Within-host adaptive speciation of commensal yoyo clams leads to ecological exclusion, not co-existence (#97354)

First submission

Guidance from your Editor

Please submit by 23 Mar 2024 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

10 Figure file(s)

- 1 Table file(s)
- 3 Raw data file(s)
- 3 Other file(s)

i

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Within-host adaptive speciation of commensal yoyo clams leads to ecological exclusion, not co-existence

Teal A. Harrison Corresp., 1, Ryutaro Goto 2, Jingchun Li 3, Diarmaid Ó Foighil Corresp. 1

Corresponding Authors: Teal A. Harrison, Diarmaid Ó Foighil Email address: tealh@umich.edu, diarmaid@umich.edu

Symbionts dominate planetary diversity and three primary symbiont diversification processes have been proposed: co-speciation with hosts, speciation by host-switching, and within-host speciation. The latter mechanism is prevalent among members of an extraordinary marine symbiosis in the Indian River Lagoon, Florida, composed of a host mantis shrimp, Lysiosquilla scabricauda, and seven host-specific commensal vasconielline "yoyo" clams (Galeommatoidea) that collectively occupy two distinct niches: burrow-wallattached, and host-attached/ectocommensal. This within-host symbiont radiation provides a natural experiment to test how symbiont coexistence patterns are regulated in a common ancestral habitat. The competitive exclusion principle predicts that sister taxa produced by adaptive speciation (with distinct morphologies and within-burrow niches) are most likely to coexist whereas the neutral theory predicts no difference among adaptive and non-adaptive sister taxa co-occurrence. To test these predictions, we engaged in 1) field-censusing commensal species assemblages; 2) trophic niche analyses; 3) laboratory behavioral observations. Although predicted by both models, the field census found no mixed-niche commensal assemblages: multi-species burrows were exclusively composed of burrow-wall commensals. Their co-occurrence matched random assembly process expectations, but presence of the single ectocommensal species had a highly significant negative effect on recruitment of all burrow-wall commensal species (P < 0.001), including on its burrow-wall commensal sister species (P < 0.001). Our stable isotope data indicated that commensals are suspension feeders and that co-occurring burrow-wall commensals may exhibit trophic niche differentiation. The artificial burrow behavioral experiment yielded no evidence of spatial segregation among burrow-wall commensals, and it was terminated by a sudden breakdown of the host-commensal relationship resulting in a mass mortality of all commensals unattached to the host. This study system appears to contain two distinct, superimposed patterns of commensal distribution: 1) all burrow-wall

¹ Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, United States

² Seto Marine Biological Laboratory, Field Science Education and Research Center, Kyoto University, Shirahama, Wakayama, Japan

Bepartment of Ecology and Evolutionary Biology and Museum of Natural History, University of Colorado, Boulder, CO, United States

commensal species; 2) the ectocommensal species. Burrow-wall commensals (the plesiomorphic condition) broadly adhere to neutral theory expectations of species assembly but the adaptive evolution of ectocommensalism has apparently led to ecological exclusion rather than coexistence, an inverse outcome of theoretical expectations. The ecological factors regulating the observed burrow-wall/ectocommensal exclusion are currently obscure but potentially include differential recruitment to host burrows and/or differential survival in "mixed" burrow assemblages, the latter potentially due to changes in host predatory behavior. Resampling host burrows during commensal recruitment peak periods and tracking burrow-wall commensal survival in host burrows with and without added ectocommensals could resolve this outstanding issue.

Gı Ye

Within-host adaptive speciation of commensal yoyo clams

leads to ecological exclusion, not co-existence

3 4 5 Teal A. Harrison¹, Ryutaro Goto², Jingchun Li³, Diarmaid Ó Foighil¹ 6 7 8 ¹ Department of Ecology and Evolutionary Biology and Museum of Zoology, University of 9 Michigan, Ann Arbor, MI, United States of America 10 ² Seto Marine Biological Laboratory, Field Science Education and Research Center, Kyoto 11 University, 459 Shirahama, Nishimuro, Wakayama 649-2211, Japan 12 ³ Department of Ecology and Evolutionary Biology and Museum of Natural History, University of 13 Colorado, Boulder, CO 80309, United States of America 14 Corresponding Authors: Teal A. Harrison, Diarmaid Ó Foighil 15 Email addresses: tealh@umich.edu; diarmaid@umich.edu 16 17 18 Abstract 19 20 Symbionts dominate planetary diversity and three primary symbiont diversification 21 processes have been proposed: co-speciation with hosts, speciation by host-switching, and 22 within-host speciation. The latter mechanism is prevalent among members of an extraordinary 23 marine symbiosis in the Indian River Lagoon, Florida, composed of a host mantis shrimp, 24 Lysiosquilla scabricauda, and seven host-specific commensal vasconielline "yoyo" clams 25 (Galeommatoidea) that collectively occupy two distinct niches: burrow-wall-attached, and host-26 attached/ectocommensal. 27 28 This within-host symbiont radiation provides a natural experiment to test how symbiont 29 coexistence patterns are regulated in a common ancestral habitat. The competitive exclusion 30 principle predicts that sister taxa produced by adaptive speciation (with distinct morphologies 31 and within-burrow niches) are most likely to coexist whereas the neutral theory predicts no 32 difference among adaptive and non-adaptive sister taxa co-occurrence. To test these 33 predictions, we engaged in 1) field-censusing commensal species assemblages; 2) trophic 34 niche analyses; 3) laboratory behavioral observations.

PeerJ

35	
36	Although predicted by both models, the field census found no mixed-niche commensal
37	assemblages: multi-species burrows were exclusively composed of burrow-wall commensals.
38	Their co-occurrence matched random assembly process expectations, but presence of the
39	single ectocommensal species had a highly significant negative effect on recruitment of all
40	burrow-wall commensal species (P < 0.001), including on its burrow-wall commensal sister
41	species ($P < 0.001$). Our stable isotope data indicated that commensals are
42	suspension feeders and that co-occurring burrow-wall commensals may exhibit
43	trophic niche differentiation. The artificial burrow behavioral experiment yielded
44	no evidence of spatial segregation among burrow-wall commensals, and it was
45	terminated by a sudden breakdown of the host-commensal relationship resulting in
46	a mass mortality of all commensals unattached to the host.
47	
48	This study system appears to contain two distinct, superimposed patterns of commensal
49	distribution: 1) all burrow-wall commensal species; 2) the ectocommensal species. Burrow-
50	wall commensals (the plesiomorphic condition) broadly adhere to neutral theory
51	expectations of species assembly but the adaptive evolution of ectocommensalism has
52	apparently led to ecological exclusion rather than coexistence, an inverse outcome of theoretical
53	expectations. The ecological factors regulating the observed burrow-wall/ectocommensal
54	exclusion are currently obscure but potentially include differential recruitment to host burrows
55	and/or differential survival in "mixed" burrow assemblages, the latter potentially due to
56	changes in host predatory behavior. Resampling host burrows during commensal
57	recruitment peak periods and tracking burrow-wall commensal survival in host burrows with and
58	without added ectocommensals could resolve this outstanding issue.
59	
60	Introduction
61	A striking feature of life on Earth is its high degree of ecological nestedness, a condition
62	famously satirized by Swift (1733): "So, naturalists observe, a flea hath smaller fleas that on him
63	prey, and these have smaller still to bite 'em; and so proceed ad infinitum". An important but

A striking feature of life on Earth is its high degree of ecological nestedness, a condition famously satirized by Swift (1733): "So, naturalists observe, a flea hath smaller fleas that on him prey, and these have smaller still to bite 'em; and so proceed ad infinitum". An important but often-overlooked consequence of this feature is that most species are in fact symbionts (parasites/commensals/mutualists) whose habitats consist of other (host) species (Windsor, 1998; Poulin & Morand, 2004; Moran, 2006).

66 67

64

68 Symbiont diversification processes have therefore played outsized roles in generating our 69 planet's fundamental biodiversity and two main generative evolutionary mechanisms have been 70 proposed: co-speciation with hosts, and speciation by host-switching (e.g., Ricklefs, Fallon & 71 Bermingham, 2004). The former mechanism is host-driven – host lineage speciation events 72 lock-stepping symbiont lineage speciation – and it is thought to be highly prevalent in Nature, 73 e.g., co-speciation of bacterial endosymbionts with insect hosts alone may form the bulk of all 74 speciation events (Larsen et al., 2017; Hernández-Hernández et al., 2021). The latter 75 mechanism is symbiont-driven – colonization of new hosts providing new ecological portals for 76 symbiont speciation – and it has been proposed as a major driver of speciation in both terrestrial (Coyne & Orr, 2004; Matsubayashi, Ohshima & Nosil, 2010) and marine (Duffy, 1996; Goto et 77 78 al., 2012; Hurt et al., 2013; Fritts-Penniman et al., 2020; Rodriguez & Krug, 2022) biotas. 79 80 A third diversification mechanism, within-host speciation, has received less attention and it 81 involves the evolution of sister species that retain the same ancestral host. Co-existence of 82 sister taxa on their host might a priori be expected to approximate neutral theory (Hubbel, 2001) 83 expectations of species assembly because of their joint persistence within a shared, highly 84 specialized ancestral habitat. However, competitive exclusion principle-based perspectives 85 (Grinnell, 1904; Hardin, 1960; Chesson, 2003) have dominated species diversity studies over 86 the past century (Simha, Pardo-De La Hoz & Carley, 2022). This is also apparent for within-host 87 speciation case histories where niche differentiation or allopatry is implicitly expected, e.g., 88 within-host phytophagus insect speciation studies emphasize cases of either adaptive 89 speciation, e.g., specialization for discrete host tissues (Cook et al., 2002; Joy & Crespi, 2007; 90 Althoff, 2014), or discrete host life history stages (Zhang et al., 2015), or non-adaptive allopatric 91 speciation occurring in exclusive subsets of a host range (Imada, Kawakita & Kato, 2011). In 92 contrast, there have been few studies of sympatric, ecologically non-differentiated sister species 93 that share the same host. 94 95 Almost all evolutionary radiations have the potential to produce new members through either 96 adaptive or non-adaptive speciation processes (Czekanski-Moir & Rundell, 2019; Matsubayashi 97 & Yamaguchi, 2020). In principle, a within-host symbiont radiation that contained sympatric 98 sister species pairs respectively generated by adaptive and by non-adaptive speciation 99 processes could represent an ideal natural experiment to test how symbiont coexistence 100 patterns are regulated in a common ancestral habitat. The competitive exclusion principle 101 (Grinnell, 1904; Hardin, 1960; Chesson, 2003) predicts that sister taxa produced by adaptive

