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Background. Understanding the diversity patterns of marine meiofauna is critical in a changing world.
Here we investigate the seasonality of a sandy beach meiofaunal assemblage in response to coastal
oceanography dynamics based on the Seascapes remote sensing dataset.

Methods. We used metabarcoding from sediment samples to assess the meiofaunal assemblage
composition and diversity during one year. Our data support our initial hypotheses revealing a higher
abundance of reads, phylogenetic diversity, and Shannon9s diversity during warmer periods of the year.

Results. Meiofauna was dominated by Crustacea (46% of sequence reads), Annelida (28% of sequence
reads) and Nematoda (12% of sequence reads) in periods of the year with high temperatures (> 25°C),
high salinity (>31.5 ppt), and calm waters. The association between meiofauna abundance of reads and
diversity to seascape dynamics suggest that large-scale changes in ocean heat and productivity may
have importance to the sand beach biodiversity in this tropical ecoregion.
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10 Abstract

11 Brackground.

12 Understanding the diversity patterns of marine meiofauna is critical in a changing world. Here 
13 we investigate the seasonality of a sandy beach meiofaunal assemblage in response to coastal 
14 oceanography dynamics based on the Seascapes remote sensing dataset.
15 Methods.

16 We used metabarcoding from sediment samples to assess the meiofaunal assemblage 
17 composition and diversity during one year. Our data support our initial hypotheses revealing a 
18 higher abundance of reads, phylogenetic diversity, and Shannon�s diversity during warmer 
19 periods of the year.
20 Resutls.

21 Meiofauna was dominated by Crustacea (46% of sequence reads), Annelida (28% of sequence 
22 reads) and Nematoda (12% of sequence reads) in periods of the year with high temperatures (> 
23 25°C), high salinity (>31.5 ppt), and calm waters. The association between meiofauna abundance 
24 of reads and diversity to seascape dynamics suggest that large-scale changes in ocean heat and 
25 productivity may have importance to the sand beach biodiversity in this tropical ecoregion. 
26

27 Keywords: benthos; seascape; environmental DNA; temporal change
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28 Introduction

29 In benthic marine communities, spatial-temporal diversity patterns are mostly driven by substrate 
30 and oceanographic parameters (Blanchette et al., 2008; Griffiths et al., 2017; Mazzuco et al., 
31 2019;2020). It is recognized that sediment grain size, coastal hydrodynamics, and food 
32 availability are typical drivers of meiofaunal communities (Giere, 2009). However, meiofaunal 
33 taxa may have specific adaptations and respond differently to environmental conditions, due to 
34 their differential ability of dispersion, locomotion, nutrition, development and reproduction 
35 (Curini-Galletti et al., 2012). Additionally, temperature can act as main driver on intertidal 
36 benthic communities, reducing their diversity, when it surpasses species� physiological limits 
37 (Vafeiadou et al., 2018; Starko et al., 2019; Mazzuco et al., 2020). In tropical humid regions, 
38 rainfall may additionally work as a major factor structuring meiofauna diversity in tropical sandy 
39 beaches (Gomes and Rosa-Filho, 2009; Venekey et al., 2014; Baia and Venekey, 2019).

40 Sandy beaches form an intricate ecosystem between marine and terrestrial environments, with a 
41 large diversity of organisms supporting important biogeochemical processes (Wu et al., 2018; 
42 Okamoto et al., 2022). Sandy beaches are influenced by global and local oceanographic 
43 processes, which in turn shape the community structure of these habitats. In addition, sandy 
44 beaches are under a range of anthropogenic impacts (including climate change) with signs of 
45 declining diversity in numerous areas worldwide (Bellwood et al., 2004). Understanding how 
46 marine diversity varies at local scales contributes to the conservation of these ecosystems 
47 (Gaston et al., 2000). Also, understanding which environmental factors are the main drivers of 
48 marine diversity and abundance, including spatio-temporal variations, is critical to establish a 
49 strong baseline that can be used in future comparisons.

50 Sandy beaches morphodynamic may change in different timescales: (1) along several decades to 
51 hundreds of years; from several years to decades, also referred as interannual variability; 
52 seasonal variability, which repeats on an annual cycle, also referred as intra-annual variability; 
53 short-term variability, generally associated with extreme events (Senechal and Alegría-Arzaburu, 
54 2020). The interest in understanding long and medium-term processes (inter- and intra-annual 
55 patterns) has increased recently (Blue and Kench, 2017; Vos et al., 2019), boosted by frequency 
56 and intensity of global climate change. Nonetheless, seasonal variation has been less 
57 investigated, even though it plays key roles on the beach system and understanding it is essential 
58 to development of beach surveying (Basanta et al., 2017; Senechal and Alegría-Arzaburu, 2020).

59 Meiofauna is composed by organisms ranging from 42 to 500  comprising at least 22 phyla, 
60 and often displaying high abundance and diversity in marine benthic systems (Higgins and Tiel, 
61 1988; Giere, 2009) (McIntyre, 1969; Higgins & Thiel 1988; Hakenkamp and Palmer, 2000). 
62 These organisms play crucial ecological roles in the marine sediment, such as nutrient recycling, 
63 and transferring energy and matter into benthic and pelagic trophic food webs, linking different 
64 trophic levels (Coull, 1999; Giere, 2009). Due to its ecological importance, meiofaunal 
65 communities reflect the overall health of the marine benthos and are considered excellent 
66 bioindicators to monitoring marine environmental health, and testing general ecological 
67 hypotheses (Bonaglia et al., 2014).
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68 Meiofaunal organisms may have a strong direct impact on benthic properties, modifying 
69 interactions between macrofaunal species and the environment (Zeppilli et al., 2015). In some 
70 shallow marine environments, such as tidal flats, meiofaunal secondary production may exceeds 
71 macrofaunal production (Warwick et al., 1979; Kuipers et al., 1981), contributing up to 40% of 
72 the total benthic metabolism in sandy beaches (Fenchel, 1978). Previous studies have 
73 demonstrated that meiofaunal communities respond to warming in aquatic ecosystems 
74 (O�Gorman et al., 2012; Gingold et al., 2013), causing the mortality of dominant species in 
75 subtropical environments (Gingold et al., 2013), changes in biomass (Alsterberg et al., 2011), 
76 and altering body-size structure (Jochum et al., 2012).

