Evaluation of transport conditions for autologous bone marrow-derived mesenchymal stromal cells for therapeutic application in horses (#7537)

First submission

Please read the **Important notes** below, and the **Review guidance** on the next page. When ready **submit online**. The manuscript starts on page 3.

Important notes

Editor and deadline

María Ángeles Esteban / 17 Dec 2015

Files 6 Figure file(s)

5 Table file(s)

Please visit the overview page to **download and review** the files

not included in this review pdf.

Declarations Involves vertebrate animals.

Please in full read before you begin

How to review

When ready <u>submit your review online</u>. The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this **pdf** and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to **PeerJ standard**, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (See <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within **Scope of** the journal.
- Research question well defined, relevant & meaningful. It is stated how research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Negative/inconclusive results accepted.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusion well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

The above is the editorial criteria summary. To view in full visit https://peerj.com/about/editorial-criteria/

Evaluation of transport conditions for autologous bone marrow-derived mesenchymal stromal cells for therapeutic application in horses

Miguel Espina, Henriette Jülke, Walter Brehm, Iris Ribitsch, Karsten Winter, Uta Delling

Background. Mesenchymal stromal cells (MSCs) are increasingly used for clinical applications in equine patients. For MSC isolation and expansion, a laboratory step is mandatory, after which the cells are sent back to the attending veterinarian. Preserving the biological properties of MSCs during this transport is paramount. The goal of the study was to compare transport-related parameters (transport container, media, temperature, time, cell concentration) that potentially influence characteristics of culture expanded MSCs.

Methods. The study was arranged in three parts comparing I) five different transport containers, II) seven different transport media, four temperatures (4°C vs. room temperature; -20°C vs. -80°C), four time frames (24 h vs. 48 h; 48 h vs. 72 h), and III) three MSC concentrations. Cell viability (Trypan Blue exclusion), proliferation and trilineage differentiation capacity were assessed for each test condition.

Results. No significant differences were found when comparing transport containers, media, temperatures, time frames, or cell concentrations, likely due to the large number of comparisons and small sample size. Highest cell viability was observed using autologous bone marrow supernatant as transport medium, and "transport" at 4°C for 24 h (70.6% vs. control group 75.3%). Viability was unacceptably low with bone marrow supernatant or plasma and DMSO at -20°C or -80°C. Chondrogenic differentiation showed a trend towards being decreased with any transport condition, compared to control cells.

Discussion. In this study, transport conditions were not found to impact viability, proliferation or ability for trilineage differentiation of MSCs, most likely due to the small sample size and large number of comparisons. Future research may be warranted into the possibly negative effect of transport on chondrogenic differentiation.

Evaluation of transport conditions for autologous bone marrow-derived mesenchymal stromal cells for therapeutic application in horses

1 Miguel Espina¹, Henriette Jülke², Walter Brehm¹, Iris Ribitsch^{2,3}, Karsten Winter², Uta Delling¹ 2 3 ¹ Large Animal Clinic for Surgery, Faculty of Veterinary Medicine, University of Leipzig, 4 5 Leipzig, Germany 6 ² Translational Centre for Regenerative Medicine (TRM), University of Leipzig, 7 Leipzig, Germany ³ Current address: Equine Hospital, University of Veterinary Medicine, Vienna, Austria 8 9 10 Corresponding author: Uta Delling¹ 11 12 An den Tierkliniken 21, 04103 Leipzig, Germany 13 Email address: delling@vetmed.uni-leipzig.de

15	Abstract
13	ADSTRACT

1	_
	n
	v

17	Background . Mesenchymal stromal cells (MSCs) are increasingly used for clinical applications
18	in equine patients. For MSC isolation and expansion, a laboratory step is mandatory, after which
19	the cells are sent back to the attending veterinarian. Preserving the biological properties of MSCs
20	during this transport is paramount. The goal of the study was to compare transport-related
21	parameters (transport container, media, temperature, time, cell concentration) that potentially
22	influence characteristics of culture expanded MSCs.
23	Methods. The study was arranged in three parts comparing I) five different transport containers,
24	II) seven different transport media, four temperatures (4°C vs. room temperature; -20°C vs
25	80°C), four time frames (24 h vs. 48 h; 48 h vs. 72 h), and III) three MSC concentrations. Cell
26	viability (Trypan Blue exclusion), proliferation and trilineage differentiation capacity were
27	assessed for each test condition.
28	Results. No significant differences were found when comparing transport containers, media,
29	temperatures, time frames, or cell concentrations, likely due to the large number of comparisons
30	and small sample . Highest cell viability was observed using autologous bone marrow
31	supernatant as transport medium, and "transport" at 4°C for 24 h (70.6% vs. control group
32	75.3%). Viability was unacceptable low with bone marrow supernatant or plasma and DMSO at
33	-20°C or -80°C. Chondrogenic differentiation showed a trend towards being decreased with any
34	transport condition, compared to control cells.
35	Discussion . In this study, transport conditions were not found to impact viability, proliferation or
36	ability for trilineage differentiation of MSCs, most likely due to the small sample size and large

37 number of comparisons. Future research may be warranted into the possibly negative effect of 38 transport on chondrogenic differentiation.

39

40

Key words: horse, mesenchymal stromal cells (MSCs), transport, viability

42

41

Background

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

43

Mesenchymal stromal cells (MSCs) are increasingly applied for various diseases in humans (Sharma et al., 2014) and animals (Guercio et al., 2012; Smith, Garvican & Fortier, 2014). In the equine patient, MSCs are predominantly used for treating tendon and ligament injuries (Godwin et al., 2012; Smith et al., 2013). The benefit of MSC injection to treat joint diseases is less well established (Ferries et al., 2014). Mesenchymal stromal cells can be isolated from multiple body tissues including bone marrow (BM), adipose tissue and blood (Sharma et al., 2014; Smith, Garvican & Fortier, 2014). Following isolation, MSCs need to be expanded in culture to provide adequate cell numbers for clinical use. Shipping conditions for transportation of expanded cells to the patient should ensure stem cell viability and maintenance of original cell characteristics, such as purity, identity, differentiation, and proliferation capacity. Various shipping conditions are being used for the transport of expanded MSCs to the patient, but details of validation experiments are either not reported (Godwin et al., 2012), only unfrozen conditions were evaluated (Bronzini et al., 2012; Mercati et al., 2014) or only one frozen condition was evaluated (Garvican et al., 2014). Specifically, Bronzini et al. (2012) used blood-derived MSCs (n=10) and compared 10 different transport media at 4°C, room temperature (RT), and 37°C for up to 72h