02	speciation and occupying distinct host niches are most likely to coexist on individual hosts. In
03	contrast, the neutral theory (Hubbel, 2001) predicts that sister taxa produced by non-adaptive
04	speciation and having similar host niches are equally likely to coexist with each other as with
05	their ecologically differentiated co-symbionts.
06	
07	A single-host marine symbiont assemblage documented in the Indian River Lagoon (IRL) on the
80	East coast of Florida exhibits many of the model attributes outlined above. The host,
09	Lysiosquilla scabricauda (Lamarck, 1818), is a benthic ambush predator "spearing" mantis
10	shrimp (Caldwell & Dingle, 1976; deVries, Murphy & Patek, 2012) that lives in large burrows up
11	to 10m in length within sandy substrates (Christy and Salmon, 1991) and is widely
12	distributed in the Western Atlantic from the southeastern USA to southern Brazil (Tavares,
13	2002; Reaka et al., 2009). In the IRL, L. scabricauda hosts 7 species of commensal
14	galeommatoidean bivalves currently placed in two vasconielline genera – Divariscintilla (6
15	species) and Parabornia (1 species) – that appear to be host-specific, i.e., are known to
16	occur only within <i>L. scabricauda</i> burrows (Mikkelsen & Bieler 1989,1992; Goto, Harrison & Ó
17	Foighil, 2018). The 6 species of <i>Divariscintilla</i> [<i>D. yoyo</i> Mikkelsen & Bieler, 1989, <i>D.</i>
18	troglodytes Mikkelsen & Bieler, 1989, D. octotentaculata Mikkelsen & Bieler, 1992, D.
19	Iuteocrinita Mikkelsen & Bieler, 1992, D. cordiformis Mikkelsen & Bieler, 1992, and a new,
20	undescribed species <i>D.</i> aff. yoyo (Goto et al., 2018)] are currently known only from
21	the IRL and nearby Floridian locations (Mikkelsen & Bieler 1992; Mikkelsen, Mikkelsen
22	& Karlen, 1995). All 6 attach to the smooth, hard-packed host burrow walls (Figure 1) via a
23	long, thin posterior foot extension that secretes anchoring byssus threads, and
24	contraction/relaxation of this "hanging foot" structure produces characteristic yoyo-
25	like movements (Mikkelsen & Bieler 1989; Mikkelsen & Bieler 1992; Goto et al., 2018
26	Supplementary Movie 1) – hence the informal "yoyo clams" moniker (Mikkelsen & Bieler 1989).
27	In contrast, the Parabonia species, P. squillina Boss, 1965, is an ectocommensal, attaching
28	directly to the host (Figure 1), specifically to the lateral portion of its pleonal sternite
29	(Goto et al., 2018). Its known range extends from Panama to Florida (Boss, 1965; Moore &
30	Boss, 1966; Abbott, 1974) and it has one very similar ectocommensal congener, <i>P. palliopillata</i>
31	Simone, 2001, recorded from Southern Brazilian L. scabricauda host populations
32	(Simone, 2001; Goto et al., 2018).
33	
34	A vasconielline molecular phylogenetic analysis (Goto <i>et al., 2018</i>) illuminated the
35	evolutionary relationships among 6/7 of the IRL <i>L. scabricauda</i> commensals (the

136 rarest species, D. cordiformis, was unavailable for genotyping). One species, D. 137 troglodytes, was phylogenetically distinct and placed topologically among Pacific 138 Ocean burrow-wall lysiosgillid commensals, implying that its presence in L. 139 scabricauda burrows involved an ancestral host-switching event coupled with inter-140 ocean basin migration. The remaining 5 L. scabricauda commensals formed a host-141 specific clade, a result consistent with within-host speciation, but not necessarily in 142 sympatry as initial differentiation may have occurred in allopatry (Rundell & Price, 143 2009), i.e., in discrete subsets of the host's extensive Western Atlantic range (Goto 144 et al., 2018). The host-specific clade contained two well-supported clade tip sister 145 relationships. One involved a cryptic sister species pair of burrow-wall commensals 146 - D. yoyo and D. aff. yoyo - that are apparent products of non-adaptive 147 speciation. They are effectively identical in external appearance and in within-148 burrow habitat but can be distinguished morphologically by details of their 149 (mantle-covered) anterior shell margins, in addition to their gene sequences 150 (Goto et al., 2018). The other comprised D. octotentaculata, a burrow-wall commensal, and 151 P. squillina, the ectocommensal, two species that differ not only in within-burrow habitat but also 152 in many aspects of their morphologies. Goto et al. (2018) concluded that P. squillina was a 153 product of adaptive speciation and ecological character displacement (Grant and Grant, 2006) 154 from a burrow-wall commensal common ancestor with D. octotentaculata. This 155 evolutionary process involved an ecological shift to an ectocommensal niche along with a 156 suite of associated morphological changes: loss of specialized "hanging foot" structures, 157 loss of hypertrophied mantle tissue enveloping the shell, loss of prominent sensory 158 tentacles, as well as gain of specialized mantle margin papillae. 159 160 Mikkelsen & Bieler's (1992) focus was primarily taxonomic, but they also commented on the 161 relative frequency of burrow-wall commensals recovered from individual IRL L. scabricauda 162 burrows. Most burrows with these commensals contained *D. octotentaculata*, 163 usually in combination with one or more of 4 congeners: D. yoyo, D. troglodytes, D. 164 luteocrinita, and D. cordiformis. They concluded that "no ecological niche separation between 165 the five sympatric species was recognized, leaving interesting questions for future research". Mikkelsen & Bieler (1992) did not provide data on the frequency of the ectocommensal P. 166 167 squillina in IRL host burrows but anecdotally noted that it "has not been collected in burrows 168 containing Divariscintilla species". 169

These preliminary ecological observations (Mikkelsen & Bieler, 1992) are broadly consistent with neutral theory (Hubbel, 2001) expectations for IRL commensal vasconielline species. Our aim in this study was to revisit this issue in light of the new evolutionary relationships data among the commensals, including the sister species pairs produced by adaptive (*D. octotentaculata* and *P. squillina*) and non-adaptive (*D. yoyo* and *D. aff. yoyo*) withinhost speciation (Goto et al., 2018). We employed a diversity of approaches including 1) censusing commensal species assemblages in host burrows; 2) testing for dietary differentiation via isotope composition analyses; 3) laboratory behavioral observations of artificial burrow commensal assemblages with, and without, hosts. Although our results are the inverse of competitive exclusion expectations, they are also not fully consistent with neutral theory predictions, and they imply that the adaptive evolution of ectocommensalism may have disrupted ancestral coexistence modalities among members of this host-specific commensal community.

Materials & Methods

Sampling sites

From June 14th to July 25th, 2017, the first author (after obtaining a Florida state collecting permit) performed extensive low tide field sampling of *Lysiosquilla scabricauda* burrows at 5 adjacent shallow water sandflat study sites within the IRL's Ft. Pierce Inlet (Figure 2). The three sites (1, 4 & 5) on the northern margin of the Inlet (Figure 2) collectively contain the type localities of 5 commensal clam species: *Divariscintilla octotentaculata*, *D. luteocrinita*, *D. troglodytes*, *D. yoyo*, and *D. cordiformis* (Mikkelsen & Bieler 1989, Mikkelsen & Bieler 1992).

Host burrow identification and host capture

At the beginning of each field session, all visible host burrows within the targeted study site were flagged for sampling. *Lysiosquilla scabricauda* burrows were identified by their characteristic openings: irregularly square, about 1 cm² in area, and covered by a sand cap that was differentially textured than the surrounding sand flat. Presence of a host burrow was confirmed by lightly touching the burrow cap and observing it give way, a disturbance that occasionally caused a resident stomatopod to appear briefly at the burrow mouth prior to withdrawing from sight. *L. scabricauda* specimens were collected manually using a bait-and-capture technique (Goto *et al.*, 2018); see here a video summary. A bait fish was placed directly over a submerged burrow opening and held for a 3-minute trial period to elicit an attack by a resident stomatopod. If no host response occurred during that interval, a new host burrow was

then attempted. The raptorial appendages of lysiosquillid stomatopods are barbed, razor sharp, and designed to impale soft-bodied prey (deVries *et al.*, 2012). Thus, thick fishing gloves were worn for protection and once a resident stomatopod impaled the bait or otherwise presented at the mouth of the burrow, its raptorial appendages were sequentially grasped by hand (Figure 3) and held firmly as it attempted to pull itself downward into its burrow. As the restrained stomatopod tired, it was slowly pulled upward out of the burrow.

210211

212

213

214

215

216

217218

219

220

221

222

223

224

225

226

227

228

204

205

206

207

208

209

Collecting burrow-wall commensal clams

Once a host L. scabricauda had been collected, its burrow was then sampled for yoyo clam burrow wall commensals using a stainless-steel bait pump ("yabby pump"). As emphasized by Mikkelsen and Bieler (1989, 1992), this method effectively samples only its own length (0.5-1.0m) of the vertical parts of the stomatopod's U-shaped burrow, leaving the deeper horizontal section unsampled. The contents of single pulls of the yabby pump were expelled into a 2 mm sieve and this process was repeated until three pulls failed to return any observable clams, or until the vertical arm of the host burrow collapsed from the repeated suctioning. Regardless of species, yoyo clams were readily recognized by their characteristic off-white, mucoid appearance against the mesh and the residual sediment particles retained in the sieve. Individual clams were carefully picked up using a feather weight forceps and placed into 50 ml tubes of seawater. Any ectocommensals detected on the stomatopod host were similarly detached from the base of the host pleopods and placed in seawater tubes. Back in the laboratory, all live commensal clams sampled from individual host burrows were maintained together in burrow-specific, labelled finger bowls containing filtered sea water with slight aeration. All clams were then identified to species using a dissecting microscope and their mantle lengths measured. Species counts and the number of individuals per species were recorded for each burrow sample.

229230

231

232

233

234

Statistical analyses of co-occurrence data

Several statistical tests were performed on the commensal species frequency data. These included over-dispersion tests for the two most frequent species (*P. squillina* and *D. octotentaculata*) using the "overdispersion.test" function in R 4.3.1, to determine if the observed individual distributions in host burrows were more clustered than expected by chance.