77 In sandy beaches, the distribution and abundance of infaunal benthos are expected to respond to 
78 the swash climate and sediment characteristics (McLachlan et al., 1993). Wave action also plays 
79 an important role on spatial variability (i.e., patchiness) of density and diversity due to the 
80 hydrodynamic stress (Covazzi et al., 2001). Along the intertidal zone of sandy beaches, 
81 temperature and salinity are highly variable and can also influence the distribution and 
82 composition of organisms (Olafsson, 1991). In tropical areas seasonal changes are less markedly 
83 defined, but meiofaunal organisms show some seasonality, with greater abundance during the 
84 warmest/rainy months (Coull, 1988; Albuquerque et al., 2007).

85 Monitoring marine seascapes using satellite data has recorded alterations on different ocean 
86 depth, from surface to the deep (Boyce et al., 2010; McCauley et al., 2015; Mazzuco and 
87 Bernardino, 2022). Under a changing marine ecosystem, seascapes can be tracked by assessing 
88 biotic and abiotic variables, such as benthic-pelagic association and important environmental 
89 variables to benthic fauna (Ehrnsten et al., 2019). The use of this approach to ecological 
90 assessments can help marine spatial planning, conservation efficiency, and improve our capacity 
91 to understand and predict alterations on benthic composition and diversity (Fagundes et al., 
92 2020; Pittman et al., 2021; Mazzuco and Bernardino et al., 2022).   

93 Predicting changes in diversity patterns from local to global scales is a research prime concern in 
94 a scenario of global environmental change, and it has been added to the protocols of diverse 
95 ocean observatories (Muller-Karger et al., 2017; Bax et al., 2019; Mazzuco et al., 2020). To 
96 predict how these assemblages will respond in the future, firstly it is necessary to understand the 
97 drivers of local-scale diversity patterns, and how organisms respond to environmental parameters 
98 and seasonality. Here, we aimed to assess meiofaunal diversity in a tropical sandy beach to test 
99 whether or not (i) the phylogenetic diversity is influenced by seasonality; (ii) if the local 
100 diversity and assemblage composition would be related to regional (larger- scale influences) in 
101 marine seascapes. We addressed the following hypotheses in this study: meiofaunal phylogenetic 
102 diversity and abundance of sequences is higher during warmer months in Gramuté beach.
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103 Materials & Methods

104 Study area and sampling

105 The study was carried out at the Gramuté sandy beach, located within a marine protected area in 
106 the Eastern Brazilian Marine Ecoregion (Figure 1A). It is a tropical region marked by dry winters 
107 and rainy summers (Bernardino et al., 2015), with sea surface temperatures ranging between 
108 21°C and 27°C, and salinity ranging from 34.6 to 36 ppt (Quintana et al., 2015; Mazzuco et al., 
109 2019;2020). This area has experienced significant warming in the last 40 years (Bernardino et 
110 al., 2015; Mazzuco et al., 2020).

111 Sediment samples (approximately 200 g) were collected monthly in triplicate at three stations 20 
112 meters distant from each other (n = 9 sediment samples per month) in the subtidal zone, always 
113 during the low-tide (Figure 1B) for one year (December 2019 to November 2020). Sediment 
114 samples were collected manually using sterile, DNA-free corers, over all seasons during the 
115 sampling period (Summer = December 2019 to February 2020; Autumn = March 2020 to May 
116 2020; Winter = June 2020 to August 2020; Spring = September 2020 to November 2020). 
117 Additionally, we collected samples for sediment analysis (grain size, total organic matter, 
118 carbonate content and sedimentary organic biopolymers). All samples were transported in 
119 thermic bags with ice, and stored at -20°C until analysis. Field sampling was authorized by the 
120 Biodiversity Authorization and Information System of the Brazilian Institute for the 
121 Environment and Renewable Natural Resources (SISBIO-IBAMA, sampling license number 
122 24700-1). We used similar sample sizes between stations to be able to compare them without 
123 sampling artifacts. Total monthly rainfall data for sample period (December 2019 - November 
124 2020) were obtained from the National Water Resources Information System (SNIRH) portal, 
125 made available by the National Water and Sanitation Agency (ANA - 
126 https://www.snirh.gov.br/hidroweb/), considering the station of Santa Cruz -Litoral (code: 
127 1940002; Lat: -19.9578, Lon: -40.1544), which is approximately 4 Km away from the Gramuté 
128 beach.

129 Sediment analysis

130 We dried sediment samples for 48 hours at 60°C for 48 hours before all granulometric analysis. 
131 Then the dry sediment was macerated and sieved in mesh openings of -1.5  to 4  (with  
132 intervals) in a sieve shaker to determinate the carbonate content by muffle combustion at 550° C 
133 for 4 h with an additional hour at 800° C. Additionally, we quantified total organic matter 
134 (TOM) by weight loss after combustion (500  for 3 h) (Suguio, 1973).

135 Sedimentary organic biopolymers (proteins, carbohydrates, and lipids) we analyzed following 
136 Danovaro (2010). After extraction with NaOH 0.5 M we determinate total protein (PRT) content 
137 according to Hartree (1972) modified by Rice (1982) to compensate for phenol interference. For 
138 total carbohydrates (CHO) analysis, we followed the protocol from Gerchacov and Hatcher 
139 (1972). Total lipids (LIP) were extracted from 1 g of homogenized sediment lyophilized by 
140 ultrasonication in 10 ml of chloroform: methanol (2:0 1 v/v) and analyzed according to Marsh 
141 and Weinstein (1966). The concentrations of PRT, CHO and LIP are presented respectively as 
142 bovine serum albumin, glucose and tripalmitin equivalents. PRT, CHO, and LIP concentration 
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143 were converter to carbon equivalents following Fabiano and Danovaro (1994) using conversion 
144 factors of 0.49, 0.40 and 0.75, respectively. The sum of PRT, CHO, and LIP carbon equivalents 
145 are presented as biopolymeric carbon (BPC) (Fabiano et al., 1995). Further, protein to 
146 carbohydrate (PRT: CHO) and carbohydrate to lipid (CHO: LIP) ratios were used to assess 
147 biochemical degradation processes (Galois et al., 2000). All analyzes were performed in 
148 triplicate and blanks were carried out for all analysis with pre-combusted sediments at 450 and 
149 480 ºC for 4 hours.