60	using "sterile tubes" of unspecified origin. Mercati et al. (2014) however, used fat-derived MSC
61	(n=2), assessed one transport media at 4°C vs. RT, and for 24 h and 48 h; the origin of the
62	transport container was not specified either. Finally, Garvican et al. (2014) evaluated BM-
63	derived MSCs (n=3) in 7 different media at 4-8°C and one medium at -78°C for up to 72h, using
64	a single type of specified cryotubes.
65	When shipping unfrozen cells, it appears that room temperature is superior to 37°C or 4°C when
66	shipping times do not exceed 12 hours (Bronzini et al., 2012). With longer shipping times,
67	keeping the cells at 4°C resulted in higher viability compared to room temperature (Mercati et
68	al., 2014). Further, superior results were obtained using phosphate buffered saline (PBS)
69	compared to culture medium with or without blood serum or fetal bovine serum (FBS) as
70	transport media at temperatures above 0°C up to 12 h (Bronzini et al., 2012). Others report no
71	significant difference in cell viability after 12 h and 24 h in all transport media, but found the
72	most rapid decline in viability over time in suspensions containing biological fluids such as BM
73	aspirate, platelet-rich plasma or serum. Interestingly and in contrast to Bronzini et al. (2012), the
74	least decline was in viability observed with culture medium containing FBS (Garvican et al.,
75	2014). Transport of frozen equine MSCs has been assessed using one condition only (90%
76	allogenic blood serum + 10% dimethyl sulfoxide [DMSO]; -78°C; up to 72h) and resulted in
77	MSC viability of ~80% (Garvican et al., 2014).
78	Transportation and cryopreservation may impair stem cell functionality and engraftment of
79	human blood-derived haematopoietic stem cells (Lioznov et al., 2008). Also, there have been
80	reports of altered immunosuppressive properties of human MSC following cryopreservation
81	(François et al., 2012).

82	Another variable to consider is the influence of the transport container, since plastic adherence is
83	a key feature of MSC characteristics. Furthermore, it is known that both surface chemistry and
84	biochemical signals affect MSC proliferation and differentiation (Almodóvar et al., 2010; Wang
85	et al., 2015). Cryotubes are most frequently used in practical settings and in a previous
86	comparable study (Garvican et al., 2014); others did not specify the container under investigation
87	(Bronzini et al., 2012; Mercati et al., 2014;).
88	Finally, the concentration of cells during transport may impact MSC characteristics. It has been
89	stated that cell concentration may influence biological properties of hematopoietic stem cells
90	(Dlimi, 2012). Also, cell concentration appears to have an impact on cell viability in non-MSC
91	cell lines (De Loecker et al., 1998; Costa et al., 2000).
92	Therefore, the aim of this present study was to determine the impact of temperature during
93	transport, transport media, transport times, transport containers, and MSC concentrations on
94	equine, bone-marrow derived MSC characteristics.
95	Our hypotheses were that 1) transport container, 2) transport media, temperature and time, and 3)
96	MSC concentration have an effect on MSC viability, proliferation and trilineage differentiation
97	capacity.
98	
99	Material and Methods
100	
101	Study design and general procedures
102	
103	Study design
104	

The study entailed three consecutive parts in which preceding results were applied in the subsequent steps (Fig. 1). In all conditions and controls, cell quality was assessed with respect to viability, proliferation and trilineage differentiation capacity. In part I, recoverable volume for the different containers was determined additionally. The most suitable container was subsequently used throughout the study. In part II, different transport media were tested in positive (four types) and negative (three types) temperatures, each for two time frames (24 and 48h, 48 and 72h, respectively). This amounted to 28 different test conditions: 16 at temperatures above 0°C and 12 within the negative temperature range. Finally, in part III, three different MSC concentrations were compared using the best transport media/temperature/time combination as determined in part II. A total of six test conditions were compared; three for the positive and negative temperature, respectively. Individual controls for each condition were defined as the cell characteristics at time point 0, immediately before each test condition was started. Each condition was evaluated using MSCs of six different horses (n=6).

Sampling of BM and venous blood

All experiments were approved by the State Animal Care Committee (V12/09, Landesdirektion Leipzig, Free State of Saxony, Germany). Bone marrow was harvested from the sternum of Warmbloweldings aged 15-16 years as previously described (Delling et al., 2012). Briefly, after intravenous sedation with 0.06 mg/kg romifidine (Sedivet; Boehringer Ingelheim, Ingelheim, Germany) and 0.02 mg/kg butorphanol (Torbugesic; Fort Dodge Veterinär, Würselen, Germany), the area of the sternum was aseptically prepared and locally anesthetized. A BM aspiration needle (Bone Marrow Harvest Needle, Angiotech, Gainesville, USA) was advanced

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

148

149

150

into the bone and 2 x 20 ml marrow was aspirated into heparinized syringes (10,000 IU heparinsodium [B.Braun, Melsungen, Germany]/20 ml syringe). Further, 2 x 20 ml venous blood samples were obtained from the jugular vein for the production of autologous plasma using heparinized syringes as described above. Processing of BM and venous blood Within 4 h after sampling, the BM was centrifuged in 50 ml conical tubes (Falcon Tube, BD Biosciences, Erembodegem, Belgium; 10 min, 600 x g, 10°C). The bone marrow supernatant (BMS) was collected, filtered (BD Falcon cell strainer, BD Bioscience), and stored at -80°C for further use. From the remaining cellular fraction of the BM, mononuclear cells (MNCs) were isolated by density gradient centrifugation. Briefly, the cellular fraction was diluted with PBS (PAA, Pasching, Austria), layered on 15 ml Ficoll-Paque Premium (GE Healthcare, Uppsala, Sweden) and centrifuged (20 min, 1000 x g, 20°C). The buffy coat containing MNCs was collected, washed twice with PBS and seeded in one T₇₅ tissue culture flasks (Greiner bio-one, Frickenhausen, Germany) containing culture medium, i.e. Dulbecco's modified Eagle Medium (DMEM) low-glucose (PAA) supplemented with 10% FBS (Sigma Aldrich, Steinheim, Germany), 1% penicillin/streptomycin (PAA) and 8.9 µg/ml ascorbic acid (Sigma). Cell cultures

washed with PBS and culture medium was added again. For the remaining expansion period,

were kept at 37°C in a humidified atmosphere at 5% CO₂. After 24 h, the adherent cells were

culture medium was changed twice a week until cells reached subconfluency (p0).

In parts I and III of the study, MSCs were harvested, cryopreserved and maintained at 0°C

until use. For part II, MSCs of p0 were further expanded until p3 without cryopreservation.