235236

237

In addition, we conducted several simulations tests of the co-occurrence patterns of the different commensal species to determine if they fall within the expectation of a random larval settling

PeerJ

238	process. IRL <i>Divariscintilla</i> species have "mixed" larval development in which early
239	developmental stages are ctenidially-brooded, then released into the water column as early,
240	straight-hinged "D" veligers to undergo an obligate period of planktotrophic larval development
241	and dispersal, thereby greatly reducing the likelihood of resettlement in parental burrows
242	(Mikkelsen & Bieler 1989; Mikkelsen & Bieler 1992). The details of <i>Parabornia squillina</i> 's early
243	development are currently unknown but its prodissoconch structure is consistent with it also
244	having an obligate planktototrophic larval dispersal phase (Supplementary Figure 1). [Similarly,
245	presence of large numbers of small (<100 µm) brooded "ova" in the ctenidia of its Brazilian
246	congener, P. palliopapillata, (Simone, 2001; Figure 13 therein) is indicative of planktotrophic
247	larval development in Galeommatoidea (Ó Foighil, 1988)].
248	
249	We therefore assumed that each IRL commensal clam was independently recruited to its host
250	burrow from a planktonic pool of metamorphosing veliger larvae. We were particularly interested
251	in testing for settlement/survival effects among the ectocommensal <i>P. squillina</i> and the burrow-
252	wall commensal Divariscintilla species. The competitive exclusion principle (Grinnell, 1904;
253	Hardin, 1960; Chesson, 2003) predicts that IRL Divariscintilla species (which all share the same
254	burrow-wall niche) will co-occupy burrows host less frequently with each other that with the
255	niche-differentiated ectocommensal P. squillina. In contrast, the neutral theory of species
256	assembly (Hubbel, 2001) predicts that each member of the IRL commensal vasconielline
257	community will occupy host burrows irrespective of the presence or absence of any other
258	member, and that the observed co-occurrence pattern will therefore match random larval
259	settling expectations.
260	
261	Expected co-occurrence distributions of different species pairs were generated by randomly
262	allocating clams to burrows based on the observed proportions of each species across all
263	burrows. For example, a total of 73 <i>D. octotentaculata</i> and 20 <i>P. squillina</i> were sampled from all
264	burrows, meaning that 78% [73/(73+20)] of that combined species pair were <i>D. octotentaculata</i>
265	and 22% were P. squillina. In the simulation, the two species were then randomly allocated to all
266	burrows based on this probability, keeping the total clam count in each burrow equal to the
267	observed value (i.e., if a burrow had five clam individuals, then simulation was done five times
268	for that burrow). This process was repeated 1000 times. After the simulation, the numbers of
269	burrows where the two species randomly co-occurred were counted and summarized in a
270	histogram. The actual observed number of co-occurred burrows was also plotted on the
271	histogram to compare with the theoretical distribution. P-values were calculated by the

272 percentile of the actual observed value in the simulated distribution. This comparison was 273 performed between P. squillina and all wall-commensal species (treated as the same type); P. 274 squillina and D. octotentaculata; P. squillina and D. luteocrinita; and D. octotentaculata and D. 275 octotentaculata. The other wall commensal species had low occurrences therefore they were 276 not compared with *P. squillina* individually. 277 278 Stable isotope analyses 279 An organism's stable isotope composition is shaped by, and indicate of, its diet/trophic niche 280 (Layman et al. 2007). To test if the IRL L. scabricauda vasconielline commensal species differ in 281 their trophic niches, 18 burrow-wall commensals (11 D. octotentaculata, 4 D. luteocrinita, 2 D. 282 yoyo and 1 D. troglodytes) and 20 P. squillina ectocommensals, together with samples of within-283 burrow potential basal trophic resources — tissue from 19 L. scabricauda specimens, 284 suspended particulate organic matter from 35 burrows, and deposited organic matter from 34 285 burrows — were collected (Figure 4) to measure their respective isotopic niche widths. 286 287 The clams were housed separately in petri dishes of filtered sea water for 12 hours to allow for 288 their gut contents to empty, after which their soft tissues were separated from their shells prior 289 to further processing. Host stomatopod specimens were euthanized in an ice-water slurry. To 290 sample burrow water particulate organic matter (POM) the flow of ambient water into burrows 291 was first blocked with a cylindrical barrier (bucket with the bottom removed) enclosing the 292 burrow opening. For each burrow, 1 liter of burrow water was field-collected with a large syringe 293 (with a 1 mm filter attachment) and filtered in the laboratory onto 4.7 cm diameter Whatman 294 GF/F glass microfiber filters using a six-manifold filtration system. Deposited organic matter was 295 sampled by collecting the oxygenated layer of burrow wall sediment with a shallow teaspoon. 296 All commensal tissue specimens and potential basal resource samples were lyophilized using a 297 Labconco Freeze Dry System prior to further processing. This involved grinding the commensal 298 samples, and the POM samples (first removed from the filter paper with a spatula), with 299 disposable mortar and pestles, grinding the right merus of each host specimen for 4 minutes in 300 a ball-mill grinder, and grinding each sediment sample for 4 minutes in a bead-mill grinder. 301 Approximately 2.5 mg of each ground host and commensal species sample was weighed into 302 individual 5 x 9 mm pressed tin capsules. Approximately 5 - 7 mg of each POM and 35 - 40 mg 303 of each sediment sample were weighed in 10.5 x 9 pressed, light-weight silver capsules and 304 acidified with reagent grade HCL to remove any undetected shell fragments. All samples were 305 analyzed at the Center for Applied Isotope Studies at the University of Georgia for carbon and

306	nitrogen isotopic signatures. The isotopic niche width of each species was quantified as
307	Standard Ellipse Areas (SEA _B) which estimate mean population-level isotopic niche spaces
308	while accounting for variation in population size, in the R package SIAR (Jackson et al. 2011).
309	
310	Artificial burrow construction & observations
311	Two observable, artificial stomatopod burrows were constructed at the Smithsonian Marine
312	Station at Fort Pierce. Each was positioned within a 110 L flow-through glass aquarium tank
313	that was partitioned with a sheet of PVC to form a 9 cm wide cross-section of sediment
314	observable through the front facing wall of the tank. The PVC barrier was 10 cm shorter than the
315	tank, allowing flow to pass over it, and it was kept in place by a series of 3.8 cm diameter PVC
316	tubes (Supplementary Figure 2). To construct artificial stomatopod burrows, a 3.8 cm
317	diameter electrical conduit tube was first planed in half and then taped to form a U shape. The
318	inner surfaces of the tube were lightly coated with silicone rubber sealant, packed with dry sand,
319	and allowed to set overnight. The unattached sand was then removed, and the sand-coated
320	tube halves were individually placed into separate aquarium tanks with the cut edge held in
321	place against the tank walls with additional dry sand and the tube openings flush with the sand
322	surface (Figure 5). The aquaria were then filled with aerated sea water and allowed to settle for
323	24 hours.
324	
325	A host Lysiosquilla scabricauda was introduced to one of the aquaria, was acclimated
326	for a week, and offered shrimp and small fish as food. It entered the artificial burrow on the first
327	day and remained in the burrow for the duration of the experiment (Figure 5). During the
328	acclimation period, the stomatopod used loose sand in the tank to form a cap for the artificial
329	burrow and consistently maintained this cap by collecting excess sand in the burrow with its
330	maxillipeds. The other aquarium was kept host-free.
331	
332	An experimental community of four species (D. octotentaculata, D. luteocrinita, P. squillina, and
333	D. troglodytes) were introduced, in proportions approximate to their natural IRL frequencies, to
334	both tanks. The host-free aquarium housed 47 clams (34 D. octotentaculata, 7 D. luteocrinita, 5
335	P. squillina, and 1 D. troglodytes). The host-containing aquarium housed 46 clams (33 D.
336	octotentaculata, 7 D. luteocrinita, 5 P. squillina, and 1 D. troglodytes). Clams were introduced in
337	small cohorts of conspecifics placed between the burrow openings and observed for 15
338	minutes. Those that did not enter the burrow within 15 minutes (i.e., remained on the sand
339	surface or climbed the aquarium glass) were manually transferred into the burrow after this

340	observation period. A mix of cultured unicellular green and brown algae was added to the tanks
341	once a day and each tank was observed for patterns of spatial use, grouping behavior, and
342	mortality. To simulate the assumed light conditions of natural stomatopod burrows, the exposed
343	side of the artificial burrow was covered with thick black plastic bags level with the burrow
344	entrances when observations were not taking place.
345	
346	Results
347	Commensal occurrence and distribution
348	A total of 86 host burrows were sampled and 29 of these (33.7%) yielded ≥1 commensal
349	vasconielline clam(s), collectively totaling 112 specimens from 6/7 of the known IRL
350	vasconielline species (Goto et al., 2018) and ranging in frequency from 1-21 commensals per
351	burrow (Supplementary Table 1). The burrow-wall commensal Divariscintilla octotentaculata
352	was numerically dominant with 73 individuals sampled from 18 burrows (Figure 6) distributed
353	among 4/5 sampling sites (Table 1). It's ectocommensal sister species, <i>Parabornia squillina</i> ,
354	was the next most numerous with 20 individuals recovered from 8 host burrows (Figure 6), also
355	distributed among 4 sampling sites (Table 1). Respective numbers for <i>D. luteocrinita</i> and <i>D.</i>
356	$\textit{troglodytes} \ \text{were 13 and 3 individuals from 9 and 2 host burrows (Figure 6) among 3 and 2 sites}$
357	(Table 1). The products of non-adaptive within-host speciation, sister species <i>D. yoyo</i> and <i>D.</i>
358	aff. yoyo, were the least numerous commensals recovered: respectively 2 and 1 and both from
359	single burrows (Figure 6, Table 1). Sampled individuals of the 4 most common species ranged
360	two-fold in mantle length (Supplementary Table 2), likely representing different age classes. No
361	specimens of the rarest IRL commensal vasconielline (Mikkelsen and Bieler, 1992), D.
362	cordiformis, were recovered.
363	
364	Of the 29 burrows with commensals, 22 (75%) were monospecific (either <i>Divariscintilla</i>
365	octotentaculata, D. luteocrinita, or Parabornia squillina), 4 had 2-species assemblages, and 3
366	had 3-species assemblages (Figure 7). Burrows with multispecies assemblages (N=7) shared
367	two characteristics: they were exclusively comprised of burrow-wall commensals, and all
368	contained <i>D. octotentaculata</i> individuals. The ectocommensal <i>P. squillina</i> was not recovered
369	from any host burrow that also yielded burrow-wall commensals (Divariscintilla spp.).
370	
371	The over-dispersion tests of <i>P. squillina</i> and <i>D. octotentaculata</i> rejected the null hypothesis,
372	meaning that for each species, the observed frequency distribution was significantly ($P < 0.001$)
373	more clustered than that expected by chance alone. For the comparative recruitment simulation

