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ABSTRACT
A large body of research establishes the efficacy of musical intervention in many aspects
of physical, cognitive, communication, social, and emotional rehabilitation. However,
the underlying neuralmechanisms formusical therapy remain elusive. This study aimed
to investigate the potential neural correlates ofmusical therapy, focusing on the changes
in the topology of emotion brain network. To this end, a Bayesian statistical approach
and a cross-over experimental design were employed together with two resting-state
magnetoencephalography (MEG) as controls. MEG recordings of 30 healthy subjects
were acquired while listening to five auditory stimuli in random order. Two resting-
state MEG recordings of each subject were obtained, one prior to the first stimulus
(pre) and one after the final stimulus (post). Time series at the level of brain regions
were estimated using depth-weighted minimum norm estimation (wMNE) source
reconstruction method and the functional connectivity between these regions were
computed. The resultant connectivity matrices were used to derive two topological
network measures: transitivity and global efficiency which are important in gauging the
functional segregation and integration of brain network respectively. The differences in
these measures between pre- and post-stimuli resting MEG were set as the equivalence
regions.We found that the networkmeasures under all auditory stimuli were equivalent
to the resting state networkmeasures in all frequency bands, indicating that the topology
of the functional brain network associated with emotional regulation in healthy subjects
remains unchanged following these auditory stimuli. This suggests that changes in the
emotion network topology may not be the underlying neural mechanism of musical
therapy. Nonetheless, further studies are required to explore the neural mechanisms of
musical interventions especially in the populations with neuropsychiatric disorders.
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Keywords Brain network topology, MEG, Brain connectivity, Naturalistic auditory stimuli,
Emotion, Music therapy

How to cite this article Mohd Rashid MH, Ab Rani NS, Kannan M, Abdullah MW, Ab Ghani MA, Kamel N, Mustapha M.
2024. Emotion brain network topology in healthy subjects following passive listening to different auditory stimuli. PeerJ 12:e17721
http://doi.org/10.7717/peerj.17721

https://peerj.com
mailto:hakimiuia@gmail.com
mailto:mmuzaimi@usm.my
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.17721
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj.17721


INTRODUCTION
Cognitive functions are the result of orchestrated symphony among networks of neuronal
ensembles in cortical and subcortical structures (Von Der Malsburg, 1994). This insight has
brought about a paradigm shift in neuroscience from focusing more on the reductionist
approach of identifying an isolated unit responsible for a specific cognitive function to
exploring and characterizing networks of brain functional units working together on
performing cognitive tasks. Functionally cohesive networks formed by recruiting and
coordinating spatially separated brain regions are central to the way in which brain
processes and integrate information (Schnitzler & Gross, 2005).

Adopting connectivity approach, numerous research have been conducted to understand
more on aspects of cognitive functions including but not limited to attention (Fox et al.,
2005; Fox et al., 2006), memory (Ranganath et al., 2005) and emotional processing (Kim et
al., 2011). Increasingly, the approach has also been incorporated in many studies to further
elucidate diseases and pathologies in the brain functions. Brain connectivity researches
enables researchers to gain deeper understanding and new insights on depression (Connolly
et al., 2013; Damborská et al., 2020; Benschop et al., 2022), anxiety (Kim et al., 2011; Al-Ezzi
et al., 2020; Betrouni et al., 2022), schizophrenia (Lynall et al., 2010; Alamian et al., 2020;
Mackintosh et al., 2021), epilepsies (Van Mierlo et al., 2014; Dharan et al., 2021; Routley et
al., 2020) and many more. Connectivity studies have demonstrated that these pathologies
are the result of abnormalities of large scale brain networks rather than dysfunction of
a specific brain region. Furthermore, this has also opened up ways of exploring new
approaches to treatment and ways to evaluate effectiveness of treatments (Huang et al.,
2023; Aydin et al., 2020).

In depression and anxiety specifically, music and other rhythmic auditory stimuli
are among the non-pharmacological approach that have been used either alone or in
combination with pharmacological interventions and psychotherapy. A meta-analysis of
nine clinical trials involving 421 participants foundmoderate-quality evidence that musical
therapy improve depressive symptoms, reduce anxiety levels and improve functioning in
individuals with depression (Aalbers et al., 2017). Another meta-analysis, incorporating
55 randomized control trials, demonstrated that both music therapy and music medicine
significantly reduce depressive symptoms, with music medicine demonstrating a more
pronounced effect (Tang et al., 2020). Music therapy has also been shown to improve
anxiety in critical care settings (Erbay Dalli, Bozkurt & Yildirim, 2023; Bro et al., 2018; Chen
et al., 2023).