151	A hemocytometer (Neubauer-improved, Marienfeld-Superior, Lauda-Königshofen, Germany)
152	was used for cell counting throughout the study.
153	Autologous blood plasma was harvested and stored in an identical manner as the BMS.
154	
155	MSC viability testing
156	
157	Cell viability was determined using Trypan Blue stain (Sigma) and the fraction of unstained
158	(viable) cells was determined manually.
159	
160	Proliferation capacity
161	
162	To allow comparison of MSC growth characteristics, cumulative doubling rates were calculated
163	for each condition as previously described (Giovannini et al., 2008). For this, cells (p4) were
164	plated at a density of 500 cells/cm 2 on T_{25} tissue culture flasks in culture medium. After seven
165	days in culture, the total number of MSCs per sample was assessed. The process was repeated at
166	weekly intervals until p7. The population doublings were calculated with the equation PD =
167	$log10~(N/N_0)~x~3.33$, where N is the number of harvested cells and N_0 the number of plated cells
168	Cumulative population doublings (cPD) for each time point were calculated by adding values of
169	all previous PDs.
170	
171	Trilineage differentiation potential
172	

173	For adipogenesis, a modified protocol was used (Giovannini et al., 2008). Briefly, cells (p4) were
174	seeded in duplicate at a density of 5000 cells/cm ² in 12-well plates (Greiner). At subconfluency,
175	induction medium was added consisting of DMEM/Ham's F12 (PAA), 5% rabbit serum (Sigma),
176	10% FBS, 1 % penicillin/streptomycin, 1 μM dexamethasone (Sigma), 100 μM indomethacine
177	(Sigma) and 500 μM 3-IBMX (3-isobutyl-1-methylxanthine; Sigma), as well as 1,700 nM
178	insulin (Invitrogen, Karlsruhe, Germany) and maintained for 72 h. Afterwards, cells were fixed
179	with 4% paraformaldehyde (Roth, Karlsruhe, Germany) and the production of intracellular lipid
180	droplets was assessed semi-quantitatively by 0.35 % Oil red O staining (Sigma) counterstained
181	with Mayer hematoxilin (Sigma) and assigning scores of 0-3 for no, low, medium or high
182	numbers of visible fat droplets.
183	For osteogenesis, cells (p4) were seeded in duplicate at a density of 5000 cells/cm ² in 12-well
184	plates. At subconfluency, differentiation was induced in DMEM/Ham's F12, 10% FBS, 1%
185	penicillin/streptomycin supplemented with 10 nM dexamethasone, 10 mM β-glycerophosphate
186	(Sigma) and 0.1 mM ascorbic acid. The medium was changed twice a week. Early and late
187	osteogenesis was evaluated using an alkaline phosphatase stain (Sigma) and Alizarin red stain
188	(Sigma) at day 14 and 21 after induction, respectively. Both stains were assessed semi-
189	quantitatively by assigning scores of 0-3 for no, low, medium and high blue intracellular staining
190	and red stained-extracellular calcium deposition, respectively.
191	Chondrogenesis was induced in micromass pellet cultures (p4) (Giovannini et al., 2008). To
192	exclude non-viable cells after the simulated transport, all recovered cells were cultured routinely
193	for 12h. Following, only adherent cells were harvested and pellets were prepared as 5×10^5 cells
194	in duplicate, placed in 15 ml tubes and centrifuged (5 min, 280 x g, 4°C). Pellets were incubated
195	in chondrogenic medium consisting of DMEM high glucose (4.5 g/l; PAA) supplemented with

1% ITS+ Premix (BD Biosciences), 0.1 μM ascorbic acid, 0.4 μM proline (Roth), 100 nM dexamethasone and 10 ng/ml human recombinant TGF-β₁ (BD Biosciences). Medium was replaced twice a week. After 21 days in chondrogenic culture, pellets were fixed for 24 h in 4% paraformaldehyde, dehydrated, embedded in param and cut into 4 μm thick sections. Histologic sections were stained with Safranin O-fast green (Sigma) and Alcian blue (Sigma) to detect extracellular glycosaminoglycan depositions. Masson trichrome staining (Sigma) was performed to evaluate collagen synthesis. All slices were assessed semi-quantitatively using an established scoring system (Bern Score) based on Safranin O-fast green stains and with a maximal score of nine (Grogan et al., 2006). A staining scale from (β) was used for Alcian blue and Masson trichrome stained sections, respectively.

All histologic slides were scored at 20x magnification. Evaluation of the chondrogenic differentiation was blinded to experimental conditions, whereas complete blinding of the adipogenic and osteogenic differentiation was impeded by the consecutive order in the 12-well plates known to the investigator.

Part I: Evaluation of transport containers

Cells of p3 were divided into six aliquots. The first aliquot served as control (time point 0) and five aliquots ("transport groups") were transferred to five different transport containers: 1) cryotubes (Art No 126263, Greiner), 2) plastic syringe/plastic tipped plunger (Injekt Innohep, B. Braun), 3) plastic syringe/rubber tipped plunger (Art No 370-003, Henry Schein Vet, Hamburg, Germany), 4) glass syringe/rubber tipped plunger (Art No 663570002, 513010007, and 423040001, Gerresheimer, Düsseldorf, Germany), and 5) CellSeal (CellSeal, 2 ml Needleless

Port Foil Covered- Long Tubing Art No 10223-700-47, General Biotechnology, Indianapolis,
USA) (Fig. 2). The standardized conditions for the "transport groups" entailed a cell
concentration of 10,000,000 MSCs/ml, use of 500µl cell suspension per container, DMEM high
glucose + 20% FBS as transport media, and the maintenance for 24 hours at RT (21°C) under
light protection. After 24 hours, containers were gently agitated, the contents expelled from the
containers into conical tubes and the recoverable volume was measured using a micropipette.
Viability, proliferation and differentiation capacity were assessed as described above. Subjective
handling characteristics of the individual containers concerning content recovery and ease of use
were recorded.
Part II: Evaluation of transport media, temperature and time
The glass syringe was selected for part II and III based on results of part I. Cells of p3 were
divided into 29 aliquots: one aliquot served as control and 28 aliquots were used for further
testing. Four different transport media, specifically a) PBS, b) autologous BMS, c) autologous
blood plasma, and d) HypoThermosol FRS (HypoThermosol FRS, BioLife Solutions, Bothell,
USA), were tested at room temperature and 4°C, each for a 24 h and a 48 h "transport" time.
Three different transport media, specifically a) CryoStor CS10 (BioLife Solution; which contains
10% DMSO), b) autologous BMS + 10% DMSO (Sigma), and c) autolougous blood plasma +
10% DMSO, were tested at -20°C and C, each for a 48 h and 72 h "transport" time. Each
glass syringe contained 500µl cell suspension at a concentration of 10,000,000 MSCs/ml.
At the end of each evaluated condition, viability, proliferation and differentiation capacity were
assessed as described above.

