
Submitted 21 April 2024
Accepted 24 June 2024
Published 26 July 2024

Corresponding authors
Xuanyang Chen, cxy@fafu.edu.cn
Shiqiang Lin, linshiqiang@fafu.edu.cn

Academic editor
Rogerio Sotelo-Mundo

Additional Information and
Declarations can be found on
page 11

DOI 10.7717/peerj.17750

Copyright
2024 Hu et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Gene synthesis design: a pythonic
approach
Yunzhuo Hu1,2, Danni Pan1,2, Fei Xu1,2, Bifang Huang3, Xuanyang Chen1,2 and
Shiqiang Lin1,3

1Agricultural Product Quality Institute, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
2College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
3College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China

ABSTRACT
Researchers often need to synthesize genes of interest in this era of synthetic biology.
Gene synthesis by PCR assembly of multiple DNA fragments is a quick and economical
method that is widely applied. Up to now, there have been a few software solutions
for designing fragments in gene synthesis. However, some of these software solutions
use programming languages that are not popular now, other software products are
commercial or require users to visit servers. In this study, we propose a Python program
to design DNA fragments for gene synthesis. The algorithm is designed to meet the
experimental needs. Also, the source code with detailed annotation is freely available
for all users. Furthermore, the feasibility of the algorithm and the program is validated
by experiments. Our program can be useful for the design of gene synthesis in the labs
and help the study of gene structure and function.

Subjects Biochemistry, Bioinformatics, Biotechnology, Molecular Biology
Keywords Gene synthesis, DNA fragment, PCR, Python

INTRODUCTION
Gene cloning is necessary for the investigation of protein structure and function. Normally,
the target gene is amplified with PCR from the template. The prokaryotic genes can be
obtained by using the genome as a template, while in the case of a eukaryotic gene,
researchers extract RNA, which is then reverse-transcribed to cDNA that serves as
the template for target gene amplification. However, under some circumstances, the
cells harboring the gene of concern are not available so there is no template for PCR
amplification. Researchers will then need to synthesize the target gene for functional study.
Sometimes, codon optimization is performed to improve target gene expression, which
is frequently involved in lots of codon substitution. The wild-type gene cannot act as the
template to get the optimized gene and this is virtually the same as having no template at
hand. There is at least one more situation. Nowadays, researchers are expanding the range
of study from naturally existing genes to include genes whose sequences are generated
by artificial intelligence (Madani et al., 2023). These genes have to be synthesized before
their structure and function can be experimentally investigated (Cox & Blazeck, 2022;
Korendovych & De Grado, 2020; Singh et al., 2018).

How to cite this article Hu Y, Pan D, Xu F, Huang B, Chen X, Lin S. 2024. Gene synthesis design: a pythonic approach. PeerJ 12:e17750
http://doi.org/10.7717/peerj.17750

https://peerj.com
mailto:cxy@fafu.edu.cn
mailto:linshiqiang@fafu.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.17750
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj.17750


For the target gene to be synthesized, if it is short, less than 100 bps, for example, we
can directly synthesize the sense strand and the antisense strand, anneal them, and ligate to
the T-vector. If the target gene is long, then DNA fragments with overlaps are synthesized
and subsequently linearly assembled into the full-length gene with PCR. During the linear
assembly, the consecutive fragments contain overlap regions that enable bridging to get
the joined sequence. As the PCR reaction goes, the assembled sequence becomes longer
and longer, till the full-length gene is reached. The nature of the assembly process is linear,
therefore, there is only a small quantity of full-length genes. However, the full-length gene
can be used as the template for exponential amplification with gene primers. Then we will
get an enough amount of target gene for gel recycling and T-vector ligation (Prodromou &
Pearl, 1992; Stemmer et al., 1995; Xiong et al., 2004).