374	tests (Figure 8), when the 5 burrow-wall commensal species were collectively treated as one
375	group in comparison to the ectocommensal P. squillina, the null hypothesis of random assembly
376	was strongly rejected (P < 0.001). P. squillina was never observed to co-occur with burrow-wall
377	commensals in the field, whereas in the simulated random recruitment scenarios there were
378	always at least four burrows where the two groups co-occurred. Similar results were found for
379	individual ectocommensal/burrow-wall commensal simulation tests: P. squillina and D.
380	octotentaculata, as well as P. squillina and D. luteocrinita (Figure 8). In stark contrast, when
381	evaluating co-occurrence among the burrow-wall commensals D. octotentaculata and D.
382	<i>luteocrinita</i> (Figure 8), the observed field value fell well within the simulated random recruitment
383	distribution (P = 0.405), indicating these two burrow-wall commensal species likely co-recruited
384	to IRL host burrows following a random process.
385	
386	Stable isotope analyses of dietary niche
387	Individuals of the 6 IRL commensal species sampled, together with samples of their potential
388	basal resources (host tissue, burrow-water POM, and burrow-wall sediment), were analyzed to
389	determine their respective carbon and nitrogen isotopic signatures (Supplementary Table 3).
390	Only 3 of the 6 commensals — Divarscintilla octotentaculata, Parabornia squillina and D.
391	Iuteocrinita — were recovered in sufficient numbers to generate isotopic analysis Bayesian-
392	estimated Standard Ellipse Areas (SEA _B) plots, and their respective SEAc values were 0.184,
393	1.128, and 0.255. The corresponding SEAc values for host tissue, burrow-water POM, and
394	burrow-wall sediment samples were respectively 0.826, 3.354, and 7.336.
395	
396	Divariscintilla octotentaculata's inferred isotopic niche space (its Bayesian-estimated ellipse
397	area) was distinct from that of D. luteocrinita (Figure 9), a fellow burrow-wall commensal, but it
398	overlapped substantially with that of Parabornia squillina (Figure 9), its ectocommensal IRL
399	sister species. All three commensal species did not overlap in isotopic niche space with any of
400	their three potential basal resources but they placed closest to burrow-water POM, and furthest
401	away from the host Lysiosquilla scabricauda (Figure 9).
402	
403	Artificial burrow observations
404	Individuals of all 4 commensal species (Divarscintilla octotentaculata, Parabornia squillina, D.
405	Iuteocrinita and D. troglodytes) introduced into aquaria containing artificial host burrows (with
406	and without a mantis shrimp host) preferred firmer surfaces to the loosely packed aquarium
407	surface sand. Most clams that encountered the edge of an artificial burrow opening crawled

408 down that burrow and most that encountered the aquarium glass wall crawled up that surface 409 (prior to being manually relocated into the artificial host burrow). 410 411 In all 3 observations of the host-free aquarium (Figure 10A-C), commensal clam species were 412 partially intermixed throughout the artificial burrow. The most numerous species, Divarscintilla 413 octotentaculata, exhibited the clearest spatial aggregation with most individuals dominating the 414 left 1/3rd of the burrow, leaving the rest of the burrow occupied primarily by a mixture of 415 Parabornia squillina and D. luteocrinita (Figure 10A-C). Most individuals, regardless of species, 416 were located within the horizontal segment of the artificial burrow, primarily attached to the 417 lateral and upper burrow walls. Commensals were typically sedentary during observation 418 periods, though there were changes in individual positioning between observations and 2 D. 419 octotentaculata specimens left the burrow and attached to the aquarium walls. 420 421 In the host-containing aquarium, the initial disturbance associated with commensal introduction led the host mantis shrimp to attempt to cover up the light-exposed glass with a sand-mucus 422 423 mixture. Following this, it rested within the burrow and the commensal clams gradually 424 positioned themselves around it. By the first observation period, 15 hrs post-introduction (Figure 425 10D), most commensals had formed a mixed species assemblage in the horizontal segment of 426 the artificial burrow where the host primarily rested (although 3 Divarscintilla octotentaculata 427 individuals had exited the burrow and were attached to the aquarium walls). Most burrow-wall 428 commensals attached to the upper burrow wall where many engaged in characteristic "yo-yo" 429 behavior in response to being touched by the host. Within-burrow positioning of the 5 430 ectocommensal Parabornia squillina individuals varied from observation to observation (Figure 431 10D-F). Although none immediately moved onto the host, at +15 hrs (Figure 9D) 3 had attached 432 to the base of the host pleopods and 2 were attached to the upper burrow wall. At +27 hrs 433 (Figure 10E) 2 P. squillina individuals remained attached to the host and 3 to the burrow wall (2 434 upper, 1 lower), and at +63 hrs (Figure 10F) 1 individual remained attached to the host. 435 436 Commensal survivorship in the experimental artificial burrows decreased with time and two 437 quantitatively and qualitatively distinct patterns of commensal mortality were 438 evident during the observation period (Figure 10A-F). One pattern was 439 independent of host presence: in 5/6 burrow observations (Figure 10A-E), a 440 "background" rate of mortality, ranging from 1-8 individuals per time increment, was 441 characterized by the presence of dead clam bodies lying on the bottom of the

142	burrows. In contrast, a greatly elevated mortality rate (34/35 commensals) was
143	detected in the +63 hrs observation of the host-occupied burrow (Figure 10F),
144	characterized by the absence of observable dead clam bodies or clam tissue/shell
145	fragments within or outside the burrow. The sole survivor was a single individual of
146	the ectocommensal Parabornia squillina attached to the base of the host pleopods (Figure
147	10F).
148	
149	Discussion
1 50	Our study investigated the regulation of IRL Lysiosquilla scabricauda commensal
1 51	species coexistence using three complementary approaches and it uncovered a complex mix of
152	congruence and incongruence with both neutral model (Hubbel, 2001) and competitive
153	exclusion principle (Grinnell, 1904; Hardin, 1960; Chesson, 2003) expectations.
154	
155	Some of this complexity was evident in the field census results for individual IRL host burrows
156	for which competitive exclusion principle expectations are of co-occurrence of commensals
157	occupying distinct host niches (burrow-wall commensals and ectocommensals) and neutral
1 58	theory expectations are of a mix of commensals with and without distinct host niches. Mixed-
159	niche commensal assemblages (predicted by both models) were absent (P < 0.001), and all
160	observed cases of multi-species co-occurrence were exclusively composed of burrow-wall
161	commensals, two of whom (Divariscintilla octotentaculata and D. luteocrinita) met random co-
162	recruitment expectations (Figures 7 and 8). We were particularly interested in the coexistence
163	dynamics of two constituent sister species pairs alternatively generated by adaptive and by
164	non-adaptive speciation. A reciprocal, robustly negative recruitment effect was apparent for the
165	adaptive sister species pair: burrow-wall commensal D. octotentaculata on
166	ectocommensal <i>Parabornia squillina</i> , and <i>vice versa</i> , (<i>P</i> ≤ 0.001); a result explicitly
167	incompatible with competitive exclusion principle expectations. Unfortunately, the rarity of the
168	non-adaptive sister species pair [Divariscintilla yoyo (N=2) and D. aff. yoyo
169	(N=1)] precluded meaningful statistical analyses of their census data.
170	
171	Most host burrows sampled (66%) lacked detectable commensal clams (Figure 7) implying that
172	host individuals and resources may not be limiting factors for commensals. However, some of
173	the sampled burrows without commensals could also be 1) occupied but undetected because of
174	incomplete sampling; 2) empty because aspects of commensal life history, e.g., mating behavior
175	(Mikkelsen & Bieler 1992), promote within-species clustering, (as implied by the over dispersion

476 test results for Divariscintilla octotentaculata and Parabornia squillina); or 3) subsets 477 of host burrows may be otherwise inhospitable for commensal species recruitment/survival. We 478 know that incomplete sampling was an issue for both burrow-wall commensals and 479 ectocommensals. As noted by Mikkelsen and Bieler (1989, 1992), yabby pumps (used to 480 sample burrow-wall commensals) are ineffective in sampling the deeper, horizontal sections of 481 Lysiosquilla scabricauda burrows. In addition, burrows in this stomatopod genus 482 are typically occupied by a resident male-female monogamous pair (Christy and 483 Salmon, 1991) and our host bait-and-capture method (Figure 3), used to sample 484 ectocommensals, was effective only in capturing one resident host/burrow, most 485 likely the resident male (Ahyong, Caldwell and Erdmann, 2017). 486 487 Nevertheless, it is important to note that key aspects of our field census results are 488 consistent with Mikkelsen & Bieler's (1992) sampling of these same populations ≥25 years 489 earlier, despite major IRL ecological changes (involving extensive eutrophication, algal blooms 490 and seagrass habitat loss) in the interim (Morris et al., 2022). These include the numerical 491 dominance of Divariscintilla octotentaculata [recorded from 88% of host burrows 492 containing burrow-wall commensals by Mikkelsen & Bieler (1992) versus 85% in our 493 study], its co-occurrence with other burrow-wall commensals (80% *versus* 38%, respectively), 494 the absence of co-occurring burrow-wall commensals and ectocommensals (0% versus 0%, 495 respectively) and the prevalence of commensal-free host burrows ("most" versus 66%, 496 respectively). Further comparisons of the same metric among the two studies indicate that D. 497 leucocrinita may have increased in occurrence [22.8% of host burrows containing 498 burrow-wall commensals recorded by Mikkelsen & Bieler (1992) versus 42.8% in our 499 study], but that the remaining burrow-wall commensals appear to have declined: D. yoyo + D. aff. yoyo [57% versus 9.5%, respectively; note that Mikkelsen and Bieler (1992) were unaware 500 501 of D. aff. yoyo's existence], D. troglodytes (54% versus 9.5%, respectively) and D. cordiformes 502 (5.7% versus 0%, respectively). The collective >80% decrease of the non-adaptive sister 503 species pair D. yoyo + D. aff. yoyo implies that their relative rarity may be a recent 504 development. 505 506 Regarding trophic niche differentiation, neutral theory allows co-existence irrespective of trophic 507 niche overlap, whereas competitive exclusion principle expectations are that co-existing 508 commensals will occupy distinct trophic niches. Combined stable isotope/field census data were 509 available for only 3 commensal species and the results were mixed. The only multispecies

510	combination observed among the 3 — co-occurring burrow-wall commensals <i>Divarscintilla</i>
511	octotentaculata and D. luteocrinita (Figure 7, 6/7 multispecies assemblages) — exhibited
512	qualitative separation in their isotopic niches (Figure 9), thereby conforming with
513	competitive exclusion principle expectations. In contrast, the other possible known
514	heterogeneous trophic niche combination — burrow-wall commensal D. luteocrinita and
515	ectocommensal <i>Parabornia squillina</i> (Figure 9) — was not detected in any IRL
516	host burrow (Figure 7).
517	
518	A consumer's stable isotope composition is shaped by that of the species it consumes in a
519	broadly predictable manner: empirical studies have shown that in consumer tissues, the ratio
520	of ^{15}N to ^{14}N is generally 2.5-5 greater, and the ratio of ^{13}C to ^{12}C is generally similar or as much
521	as 1 greater, than that of their diets (Bearhop et al., 2004). Applying this general expectation to
522	our commensal species stable isotope data (Figure 9) yields a pronounced mismatch with host
523	tissue SEA _B , implying that host tissues/wastes/food scraps are not significant trophic resources
524	for the three commensals, including the ectocommensal <i>Parabornia squillina</i> . Of the two
525	remaining putative commensal trophic resources tested (burrow-wall deposited organic material
526	and burrow-water POM) the placement of burrow-water POM SEAB (Figure 9) is most
527	consistent with it being the commensal's primary trophic resource, a conclusion in agreement
528	with Mikkelsen and Bieler's (1989) description of the IRL commensal species as "filter-feeders".
529	The qualitative isotopic niche separation shown by <i>Divariscintilla luteocrinita</i> from the other two
530	commensal species (Figure 9) could stem from a variety of factors including qualitative
531	differences in 1) the subset of burrow-water POM material being assimilated; 2) how their
532	respective microbiomes process ingested material; 3) accession of another basal resource (e.g.,
533	dissolved organic matter) that was not sampled in our study.
534	
535	Our artificial burrow behavioral experiment was designed to test if a competitive
536	exclusion principle expectation — the evolution of symbiont specialization for discrete
537	within-host niches (Cook et al., 2002; Joy & Crespi, 2007; Althoff, 2014) — applied to other
538	members of the IRL Lysiosquilla scabricauda commensal community in addition to
539	the adaptive sister species pair of the burrow-wall commensal Divariscintilla
540	octotentaculata and the ectocommensal Parabornia squillina (Goto et al., 2018).
541	Lysiosquilla scabricauda burrows are large enough to potentially facilitate fine-scale
542	spatial partitioning among co-occurring burrow-wall commensals that might be
543	undetectable by yabby pump sampling. Our results (Figure 10) yielded no