150 Seascape characterization

151 The Marine Biodiversity Observation Network (MBON) Seascapes are obtained from satellite 
152 and modeled data that comprises different oceanic parameters (sea surface temperature � SST, 
153 sea surface salinity � SSS, absolute dynamic topography � ADT, chromophoric dissolved 
154 organic material � CDOM, surface chlorophyll-a � CHLA, and normalized fluorescent line 
155 height � NFLH). These variables are used to a categorization system of 33 water masses (Montes 
156 et al., 2020).

157 Oceanographic conditions were characterized according to the variation in MBON Seascape 
158 Pelagic Habitats Classification (Kavanaugh et al., 2014; 2016; Mazzuco and Bernardino, 2022) 
159 using the database disponible on NOAA Coast and Ocean Watch Programs, with monthly 
160 frequency on a 5 Km² grid (Kavanaugh et al., 2014; 2016), to characterize the seascapes for the 
161 Área de Proteção Ambiental Costa das Algas (~ 30 km coastline, 465 Km², Longitude � 40.3º to 
162 � 39.8º, Latitude 20.3º to 19.8º) for the study period (December 2019 � November 2020). 
163 Additionally, to determine seasonal mean sea surface temperature (SST) and sea surface salinity 
164 (SSS) for the study area, we calculated a weighted average based on the monthly coverage area 
165 of each MBON marine seascape identified.

166 DNA extraction and sequencing

167 Previously to the DNA extraction, sediment samples were elutriated using sieves of 45  mash, 
168 then aliquoted to 20 mL in an attempt to increase the meiofaunal abundance and enrich metazoan 
169 ASVs after elutriation, and suggested by Brannock and Halanych (2015) for studies focused on 
170 metazoan meiofauna assessments, instead of extract the DNA directly from sediment.

171 1L flasks were filled with 950 mL of filtered seawater and sediment and sediment samples were 
172 added to it, then homogenized and let to sit before decanting the liquid over the sieve. It was 
173 repeated ten times, then the sediment retained on the sieve was rinsed to Falcon tubes and 
174 centrifuged at room temperature for 3 minutes at 1342 X g in an Eppendorf Centrifuge 5430. 
175 Alliquots of 1mL aliquots were stored them at -20°C (Brannock and Halanych, 2015) (Figure 2). 
176 All glassware was sterilized between samples to avoid cross contamination. DNA were extracted 
177 from the 1mL aliquots using the PowerSoil DNA® (Qiagen) kit following the manufacturer�s 
178 instructions. DNA integrity was verified in 1% agarose gel, and purity using NanoDrop One 
179 spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). We measured DNA 
180 concentration using the Qubit® 4 Fluorometer (Life Technologies-Invitrogen, Carlsbad, CA, 
181 USA). Negative controls were carried in triplicate for each step before metabarcoding 
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182 sequencing (sediment elutriation, DNA extraction, and integrity, purity, and concentration 
183 checking). 

184 PCR, metabarcoding sequencing and amplicon libraries were conducted by ©NGS Genomic 
185 Solutions (Piracicaba, SP, Brazil). To perform a PCR reaction, were used the 18S selected 
186 primers (Illumina_Euk_1391 forward and Illumina_EukBr reverse) synthesized with Illumina 
187 adaptors. The products of this PCR were observed in a 1.5% agarose gel, then purified using 
188 AMPure Beads (Beckman Coutler, Life Sciences). After that the Illumina adapters are connected 
189 in a second PCR reaction (index Nextera XT Index Primer 1 (N7xx) and Nextera XT Index 
190 Primer 2 (S5xx)), then purified again using the AMPure Beads, and the products visualized in a 
191 1.5% agarose gel. After that, the PCR products are quantified by NanoDrop and then normalized 
192 to the same concentration, and mixed in an equimolar pool of all samples. This sample pool is 
193 quantified by qPCR for validation and quantification using a KAPA Library Quantification kit 
194 for Illumina (Roche). Additionally, the mix of reagents for PCR reaction and its condition are 
195 described below. PCR reaction conditions in the thermal cycler were 94 °C for 3 minutes 
196 followed by 30 cycles at 94 °C for 30 seconds, 57 °C for 30 seconds, 72 °C for 30 seconds, 72 
197 °C for 10 minutes, and 4 °C hold.

198 Metabarcoding sequencing was performed using the MiSeq Illumina platform (2 x 250 bp, with a 
199 coverage of 100,000 paired-end reads per sample), sequencing the V9 hypervariable region from 
200 18S SSU rRNA gene using the primers Euk_1391 forward (GTACACACCGCCCGTC) and 
201 EukBr reverse (TGATCCTTCTGCAGGTTCACCTAC) (Medlin et al., 1988; Amaral-Zettler et 
202 al., 2009; Stoeck et al., 2010).

203 Bioinformatic pipeline

204 Bioinformatic analysis were conducted using an AMD Ryzen 1950x Crucial 64 GB (16x4) 
205 DDR4 2666MHz computer. We used the QIIME2 2022.8 software to identify sequences with the 
206 demultiplexed raw paired-end reads (Bolyen et al., 2018). Firstly, we imported FastQC files as 
207 QIIME2 artifacts, then denoised them via DADA2 (Callahan et al., 2016) using the denoise-
208 paired plugin, and removed low-quality bases and primer sequences.