Currently, several software solutions for gene synthesis design have been reported such
as DNAWorks (Hoover & Lubkowski, 2002), Gene2Oligo (Rouillard et al., 2004), GeMS
(Jayaraj, Reid & Santi, 2005), Assembly PCR oligo maker (Rydzanicz, Zhao & Johnson,
2005), GeneDesigner (Villalobos et al., 2006), GeneDesign 3.0 (Richardson et al., 2010), etc.,
which have greatly promoted the development of gene synthesis. In the age of artificial
intelligence, Python is the most popular programming language among the scientific
community. Therefore, we use Python to write the program for gene synthesis design.
Two methods of implementation are introduced here (Fig. 1). The method (A) is simple
and intuitive, of which the principle can be easily understood and the experimental
design is also convenient. Each PCR cycle joins one more DNA fragment, and we can
calculate the minimal PCR cycle number for full-length gene assembly according to this
reaction characteristic. The method (B) joins the fragments to the full-length gene by
overlap bridging as in the method (A). The difference is that in the method (B) pairs of
neighboring fragments are allowed to merge to longer sequences in each PCR cycle till
the full-length gene is assembled, while in the method (A) the full-length gene must be
assembled from the last fragment to the first fragment one by one.

According to the methods of (A) and (B) for full-length gene assembly, we design the
algorithm and program and perform experimental validation, aiming to provide researchers
with an elegant, free, and open-source method of gene synthesis design that assists the
structural and functional study of genes.

MATERIALS AND METHODS
Computer hardware and software
The computer hardware is MacBook Air (M1, 2020) and the operating system is macOS
Monterey 12.4. The script running needs Python3.10 (http://www.python.org), biopython
1.79 (Cock et al., 2009), and matplotlib 3.6.3 (Hunter, 2007). The IDLE (Integrated
Development and Learning Environment) of Python3.10 is used to write and edit the script.
Our script for gene synthesis ‘gene_synthesis.py’ (https://github.com/shiqiang-lin/gene-
synthesis), example gene sequence file ‘beta_original.fasta’ (https://github.com/shiqiang-
lin/gene-synthesis), ‘beta_optimized.fasta’ (https://github.com/shiqiang-lin/gene-synthesis)
are available at https://github.com/shiqiang-lin/gene-synthesis.

Hu et al. (2024), PeerJ, DOI 10.7717/peerj.17750 2/13

https://peerj.com
http://www.python.org
https://github.com/shiqiang-lin/gene-synthesis
https://github.com/shiqiang-lin/gene-synthesis
https://github.com/shiqiang-lin/gene-synthesis
https://github.com/shiqiang-lin/gene-synthesis
https://github.com/shiqiang-lin/gene-synthesis
https://github.com/shiqiang-lin/gene-synthesis
http://dx.doi.org/10.7717/peerj.17750


Figure 1 Principle of gene synthesis via PCR. (A) Using all sense fragments. (B) Using alternating sense
and antisense fragments. L1, L2, . . . , Ln (short pink arrows) indicate the DNA fragments, with each pair
of neighboring fragments sharing an overlap region. The primers for the full-length gene are represented
by green arrows. In (A), the PCR for gene assembly begins with the annealing of antisense primer to Ln.
Then the reverse complement sequence of Ln is generated with DNA polymerase. During the next PCR cy-
cle, the reverse complement of Ln bridges the Ln-1 in the overlap region, and Ln-1-Ln is obtained with DNA
polymerase, and so on. As the PCR goes, the full-length sense sequence and the full-length antisense se-
quence are assembled, which can be used as the template for the rest of PCR cycles. In (B), the blue arrows
show the antisense sequences. Each pair of neighboring fragments can join to a longer fragment with over-
lap bridging during PCR assembly.

Full-size DOI: 10.7717/peerj.17750/fig-1

Algorithm
The algorithm of the program is shown in Fig. 2 and listed as follows. (1) Set the
parameters, set_fragment_len for DNA fragment length and Tm_set for the range of
temperatures to be screened, and get DNA fragment L1 with a length of set_fragment_len
from the 5′ end of the gene to be synthesized; (2) select a certain length of sequence
from the 3′ end of L1, with its Tm the closest to the Tm_set, and this sequence is the
overlap between L1 and L2. The remaining gene sequence after cutting off L1 is defined
as remaining_gene_sequence_1; (3) see the length of the overlap between L1 and L2 +
remaining_gene_sequence_1. If the length is equal to or greater than set_fragment_len,
then the L2 can be obtained from the overlap of L1 and L2 and a certain length of sequence
in the 5′ end of remaining_gene_sequence_1. The length of L2 is set_fragment_len.
In this way, we can get L3, L4, . . . , till Ln−1. If the sum of overlap between Ln−1 and
Ln and remaining_gene_sequence_n-1 is less than set_fragment_len, then see if the
remaining_gene_sequence_n-1 is less than 20bps. If it is, then take 20bps from the 3′ end
of Ln−1 and add it to the 5′ end of remaining_gene_sequence_n-1, and redo the previous
step to get the new overlap sequence and the Ln. If it is not, then Ln can be obtained by
joining the overlap between the Ln−1 and Ln and the remaining_gene_sequence_n-1.