544 evidence of spatial segregation among burrow-wall commensals in the 545 presence of a resident host: all three species clustered around the host's 546 primary resting location. However, this experiment did yield two unexpected 547 new behavioral insights, although we cannot rule out the possibility that they are both experiment-induced artifacts. 548 549 550 One surprise concerned a hitherto unknown behavioral flexibility of the 551 ectocommensal Parabornia squillina. In the control artificial burrow, lacking a host, 5/5 individuals attached to the burrow wall (Figure 10A-C). In the 552 553 treatment artificial burrow, containing a host, only 3/5 assumed the 554 ectocommensal condition and at least one of these subsequently moved off the 555 host and attached to the burrow wall during the observation period (Figure 10D-556 F). This was somewhat surprising because Goto et al. (2018; Supplementary Movie 2) found that individuals detached from hosts rapidly reattach and, to our 557 558 knowledge, extensive yabby pump sampling of IRL Lysiosquilla scabricauda 559 burrows (Mikkelsen & Bieler 1989; Mikkelsen & Bieler 1992; Goto et al., 2018; this study) have not recovered non-host-attached P. squillina individuals. It remains to be 560 561 determined to what degree P. squillina clams alternate between ectocommensal 562 and burrow-wall attachments in the wild. 563 The most surprising result of the artificial burrow behavioral experiment was the 564 565 sudden breakdown of the commensal relationship resulting in a mass mortality of 34/35 commensals, apparently due to targeted predation by the host (Figure 109E 566 567 &F). The only survivor was a host-attached specimen of Parabornia squillina and all others, including at least 3 non-host attached P. squillina and an 568 aguarium wall-attached specimen of Divariscintilla octotentaculata (Figure 10F), 569 were apparently consumed by the host. We cannot of course rule out the 570 571 possibility that this sudden switch in host behavior was an artifact triggered by 572 stressful artificial culture conditions and it is unclear if Lysiosquilla scabricauda 573 also targets non-host attached commensals in the wild, and if so, under what 574 conditions? 575 576 Galeommatoidea is a highly speciose superfamily (Bouchet et al., 2002; 577 Paulay, 2003) and the vast majority of commensal members occur in soft-bottom habitats

578 in association with larger, bioturbating macroinvertebrate hosts (collectively from diverse phyla) 579 that provide a within-sediment depth refuge from predation (Li et al., 2012). Within this group, 580 Lysiosquilla scabricauda's commensals are exceptional in four aspects of their 581 evolutionary ecology: species richness, predominant evolutionary origin 582 mechanism, host trophic ecology, and potential for host predation. We currently 583 know of 8 host-specific commensals (Simone, 2001; Goto et al., 2018), more than 584 any other single galeommatoidean host to-date, and this is likely an underestimate 585 because only a tiny sliver of the host's range – the IRL - has been studied in detail. 586 Goto et al's (2018) phylogeny of 6/7 IRL commensals was consistent with a 5:1 587 ratio of within-host to host-switching speciation events, a much higher ratio than 588 that documented in other galeommatoidean clades (Goto et al. 2012, Li et al. 2016). 589 Mantis shrimp are one of the few predators to host galeommatoidean commensals (Yamamoto 590 & Habe 1961, Morton 1980, Goto et al. 2012) and are the only known galeommatoidean hosts 591 that engage in active, visual predation (Cronin et al., 2022). To our knowledge, L. 592 scabricauda's mass killing of 34/35 commensals, albeit in captivity (Figure 10 E&F), 593 is the first report of galeommatoidean commensals being actively preyed upon 594 by their host. 595 596 Synthesis 597 Collective consideration of the IRL field census, stable isotope, and captive behavioral data 598 yields a heterogenous vista of symbiont coexistence and of symbiont exclusion. It may therefore 599 be useful to view this study system as being composed of two distinct, superimposed patterns of 600 commensal distribution: 1) all burrow-wall commensal species; 2) the ectocommensal species. 601 602 In this framing, the 6 burrow-wall commensals broadly adhere to neutral theory (*Hubbel*, 2001) 603 expectations of species assembly in that they co-occur seamlessly in space and time, at least in 604 the sections of IRL host burrows reached by yabby pump sampling (Mikkelsen & Bieler, 1992; 605 this study). This is consistent with numerous studies that have found little evidence for 606 competitive exclusion in marine benthic communities (Stanley, 2008; Shinen and Navarette, 607 2014; Klompmaker and Finnegan, 2018). Such studies often emphasize the role of high rates of 608 marine predation and disturbance in minimizing competition (Klompmaker and Finnegan, 2018) 609 but another, possibly more apt, model for IRL burrow-wall commensal coexistence might be 610 Laird and Schamp's (2006) finding that coexistence of ≥3 competitors is possible if the 611 competition is non-hierarchical. That important detail remains to be determined but at least one

612	burrow-wall commensal (Divariscintilla luteocrinita) showed evidence of trophic differentiation
613	(Figure 9), and 4/6 appear to have fluctuated in relative frequency between 1992 and 2017
614	(Mikkelsen & Bieler, 1992; this study). Goto et als (2018) vasconielline phylogeny established
615	that the burrow-wall niche and its associated "hanging-foot" morphology is plesiomorphic among
616	IRL commensals, implying that within-burrow coexistence may also be the ancestral condition.
617	If so, it has proven to be remarkably stable and has survived the repeated addition of new
618	burrow-wall commensals, mainly through within-host (ostensibly non-adaptive) speciation, but
619	also through host switching (Goto et al., 2018).
620	
621	In contrast, Parabornia squillina's apparent inability to coexist with other Lysiosquilla
622	scabricauda commensals in IRL host burrows, despite its unique ectocommensal niche, is
623	incongruent with both competitive exclusion principle and neutral theory expectations. Goto et
624	al's (2018) vasconielline phylogeny shows that the ectocommensal niche is 1) a derived
625	condition among IRL commensals; 2) a product of within-host adaptive speciation. In this case,
626	within-host adaptive speciation involving clear ecological character displacement (Goto et al.,
627	2018) has apparently led to the introduction of strict ecological exclusion (and a truncation of
628	realized niches) to a commensal community hitherto characterized by comprehensive co-
629	existence: an inverse outcome of theoretical expectations!
630	
631	The ecological factors regulating the observed IRL burrow-wall commensal/ectocommensal
632	exclusion are currently obscure but potentially include differential recruitment to individual IRL
633	host burrows and/or differential survival in "mixed-niche" burrow assemblages. Our field census
634	data unfortunately could not distinguish among those possibilities because they did not include
635	newly recruited juvenile commensals: based on prodissonconch sizes, they metamorphose out
636	of the plankton at 350-390 μm in length (<i>Mikkelsen & Bieler</i> 1989,1992; Supplemental Figure 1)
637	and our smallest recovered specimen was 2.5 mm in mantle length. Resampling IRL host
638	burrows during commensal recruitment peak periods using a sufficiently fine mesh sieve,
639	together with microscopic examination of sediment and host samples, could address this
640	deficiency. Replication of the adult exclusion pattern by juveniles, or detection of juvenile-
641	specific "mixed-niche" burrow assemblages, would respectively support differential recruitment,
642	or differential survival, exclusion mechanisms.
643	
644	Current evidence for either potential exclusion mechanism is fragmentary at best. Regarding
645	differential recruitment, the challenge is to explain the lack of Parabornia squillina recruitment to

646 host burrows supporting multi-species burrow-wall commensal assemblages, and/or vice versa. 647 Commensal galeonmatoideans typically display positive chemotaxes to their respective hosts 648 (Morton, 1962; Gage, 1968, 1979; Ockelmann and Muus, 1978), as apparently does P. squillina 649 (Goto et al., 2018). Preventing "mixed-niche" IRL recruitment of the 7 IRL commensal species 650 to the same exclusive host might require counteracting among-commensal negative 651 chemotaxes/behaviors (burrow wall commensal species vs ectocommensal species or vice-652 versa). Our laboratory behavior experiments (Figure 10), show no clear evidence for such. 653 654 A variety of potential drivers, competitive and/or predatory, might contribute to differential 655 burrow-wall commensal vs ectocommensal survival in "mixed" burrow assemblages. Note that 656 the formal concept of competitive exclusion (Hardin, 1960) turns out to be 657 inapplicable to this study system because it requires the species that cannot 658 coexist — burrow-wall commensals and the ectocommensal (not subsets of the burrow-wall 659 commensals as initially hypothesized) — to have identical niches, and this is clearly 660 not the case (Figure 1). As discussed above, evidence that a trophic 661 competition driver is influential in regulating this system is mixed at best for the 3 662 commensal species with characterized trophic niches, with the sole member of the 3 to show trophic differentiation, Divariscintilla leuteocrinita (Figure 9), co-occurring only with 663 664 other burrow-wall commensals (Figure 7). 665 666 A context-specific change in Lysiosquilla scabricauda predatory behavior is 667 another potential driver of differential commensal survival i.e., selective host exclusion. Our artificial burrow behavioral experiment was unexpectedly 668 669 terminated by the host-induced mass mortality of all non-host-attached 670 commensals (Figure 10). That host behavioral change might have been 671 triggered by starvation because captive mantis shrimp refused to feed on offered prey fishes 672 (a response readily seen in the field). However, a host-starvation trigger does not explain 673 the absence of ectocommensals in IRL burrows containing burrow-wall commensals (Figure 7). 674 An alternative trigger might be that the act of ectocommensal attachment itself induces a 675 change in host predatory behavior leading to the eradication of co-occurring burrow wall 676 commensals. This may seem far-fetched, but it is fully congruent with the observed field 677 distribution data (Figure 7) and mantis shrimp are behaviorally complex organisms with 678 extraordinary visual systems (Theon et al., 2014, 2017; Franklin et al., 2017; Patel and Cronin. 679 2020). It could also be tested experimentally by tracking burrow-wall commensal survival in host

