated
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protein degradation can be prevented when the N-terminal a-amino group is acetylated 116 1171,
Activated kinase 6 (PAK6) of P21 in the inner mitochondrial membrane promotes sirtuin protein
4 (SIRT4) ubiquitination degradation, while SIRT4 abolishes acetylation of adenine nucleotide
translocase 2 (ANT2) to promote ANT2 ubiquitination degradation and activates P21 Kinase 6
(PAK6) directly phosphorylates ANT2 to inhibit prostate cancer cell apoptosis, and the
phosphorylation and deacetylation modification of ANT2 are mutually regulated, thereby
promoting PCa progression 8], Both CDK4/6 and CDK2 can phosphorylate RB, and RB
phosphorylation decreases the interaction between HDAC5 and RB [1'°1, CBP/p300 interacts
with the Glu/ASP-rich C-terminal domain transactivator 2 (CITED2) and binds to polymer
complexes (NCL, p300, PRMTS) to drive nucleolar protein (NCL) methylation and acetylation,
thus inducing NCL regulate translocation. AKT is activated to drive the EMT and cell migration
[120], Phenethyl isolipoate (PEITC) regulates histone acetylation, activates the PI3K/AKT
pathway, and phosphorylates PI3K to regulate prostate cancer cell development (2. SPOP
regulates lipid metabolism by reducing FASN expression and FA synthesis, thereby inhibiting
tumour progression [40],

EZH2 prevents FOXAI1 ubiquitination by enhancing FOXA1 methylation and increasing
FOXALI stability [122]. Simultaneously, the deubiquitinating enzyme USP7 also interacts with
FOXATI to reduce the ubiquitination of FOXAI1, and the use of EZH2 and USP7 inhibitors
(GSK-126 and EPZ-6438) inhibits the growth of PCa [23l. Acetylation of LIFR K620 is
dependent on AKT production and promotes PCa progression through phosphorylation of LIFR
S1044, which activates the AKT pathway and recruitment of 3-phosphoinositol-dependent
protein kinase 1 (PDPK1) and PTEN loss connected is. This represents a biomarker to monitor
the progression of PCa [118], The retinoblastoma protein (RB) binds to HDAC, and when HDAC5
is absent, it increases prostate cancer cell resistance to the CDK4/6 inhibitor palbocinb. Baicalein
can regulate fatty acid metabolism and induce cell apoptosis by activating the AKT-SREBP1-
FASN signalling network in human PCa cells, showing potent anti-tumour effects. Therefore, it
may be a promising candidate for anticancer drug development ['24l. Eriobotrya japonica (EJCE)
blocks SREBP-1/FASN-driven metabolism ['?%], Targeting FASN or in combination with AR
pathway inhibitors (SCD1 and AR) is likely to be a combined drug strategy ['%6]. The
combination of orlistat (a FASN inhibitor) and radiotherapy significantly reduced NF-kB activity
and associated downstream proteins in both prostate cancer cells, and the combination therapy
showed the best tumour suppression 1?71, By restricting histone lactation and HIF1A expression
in PCa cells, Evodiine blocks lactate-induced angiogenesis and further enhances Sema3A
transcription while inhibiting PD-L1 transcription. Evodiine is a promising agent for anti-
angiogenesis therapy or immunotherapy of PCa [123],

Conclusion and perspective

In summary, post-translational modification of proteins plays an important role in cellular
processes by regulating cell signalling, protein localisation and maintaining cellular function by
altering protein structure and function. However, protein modifications such as protein
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methylation, succinylation and lactation have been less studied in prostate cancer. At present,
these studies only show that protein succinylation, lactation and methylation modifications can
be used as promoting factors in prostate cancer, and do not conduct in-depth studies on the role
these modifications play in prostate cancer and its treatment. Therefore, we can reasonably
assume that the specific regulatory role of these modifications in prostate cancer may become a
new direction of prostate cancer targeted therapy. In the future, it may be possible to use
PROTAC technology to directly mediate protease degradation of target proteins for
succinylation, lactation and methylation modification, or to mediate other types of modified
enzymes to competitively target the sites of succinylation, lactation and methylation
modification. and provide a new vision for gene therapy.

Now, with advances in biotechnology such as high-throughput sequencing, proteomics and
metabolomics, these technologies can be used to screen for new biomarkers to reduce prostate
cancer mortality(!?%l, High-throughput sequencing technologies have identified millions of
genetic mutations in a wide range of human diseases. The combination of functional features
such as PTMs with genetic mutations can distinguish disease-associated mutations and provide
potential molecular targets for new therapeutic strategies!!3%l. Mass spectrometry can be used to
detect and quantify proteins in prostate secretions, urine and blood to assess disease status(!?%].
For example, fucosylated *!land n-glycosylated!!32IN-glycans of the protein haptoglobin can be
used as biomarkers for prostate cancer. Biomarkers for succinylation, lactation and methylation
modifications can therefore be developed using these techniques. PTM regulators are an
attractive and important target class for drug development. Kinase inhibitors, methyltransferase
inhibitors, deacetyltransferase inhibitors and ubiquitin ligase inhibitors have achieved remarkable
success in clinical use. Mass spectrometry-based proteomics is a powerful approach for system-
wide characterisation of PTMs, helping to identify drug targets, elucidate drug mechanisms of
action and personalise treatment!!33],

In addition, the post-translational modification of proteins can provide new targets and screening
methods for drug discovery and development. Irreversible post-translational modification of
proteins that promote the migration and proliferation of tumour cells, such as the upcoming
PROTAC technology mentioned above, so that they lose their biological function and can be
used to treat disease. In addition, by comprehensively analysing different post-translational
modification patterns, a new PTMI model was established that can accurately predict the clinical
prognosis and treatment response of CRC patients!!34l. New models can also be developed for
prostate cancer, such as GlycoPAT, but only for glycosylation changes in prostate cancert!'33],
Therefore, it may be possible in the future to develop a simulation platform for the computational
assessment of methylation, succinylation and lactation in prostate cancer. A detailed study of
post-translational protein modifications not only helps us to understand the mechanisms of
prostate carcinogenesis, but also opens up new opportunities in the biopharmaceutical field.
Therefore, it is hoped that by studying the aberrant changes in post-translational modifications of
proteins, new markers associated with prostate cancer can be discovered and new diagnostic
methods and treatment strategies can be developed.
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Figure 1

Schematic diagram of PI3K/Akt/mTOR signaling pathway
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Figure 2

Some types and structures of glycosylation.
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Figure 3

Main metabolic pathways of FASN and AMPK in PCa cells.
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Figure 4

Biological processes of protein ubiquitination and deubiquitination.
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