209 The taxonomic composition of amplicon sequence variants (ASV) generated by the DADA2 
210 plugin was determined by machine learning Python library scikit-learn to determine the 
211 taxonomic composition of the (Pedregosa et al., 2011). A pre-trained Naïve Bayes classifier 
212 trained on Silva 132 database (Quast et al., 2013) clustered at 99% similarity was used to identify 
213 taxonomically the sequences. Datasets were normalized to allow analysis and comparisons under 
214 similar sampling depth (1384 reads), and resampled each sample to the same depth, and these 
215 normalized datasets were used to calculate all diversity metrics. We performed rarefaction curves 
216 for all four sampled seasons (summer. winter, spring, and autumn) with the observed amplicon 
217 sequence variants (ASVs) at each sampling depth. We calculated the Faith�s Phylogenetic 
218 Diversity (PD) for each sample using the diversity core-metrics-phylogenetic pipeline. Shannon 
219 diversity was calculated using the qiime diversity alpha pipeline and setting the p-metric 
220 parameter to �shannon�. Raw sequences data are disponible online in NCBI (SRR24675047).

221 Statistical analysis
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222 For statistical analysis we only considered meiofaunal metazoan sequences. Here we considered 
223 meiofaunal metazoans all the exclusively meiofaunal phyla (Gnathostomulida, Kinorhyncha, 
224 Loricifera, Gastrotricha, and Tardigrada) and other metazoans that can be meiofaunal size during 
225 life (temporary meiofaunal taxa) (Higgins and Tiel, 1988; Giere, 2009), as previously realized in 
226 other studies (Brannock and Halanych, 2015; Bernardino et al., 2019; Coppo et al., 2023). 
227 Permutational Analysis of Variance (PERMANOVA; Anderson et al., 2008) was performed to 
228 compare environmental variables (rainfall, temperature, salinity, carbonate content, grain size, 
229 total organic matter and its biopolymeric composition), seascape coverage, and meiofaunal data 
230 (diversity metrics - Shannnon's diversity index and phylogenetic diversity, and abundance of 
231 sequence reads) among sampled seasons (summer, autumn, winter, and spring) at Gramuté 
232 beach. A canonical analysis of principal coordinates (CAP; Anderson & Willis, 2003) ordination 
233 plot was made with environmental variables and the meiofaunal assemblage composition at 
234 Phylum level (square-root transformed). Additionally, a similarity percentage routine (SIMPER; 
235 Clarke, 1993) was applied to define the taxa that most contributed to dissimilarity between 
236 seasons. A linear model was calculated using Shannon�s diversity Index and phylogenetic 
237 diversity as response variables, and the assessed environmental variables as predictive variables. 
238 Significative differences were defined when p<0.05. All graphical and analytical processes were 
239 performed in the R environment (R Core Team, 2022).

240 Results

241 Environmental conditions and seascape coverage

242 We observed significant seasonal variability in lipids content (LIP) and in carbohydrate-to-lipids 
243 ratio (CHO:LIP). LIP was 33.0±18.8 in spring, and 444.9±78.1 in summer, 518.8±120.5 in 
244 autumn, and 362.8±80.7 in winter (representing differences of 13.5-fold, 15.7-fold, and 11.0-
245 fold, respectively; Table 1). Consequently, the CHO:LIP ratio was higher in spring (98.0±67.9) 
246 than in summer (2.25±0.23), autumn (1.87±1.52), and winter (3.78±1.94), which represent 
247 differences of 43.6-fold, 34.8-fold, and 25.9-fold, respectively (Table 1). These significative 
248 differences contributed to seasonal changes at Gramuté beach, SE Brazil (PERMANOVA, df = 
249 3; Pseudo-F = 6.916; p = 0.001; Table 2). Additionally, the total rainfall ranged from 80.2±35.6 
250 mm in winter to 193.0±42.2 mm in summer (Table 1). The sediment is completely composed of 
251 sand (1.2±0.6% very fine sand, 17.9±6.1% fine sand, 31.5±5.5% medium sand, 31.9±6.9% 
252 coarse sand, 17.5±5.8% very coarse sand), and its carbonate content ranges from 19% during 
253 autumn to 64% in spring (Table 1). Total organic matter (TOM) had its lower concentration in 
254 summer (8.6±3.8), and higher in spring (10.4±7.9) (Table 1). Protein fraction of organic matter 
255 content in sediment ranged from 48.2±25.0 in summer to 96.9±17.1 in winter (Table 1), 
256 meanwhile carbohydrate fraction ranged from 997.1±223.5 in summer to 2102.0±1435.5 in 
257 spring (Table 1). The content of labile fraction of organic matter, which is represented by the 
258 biopolymeric carbon (BPC), had its highest peak during winter (1562.6 mg C.g-1), and lower 
259 during spring (241.1 mg C.g-1) (Table 1).

260 Overall, the Seascapes categories in this region are characterized by high sea surface temperature 
261 (SST > 20.9°C), high sea surface salinity (SSS> 33.6 psu) and calm waters (absolute dynamic 
262 topography - ADT ranging from 0.51 to 0.83m). The seascapes have wide ranges in dissolved 
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263 organic matter (CDOM; 0.00 to 0.07 m-¹), chlorophyll-a concentration (CHLA; 0.07 to 2.09 
264 mg.m-³), and fluorescence (NFLH; 0.02 to 0.24 W.m-².um-²sr-¹) (Figure 2). We observed 
265 changes in the frequency of seascapes in the studied area along the year (PERMANOVA, df = 3; 
266 Pseudo-F = 8.014; p = 0.001; Table 3). Seascapes Tropical Seas (class 15 � 38.4% of area 
267 coverage during sampling period), Subtropical Gyre Transition (class 5 � 19.0% of area coverage 
268 during sampling period), Subtropical Gyre Mesoscale Influenced (class 13 � 18.3% of area 
269 coverage during sampling period), and Warm, Blooms, High Nutrients (class 21 � 12.4% of area 
270 coverage during sampling period) were the most frequent, with more than 80% of area coverage 
271 during the study period (Figure 2). 

272 Water masses at Gramuté beach during summer (Dec � Feb), autumn (Mar � May) and winter 
273 (Jun � Aug) were dominated by the Seascape Tropical Seas (class 15), with 40.9%, 43.1% and 
274 45.1% of area coverage respectively (Figure 2). This marine seascape is usually characterized by 
275 high temperatures (25.4 °C) and salinity (35.4 psu) (Figure 2), but in summer, autumn and winter 
276 the marine seascape at Gramuté beach was characterized by mean temperature of 24.6±0.1 °C, 
277 24.4±0.1 °C, 24.3±0.1 °C, respectively, and mean salinity of 36.0±0.1 psu, 35.6±0.3 psu, 
278 35.4±0.1 psu, respectively. During Spring (Sep � Nov), the dominance of seascapes changed 
279 from Tropical to Subtropical (class 13 - 42.7% of area coverage; Figure 2), which is usually 
280 characterized by lower temperature (23.5 °C) and higher salinity (35.9 psu), and at Gramuté 
281 beach was observed a mean temperature of 24.5±0.2 °C and mean salinity of 36.0±0.2 psu.