PeerJ

42	
243	Part III: Evaluation of cell concentration
.44	
245	Conditions with the highest median cell viability in part II at temperatures above and below 0°C,
46	respectively (#5: BMS, 4°C, 24 h; #26 ryoStor, -20°C, 72 h) were further investigated in part
47	III. Specifically, cells of p3 were divided and placed at concentrations of 5 x 10^6 , 10×10^6 , or 20
248	$x\ 10^6\ MSCs$ per ml transport media into glass syringes. As previously, $500\mu l$ cell suspension per
49	"transport" container was used and viability, proliferation and differentiation capacity were
250	assessed as described above after 24 h (for temperatures above 0°C) or 72 h (for temperatures
251	below 0°C).
252	
253	<u>Data analysis</u>
254	
255	Data were tested for normal distribution using the Shapiro-Wilk test. Comparisons between the
256	individual conditions were made using Friedman- and Wilcoxon-Tests. Significance was set at p
257	<0.05. Post-hoc Bonferroni correction was applied to adjust the p-value. Data were expressed as
258	median and interquartile range (IQR). Statistical analysis was performed with IBM SPSS
259	Statistics (version 22, Armonk, New York, USA).
260	
261	Results
262	
263	Part I: Evaluation of transport containers
264	

265	The recovered volume after "transportation" was highest from the glass syringes (container 4;
266	91%, 453µl IQR 16µl) and lowest from CellSeal (78%, 390µl IQR 35µl). Plastic syringes 2) and
267	3) yielded volumes of 88% (440 μ l IQR 35 μ l) and 90% (450 μ l IQR 19 μ l), respectively. The
268	cryotubes yielded a volume of 83% ($415\mu l$ IQR $40\mu l$). Differences between the five containers
269	were not significant. Figure 3 depicts the five containers after 24 h of "transport" and
270	immediately before evacuation. Note the cell pellet which formed at the bottom of all containers.
271	Subjectively, we noticed foam formation after the content had been agitated in the cryotube
272	(container 1) and CellSeal (container 5), thus decreasing the recoverable volume. Upon pushing
273	the plunger of the syringes to expel the cell suspension, the glass syringe allowed for smooth,
274	controlled delivery of the cell suspension, whereas both plastic syringes tended to have an
275	irregular resistance during content delivery.
276	Viability assessed by Trypan Blue staining was lower in all transport groups compared to the
277	control group, i.e. viability at time point 0 (76.8% IQR 14.6%), although this was not statistically
278	significant. There was also no significant difference in viability between the five containers;
279	highest viability was observed in glass syringes (44.0% IQR 20.3%), followed by the plastic
280	syringe/rubber tipped plunger (38.9% IQR 22.9%), the cryotube (38.1% IRQ 31.2%), CellSeal
281	(38.0% IRQ 20.0%), and the plastic syringe/plastic tipped plunger (37.4% IQR 23.9%).
282	Proliferation capacity, adipogenic, early and late osteogenic differentiation as well as
283	chondrogenic differentiation were not significantly affected by the containers and there were no
284	differences compared to the control group. Results of the chondrogenic differentiation are given
285	in Table 1.

286	Based on the highest volume of recovery, subjective ease of use, and highest cell viability among
287	the transport groups, the glass syringe (container 4) was chosen as being the most suitable
288	container for the subsequent evaluation.
289	
290	Part II: Evaluation of transport media, temperature and time
291	
292	Viability in all test conditions was decreased compared to the control group (Fig. 4, Table 2).
293	Subjectively, at temperatures above 0°C, cells generally had higher viabilities after 24 hours of
294	"transport" compared to 48 hours of "transport". Furthermore, cells kept at 4°C tended to have
295	higher viability than cells kept at RT. With respect to the transport media, we observed highest
296	viabilities with BMS and plasma. None of these observations reached significance due to
297	Bonferroni correction (significance level $p < 0.002$) and the large number of comparisons. The
298	highest viability of 70.6% within the positive range was observed with condition #5 (BMS, 4°C,
299	24 h).
300	Within temperatures below 0°C, the highest cell viabilities were found using CryoStor (#25-28),
301	and among these, test condition #26 (CryoStor, -20°C, 72 h) performed best, albeit not
302	statistically significant.
303	Proliferation capacity, adipogenic, early and late osteogenic differentiation were not affected by
304	any of the "transport" conditions compared to the control group. However, data for conditions
305	#17-24 was not collected due to insufficient cell numbers harvested after the simulated transport.
306	All tested conditions had lower Bern scores (Safranin O/Fast green stain) compared to the
307	control group, indicating a decreased presence of mature proteoglycans (Fig. 5), but this was not
308	statistically significant. Scores for the Alcian blue stain were similar to those for the Bern scores.

309	Collagen deposition, evaluated on Masson-Trichrom-stains, was not affected by any of the tested
310	conditions.
311	
312	Part III: Evaluation of cell concentration
313	
314	We did not observe significant differences in viability compared to the control group or between
315	any of the two evaluated MSC concentrations after transport, using conditions #5 (BMS, 4°C, 24
316	h) and #26 (CryoStor, -20°C, 72 h) (Fig. 6), although subjectively, viability following both
317	transport conditions was consistently lower than in the control group.
318	Cell proliferation and trilineage differentiation capacity were not affected by the test conditions.
319	
320	Discussion
321	
322	The current study shows that transport of expanded MSCs can decrease cell viability to levels
323	that would be unacceptable for clinical use. The aim of this study was to determine influence of
324	different transport factors on MSC's viability and ability to differentiate into different cell
325	lineages. We were unable to identify significant differences between conditions tested, possibly
326	due to the small sample number combined with the large number of comparisons between
327	conditions that were performed in this study. Nevertheless, there are several aspects worth
328	discussing.
329	An effect of transport media on cell survival within the positive temperature range has been
330	reported before (Garvican et al., 2014). In this previous report equine MSC viability declined
331	most rapidly in all allogenic biologic uids compared to culture medium and saline (Garvican

et al., 2014). This is an interesting finding, because even though we did not reach significant
results in our study, we observed contrary results: viability was better preserved with autologous
BMS or plasma vs. PBS or HyoThermosol. A potential explanation might be complement system
activation in allogenic but not autologous combinations resulting in increased MSC lysis. If
autologous products are not available, thermal treatment (, 30 min) of allogenic BMS or
blood plasma may resolve this problem. However, heat inactivation in turn adversely affects
biological products as well (Giard, 1987) and might therefore be controversial. No difference
was found in a study assessing equine MSC expansion in allogenenic plasma lysate vs. FBS, i.e.
a xenogenic medium (Seo et al., 2013). Unfortunately no comments were made on complement
inactivation in either transport media. In contrast to that, no influence on equine MSC survival
was found when comparing ten different transport media encompassing PBS, DMEM, with or
without the addition of 20% or 80% equine serum (presumably allogenic), or 20% or 80% FBS
(Bronzini et al., 2012). Subsequently, PBS was recommended by the authors without further
explanation. We used culture medium (DMEM high glucose + 20% FBS) in part I of our study.
The observed low viability (37-44%) as well as the inclusion of FBS prompted us to investigate
alternative transport media in part II. The addition of FBS to culture medium during transport of
equine MSCs was omitted on purpose by others to avoid introducing foreign materials (Mercati
et al., 2014). FBS is considered to potentially cause xenogenic immune reactions and may
additionally carry the risk of transmitting bovine pathogens such as viruses, bacteria, and prions
(Sundin et al., 2007). A lower degree of inflammation was observed after intraarticular injection
of autologous MSCs compared to allogenic or xenogenic MSCs, thus reinforcing the importance
of potential immunoreaction due to foreign proteins (Pigott et al., 2013).