For the overlap region, the Tm of the sense sequence is equal to the Tm of the antisense
sequence. Therefore, our algorithm here applies to both (A) and (B) (Figs. 1A and 1B).
Actually, in the presence of primers gene_5 and gene_3, any DNA fragments in (A) or
(B) can be changed to their reverse complement sequences and we are still able to get the
full-length gene.

Hu et al. (2024), PeerJ, DOI 10.7717/peerj.17750 3/13

https://peerj.com
https://doi.org/10.7717/peerj.17750/fig-1
http://dx.doi.org/10.7717/peerj.17750


Figure 2 A schematic diagram of the algorithm. The longer black arrow represents the target gene se-
quence (gene_sequence). L1, L2, . . . , Ln-1, and Lnare the program-generated fragments for target gene as-
sembly. For the neighboring fragments, there is an overlap between the 3′ end of the previous fragment
and the 5′ end of the next fragment. For example, the blue part is the overlap between L1 and L2. The re-
maining_gene_sequence_1 shows the rest of the target gene sequence after truncating L1, and remain-
ing_gene_sequence_2 shows the rest of remaining_gene_sequence_1 after truncating L2 (precisely, L2 mi-
nus overlap between L1 and L2), and so on. The set_fragment_len is the program-set parameter for defin-
ing the length of DNA fragments for gene synthesis.

Full-size DOI: 10.7717/peerj.17750/fig-2

Running method
Here we use the example file ‘beta_original.fasta’, which is the original gene sequence
before sequence optimization, to show the running process of our script. (1) Perform
gene sequence optimization with the Codon Optimization Tool (https://sg.idtdna.com/
pages/tools/codon-optimization-tool) from Integrated DNA Technologies, Inc. (IA, USA),
and obtain the optimized gene sequence ‘beta_optimized.fasta’. This step can not only
improve gene expression but also simplify the DNA structure to help PCR synthesis of
the target gene. Other commercial companies provide sequence optimization services, for
example, the GenSmart Codon Optimization (https://www.genscript.com/gensmart-free-
gene-codon-optimization.html) of GenScript (NJ, USA); (2) Make a new directory on
the Desktop and copy ‘gene_synthesis.py’ and ‘beta_optimized.fasta’ to the directory; (3)
Open Terminal and cd to the directory in step (2), input the following command, and
press ‘Enter’ to run the script;

python3.10 gene_synthesis.py beta_optimized.fasta
(4) In one or two seconds, a scatter diagram appears (Fig. 3), showing the Tm of each
fragment.

At this time, you can move the mouse to the dot in the diagram to see the exact Tm
value. The horizontal line in the diagram shows the Tm_mean for all overlaps. You can
save the diagram or just close the window without saving the diagram. After closing the
scatter diagram, a new folder named ‘gene_synthesis_results’ appears in the directory
of step (2). Within the folder, there are three files, which are ‘all_sense_fragments.txt’,
‘gene_primers.txt’, and ‘sense_antisense_fragments.txt’. The file ‘all_sense_fragments.txt’
stores the designed fragments (all sense sequences), overlap sequence, Tm, Tm-Tm_mean,
fragment_len, overlap_len, and start_pos-end_pos. The file ‘sense_antisense_fragments.txt’
stores the designed fragments (with alternating sense sequences and antisense sequence),
overlap sequence (using sense sequence), Tm, Tm-Tm_mean, fragment_len, overlap_len,

Hu et al. (2024), PeerJ, DOI 10.7717/peerj.17750 4/13

https://peerj.com
https://doi.org/10.7717/peerj.17750/fig-2
https://sg.idtdna.com/pages/tools/codon-optimization-tool
https://sg.idtdna.com/pages/tools/codon-optimization-tool
https://www.genscript.com/gensmart-free-gene-codon-optimization.html
https://www.genscript.com/gensmart-free-gene-codon-optimization.html
http://dx.doi.org/10.7717/peerj.17750


Figure 3 Tm values of overlaps.
Full-size DOI: 10.7717/peerj.17750/fig-3

and start_pos-end_pos. The file ‘gene_primers.txt’ lists the gene_primer sequence, Tm,
and Tm-Tm_mean.