282 Meiofaunal assemblage

283 A total of 9692 sequences from meiofaunal taxa were identified in the dataset, showing seasonal 
284 changes in assemblage composition and abundance of reads (PERMANOVA, df = 3; Pseudo-F = 
285 2.353; p = 0.001; Table 4). Higher abundance of meiofaunal sequence reads was observed in 
286 summer (3347 sequence reads) and in winter (3160 sequence reads), which are significantly 
287 different when compared to spring (565 sequence reads) (Figure 3A), representing differences of 
288 5.9-fold and 5.6-fold, respectively. Abundance of sequence reads in autumn (2620 sequence 
289 reads) was similar to all other seasons (Figure 3A). Furthermore, meiofaunal assemblage 
290 composition was significantly different among all seasons besides summer and winter, and 
291 winter and spring (Table 4).
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292 Crustacea and Annelida typically dominated the assemblage during summer (35% and 40% of 
293 reads, respectively), autumn (43% and 34% of reads, respectively), and spring (59% and 27% of 
294 reads). While during winter, the most abundant taxa were Crustacea (57% of reads) and 
295 Nematoda (17% of reads) (Figure 3B). Sequence reads from Nemertea were not detected during 
296 autumn, Gastrotricha was not detected in spring, and Rotifera was not detected in neither. Only 
297 11 taxa (26.19% of all detected taxa) - Annelida miscellaneous, Echiuroinea (Annelida), 
298 Phyllodocida (Annelida), Maxillopoda miscellaneous, Harpacticoida (Crustacea), Podocopida 
299 (Crustacea), Holothuroidea (Echinodermata), Pterioida (Mollusca), Chromadorea miscellaneous 
300 (Nematoda), Rhabditida (Nematoda), and Rhabdocoela (Platyhelminthes) � were detected on all 
301 four sampled seasons (Table S1). On the other hand, 14 taxa (33.33% of all detected taxa) � 
302 Aspidosiphonidormes (Annelida), Golfingiida (Annelida), Protodrilidae (Annelida), Spionida 
303 (Annelida), Calanoida (Crustacea), Zoantharia (Cnidaria), Ophiuroidea (Echinodermata), 
304 Chaetonida (Gastrotricha), Heterobranchia (Mollusca), Desmodorida (Nematoda), Monhysterida 
305 (Nematoda), Enoplida (Nematoda), Platyhelminthes miscellaneous, and Bdelloidea (Rotifera), 
306 were detected only on one sampled season (Table S1). 

307 Rarefaction curves suggest that the number of meiofaunal taxonomic groups detected during 
308 Spring was lower when compared to summer, autumn, and winter (Figure 4). We observed 
309 significant differences in diversity patterns among seasons in Gramuté beach. Phylogenetic 
310 diversity presented a marked seasonal variation, with lower diversity in spring (9.23±1.88) and in 
311 autumn (11.88±1.82), when compared to summer (17.93±3.11) and winter (19.37±4.85) 
312 (PERMANOVA; Pseudo-F = 18.863; df = 3; p < 0.001; Figure 3C; Table 5). Similarly, 
313 Shannon�s diversity was lower in spring (2.38±0.91) when compared to autumn (4.03±0.53), 
314 summer (4.82±0.72), and winter (4.56±1.13), representing differences of 1.7-fold, 2.0-fold, and 
315 1.9-fold, respectively (PERMANOVA; Pseudo-F = 13.129; df = 3; p < 0.001; Figure 3D; Table 
316 6).
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317 The meiofaunal assemblage differs significantly between the sampled seasons in Gramuté beach 
318 (PERMANOVA, df = 3; Pseudo-F = 2.353; p = 0.001; Table 4; Table S2). Dissimilarity levels 
319 ranged from 49.7% (between winter and summer) to 68.6% (between autumn and summer), and 
320 winter had distinct assemblage composition compared to the others sampled seasons. SIMPER 
321 analysis revealed that Annelida (ranging from 16.5% to 28.3%; Table S2), Crustacea (ranging 
322 from 21.8% to 26.7%; Table S2) and Nematoda (ranging from 13.9% to 21.8%; Table S2) were 
323 the taxa that most contributed to the differences among all seasons. Platyhelminthes contributed 
324 15.4% to the total dissimilarity of 49.5% between autumn and spring (Table S2). Annelids, 
325 crustaceans and nematodes were more abundant in summer and winter samples. Further, these 
326 taxa were highly associated with higher organic matter content and quality (total organic matter 
327 content, biopolymeric carbon, protein content, and protein-to-carbohydrate ratio; Figure 5).

328 The assessed environmental variables (rainfall; organic matter content; carbonate content; 
329 biopolymeric fractions and ratios - carbohydrate, protein, lipids, CHO:LIP, and PRT:CHO; and 
330 biopolymeric carbon content) compose a significant model of variables likely to drive meiofauna 
331 diversity (Shannon�s diversity Index and phylogenetic diversity) at Gramuté beach (Adjusted R² 
332 = 0.423; F = 4.21; p=0.002; Table 7). We observe significant positive relationship between 
333 meiofaunal diversity (Shannon�s diversity and phylogenetic diversity) and biopolymeric carbon 
334 content - BPC (t = 2.303; p = 0.030; Table 7), meanwhile carbohydrate-to-lipids ratio (CHO:LIP) 
335 was negatively correlated to meiofaunal diversity (t = -2.347; p = 0.027).