354	We observed an unacceptably low vicity after transporting MSCs within the negative
355	temperature range using BMS + 10% DMSO or blood plasma + 10% DMSO. This is in
356	contradiction to previous studies where superior viability was obtained by freezing MSCs in 90%
357	allogenic blood serum + 10% DMSO, i.e. viabilities between 60-80% after 48-72 h were
358	observed (Garvican et al., 2014). Differences between protocols may explain contradictory
359	findings, for example the method of thawing: we submerged samples quickly in a 37°C warm
360	water bath. Rapid thawing of mammalian cells is recommended to prevent ice crystal formation
361	and cell lysis, thus, 37°C is the recommended thawing temperature (Katayama et al., 1997;
362	Phelan, 2007).
363	Another point to discuss is the use of DMSO as cryopreserving agent. DMSO was part of all
364	transport media within the negative temperature range in our study; however, at concentrations
365	used for cryopreservation and temperatures >4°C DMSO is potentially cytotoxic. Adverse and
366	toxic reactions in recipient lonar patients have been reported (Thirumala, Goebel & Woods,
367	2013). Finally, DMSO has been described as being capable of inducing differentiation of stem
368	cells into cardiac or neuronal-like cells (Woodbury et al., 2000; Young et al., 2004). These
369	aspects are of concern in the equine patient as well since the entire thawed sample would be
370	injected into the patient by the equine practitioner, including the full amount of DMSO.
371	Based on our data, CryoStor may be the transport media of choice for shipping frozen equine
372	MSCs. But this conclusion merits caution since to our knowledge no data are available on in
373	vivo compatibility of this product after, for example, intratendinous or intraarticular injection in
374	horses. An alternative concept practiced after transportation of human hematopoietic stem cells,
375	is re-culturing the MSC upon arrival, but this procedure is not feasible for most practicing
376	veterinarians.

377	The subjectively observed declining viability of unfrozen MSCs over time (24 h vs. 48 h), which
378	was seen in our study in each of the compared test conditions, has been reported consistently
379	before by others (Bronzini et al., 2012; Mercati et al., 2014; Garvican et al., 2014). Interestingly,
380	Bronzini et al. (2012) assessed viability more closely during the first 24 hours, i.e. at 3, 6, 9, 12,
381	and 24 h (and further). They reported a steadily maintained viability up to 12 h; however, a steep
382	decline in viability from 12 h transport time to 24 h was observed. It is also of no surprise that
383	time (in our study 48 h vs. 72 h) appeared to have far less influence on viability of MSCs in a
384	frozen state; this is in accordance with previous findings in equine MSCs (Garvican et al., 2014).
385	While there was no significant difference for temperature (4°C vs. RT) in our study, an
386	advantage of lower temperatures has been previously reported (Mercati et al., 2014). However, a
387	higher rate of equine MSC survival at RT vs. 4°C (and 37°C) was reported by one research
388	group before (Bronzini et al., 2012). There was also no influence of temperature in the negative
389	temperature range (-20 vs80°C) in our study. Thus, during transport, it is paramount to
390	maintain temperatures at minimum below -20°C. Temperatures of approximately -80°C are
391	preserved on dry ice but require additional effort and cost during shipment. A temperature of -
392	20°C may or may not be maintained with freezer packs and appropriate insulating packaging.
393	Continuous temperature measurements within the transport box might be necessary for quality
394	control as, to our knowledge, no studies are available concerning this practice. In clinical
395	settings, transport of suspended equine MSCs at 4-10°C was facilitated using freezer packs and
396	insulated boxes (Godwin et al., 2012).
397	There are discrepancies in MSC viability from previous publications (Bronzini et al., 2012;
398	Mercati et al., 2014; Gravican et al., 2014) compared to our findings. This might be due to the
399	MSC source (blood, adipose tissue, BM), the quantifying technique (manual vs. automated

counting), individual settings within each laboratory, or other unknown factors. Direct
comparison of protocols is impeded by curtailed description of protocols in some of the other
studies (Bronzini et al., 2012). The slightly decreased viability in our control group (time 0) was
most likely due to logistic reasons: the samples for this group were handled together with the test
groups, meaning that in part II, 29 samples were assessed at the same time. The resulting
prolonged processing time may have influenced viability. This may partially account for the poor
survival after freezing MSCs in part II of our study too, because one condition (Cryostor, -20°C,
72h), resulted in part II in 35.5% viability and in part III (where fewer samples were evaluated)
in 61.8% viability. Because all samples within each parts of the study were handled equally,
comparison between individual settings in each part of the study are still valid in our opinion.
This may indicate that, in the clinical setting, cells should be used as soon as possible after they
have been thawed.
The undisturbed adipogenic and osteogenic differentiation throughout the study is in accordance
with previous findings (Mercati et al., 2014). We found that the chondrogenic differentiation
appeared to be affected, though not significantly. Decreased chondrogenic differentiation may be
of concern because MSCs are intraarticularly applied in horses for the treatment of osteoarthritis
(Ferris et al., 2014) and further investigation into this possible effect is warranted.
Only negligible differences in recovered cell suspension volume were found when the five
transport containers were compared. It has to be taken into account, that in part I the containers
were tested at RT only; the outcome of the investigation might have been different at other
temperatures, e.g. below freezing. The lack in differences between the containers was
unexpected, because the material of our chosen transport containers varied considerably.

422	Counting the recovered cells after the simulated transport would have probably yielded further
423	useful information. Cell count was determined in some (Bronzini et al., 2012; Mercati et al.,
424	2014) but not in other (Garvican et al., 2014) previous studies evaluating the effect of transport
425	on equine MSCs.
426	We noticed that the liquid content tended to foam after agitation, making aspiration in the
427	cryotube and in the CellSeal more difficult. The foam formation in the glass syringes dissolved
428	faster compared to all other containers. Agitation is necessary because cells tend to sediment
429	quickly to the bottom of the container. We also noticed that even after agitation, cell
430	accumulations sometimes remained visible in the fluid. This was irrespective of the type of
431	container. Protein aggregation and particle formation in prefilled glass syringes is a known effect
432	in the pharmaceutical industry (Jones, Kaufmann & Middaugh, 2005; Gerhardt et al., 2014).
433	Prefilled glass syringes and some plastic syringes contain silicon oil as a lubricant to enable
434	smooth plunger movement. It has been shown that the silicon oil-water and air-water interface
435	combined with agitation are responsible for the aggregating effect (Jones, Kaufmann &
436	Middaugh, 2005). Injecting large protein particles might be of concern in the equine patient, but
437	has not been evaluated specifically. Also, risk of breakage of glass syringes compared to plastic
438	containers has to be considered. In general, the use of syringes as transport containers seems
439	appealing since they are ready-to-use products. However, they are not sterile on the outside and
440	special precaution is required when using the syringes for sterile application. In contrast, a sterile
441	syringe can be used to aspirate the content from cryotubes or CellSeal. We occasionally noticed
442	that aspiration of small volumes from CellSeal was difficult and small pieces of plastic from the
443	seal blocked the 21 G needle used for aspiration. A larger needle might have prevented that, but