680	burrows with (treatment) and without (control) added ectocommensals.
681	
682	Conclusions
683	This study aimed to investigate how Lysiosquilla scabricauda's extraordinary IRL
684	galeommatoidean commensal community (Mikkelsen & Bieler 1989; Mikkelsen & Bieler
685	1992; Goto et al., 2018), incorporating sympatric sister species pairs generated by adaptive
686	and by non-adaptive speciation processes, is regulated. Although the unexpected rarity of the
687	non-adaptive species pair did not allow us to fully address this goal, our results confirmed the
886	presence of a trenchant ecological exclusion in this commensal community that violates both
689	competitive exclusion principle and neutral theory expectations. This intriguing ecological puzzle
690	is potentially resolvable through additional field sampling of commensal recruitment and
691	additional host-commensal behavioral experiments. However, a fuller understanding of this
692	commensal communities' evolutionary ecology will also require its study outside of the narrow
693	confines of the IRL. It would be particularly interesting to investigate Southern Brazilian L.
694	scabricauda commensal populations to establish if its ectocommensal, Parabornia
695	palliopillata, also exhibits an ecological exclusion from regional burrow-wall commensals.
696	
697	Acknowledgements
698	We thank Smithsonian Marine Station at Fort Pierce personnel Sherry Reed, Michael J. Boyle,
699	William (Woody) Lee and David R. Branson for their unstinting help in specimen collection,
700	specimen photography, and artificial burrow design. We also thank University of Michigan
701	personnel Jacob Allgeier and Knute Nadelhoffer for help with the stable isotope analyses,
702	Museum of Zoology artist John Megahan for his expert assistance with the Figures, and Seto
703	Marine Biological Laboratory personnel Mariko Kawamura for her help with the S.E.M. imaging.
704	
705	
706	
707	References
708	Abbott, R.T. 1974. <i>American Seashells</i> . 2 nd Edition. Van Nostrand Reinhold Company.
709	
710	Ahyong, S.T., Caldwell, R.L., Erdmann M.V. 2017. Collecting and processing stomatopods.
711	Journal of Crustacean Biology, 37: 109–114. doi:10.1093/jcbiol/ruw005

- 713 Althoff, D.M. 2014. Shift in egg-laying strategy to avoid plant defense leads to reproductive
- 714 isolation in mutualistic and cheating yucca moths. *Evolution*, 68: 301–307.
- 715 https://doi.org/10.1111/evo.12279

- 717 Bearhop, S., Adams, C.E., Waldron, S., Fuller, R.A., MacLeod, H. 2004. Determining trophic
- 718 niche width: a novel approach using stable isotope analysis. *Journal of Animal Ecology*, 73:
- 719 1007–1012. https://doi.org/10.1111/j.0021-8790.2004.00861.x

720

- 721 Boss, KJ. 1965. A new mollusk (Bivalvia, Erycinidae) commensal on the
- 722 stomatopod crustacean Lysiosquilla. American Museum Novitates 2215: 1–11.

723

- Bouchet, P., Lozouet, P., Maestrati, P., Heros V. 2002. Assessing the magnitude of species
- 725 richness in tropical marine environments: exceptionally high numbers of molluscs at a New
- 726 Caledonia site. *Biological Journal of the Linnean Society*, 75:421–436.
- 727 https://doi.org/10.1046/j.1095-8312.2002.00052.x

728

729 Caldwell, R.L., Dingle, H. 1976. Stomatopods. Scientific American, 234:80–89.

730

- 731 Chesson, P.L. 2003. Quantifying and testing coexistence mechanisms arising from recruitment
- 732 fluctuations. Theoretical Population Biology, 64:345-357. https://doi.org/10.1016/S0040-
- 733 5809(03)00095-9

734

- 735 Christy, J.H., Salmon, M. 1991. Comparative studies of reproductive behavior in mantis shrimps
- 736 and fiddler crabs. American Zoologist, 31:329-337. https://doi.org/10.1093/icb/31.2.329

737

- 738 Cook, J.M., Rokas, A., Pagel, M., Stone, G.N. 2002. Evolutionary shifts between host oak
- 739 sections and host-plant organs in *Andricus* gallwasps. *Evolution*, 56:1821–1830. DOI:
- 740 10.1111/j.0014-3820.2002.tb00196.x

741

742 Coyne, J.A., Orr, H.A. 2004. Speciation. Sunderland: Sinauer Associates.

- 744 Cronin, T.W., Porter, M.L., Bok, M.J., Caldwell, R.L., Marshall, J. 2022. Colour
- 745 vision in stomatopod crustaceans. Philosophical Transactions of the Royal
- 746 Society B, 377: 20210278. https://doi.org/10.1098/rstb.2021.0278

747	
748	Czekanski-Moir, J.E., Rundell, R.J. 2019. The ecology of nonecological speciation and
749	nonadaptive radiations. Trends in Ecology & Evolution, 34:400-415.
750	https://doi.org/10.1016/j.tree.2019.01.012
751	
752	deVries, M.S., Murphy, E.A., Patek, S.N. 2012. Strike mechanics of an ambush predator: the
753	spearing mantis shrimp. Journal of Experimental Biology, 215:4374-43784.
754	https://doi.org/10.1242/jeb.075317
755	
756	Duffy, J.E. 1996. Resource-associated population subdivision in a symbiotic coral-
757	reef shrimp. Evolution, 50: 360–373.
758	
759	Franklin, A.M., Applegate, M.B., Lewis, S.M., Omenetto, F.G. 2017. Stomatopods detect and
760	assess achromatic cues in contests. Behavioral Ecology, 28:1329-1336.
761	https://doi.org/10.1093/beheco/arx096
762	
763	Fritts-Penniman, A.L., Gosliner, T.M., Mahardika, G.N., Barber, P.H., 2020. Cryptic ecological
764	and geographic diversification in coral-associated nudibranchs. Molecular Phylogenetics and
765	Evolution, 144: 106698. https://doi.org/10.1016/j.ympev.2019.106698.
766	
767	Gage, J. 1968. The mode of life of <i>Montacuta elevata</i> , a bivalve 'commensal' with <i>Clymenella</i>
768	torquata (Polychaeta). Canadian Journal of Zoology 46: 877–892. https://doi.org/10.1139/z68-
769	124
770	
771	Gage, J.D. 1979. Mode of life and behaviour of <i>Montacuta phascolionis</i> , a bivalve commensal
772	with the Sipunculan Phascolion strombi. Journal of the Marine Biological Association of the
773	United Kingdom, 59: 635-657. doi:10.1017/S0025315400045653
774 775	Goto, R., Kawakita, A., Ishikawa, H., Hamamura, Y., Kato, M. 2012. Molecular phylogeny of the
775	bivalve superfamily Galeommatoidea (Heterodonta, Veneroida) reveals dynamic evolution of
776 777	symbiotic lifestyle and interphylum host switching. <i>BMC Evolutionary Biology</i> , 12: 172.
777 770	https://doi.org/10.1186/1471-2148-12-172
778	Coto D. Harrigan T. Ó Eoighil D. 2019. Within host aposición avente in voya clarre ablicata
779 780	Goto, R., Harrison, T., Ó Foighil, D. 2018. Within-host speciation events in yoyo clams, obligate
780	commensals with mantis shrimps: one involving a change in microhabitat and a loss of

- 781 specialized traits. *Biological Journal of the Linnean Society*, 124:504-517.
- 782 https://doi.org/10.1093/biolinnean/bly044

- 784 Grant, P.R., Grant, B.R. 2006. Evolution of character displacement in Darwin's finches. *Science*,
- 785 313: 224-226. DOI: 10.1126/science.1128374

786

- 787 Grinnell, J. 1904. The Origin and Distribution of the Chestnut-Backed Chickadee. The
- 788 Auk, 21:364-382. https://www.jstor.org/stable/4070199

789

- 790 Hardin, G. 1960. The competitive exclusion principle. Science, 131:1292-1297.
- 791 https://www.jstor.org/stable/1705965

792

- 793 Hernández-Hernández, T., Miller, E.C., Román-Palacios, C., Wiens, J.J. (2021), Speciation
- 794 across the Tree of Life. *Biological Reviews*, 96: 1205-1242. https://doi.org/10.1111/brv.12698

795

- Hubbel, S.P. 2001. The unified neutral theory of biodiversity and biogeography. Princeton:
- 797 Princeton University Press.

798

- 799 Hurt, C., Silliman, K., Anker, A., Knowlton, N. 2013. Ecological speciation in
- 800 anemone-associated snapping shrimps (Alpheus armatus species complex).
- 801 *Molecular Ecology*, 22: 4532–4548. DOI: 10.1111/mec.12398

802

- 803 Imada, Y., Kawakita, A., Kato, M. 2011. Allopatric distribution and diversification
- 804 without niche shift in a bryophyte-feeding basal moth lineage (Lepidoptera:
- 805 Micropterigidae). *Proceedings of the Royal Society B*, 278:3026–3033.
- 806 https://doi.org/10.1098/rspb.2011.0134

807

- Jackson, A.L., Inger, R., Parnell, A.C., Bearhop, S. 2011. Comparing isotopic niche widths
- 809 among and within communities: SIBER Stable Isotope Bayesian Ellipses in R. Journal of
- 810 Animal Ecology, 80:595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x

811

- 812 Joy, J.B., Crespi, B.J. 2007. Adaptive radiation of gall-inducing insects within a single host-plant
- 813 species. *Evolution*, 61:784–795. DOI: 10.1111/j.1558-5646.2007.00069.x

815 Klompmaker, A.A., Finnegan, S. 2018. Extreme rarity of competitive exclusion in modern and 816 fossil marine benthic ecosystems. Geology, 46:723–726. doi: https://doi.org/10.1130/G45032.1 817 818 Laird, R.A., Schamp, B.S. 2006. Competitive Intransitivity Promotes Species Coexistence. The 819 American Naturalist, 168:723-726. DOI: 10.1086/506259 820 821 Larsen, B. B., Miller, E. C., Rhodes, M. K., Wiens, J. J. 2017. Inordinate fondness multiplied and 822 redistributed: the number of species on earth and the new Pie of Life. Quarterly Review of 823 Biology, 92:229-265. https://doi.org/10.1086/693564 824 825 Layman, C.A., Arrington, D. A., Montaña, C.G., Post, D.M. 2007. Can stable isotope ratios 826 provide for community-wide measures of trophic structure? Limnology and Oceanography, 827 51:1332- 1341. DOI: 10.1890/0012-9658(2007)88[42:csirpf]2.0.co;2 828 829 Li, J., Ó Foighil, D., Middlefart, P. 2012. The evolutionary ecology of biotic association in a 830 megadiverse bivalve superfamily: sponsorship required for permanent residency in sediment. PLoS One, 7: e42121 http://dx.doi.org/10.1371/journal.pone.0042121 831 832 833 Li J., O Foighil D., Strong E. 2016. Commensal associations and benthic habitats shape 834 macroevolution of the bivalve clade Galeommatoidea. Proceedings of the Royal Society B, 835 283:20161006 http://dx.doi.org/10.1098/rspb.2016.1006 836 Matsubayashi KW, Ohshima I, Nosil P. 2010. Ecological speciation in phytophagous 837 838 insects. Entomologia Experimentalis et Applicata 134: 1–27. 839 https://doi.org/10.1111/j.1570-7458.2009.00916.x 840 841 Matsubayashi, K.W., Yamaguchi, R. 2022. The speciation view: Disentangling multiple causes 842 of adaptive and non-adaptive radiation in terms of speciation. *Population Ecology*, 64:95-107. 843 https://doi.org/10.1002/1438-390X.12103 844 845 Moore. D.R., Boss, K.J. 1966. Records for *Parabornia squillina*. The Nautilus, 80: 846 34-35 847

- 848 Morris, L.J., Hall, L.M., Jacoby, C.A., Chamberlain, R.H., Hanisak, M.D., Miller, J.D.,
- Virnstein, R.W. 2022. Seagrass in a Changing Estuary, the Indian River Lagoon,
- 850 Florida, United States. Frontiers in Marine Science, 8:789818.
- 851 DOI:10.3389/fmars.2021.789818

- 853 Mikkelsen, P.M., Bieler, R. 1989. Biology and comparative anatomy of
- 854 Divariscintilla yoyo and D. troglodytes, two new species of Galeommatidae
- 855 (Bivalvia) from stomatopod burrows in eastern Florida. *Malacologia*, 31: 175–195.