Experimental validation
The output files of the program contain themethod (A) andmethod (B) in Fig. 1; therefore,
we conducted experimental verification for both methods. The length of the target gene
is over 1,000bps. The output text files for method (A) and method (B) both contain 27
DNA fragments. We define three blocks, each including 9 DNA fragments. Because the
block definition is the same for method (A) and method (B), we are able to compare the
difference between the two experimental processes. The detailed verification process is
described as follows.

The file ‘beta_optimized.fasta’ is used as an example of the program running. The
DNA sequences that were sent for commercial synthesis include fragments, sense and
antisense overlap sequences (used as primers to amplify blocks, i.e., block primers),
and gene primers, which were collected and stored in ‘all_synthsized_sequences.txt’
(https://github.com/shiqiang-lin/gene-synthesis). All sequences were sent to Sangon
Biotech Co., Ltd. (Shanghai, China) for synthesis. During the process of gene synthesis
with PCR, there is a limit to the number of DNA fragments that can be successfully
assembled. In theory, it is more difficult in the situation of more DNA fragments.
It has been reported that six or seven fragments can be easily assembled with PCR

Hu et al. (2024), PeerJ, DOI 10.7717/peerj.17750 5/13

https://peerj.com
https://doi.org/10.7717/peerj.17750/fig-3
https://github.com/shiqiang-lin/gene-synthesis
http://dx.doi.org/10.7717/peerj.17750


(Xiong et al., 2004). In this study, we attempted to join nine fragments for each block
(https://github.com/shiqiang-lin/gene-synthesis). Each block was amplified with the nine
DNA fragments as template and the block primers, using Pyrobest DNA Polymerase
(Takara, catalog NO. R005A). The PCR system (50 ul) contained 5 ul 10×Pyrobest Buffer
II (Mg2+ plus, 10 mM), 2 ul 10 uM sense block primer, 2 ul 10 uM antisense block primer,
4 ul dNTP mixture (2.5 mM each), nine DNA fragments (10 uM for each fragment), 0.25
ul Pyrobest DNA Polymerase (5 U/ul), and ddw. The PCR program was 94 ◦C for 1min;
35 cycles of 98 ◦C for 2 s, 54 ◦C for 30 s, 72 ◦C for 25 s; 16 ◦C forever.

After three blocks were obtained with PCR reactions, 1.5% agarose gel was used to
isolate the target DNA bands (theoretical length in bps in https://github.com/shiqiang-
lin/gene-synthesis). The target bands were cut and recycled with Gel Extraction Kit
(Sangon, catalog NO. B58131-0100), using 30ul Elution Buffer to elute target DNA.
The DNA concentration is determined with NanoDrop (Thermo Fisher Scientific Inc.,
MA, USA) (https://github.com/shiqiang-lin/gene-synthesis). Then the three blocks were
used as the template to assemble and amplify the full-length gene. The PCR system (50
ul) contained 5 ul 10×Pyrobest Buffer II (Mg2+ plus, 10 mM), 2 ul 10 uM sense gene
primer, 2 ul 10 uM antisense gene primer, 4 ul dNTP mixture (2.5 mM each), three
blocks (50 ng for each block), 0.25 ul Pyrobest DNA Polymerase (5 U/ul), and ddw. The
PCR program was 94 ◦C for 1 min; 35 cycles of 98 ◦C for 2s, 54 ◦C for 30 s, 72 ◦C for
1 min 10 s; 16 ◦C forever. The target gene band was gel recycled using Gel Extraction
Kit (Sangon, catalog NO. B58131-0100), ligated to T-vector using Zero TOPO-Blunt
Cloning Kit (Sangon, catalog NO. B522216-0020), and sent for sequencing verification
(https://github.com/shiqiang-lin/gene-synthesis).