Music perception is known to activate multiple cortical areas (Koelsch, 2011). It has
been shown to simultaneously activate auditory and reward systems in the brain (Quinci
et al., 2022). Several studies have also looked into the information flow and coordination
among these and other cortical regions (Zhu et al., 2023; Carriere et al., 2020; Wu et al.,
2019; Karmonik et al., 2016). It has been shown that clustering coefficient was larger and
characteristic path length was smaller while listening to musical stimuli (Qiu et al., 2022;
Wu et al., 2012). These network metrics characterize functional segregation and functional
integration of the network respectively. Networks with relatively large clustering coefficient
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Table 1 List of auditory stimuli and their rhythmic characteristics.

Stimuli

1 Monochord sounds Rhythmic
2 Hare Krishna Rhythmic
3 Arabic News Non-rhythmic
4 Arabic Poem Rhythmic
5 Al-Kursi Rhythmic

and small characteristic path length are called small world networks. These networks are
efficient at both local information processing and global information transfer (Latora
& Marchiori, 2001). On the contrary, brain functional networks tend to diverge from
small world network in depression (Teng et al., 2022; Zhang et al., 2020; Guo et al., 2014;
Li et al., 2015) and other brain pathology (Qi et al., 2023; Sanz-Arigita et al., 2010; Shim
et al., 2014). However, the underlying neural mechanisms for musical therapy remain
elusive (Maratos, Crawford & Procter, 2011; Chan & Han, 2022). In particular, the effect
of musical therapy on brain networks that are involved in emotion processing have not
been extensively studied. Furthermore, most studies on music therapy has predominantly
focused on Western music, leaving a noticeable gap in the exploration of other forms of
rhythmic auditory stimuli.

In this study, we explored five different auditory stimuli (Table 1) and their effects
on the functional brain network that are associated with emotion processing as the the
potential neural underpinning of the therapeutic effects of musical intervention using a
MEG recording. To our best knowledge, no such study had been conducted, either in
healthy individuals or in those with neuropsychiatric pathologies. We conducted the study
among healthy subjects since it is necessary to establish a referential range among healthy
individuals from which further study may refer to.

The aim of this study, therefore, is to ascertain the presence or absence of the effects
of different auditory stimuli on the topology of functional brain networks that are linked
to emotional regulation and dysregulation using graph theoretic measures. Specifically,
the effects of these stimuli on the mentioned brain network in terms of its local and
global information processing efficacy as measured by transitivity and global efficiency.
Thus, the null hypothesis of this study posits that there are no changes in the topological
measures weighted transitivity T and global efficiency E of the brain network involved
in emotion processing across all different auditory stimuli for all frequency bands: delta,
theta, alpha, beta, and gamma. On the other hand, the alternate hypothesis suggests that
specific auditory stimuli may indeed lead to significant alterations in these brain network
measures. By looking at the changes in these network metrics, we hoped to gain a better
understanding on how these auditory stimuli may impact brain emotion processing
function and potentially inform the underlying neural mechanism of the therapeutic
interventions. We approached this using naturalistic paradigm where subjects’ MEG were
recorded while they were passively listening to the auditory stimuli. This reflects more
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closely to the real-world scenario of how music is being consumed and how it is applied in
therapeutic settings.

METHODS
Study designs
The study was conducted using a cross over experimental design in which all subjects were
exposed to a series of five auditory stimuli in specified orders. The order of sequences
in which auditory stimuli were presented was generated in such a way that each stimuli
must occur once within each subject, and each stimuli must have the same number of
occurrence. This was done to control the period and order effects in the experiment.
This study was conducted in accordance with the Helsinki declaration. It was reviewed
and approved by the institutional Human Research Ethics Committee of Universiti Sains
Malaysia (FWA Reg No: 00007718; IRB Reg No: 00004494). In addition, we followed the
recommendations laid out by the guidelines for conducting and reporting MEG research
(Gross et al., 2013; Keil et al., 2014). The sample size for this study was estimated using G*
power and satisfied statistical power of 95% at a 0.05 two-sided significance level. The
sample size was estimated based on the data observed in a previous study (Wu et al., 2012).
The estimated total sample size for this study was 26. To mitigate potential attrition, we
eventually decided to include 30 subjects in the study.