856

- Mikkelsen, P.M., Bieler, R. 1992. Biology and comparative anatomy of three new
- 858 species of commensal Galeommatidae, with a possible case of mating behavior
- 859 in bivalves. Malacologia 34: 1–24.

860

- Mikkelsen, P.M., Mikkelsen, P.S., Karlen, D.J. 1995. Molluscan biodiversity in the
- 862 Indian River Lagoon, Florida. Bulletin of Marine Science 57: 94–127.

863

- 864 Moran, N.A. 2006. Symbiosis. *Current Biology*, 16: R866–R871. DOI:
- 865 10.1016/j.cub.2006.09.019
- 866 Morton, B. 1980. Some aspects of the biology and functional morphology (including the
- 867 presence of a ligamental lithodesma) of *Montacutona compacta* and *M. olivacea* (Bivalvia:
- 868 Leptonacea) associated with coelenterates in Hong Kong. *Journal of Zoology*, 192:431–455.
- 869 https://doi.org/10.1111/j.1469-7998.1980.tb04242.x

870

- Morton, J.E. 1962. Habit and orientation in the small commensal bivalve mollusc, *Montacuta*
- 872 ferruginosa. Animal Behaviour, 10:126-133. https://doi.org/10.1016/0003-3472(62)90140-9

873

- 874 Ockelmann, K.W., Muus, K. 1978. The biology, ecology and behaviour of the bivalve Mysella
- 875 bidentata (Montagu). Ophelia, 17:1-93. DOI: 10.1080/00785326.1978.10425474

876

- 877 Ó Foighil, D. 1988. Random mating and planktotrophic larval development in *Lasaea*
- 878 *australis* Lamarck, 1818. *Veliger*, 31: 205-214.

- Patel, R.N., Cronin, T.W. 2020. Mantis Shrimp Navigate Home Using Celestial and Idiothetic
- 881 Path Integration. *Current Biology*, 30:1981-1987. https://doi.org/10.1016/j.cub.2020.03.023

Paulay, G. 2003. Marine Bivalvia (Mollusca) of Guam. *Micronesica*, 35–36, pp. 218–243.

884

Poulin, R., Morand, S. 2004. Parasite biodiversity. Washington: Smithsonian Institution Press.

886

- 887 Reaka, M.L., Camp, D.K., Álvarez, F., Gracia, A.G., Ortiz, M., Vázquez-Bader,
- 888 A.R. 2009. Stomatopoda (Crustacea) of the Gulf of Mexico. In: Felder, D.L., Camp,
- 889 D.K., eds. *Gulf of Mexico-origins, waters, and biota: biodiversity*. College Station:
- 890 Texas A&M University Press, 901–921.

891

- 892 Ricklefs, R. E., Fallon, S. M., Bermingham, E. 2004. Evolutionary relationships, cospeciation,
- and host switching in avian malaria parasites. Systematic Biology, 53:111–119. DOI:
- 894 10.1080/10635150490264987

895

- 896 Rodriguez, A.K, Krug, P. J. 2022. Ecological speciation by sympatric host shifts in a clade of
- herbivorous sea slugs, with introgression and localized mitochondrial capture between species.
- 898 Molecular Phylogenetics and Evolution, 174:107523 https://doi.org/10.1016/j.ympev.2022.107523
- 899 Rundell, R.J., Price, T.D. 2009. Adaptive radiation, nonadaptive radiation, ecological speciation
- 900 and nonecological speciation. Trends in Ecology and Evolution, 24: 394-399. DOI:
- 901 10.1016/j.tree.2009.02.007

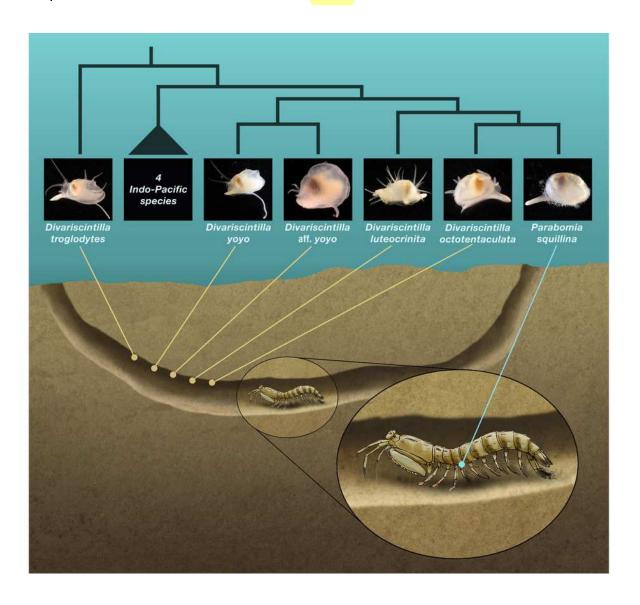
902

- 903 Shinen, J.L., Navarrete, S.A. 2014. Lottery coexistence on rocky shores: weak niche
- 904 differentiation or equal competitors engaged in neutral dynamics? The American Naturalist,
- 905 183:342-62. DOI: 10.1086/674898.

906

- 907 Simha, A., Hoz, C.P.-D., Carley, L. 2022. Moving beyond the diversity paradox: the limitations of
- 908 competition-based frameworks in understanding species diversity. The American Naturalist,
- 909 200: 89–100. https://doi.org/10.1086/720002

- 911 Simone, L.R.L., 2001. Revision of the genus *Parabornia* (Bivalvia:
- 912 Galeommatoidea: Galeommatidae) from the western Atlantic, with description of a
- 913 new species from Brazil. Journal of Conchology 37: 159–169.


PeerJ

914	
915	Stanley, S.M., 2008. Predation Defeats Competition on the Seafloor. <i>Paleobiology</i> , 34:1-21.
916 917	DOI: https://doi.org/10.1666/07026.1
918	Swift, J. 1733. On Poetry: A Rhapsody. Dublin: published anonymously. 28 pages.
919	Tavares, M. 2002. Stomatopods Pp. 248-249 in: Carpenter, K.E., ed. The living marine
920	resources of the western central Atlantic. Volume 1. FAO Species Identification Guide for
921	Fishery Purposes and American Society of Ichthyologists and Herpetologists Special
922	Publication No. 5, Rome.
923	
924	Thoen, H.H., How, M.J., Chiou, T-H., Marshall, J. A. 2014. Different Form of Color Vision in
925	Mantis Shrimp. Science, 343:411-413. DOI: 10.1126/science.1245824
926	
927	Thoen, H.H., Marshall, J., Wolff, G.H., Strausfeld, N.J. 2017. Insect-Like Organization of the
928	Stomatopod Central Complex: Functional and Phylogenetic Implications. Frontiers in Behavioral
929	Neuroscience, 11. https://doi.org/10.3389/fnbeh.2017.00012
930	
931	Yamamoto, T., Habe, T. 1961. Nipponomontacuta actinariophila gen. et sp. nov., a new
932	commensal bivalve of the sea anemone. Publications of the Seto Marine Laboratory, 9:265-
933	266.
934	
935	Windsor, D.A 1998. Most of the species on Earth are parasites. International Journal for
936	Parasitology, 28:1939–1941. DOI: 10.1016/s0020-7519(98)00153-2
937	
938	Zhang, B., Segraves, K.A., Xue, HJ., Nie, RE., Li, WZ., Yang, XK. 2015. Adaptation to
939	different host plant ages facilitates insect divergence without a host shift. Proceedings of the
940	Royal Society B, 282: 20151649. https://doi.org/10.1098/rspb.2015.1649
941	

Figure 1

Schematic section of a composite Indian River Lagoon Lysiosquilla scabricauda burrow.

This shows the relative positioning (by yabby pump field sampling) of the 5 burrow-wall commensal species (*Divariscintilla* spp.), and the single ectocommensal (*Parabornia squillina*) species, collected in this study. Also shown, in outline, are the inferred phylogenetic relationships of the 6 IRL commensals (Goto et al., 2018).

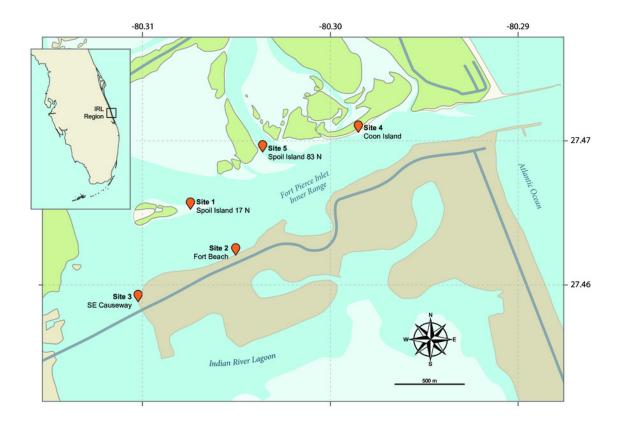


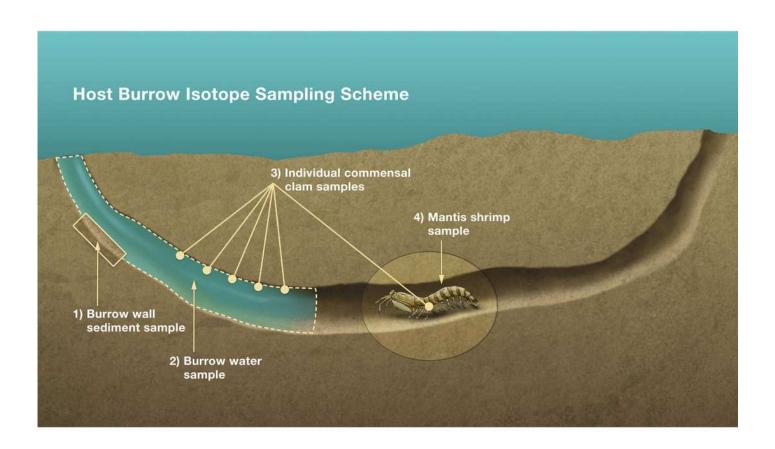
Figure 2

Maps of the field study sites.