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

may result in injection of small plastic pieces into patients' tissues. Additionally, the large port of cryotubes may be a potential entry for contamination during sample aspiration. We compared various cell concentrations during transport, because injecting small volumes and therefore preparation of highly concentrated MSC suspensions might be of interest for the treatment of small tendon defects. In our experience (unpublished obervations) even 1 ml MSC suspension injected into small tendinous lesions (under sonographic guidance) leaked outside the defect and into the peritendinous tissue. This was proven by labeling the MSCs with SPIO (iron oxide particles) and subsequent sequential MRI evaluation. In clinical cases application of 2 ml volume at a concentration of 5 x 10⁶ MSCs/ml has been reported (Godwin et al., 2012; Smith et al., 2013). In previous experimental studies assessing MSC transport conditions comparatively lower concentrations of 0.1 x 10⁶ MSCs/ml (Bronzini et al., 2012), 1 x 10⁶ MSCs/ml (Mercati et al., 2014), and 5 x 10⁶ MSCs/ml (Garvican et al., 2014) were evaluated. In our study, no negative impact on MSC viability, proliferation and differentiation capacity was observed even in our highest concentrated solution of 20 x 10⁶ MSCs/ml. The high number of comparisons within our study necessitated the application of Bonferroni correction. This fact combined with the observed high variability and low samples numbers are probably the reason for the lack of statistical significance.

461

460

Conclusion

463

464

465

466

462

In summary, we could not statistically prove any of our three hypotheses. However, transport media, transport time and the temperature during transport seem to be critical factors potentially influencing MSC quality.

468

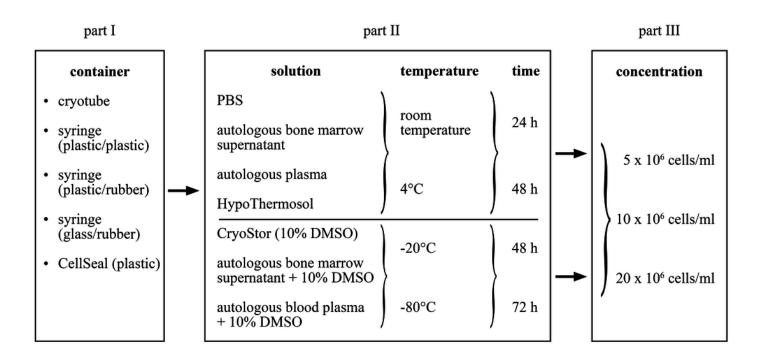
References

- 1. Almodóvar J, Bacon S, Gogolski J, Kisiday JD, Kipper MJ. 2010. Polysaccharide-based
- polyelectrolyte multilayer surface coatings can enhance mesenchymal stem cell response to
- adsorbed growth factors. *Biomacromolecules* 11:2629-2639. DOI 10.1021/bm1005799.
- 472 2. Bronzini I, Patruno M, Iacopetti I, Martinello T. 2012. Influence of temperature, time and
- different media on mesenchymal stromal cells shipped for clinical application. *Veterinary*
- 474 *Journal* 194:121-123. DOI 10.1016/j.tvjl.2012.03.010.
- 475 3. Costa E, Usall J, Teixidó N, Garcia N, Viñas I. 2000. Effect of protective agents, rehydration
- 476 media and initial cell concentration on viability of Pantoea agglomerans strain CPA-2
- subjected to freeze-drying. *Journal of Applied Microbiology* 89:793-800.
- 478 4. Delling U, Lindner K, Ribitsch I, Jülke H, Brehm W. 2012. Comparison of bone marrow
- aspiration at the sternum and the tuber coxae in middle-aged horses. Canadian Journal of
- 480 *Veterinary Research* 76:52-56.
- 481 5. De Loecker W, Koptelov VA, Grischenko VI, De Loecker P. 1998. Effects of cell
- concentration on viability and metabolic activity during cryopreservation. *Cryobiology*
- 483 37:103-109.
- 484 6. Dlimi A. 2012. Einfluss der Konzentration unterschiedlicher Zellpopulationen auf die
- Vitalität kryokonservierter Stammzellkonzentrate [German; Influence of concentration of
- various cell populations of the viability in stem cell preparations Dissertation Dr.med.,
- 487 University of Erlangen-Nürnberg, Germany.
- 488 7. Ferris DJ, Frisbie DD, Kisiday JD, McIlwraith CW, Hague BA, Major MD, Schneider RK,
- Zubrod CJ, Kawcak CE, Goodrich LR. 2014. Clinical outcome after intra-articular

- administration of bone marrow derived mesenchymal stem cells in 33 horses with stifle
- 491 injury. Veterinary Surgery 43:255-265. DOI 10.1111/j.1532-950X.2014.12100.x.
- 492 8. François M, Copland IB, Yuan S, Romieu-Mourez R, Waller EK, Galipeau J. 2012.
- 493 Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as
- a result of heat-shock response and impaired interferon-γ licensing. Cytotherapy 14:147-152.
- 495 DOI 10.3109/14653249.2011.623691.
- 496 9. Garvican ER, Cree S, Bull L, Smith RKW, Dudhia J. 2014. Viability of equine mesenchymal
- stem cells during transport and implantation. Stem Cell Research & Therapy 5:94. DOI
- 498 10.1186/scrt483.
- 499 10. Gerhardt A, Mcgraw NR, Schwartz DK, Bee JS, Carpenter JF, Randolph TW. 2014. Protein
- aggregation and particle formation in prefilled glass syringes. *Journal of Pharmaceutical*
- 501 *Sciences* 103:1601-1612. DOI 10.1002/jps.23973.
- 502 11. Giard DJ. 1987. Routine heat inactivation of serum reduces its capacity to promote cell
- attachment. *In Vitro Cellular & Developmental Biology* 23:691-697.
- 12. Giovannini S, Brehm W, Mainil-Varlet P, Nesic D. 2008. Multilineage differentiation
- potential of equine blood-derived fibroblast-like cells. *Differentiation* 76:118-129.
- 13. Godwin EE, Young NJ, Dudhia J, Beamish IC, Smith RKW. 2012. Implantation of bone
- marrow-derived mesenchymal stem cells demonstrates improved outcome in horses with
- overstrain injury of the superficial digital flexor tendon. *Equine Veterinary Journal* 44:25-32.
- 509 DOI 10.1111/j.2042-3306.2011.00363.x.
- 510 14. Grogan SP, Barbero A, Winkelmann V, Rieser F, Fitzsimons JS, O'Driscoll, Martin I,
- Mainil-Varlet P. 2006. Visual histological grading system for the evaluation of in vitro-
- generated neocartilage. *Tissue Engineering* 12:2141-2149.