336 Discussion

337 Our findings suggest a marked seasonality of the meiofaunal assemblage composition, 
338 abundance of reads, and diversity (phylogenetic and Shannon�s index) along the year at Gramuté 
339 beach. The observed seasonal differences at Gramuté beach reveal that meiofaunal assemblages 
340 in this tropical region support marked oscillations in the coastal oceanography, recruitment, and 
341 possibly productivity regimes (Mazzuco et al., 2015; 2019; Mazzuco and Bernardino, 2022). We 
342 observed 5.9-times more sequences during summer when compared to spring, and the 
343 dissimilarities on assemblages between seasons reflected in differences of 1.9 and 2-times in 
344 phylogenetic diversity and Shannon�s index, respectively. Higher phylogenetic diversity was 
345 observed during summer and winter, as well as higher abundance of sequences and Shannon 
346 diversity.

347 We observed higher content of organic matter during spring, which presented higher values of 
348 carbohydrate, that is associated to accumulation of aged organic matter, once protein (PRT) is 
349 usually consumed first (Joseph et al., 2008). Meanwhile, winter presented lower values of 
350 organic matter content with higher values of protein in sediment. Autumn had the lower organic 
351 matter quality, represented by the protein-to-carbohydrate ratio (PRT:CHO), which mean more 
352 degraded organic matter (Danovaro et al., 1993). Additionally, rainfall data showed higher 
353 values during summer and lower during winter, as reported previously by Bernardino et al. 
354 (2015).

355 Water masses detected in the study area had its higher temperature and salinity on summer when 
356 compared to the other seasons, and MBON marine seascape coverage markedly changes 
357 seasonally, with dominance of four MBON marine seascapes: Tropical Seas (class 15), 
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358 Subtropical Gyre Transition (class 5), Subtropical Gyre Mesoscale Influenced (class 13), and 
359 Warm, Blooms, High Nutrients (class 21), similar to Mazzuco and Bernardino (2022)�s findings 
360 at the same area. This seascape dynamics are influenced by the Brazil Current occurring outside 
361 the continental shelf; drift currents generated by winds on the platform up to the wave breaking 
362 zone; and currents generated by waves. The study region is predominantly represented by a 
363 mixing of Tropical Water (mass of hot and saline surface water) and Coastal Waters (less saline 
364 water mass) (Silva et al., 1982; Perenco, 2009).

365 Furthermore, the study region is marked by frequent exposure to waves generated mainly by the 
366 South Atlantic Subtropical Anticyclone (ASAS), with northeast (NE) as main direction. 
367 Although there is dominance of NE waves throughout the year, in the autumn and winter period 
368 the wind regime changes to E-SE, strengthening the presence of waves from these directions (E-
369 SE), with average heights of 1.5 m. During winter, the region is also affected by the passage of 
370 frontal systems, making it susceptible to wave action coming from the south-southwest (S-SW) 
371 (Silva et al., 1982). 

372 We observed that the dominant seascapes are associated to abundance of reads, Shannon�s 
373 diversity, and phylogenetic diversity patterns at local scale, supporting our initial hypothesis. 
374 These biological parameters (e.g., abundance of reads, Shannon�s diversity index, and 
375 phylogenetic diversity) showed higher values associated to the presence of tropical water masses 
376 associated to higher abundance and diversity of meiofaunal taxa, which are followed by the 
377 intrusion of subtropical water masses rich in nutrients. Similar patterns were observed by 
378 Mazzuco and Bernardino (2020) for benthic recruitment at Gramuté beach, with Seascapes on 
379 the Eastern Brazil Marine Ecoregion correlated with patterns of larval recruitment of reef benthic 
380 species at multiple temporal scales. The observed peaks of abundance of reads and diversity may 
381 be influenced by larval recruitment, even though some meiofaunal taxa does not have a larval 
382 phase (e.g, nematodes) but some temporary meiofauna may have a larval or juvenile stage of life 
383 (with the size a meiofaunal organism), playing key roles in the sediment. This result highlights 
384 the relation between food supply and benthic abundance and diversity, as observed in previous 
385 studies (Antón et al., 2011; Neto et al., 2021).

386 Meiofaunal assemblage at Gramuté beach was overall mainly dominated by Crustacea and 
387 Annelida (46% and 28% of sequence reads), with Nematoda representing only 12% of the 
388 meiofauna over the year. Differently, in general is expected to nematodes to dominate meiofauna 
389 in benthic habitats, representing more than 50% - 90% of the total individuals in medium to fine 
390 sandy sediments (Coull, 1988; Giere, 2009; Merckx et al., 2009). However, crustaceans and 
391 nematodes become more representative during the dry period (57% and 17% of sequence reads, 
392 respectively, in winter), while annelids are less representative (11% of sequence reads). 
393 Meanwhile, during the rainy period annelids and crustacean were more representative (40% and 
394 35% of sequence reads, respectively, in summer), and nematodes represented 14% of the 
395 sequence reads, differently from what was indicated by Coull (1988) for temperate regions.

396 We did not observe differences on richness (at Phylum level) between dry and rainy periods 
397 (winter and summer, respectively), we observed differences between seasons, with higher 
398 richness in summer and winter (9 phyla) and lower on spring and autumn (8 phyla). Differently, 
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399 Cavalcanti et al. (2023) found lower meiofaunal richness during dry months than during rainy 
400 months, at a sandy beach on NE Brazil. Meiofaunal structure, abundance of reads, Shannon�s 
401 diversity index, and phylogenetic diversity were significatively different among seasons, 
402 showing that these biological parameters are dependent on time (seasonal variability), as 
403 observed by previous studies in different sandy beaches around the world (McLachlan and 
404 Brown, 2006; Baia and Venekey, 2019; Baldrighi et al., 2019). Shannon�s diversity was lower 
405 during spring, but with no significant differences between summer, autumn, and spring. 
406 Phylogenetic diversity was higher in summer and winter than in autumn and spring. These 
407 differences on diversity metrics shows that, at Gramuté beach, meiofaunal diversity changes 
408 seasonally but is not different among dry and rainy periods, highlighting that rainfall, although is 
409 important on assemblage structuring, did not play a key role on meiofaunal diversity at the study 
410 area, differently of what was observed by Gomes and Rosa-Filho (2009) and Venekey et al. 
411 (2014) for nematofauna structure on tropical region.