RESULTS
Program running
For a smooth process of DNA fragment assembly, it is often necessary to perform sequence
optimization for the target gene. Sequence optimization helps to improve gene expression,
eliminate or elevate DNA secondary structure, and adjust regions of too high or too low GC
content. Here, we utilize the free service from commercial companies to get the optimized
gene sequence. In practice, the fragment length will have to conform to the synthesis quality
and cost control. Besides, all the overlaps between the consecutive fragments and the gene
primers have approximate Tm values, to facilitate the fragment joining. Based on these
considerations, we run the program using the example gene sequence file as input, and the
results are shown in Fig. 4.

There are seven columns in Fig. 4A, including fragment sequence, overlap sequence, Tm
of overlap sequence, Tm-Tm_mean, fragment_len, overlap_len, and start_pos-end_pos.
It can be seen that all the fragments are sense sequences. In Fig. 4B, the first column
shows fragments in alternating sense antisense sequences. The odd fragments are sense
and even fragments are antisense. The rest six columns are the same as those in Fig.
4A. The primer, Tm value, and Tm-Tm_mean for amplification of the full-length gene
are displayed in Fig. 4C. It is shown that the length of each fragment is 59 bps, the

Hu et al. (2024), PeerJ, DOI 10.7717/peerj.17750 6/13

https://peerj.com
https://github.com/shiqiang-lin/gene-synthesis
https://github.com/shiqiang-lin/gene-synthesis
https://github.com/shiqiang-lin/gene-synthesis
https://github.com/shiqiang-lin/gene-synthesis
https://github.com/shiqiang-lin/gene-synthesis
http://dx.doi.org/10.7717/peerj.17750


Figure 4 The output files (partial) of the program running.
Full-size DOI: 10.7717/peerj.17750/fig-4

same as the program definition (which can be adjusted for quality and cost control). All
the fragments have close Tm values, with Tm-Tm_mean 0.93 the highest (less than 1)
(https://github.com/shiqiang-lin/gene-synthesis). The above results show that the Tm of
overlap for each fragment accords with the program design. In the case of gene primers,
Tm-Tm_mean is 0.51, far less than 1, consistent with the program design as well. It should
be noted that the overlaps do not have a constant length. The reason is that the program
screens overlap in length to keep all the Tm values close. These results lay a solid foundation
for the experiment of synthesizing the target gene with PCR.

Experimental validation
We synthesized all the needed DNA sequences for method (A) and method (B) according
to the program output, which includes fragments, block primers, and gene primers. We
utilized the idea of ‘divide and conquer’ to address the issue of gene synthesis. The full-length
gene was divided into several blocks, with each block made up of multiple commercially
synthesized DNA fragments. During experiments, PCR assembly and amplification is
performed for each block using the constituting fragments as the template, and for the
full-length gene using the blocks as the template. The experimental result of method (A) is
shown in Fig. 5.

It can be seen from lanes 1–3 that all the blocks (https://github.com/shiqiang-lin/gene-
synthesis) were PCR assembled and amplified with their corresponding fragments as
templates. The target bands are bright and clear-cut, which are convenient for cutting gels
and recycling DNA. The concentrations of three blocks all exceeded 30 ng/ul, and these
were used as the template to assemble and amplify the full-length gene. The band in lane
4 shows that the full-length gene was PCR synthesized successfully, and the quality and
concentration of three blocks were eligible for overlap bridging. It is supposed that the
close Tm values for all overlaps and gene primers played an important role during the
processes of block assembly with fragments and full-length gene assembly from blocks,
which is realized by our algorithm design and Python code. Having seen the experimental

Hu et al. (2024), PeerJ, DOI 10.7717/peerj.17750 7/13

https://peerj.com
https://doi.org/10.7717/peerj.17750/fig-4
https://github.com/shiqiang-lin/gene-synthesis
https://github.com/shiqiang-lin/gene-synthesis
https://github.com/shiqiang-lin/gene-synthesis
http://dx.doi.org/10.7717/peerj.17750


Figure 5 The validation of method (A).M: DNA marker; lane 1: block1; lane 2: block2; lane 3: block3;
CK1: negative control for lanes 1–3 with ddw as the template; lane 4: blocks 1–3; CK2: negative control for
lane 4 with ddw as the template.