The small inset map (top left) shows the position of the Indian River Lagoon (IRL) study area on the East coast of Florida. The main map illustrates the 5 intertidal study field sites flanking the IRL's Fort Pierce Inlet.

Figure 3

Field photograph showing capture of a host Lysiosquilla scabricauda specimen.


The first author is shown firmly grasping the host specimen's two raptorial appendages prior to carefully lifting it out of its flagged burrow opening. See here (insert link: https://figshare.com/articles/media/Mantis_Shrimp_Capture_Technique_m4v/24847938) a

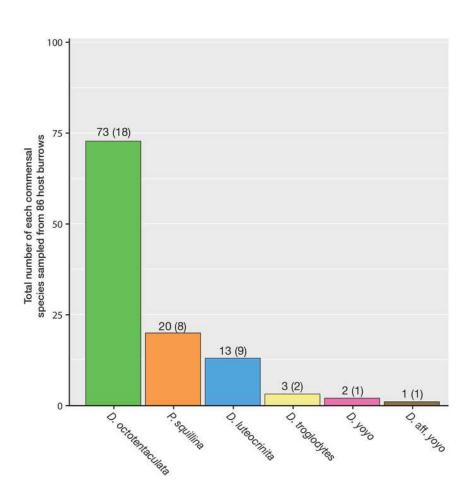
video recording of an entire host capture sequence.

Sampling scheme for Stable Isotope Analyses.

Schematic diagram of a composite Indian River Lagoon mantis shrimp *Lysiosquilla* scabricauda host burrow showing the 4 primary burrow components sampled for isotope analyses: individual commensal clams (3) and their potential basal trophic resources [deposited organic matter (1), suspended particulate organic matter (2), and host tissue (4)].

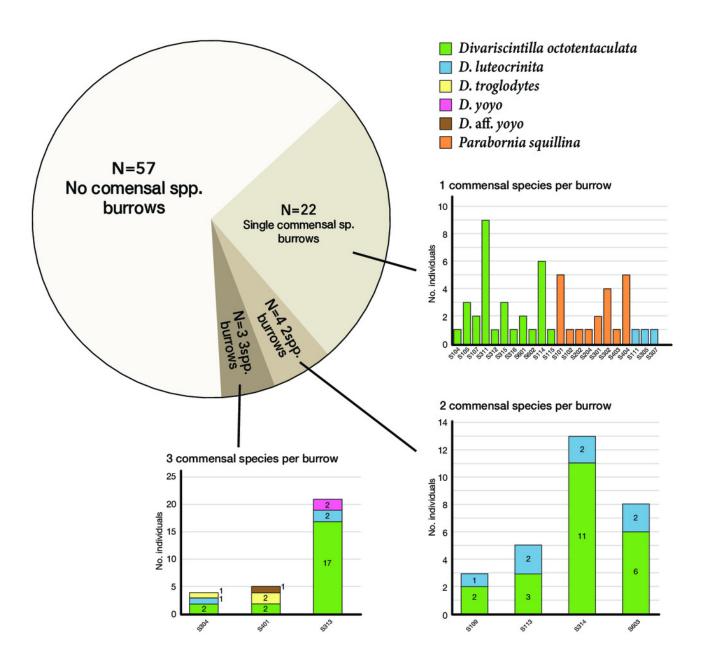
Aquarium artificial host burrow for viewing commensal/host interactions in the laboratory.

Note the host *Lysiosquilla scabricauda* (arrow) within the sand-coated PVC artificial burrow structure. This photo was taken prior to the addition of commensals.



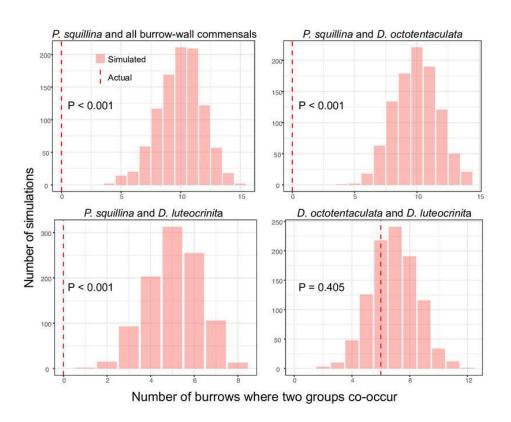
Summary frequencies of each commensal clam species recovered in the field census of Indian River Lagoon host burrows.

The total number of commensal clams recovered, and burrows occupied (in parentheses), for each of the 6 commensal species (5 *Divariscintilla* spp. and 1 *Parabornia* sp.) sampled from 86 IRL host *Lysiosquilla scabricauda* burrows.



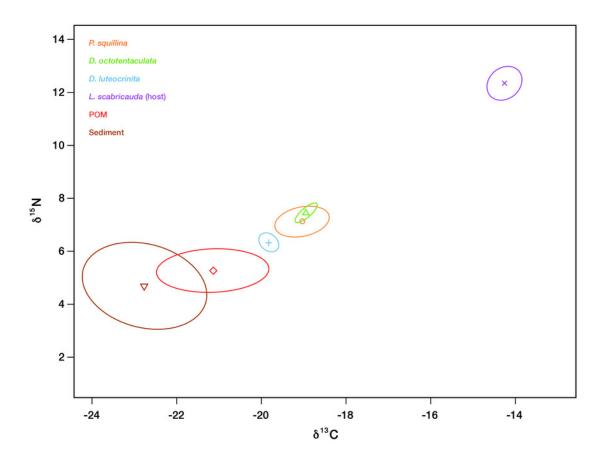
Graphical summary of Indian River Lagoon commensal clam co-occurrence

Census data from 29 commensal-occupied host burrows (out of a total of 86 burrows sampled) grouped by their level of commensal species diversity: mono-, bi-, and tri-specific. See Supplementary Table 1 for site locations of individual burrow IDs (bar graph x axes notation) yielding ≥ 1 commensal clam(s).



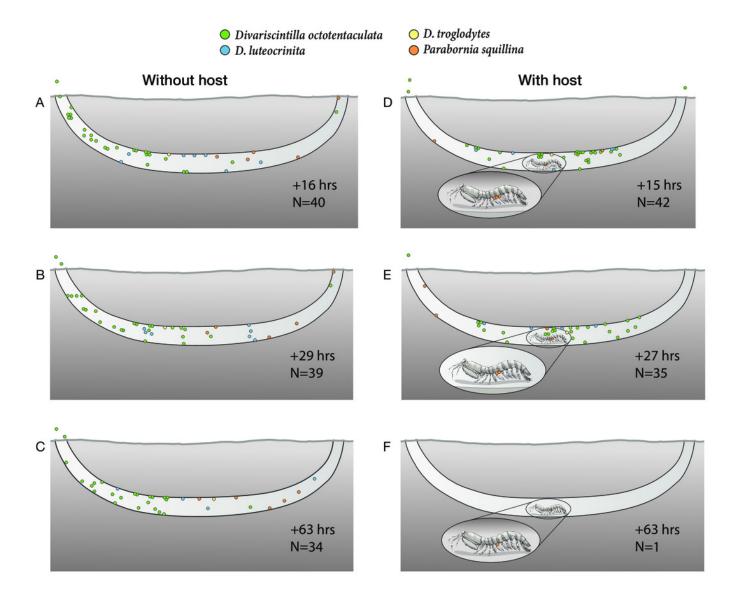
Simulated random recruitment expectations for co-occurrence of commensal species in Indian River Lagoon host burrows

Comparison of the actual observed (dashed red lines) co-occurrence of 4 commensal vasconielline species combinations in IRL host burrows to their simulated co-occurrence distributions (histograms) expected under random larval recruitment and post-larval survival dynamics.



Inferred isotopic niche widths of commensal species and potential basal resources.

Bayesian-estimated Standard Ellipse Areas (SEA_B) of 3 IRL commensal clam species - *Divariscintilla octotentaculata* (N=10; 1 sample failed), *D. luteocrinita* (N=4) and *Parabornia squillina* (N=20) - together with that of their potential basal resources: suspended particulate organic matter (POM, N=33; 2 samples failed), deposited organic matter (sediment; N=33; 1 sample failed), and mantis shrimp (*Lysiosquilla scabricauda*; N=19). Three other IRL commensals (*D. troglodytes, D. yoyo*, and *D.* aff. *yoyo*) were not sampled in large enough quantities to produce SEA_B plots for this analysis. X axis units, expressed as δ^{15} N, are the ratios of 15 N to 14 N obtained from the labelled samples, whereas Y axis units, expressed as δ^{13} C, are the corresponding ratios of 13 C to 12 C. See Supplemental Table 3 for individual specimen isotopic data values and sampling details.



Artificial burrow laboratory observations of commensal clam behavior and survival with and without a host

A series of time-specific observations of the spatial positioning and survival of 4 Indian River Lagoon commensal clam species within experimental artificial burrows without (left), and with (right), a resident *Lysiosquilla scabricauda* mantis shrimp host. At the beginning of the experiment (Time 0), 47 clams were introduced to the host-free burrow (34 *Divariscintilla octotentaculata*, 7 *D. luteocrinita*, 5 *Parabornia squillina*, and 1 *D. troglodytes*), and 46 clams were introduced to the host-occupied burrow (33 *D. octotentaculata*, 7 *D. luteocrinita*, 5 *P. squillina*, and 1 *D. troglodytes*). N denotes the number of surviving clams observed for each treatment at the accompanying time point.

Table 1(on next page)

Summary table showing commensal species recovery from each of the 5 Indian River Lagoon sampling sites

For each of the 5 IRL sampling sites (see Figure 2), the respective numbers of commensal clams recovered ("Count"), and of Lysiosquilla scabricauda host burrows occupied ("Burrows"), are shown for all 6 commensal clam species sampled in this study:

Divariscintilla octotentaculata (O), Parabornia squillina (S), D. luteocrinita (L), D. troglodytes (T), D. yoyo (Y), and D. aff. yoyo (AY). The two rightmost columns ("All") collectively display the combined totals of all species of commensal clams collected at each site.

	0		S		L		Т		Υ		AY		All	
	Count	Burrows												
Spoil Is. 17 N	18	7	6	2	4	3	0	0	0	0	0	0	28	10
Ft. Beach	0	0	2	2	0	0	0	0	0	0	0	0	2	2
SE Causeway	44	7	6	2	7	5	1	1	2	1	0	0	60	11
Coon Is.	2	1	6	2	0	0	2	1	0	0	1	1	11	3
Spoil Is. 83 N	9	3	0	0	2	1	0	0	0	0	0	0	11	3