412 Shannon�s Diversity index and phylogenetic diversity were positively influenced by the 
413 biopolymeric carbon (BPC) content, which represents the labile fraction of organic matter in 
414 sediment (Danovaro et al., 1993; Fabiano et al., 1995), showing that meiofaunal diversity is 
415 associated to food availability. Similarly, Cisneros et al. (2011) found observed seasonal changes 
416 on organic matter content and nutrients associated to differences on benthic abundance and 
417 diversity at a tropical sandy beach. However, carbohydrate-to-lipids ratio (CHO:LIP) was 
418 negatively related to meiofaunal diversity, which represents a lower meiofaunal diversity 
419 associated to higher content of aged organic matter (CHO) (Venturini et al., 2012 as observed on 
420 spring. Additionally, CHO:LIP may be related to a low lipids (LIP) income from anthropogenic 
421 sources such as petroleum and domestic sewage input (Joseph et al., 2008; Venturini et al., 
422 2012).

423 This metabarcoding assessment is the first molecular record of benthic animals registered for this 
424 region, and can be used as a baseline dataset for future research. We understand that 
425 metabarcoding approaches are influenced by PCR errors, primer biases, and sequence length 
426 (Adams et al., 2019; Beng and Corlett, 2020). Also, the taxonomic identification refinement 
427 obtained using DNA-based techniques are directly influenced by the lack of DNA sequences 
428 broadly representing meiofauna (Fais et al., 2020; Steyaert et al., 2020; Castro et al., 2021), 
429 incomplete DNA-barcodes deposited in molecular databases, and different methodological 
430 practices followed by research groups (Cahill et al., 2018; Pawlowski et al., 2022; Keck et al., 
431 2022; Willassen et al., 2022).

432 Our study revealed a distinct meiofaunal structure with seasonal influences on diversity and 
433 abundance of sequence reads at a tropical beach within a Marine Protected Area (MPA), which 
434 needs to be tracked as a priority area for conservation and management. Understanding diversity 
435 patterns, how it changes seasonally in a local-scale is important for conservation strategies, and 
436 associated to it, identifying priority areas is one of the key objectives of ecologists around the 
437 world (Strassburg et al., 2020; Pittman et al., 2021). The results obtained also highlight the 
438 importance of using multivariable approaches, including sedimentary variables associated to 
439 climatic and water parameters, such as marine seascapes. Additionally, we highlight the 
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440 importance of long-term studies with temporal replication to understand how meiofaunal 
441 assemblages varies along a temporal scale at the tropical region, once most part of studies in 
442 Brazilian beaches have the duration of less than one year, and are mainly only one sampling 
443 event per site. Several benthic ecological processes (e.g., recruitment, zonation, intra- and inter-
444 specific interactions) may change in a long-term temporal scale (years to decades), and can only 
445 be detected and understood by long-term monitoring studies (Turra et al., 2014).

446 Conclusion

447 In conclusion, we observed seasonal influence on meiofaunal diversity and abundance of 
448 sequence reads at Gramuté beach, where the marine seascape is characterized by high 
449 temperatures, high salinity, calm water masses with high nutrient supply. Although richness does 
450 not differ significantly among seasons, meiofaunal assemblage composition, abundance of reads 
451 and diversity (Shannon�s Diversity index and phylogenetic diversity) depend on time in a long-
452 term scale (seasonal variability). Higher abundance of reads and diversity were observed during 
453 the warmer months of the year (summer), associated to changes on environmental parameters 
454 such as food supply and variation on water mass intrusion. Additionally, our results reveal that 
455 meiofaunal diversity is driven by food supply (biopolymeric carbon � labile fraction of organic 
456 matter) and organic matter quality. We highlight the necessity of long-term monitoring programs 
457 to continue understanding how marine benthic organisms will respond to future warmer 
458 environmental scenarios.
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Table 1(on next page)

Environmental data.

Environmental variables data, presented as mean ± standard deviation, obtained at Gramuté
beach, SE Brazil over the seasons (summer, autumn, winter, and spring) during 1-year
sampling.
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Season
Variable

Summer Autumn Winter Spring

Rainfall (mm) 193.0±42.2 95.3±65.6 80.2±35.6 162.3±71.5

Total Organic Matter (TOM) 8.6±3.3 7.60±2.21 7.59±3.25 10.43±6.80

Carbonate (%) 42.9±14.4 26.4±10.3 46.3±8.0 54.7±10.4

Carbohydrate (CHO) 997.1±193.5 1134.1±999.2 1476.9±1015.1 2102.0±1243.0

Protein (PRT) 48.3±21.6 80.6±0.7 96.9±15.8 67.7±22.2

Lipids (LIP) 444.9±78.1 518.8±120.5 362.8±80.7 33.0±18.8

PRT:CHO 0.05±0.02 0.04±0.03 0.10±0.05 0.05±0.03

CHO:LIP 2.25±0.23 1.87±1.53 3.78±1.94 98.0±67.9

Biopolymeric Carbon (BPC) 756.1±140.1 882.2±489.9 910.4±454.7 898.7±493.6

1

2
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Table 2(on next page)

PERMANOVA Results.

Permutational Multivariate Analysis of Variance results from environmental data (rainfall.
grain size, carbonate, organic matter, biopolymers) collected in Gramute� beach, SE Brazil,
during all seasons (summer, autumn, winter, and spring). Signiûcative results are considered
when p<0.05, and are presented in bold. df = Degrees of Freedom; SS = Sum of Squares; MS
= Mean of Squares.
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Source df SS MS Pseudo-F p

Season 3 123.9 41.3 6.916 0.001

Residual 32 191.1 5.97

Total 35 315.0

Pair-wise tests

Groups t p

Summer X Autumn 2.698   0.001

Summer X Winter 2.874   0.001

Summer X Spring 2.632   0.005

Autumn X Winter 1.923   0.027

Autumn X Spring 3.009   0.001

Winter X Spring 2.476   0.002
1
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Table 3(on next page)

PERMANOVA Results.