Full-size DOI: 10.7717/peerj.17750/fig-5

result of method (A), we now turn to the experimental result of method (B), which is
shown in Fig. 6.

Lanes 1–3 show that all the blocks (https://github.com/shiqiang-lin/gene-synthesis) were
assembled and amplified with PCR. The bands are clear, which is good for gel recycling.
The concentrations of gel recycled blocks were all over 150 ng/ul, far higher than those in
method (A). The result of lane 4 indicates that the blocks were capable of joining to the
full-length gene with PCR.

After gel recycling the target gene bands in Fig. 5 and Fig. 6, we ligated them to T-vectors,
respectively, and sent them for sequencing verification. The result of sequence alignments
indicated that the target sequence in the T-vector was the same as ‘beta_optimized.fasta’,

Hu et al. (2024), PeerJ, DOI 10.7717/peerj.17750 8/13

https://peerj.com
https://doi.org/10.7717/peerj.17750/fig-5
https://github.com/shiqiang-lin/gene-synthesis
http://dx.doi.org/10.7717/peerj.17750


Figure 6 The validation of method (B).M: DNA marker; lane 1: block1; lane 2: block2; lane 3: block3;
CK1: negative control for lanes 1–3 with ddw as the template; lane 4: blocks 1–3; CK2: negative control for
lane 4 with ddw as the template.

Full-size DOI: 10.7717/peerj.17750/fig-6

for both method (A) and method (B) (https://github.com/shiqiang-lin/gene-synthesis).
These results demonstrated that the fragments by method (A) and method (B) with our
program could be used to assemble the full-length gene with PCR.

DISCUSSION
In this study, we design the algorithm and write the Python code according to the principle
of gene synthesis with fragment assembly via PCR. The program has been experimentally
verified with the example gene.

Compared with other gene design programs, our program has several advantages. The
program is written with Python, the most popular programming language nowadays. The
code can be read easily, which facilitates the understanding and adjustment of the program

Hu et al. (2024), PeerJ, DOI 10.7717/peerj.17750 9/13

https://peerj.com
https://doi.org/10.7717/peerj.17750/fig-6
https://github.com/shiqiang-lin/gene-synthesis
http://dx.doi.org/10.7717/peerj.17750


if necessary. We are now in a time of artificial intelligence and there are more and more
people learning and using Python. Thus, our program is in a friendly environment for
lab application. We provide detailed algorithm description, source code, and annotation.
These resources make possible modification and improvement of the program to meet
with the specific needs of more users. The fragment length recommended in the program
is 59, however, users may decide this value themselves. The users only need to change
the source code in line 192 with IDLE, for example, from ‘‘set_fragment_len = 59’’
to ‘‘set_fragment_len = 69’’. This enables users to control the quality and cost of the
commercial synthesis of fragments. Normally, the base price is more expensive for longer
fragments. It is necessary to set a reasonable fragment length for cost-effective commercial
synthesis. In addition, it is possible to change the screening range of PCR annealing
temperatures, which is done by modifying the source code in line 210 with IDLE, i.e., ‘‘for
Tm_set in range(54,69):’’. In this situation, the PCR annealing temperatures screened are
54, 55, 56, . . . , 68. If we change (54,69) to (57,63), then the PCR annealing temperatures
screened will be from 57 to 63, with 63 excluded.

Moreover, the program makes it possible to flexibly divide the full-length gene into
blocks. Previous study has shown that up to seven overlapped DNA fragments can be
assembled via PCR (Xiong et al., 2004). Thus, for example, if we have 20 DNA fragments
to be joined, then three blocks containing six, seven, and seven fragments respectively may
be defined. In this situation, block1 (fragments 1–6) is overlapped with block2 (fragments
7–13) in that fragment 6 is overlapped with fragment 7, and block2 (fragments 7–13) is
overlapped with block3 (fragments 14–20) as well. In the case of 22 DNA fragments, four
blocks containing five, five, six, and six fragments respectively may be defined, and so on.
In this way, each block has several DNA fragments, with the 5′ end of the first fragment
overlapping the 3′ end of the last fragment of the previous block, and the 3′ end of the last
fragment overlapping the 5′ end of the first fragment of the next block.