- 513 15. Guercio A, Di Marco P, Casella S, Cannella V, Russotto L, Purpari G, Di Bella S, Piccione
- G. 2012. Production of canine mesenchymal stem cells from adipose tissue and their
- application in dogs with chronic osteoarthritis of the humeroradial joints. *Cell Biology*
- 516 International 36:189-194. DOI 10.1042/CBI20110304.
- 517 16. Jones LS, Kaufmann A, Middaugh CR. 2005. Silicone oil induced aggregation of proteins.
- Journal of Pharmaceutical Sciences 94:918-927.
- 17. Katayama Y, Yano T, Bessho A, Deguchi S, Sunami K, Mahmut N, Shinagawa K, Omoto E,
- Makino S, Miyamoto T, Mizuno S, Fukuda T, Eto T, Fujisaki T, Ohno Y, Inaba S, Niho Y,
- Harada M. 1997. The effects of a simplified method for cryopreservation and thawing
- procedures on peripheral blood stem cells. *Bone Marrow Transplantation* 19: 283-287.
- 523 18. Lioznov M, Dellbrügger C, Sputtek A, Fehse B, Kröger N, Zander AR. 2008. Transportation
- and cryopreservation may impair haematopoietic stem cell function and engraftment of
- allogeneic PBSCs, but not BM. Bone Marrow Transplantation 42:121-128. DOI
- 526 10.1038/bmt.2008.93.
- 19. Mercati F, Pascucci L, Curina G, Scocco P, Tardella FM, Dall'Aglio C, Marini C, Ceccarelli
- P. 2014. Evaluation of storage conditions on equine adipose tissue-derived multipotent
- mesenchymal stromal cells. *The Veterinary Journal* 2014; 200:339-342. DOI
- 530 10.1016/j.tvjl.2014.02.018.
- 20. Phelan MC. 2007. Basic techniques in mammalian cell tissue culture. Current Protocols in
- 532 *Cell Biology*. Chapter 1: Unit 1.1. DOI 10.1002/0471143030.cb0101s36.
- 533 21. Pigott JH, Ishihara A, Wellman ML, Russell DS, Bertone AL. 2013. Inflammatory effects of
- autologous, genetically modified autologous, allogeneic, and xenogeneic mesenchymal stem

- cells after intra-articular injection in horses. Veterinary and Comparative Orthopaedics and
- *Traumatoogyl* 26:453-460. DOI 10.3415/VCOT-13-01-0008.
- 537 22. Seo JP, Tsuzuki N, Haneda S, Yamada K, Furuoka H, Tabata Y, Sasaki N. 2013.
- Comparison of allogeneic platelet lysate and fetal bovine serum for in vitro expansion of
- equine bone marrow-derived mesenchymal stem cells. Research in Veterinary Science
- 540 95:693-698. DOI 10.1016/j.rvsc.2013.04.024.
- 23. Sharma RR, Pollock K, Hubel A, McKenna D. 2014. Mesenchymal stem or stromal cells: a
- review of clinical applications and manufacturing practices. *Transfusion* 54:1418-1437.
- 543 10.1111/trf.12421.
- 544 24. Smith RK, Garvican ER, Fortier LA. 2014. The current 'state of play' of regenerative
- medicine in horses: what the horse can tell the human. *Regenerative Medicine* 9:673-685.
- 546 DOI 10.2217/rme.14.42.
- 547 25. Smith RK, Werling NJ, Dakin SG, Alam R, Goodship AE, Dudhia J. 2013. Beneficial effects
- of autologous bone marrow-derived mesenchymal stem cells in naturally occurring
- tendinopathy. *PLoS One* 25;8: e75697. DOI 10.1371/journal.pone.0075697.
- 26. Sundin M, Ringdén O, Sundberg B, Nava S, Götherström C, Le Blanc K. 2007. No
- alloantibodies against mesenchymal stromal cells, but presence of anti-fetal calf serum
- antibodies, after transplantation in allogeneic hematopoietic stem cell recipients.
- 553 *Haematologica* 92:1208-1215.
- 554 27. Thirumala S, Goebel WS, Woods EJ. 2013. Manufacturing and banking of mesenchymal
- stem cells. Expert Opinion on Biological Therapy 13:673-691. DOI
- 556 10.1517/14712598.2013.763925.



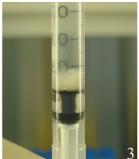
PeerJ

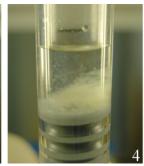
557	28. Wang PY, Clements LR, Thissen H, Tsai WB, Voelcker NH. 2015. Screening rat
558	mesenchymal stem cell attachment and differentiation on surface chemistries using plasma
59	polymer gradients. Acta Biomaterialia 11:58-67. DOI 10.1016/j.actbio.2014.09.027.
60	29. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. 2000. Adult rat and human bone marrow
61	stromal cells differentiate into neurons. Journal of Neuroscience Research 61:364-370.
62	30. Young DA, Gavrilov S, Pennington CJ, Nuttall RK, Edwards DR, Kitsis RN, Clark IM.
663	2004. Expression of metalloproteinases and inhibitors in the differentiation of P19CL6 cells
64	into cardiac myocytes. Biochemical and Biophysical Research Communications 322:759-
65	765.

Study design of the three parts of the study

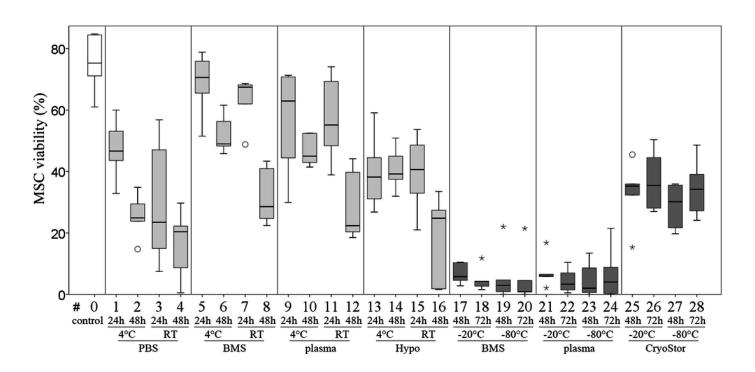
Part I: transport containers

1) cryotube, 2) plastic syringe/plastic tipped plunger, 3) plastic syringe/rubber tipped plunger, 4) glass syringe/rubber tipped plunger, and 5) CellSeal