Permutational Multivariate Analysis of Variance results from MBON Seascapes coverage at
local scale (~ 30 km coastline, 465 Km2) at SE Brazil, during all seasons (summer, autumn,
winter, and spring). Signiûcative results are considered when p<0.05, and are presented in
bold. df = Degrees of Freedom; SS = Sum of Squares; MS = Mean of Squares.
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Source df SS MS Pseudo-F p

Season 3 120.1 40.0 8.014 0.001

Residual 32 159.9 5.00

Total 35 280.0

Pair-wise tests

Groups t p

Summer X Autumn 1.478   0.106

Summer X Winter 3.467   0.001

Summer X Spring 3.003   0.002

Autumn X Winter 2.461   0.001

Autumn X Spring 2.589   0.002

Winter X Spring 3.573   0.001
1
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Table 4(on next page)

PERMANOVA Results.

Permutational Multivariate Analysis of Variance results from meiofaunal composition at
Gramute� beach, SE Brazil, during all seasons (summer, autumn, winter, and spring).
Signiûcative results are considered when p<0.05, and are presented in bold. Df = Degrees of
Freedom; SS = Sum of Squares; MS = Mean of Squares.
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Source df SS MS Pseudo-F p

Season 3 11842 3947.5 2.353 0.001

Residual 32 53682 1677.6

Total 35 65525

Pair-wise tests

Groups t p

Summer X Autumn 1.330 0.049

Summer X Winter 1.142 0.271

Summer X Spring 1.463 0.046

Autumn X Winter 1.918 0.002

Autumn X Spring 1.830 0.001

Winter X Spring 1.044 0.392
1
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Table 5(on next page)

PERMANOVA Results.

Permutational Multivariate Analysis of Variance results from meiofaunal phylogenetic
diversity at Gramute� beach, SE Brazil, during all seasons (summer, autumn, winter, and
spring). Signiûcative results are considered when p<0.05, and are presented in bold. Df =
Degrees of Freedom; SS = Sum of Squares; MS = Mean of Squares.
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Source df SS MS Pseudo-F p

Season 3 1545.9 515.3 18.863 0.001

Residual 32 573.69 27.3

Total 35 2119.6

Pair-wise tests

Groups t p

Summer X Autumn 3.699 0.022

Summer X Winter 0.508 0.657

Summer X Spring 6.186 0.001

Autumn X Winter 3.303 0.017

Autumn X Spring 2.219 0.054

Winter X Spring 6.012 0.001

1
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Table 6(on next page)

PERMANOVA Results.

Permutational Multivariate Analysis of Variance results from meiofaunal Shannon9s Diversity
index at Gramute� beach, SE Brazil, during all seasons (summer, autumn, winter, and spring).
Signiûcative results are considered when p<0.05, and are presented in bold. Df = Degrees of
Freedom; SS = Sum of Squares; MS = Mean of Squares.
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Source df SS MS Pseudo-F p

Season 3 1954.2 651.4 13.129 0.001

Residual 32 1587.6 49.6

Total 35 3541.8

Pair-wise tests

Groups t p

Summer X Autumn 2.598 0.020

Summer X Winter 0.719 0.544

Summer X Spring 4.906 0.001

Autumn X Winter 0.899 0.412

Autumn X Spring 3.861 0.001

Winter X Spring 3.806 0.00�

1
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Table 7(on next page)

Linear model results.

Linear model statistical values from relation between meiofaunal diversity (Shannon9s
diversity index and phylogenetic diversity) and environmental variables (rainfall.
temperature, salinity, grain size, carbonate, organic matter, biopolymers) collected in
Gramute� beach, SE Brazil, during all seasons (summer, autumn, winter, and spring).
Signiûcative results are considered when p<0.05.
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Estimate Standard Error t p

Intercept 2.25e+01 1.00e+01 2.245 0.0��

Carbonate 2.81e+01 8.68e+00 3.232 0.00�

PRT 3.86e-01 1.94e-01 1.989 0.057

LIP -1.10e-02 1.08e-02 -1.019 0.317

BPC 3.90e-01 1.70e-01 2.303 0.0��

PRT:CHO -2.83e+02 1.59e+02 -1.780 0.086

Rainfall -3.44e-04 1.54e-02 -0.022 0.982

TOM -2.36e-01 2.95e-01 -0.798 0.432

CHO -1.16e-02 6.65e-03 -1.739 0.093

CHO:LIP -1.02e-01 4.35e-02 -2.347 0.027

1
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Figure 1
Study area location.

(A) Location of Gramuté beach in the SE Brazilian coast, within the marine protected areas
Refúgio da Vida Silvestre de Santa Cruz and Área de Proteção Ambiental Costa das Algas
(polygon areas) (B) sampling design in Gramuté beach, with sampling stations 20 m apart
from each other.
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Figure 2
Seascape coverage.

Monthly (A) and seasonal (B 3 E) variation in Seascapes coverage (%) between December
2019 to November 2020 in Gramuté beach, SE Brazil. Mean oceanographic values from
oceanographic variables that identify each MBON Seascape water mass (class). SST - sea
surface temperature, SSS - sea surface salinity, ADT - absolute dynamic topography, CDOM -
chromophoric dissolved organic material, CHLA - chlorophyll-a, NFLH - normalized ûuorescent
line height.
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Figure 3
Meiofaunal abundance of sequences, assemblage composition, and diversity metrics.

(A) Number of meiofaunal sequence reads (mean±SD) (B) Meiofaunal taxa proportion (%) (C)
Faith9s Phylogenetic Diversity (mean±SD) (D) Shannon9s Diversity index (mean±SD),
obtained after metabarcoding sediment samples from Gramuté beach, SE Brazil, in each
season. Diûerent letters represent signiûcative statistical diûerences (p<0.05).
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Figure 4
Rarefaction curves.

Rarefaction curves obtained from sediment samples metabarcoding collected at Gramuté
beach, SE Brazil, during all seasons on a 1-year sampling. Solid lines represent a mean of
observed ASVs at each sampling depth, and the shaded area represents the standard
deviation.
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Figure 5
CAP ordination.

Canonical Analysis of Principal Coordinates (CAP) of assemblage composition and
environmental variables (rainfall, grain size, carbonate, organic matter, biopolymers) at
Gramuté beach, SE Brazil, during all seasons.
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