As the program lists the overlap sequences and the gene primers, all with close Tm,
the primers for each block can be easily selected. For example, to amplify block1,
the sense_gene_primer (in ‘gene_primers.txt’) is used as the forward primer, and
the reverse complement sequence of the overlap sequence (the second column of
‘all_sense_fragments.txt’ for Method A and the second column of
‘sense_antisense_fragments.txt’ for Method B) of the last fragment in block1 is used
as the reverse primer. To amplify block2, the user can use the overlap sequence of the
last fragment of block1 as forward primer and the reverse complement sequence of the
last fragment in block2 as reverse primer, and so on. It is worth mentioning that in the
‘all_sense_fragments.txt’ and the ‘sense_antisense_fragments.txt’, the program lists the
overlap sequences in the second column with sense sequences. Therefore, to get the reverse
primer for a block, the user needs to perform reverse complementation to the overlap
sequence of the last fragment of the block.

Furthermore, our program provides users with two methods of fragment assembly,
which are method (A) and method (B), to increase the flexibility of the experimental
process. Under some circumstances, users may make adjustments based on methods (A)
and (B). Any one or more fragments can be changed to its or their reverse complement

Hu et al. (2024), PeerJ, DOI 10.7717/peerj.17750 10/13

https://peerj.com
http://dx.doi.org/10.7717/peerj.17750


sequences (while block primers are unchanged). This offers users even more possible
methods of assembling fragments.

CONCLUSIONS
This study solves the problem of gene synthesis design with the Python programming
language. We provide a user-friendly, free, open-source, and experimentally validated
method for the design of DNA fragments for PCR gene synthesis. Our method will lend
support to the study of protein structure and function, protein engineering, synthetic
biology, and so on.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This study is supported by the Spark Project of the Fujian Provincial Department of Science
and Technology (NO. 2023S0012). The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The Spark Project of the Fujian Provincial Department of Science and Technology: NO.
2023S0012.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Yunzhuo Hu performed the experiments, analyzed the data, prepared figures and/or
tables, authored or reviewed drafts of the article, and approved the final draft.
• Danni Pan performed the experiments, prepared figures and/or tables, and approved
the final draft.
• Fei Xu performed the experiments, prepared figures and/or tables, and approved the
final draft.
• Bifang Huang performed the experiments, prepared figures and/or tables, and approved
the final draft.
• Xuanyang Chen conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the article, and approved the final draft.
• Shiqiang Lin conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The program source code, the example gene sequence file, the output files, and the
resulting files of experimental validation, are available at GitHub and Zenodo:

Hu et al. (2024), PeerJ, DOI 10.7717/peerj.17750 11/13

https://peerj.com
http://dx.doi.org/10.7717/peerj.17750


- https://github.com/shiqiang-lin/gene-synthesis.
- shiqiang-lin. (2024). shiqiang-lin/gene-synthesis: gene_synthesis (v0.1). Zenodo.

https://doi.org/10.5281/zenodo.12560364.
The script along with the documentation is also available at PyPI at https://pypi.org/

project/gene-synthesis/0.1/ for a convenient installation with Python pip.

REFERENCES
Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck

T, Kauff F, Wilczynski B, de HoonMJL. 2009. Biopython: freely available Python
tools for computational molecular biology and bioinformatics. Bioinformatics
25:1422–1423 DOI 10.1093/bioinformatics/btp163.

Cox JR, Blazeck J. 2022. Protein engineering: a driving force toward synthetic immunol-
ogy. Trends in Biotechnology 40:509–521 DOI 10.1016/j.tibtech.2021.09.005.

Hoover DM, Lubkowski J. 2002. DNAWorks: an automated method for designing
oligonucleotides for PCR-based gene synthesis. Nucleic Acids Research 30:e43
DOI 10.1093/nar/30.10.e43.

Hunter JD. 2007.Matplotlib: A 2D graphics environment. Computing in Science &
Engineering 9:90–95 DOI 10.1109/MCSE.2007.55.