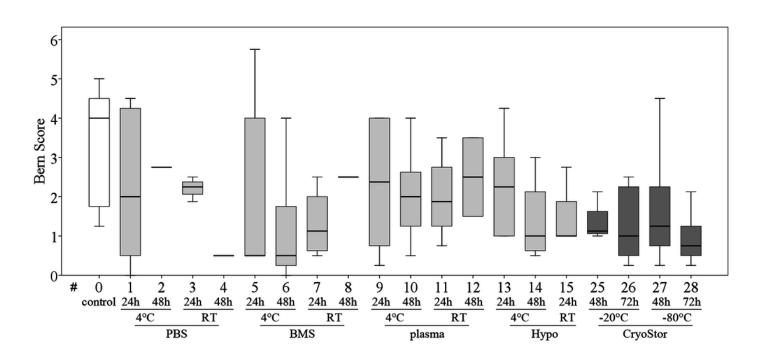


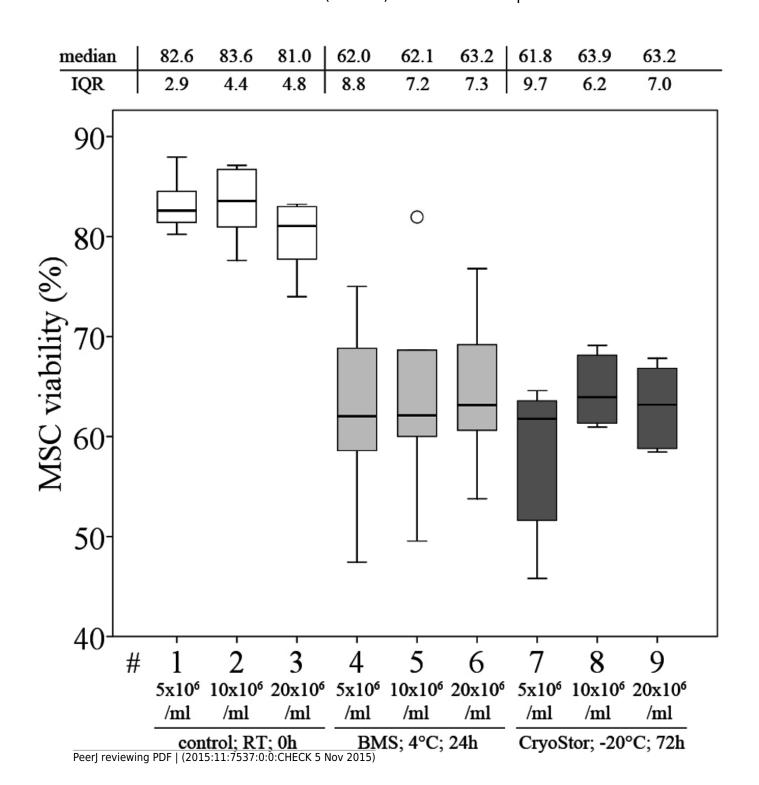

Part I: representative images of the five transportcontainer after 24 h "transportation" and before gentle agitation to dissolve the cell pellet formed at the bottom of the container


1) cryotube, 2) plastic syringe/plastic tipped plunger, 3) plastic syringe/rubber tipped plunger, 4) glass syringe/rubber tipped plunger, 5) CellSeal



Part II: MSC viability


Trypan Blue exclusion (%, median, IQR [box], range [whisker], ° outlier up to 1.5 x box lengths,* extreme values, outside 3 x box lengths) before (#0) and after various "transport" conditions in a positive temperature range (#1-16) and negative temperature range (#17-28); differences did not reach significance level of p < 0.002


Part II: chondrogenic differentiation capacity

Bern score²³ indicating proteoglycan deposition (median, IQR [box], range [whisker]); a decrease in all test conditions compared to the control group (#0) was noted; differences did not reach significance level of p < 0.003; data for #16-24 are missing due to insufficient cell numbers after the "transport"

Part III: MSC viability

Trypan Blue exclusion (%, median, IQR [box], range [whisker], ° outlier) under the influence of different cell concentrations before (control) and after "transport"

Table 1(on next page)

Part I: chondrogenic differentiation capacity of MSCs

Bern score²³ (indicating proteoglycan deposition) of MSCs after "transport" using five different transport containers and a control; expressed as median (IQR); container 1) cryotube, 2) plastic syringe/plastic tipped plunger, 3) plastic syringe/rubber tipped plunger, 4) glass syringe/rubber tipped plunger, and 5) CellSeal; there was no significant difference

	control	container 1	container 2	container 3	container 4	container 5
Bern score (Safranin-O; 0-9)	2.3 (0.9)	1.3 (4.1)	1.0 (1.1)	1.5 (3.1)	2.3 (2.5)	3.0 (2.8)
Alivin Blue (0-3)	1.8 (0.5)	1.0 (0.8)	1.8 (0.9)	2.0 (0.8)	1.5 (0.4)	1.8 (0.5)
Masson Trichrome (0-3)	2.0 (0)	1.5 (1.0)	1.5 (0.5)	2.0 (0.5)	1.8 (0.5)	1.5 (1.4)

Table 2(on next page)

Part II: MSC viability after various "transport" conditions in a positive temperature range and negative temperature range

Viability was assessed using Trypan Blue exclusion; no significant differences (p < 0.002)

rank according to viability	transport condition			difference of viability to control (%)	viability (%)	(IQR)	
		control	RT	0	n.a.	75.3	(11.0)
1	#5	BMS	4°C	24 h	4.7	70.6	(8.4)
2	#7	BMS	RT	24 h	7.8	67.5	(4.7)
3	#9	blood plas	4°C	24 h	12.3	63.0	(23.4)
4	#11	blood plasma	RT	24 h	20.1	55.2	(18.7)
5	#6	BMS	4°C	48 h	26.3	49.0	(6.3)
6	#1	PBS	4°C	24 h	28.6	46.7	(9.5)
7	#10	blood plasma	4°C	48 h	30.3	45.0	(8.0)
8	#15	HypoThermosol	RT	24 h	34.7	40.6	(14.7)
9	#14	HypoThermosol	4°C	48 h	36.1	39.2	(6.1)
10	#13	HypoThermosol	4°C	24 h	37.1	38.2	(11.1)
11	#26	CryoStor	-20°C	72 h	39.8	35.5	(16.4)
12	#25	CryoStor	-20°C	48 h	40	35.3	(3.6)
13	#28	CryoStor	-80°C	72 h	41.1	34.2	(11.8)
14	#27	CryoStor	-80°C	48 h	45.1	30.2	(13.8)
15	#8	BMS	RT	48 h	46.7	28.6	(13.2)
16	#2	PBS	4°C	48 h	50.4	24.9	(5.6)
17	#16	HypoThermosol	RT	48 h	50.5	24.8	(19.9)
18	#3	PBS	RT	24 h	51.8	23.5	(32.1)
19	#12	blood plasma	RT	48 h	52.9	22.4	(15.4)
20	#4	PBS	RT	48 h	54.9	20.4	(13.5)
21	#21	blood plasma	-20°C	48 h	69.3	6.0	(0.7)
22	#17	BMS	-20°C	48 h	69.5	5.8	(5.7)
23	#18	BMS	-20°C	72 h	71	4.3	(1.7)
24	#24	blood plasma	-80°C	72 h	71.2	4.1	(8.5)
25	#22	blood plasma	-20°C	72 h	72	3.3	(5.5)
26	#19	BMS	-80°C	48 h	72.4	2.9	(3.8)
27	#23	blood plasma	-80°C	48 h	73.3	2.0	(8.0)
28	#20	BMS	-80°C	72 h	74.4	0.9	(3.8)