Jayaraj S, Reid R, Santi DV. 2005. GeMS: an advanced software package for designing
synthetic genes. Nucleic Acids Research 33:3011–3016 DOI 10.1093/nar/gki614.

Korendovych IV, De GradoWF. 2020. De novo protein design, a retrospective. Quarterly
Review of Biophysics 53:e3 DOI 10.1017/S0033583519000131.

Madani A, Krause B, Greene ER, Subramanian S, Mohr BP, Holton JM, Olmos JL,
Xiong C, Sun ZZ, Socher R, Fraser JS, Naik N. 2023. Large language models
generate functional protein sequences across diverse families. Nature Biotechnology
41:1099–1106 DOI 10.1038/s41587-022-01618-2.

Prodromou C, Pearl LH. 1992. Recursive PCR: a novel technique for total gene synthesis.
Protein Engineering 5:827–829 DOI 10.1093/protein/5.8.827.

Richardson SM, Nunley PW, Yarrington RM, Boeke JD, Bader JS. 2010. GeneDesign
3.0 is an updated synthetic biology toolkit. Nucleic Acids Research 38:2603–2606
DOI 10.1093/nar/gkq143.

Rouillard JM, LeeW, Truan G, Gao X, Zhou X, Gulari E. 2004. Gene2Oligo: oligonu-
cleotide design for in vitro gene synthesis. Nucleic Acids Research 32:W176–W180
DOI 10.1093/nar/gkh401.

Rydzanicz R, Zhao XS, Johnson PE. 2005. Assembly PCR oligo maker: a tool for
designing oligodeoxynucleotides for constructing long DNA molecules for RNA
production. Nucleic Acids Research 33:W521–W525 DOI 10.1093/nar/gki380.

Singh RK, Lee JK, Selvaraj C, Singh R, Li J, Kim SY, Kalia VC. 2018. Protein engineering
approaches in the post-genomic era. Current Protein & Peptide Science 19:5–15
DOI 10.2174/1389203718666161117114243.

Hu et al. (2024), PeerJ, DOI 10.7717/peerj.17750 12/13

https://peerj.com
https://github.com/shiqiang-lin/gene-synthesis
https://doi.org/10.5281/zenodo.12560364
https://pypi.org/project/gene-synthesis/0.1/
https://pypi.org/project/gene-synthesis/0.1/
http://dx.doi.org/10.1093/bioinformatics/btp163
http://dx.doi.org/10.1016/j.tibtech.2021.09.005
http://dx.doi.org/10.1093/nar/30.10.e43
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1093/nar/gki614
http://dx.doi.org/10.1017/S0033583519000131
http://dx.doi.org/10.1038/s41587-022-01618-2
http://dx.doi.org/10.1093/protein/5.8.827
http://dx.doi.org/10.1093/nar/gkq143
http://dx.doi.org/10.1093/nar/gkh401
http://dx.doi.org/10.1093/nar/gki380
http://dx.doi.org/10.2174/1389203718666161117114243
http://dx.doi.org/10.7717/peerj.17750


StemmerWP, Crameri A, Ha KD, Brennan TM, Heyneker HL. 1995. Single-step assem-
bly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides.
Gene 164:49–53 DOI 10.1016/0378-1119(95)00511-4.

Villalobos A, Ness JE, Gustafsson C, Minshull J, Govindarajan S. 2006. Gene designer: a
synthetic biology tool for constructing artificial DNA segments. BMC Bioinformatics
7:285 DOI 10.1186/1471-2105-7-285.

Xiong AS, Yao QH, Peng RH, Li X, Fan HQ, Cheng ZM, Li Y. 2004. A simple, rapid,
high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long
gene sequences. Nucleic Acids Research 32:e98 DOI 10.1093/nar/gnh094.

Hu et al. (2024), PeerJ, DOI 10.7717/peerj.17750 13/13

https://peerj.com
http://dx.doi.org/10.1016/0378-1119(95)00511-4
http://dx.doi.org/10.1186/1471-2105-7-285
http://dx.doi.org/10.1093/nar/gnh094
http://dx.doi.org/10.7717/peerj.17750