In this study, 32 subjects underwent screening. However, two individuals were excluded
due to psychiatric illnesses, specifically, schizophrenia and generalized anxiety disorder.
Thus, our final study cohort comprised 30 enrolled subjects (aged 21–35 years old). 15
of them were male and 15 were female. All of them were non-Arabic speakers. They have
no known neurological disease, history of head trauma, hearing problem or psychiatric
illnesses. None have history of illicit drugs abuse. All subjects provided written informed
consent prior to the study. Each subject was advised to have an adequate sleep of 8 h every
night for 1 week prior to the study. They were also advised not to consume any caffeinated
foods and beverages, alcohols, and other psychoactive substances. Subjects with any metal
containing implants were excluded from this study. Flow chart in Fig. 1 summarise the
whole process of subject recruitment and MEG acquisition.

Stimuli
Five different auditory stimuli were considered in this study. The session starts with 3 min
recording of resting state where the subjects were asked to sit comfortably with their eyes
closed without being presented with any external stimuli or engaging in any activity. A
specified order of five different auditory stimuli were subsequently administered for the
total length of 3 min per stimuli. The stimuli were administered with Presentation software
(Neurobehavioral Systems, Ltd., Berkeley, CA, USA). The sound was delivered through a
pair of pneumatic headphones at individually adjusted loudness. In between stimuli, there
was a 1-minute rest period where no auditory stimuli were given. The session ended with
3-minutes of resting state recording.

Both rhythmic and non-rhythmic auditory stimuli were considered in this study. Table
1 lists all the stimuli used in this study and their characteristics. Each stimulus contributes
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Inclusion criteria:
1. Age of ⩾ 21

2. Non-native arabic speaker

eligible?

Exclusion criteria:

1. Any neurological disease

2. Any psychiatric illness

3. History of head trauma

4. Hearing problem

5. Claustraphobic

6. Any metal containing implantPre-stimuli resting state MEG recording

MEG recording with naturalistic stimuli:

• Monochord

• Hare Krishna

• Arabic News

• Arabic Poem

• Al-Kursi

Post-stimuli resting state MEG recording

Data preprocessing and analysis

Figure 1. Flow chart of subject recruitment and MEG acquisition.

chant affects the neural network regulating emotion. Al-Kursi is the 225th verse of the 2nd chapter in the
Quran. The verse was recited by a renown reciter and was recorded in a dedicated sound-proof Audio
Room, School of Medical Sciences, USM Health Campus. This verse is used in Ruqyah which is a method155

of treatment using Quranic verses and supplications practised within the the muslim community (Haque
and Keshavarzi, 2014; Abu-Rabia, 2005). Its inclusion in the study can shed light on how melodious
recitation might influence emotion processing brain network informing the neural mechanism of its
therapeutic effects.

Apart from the obvious reason of being composed in the same language, Arabic news and poem were160

included as the control of the Al-Kursi stimuli since their sound originated from the same instrument as
the Quranic recitations, i.e. human vocal cord. Arabic poem titled “If my Lord asks me” was chosen
for its rhythmic features which is comparable to the rhythmic features of the Quranic recitation, while
Arabic news was chosen since in contrast to Quranic recitation, it is non-rhythmic in nature. By analyzing
the different responses these stimuli evoke in the brain’s emotion network, the study aims to explore the165

neural underpinnings of music therapy. This could potentially lead to more targeted and personalized
therapeutic interventions. The audio files of all stimuli used in the present study were available online
(see Data availability section).
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Figure 1 Flow chart of subject recruitment andMEG acquisition.
Full-size DOI: 10.7717/peerj.17721/fig-1

to the overall understanding of the neural mechanisms of music therapy. Monochord
is an instrument having all of its 30 strings tuned to one base tone, producing varying
overtones sounds that merge into one continuous sound without any specific scale and
harmony. The produced sounds have been shown to have relaxation effects in children
with anxiety (Goldbeck & Ellerkamp, 2012). Similar findings was also noted in patients who
underwent chemotherapy (Lee et al., 2012). The monochord’s single-tone sound could
help in understanding how simple, repetitive sounds affect the brain’s emotion network.
Hare Krishna is one of the mantra recited in Hindu religion as part of meditation practice.
Meditation has been shown to be an effective mean of emotional control (Braboszcz,
Hahusseau & Delorme, 2010). Its inclusion helps in understanding how a melodious
religious chant affects the neural network regulating emotion. Al-Kursi is the 225th verse of
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the 2nd chapter in the Quran. The verse was recited by a renown reciter and was recorded in
a dedicated sound-proof Audio Room, School of Medical Sciences, USM Health Campus.
This verse is used in Ruqyah which is a method of treatment using Quranic verses and
supplications practised within the the muslim community (Haque & Keshavarzi, 2014;
Abu-Rabia, 2005). Its inclusion in the study can shed light on how melodious recitation
might influence emotion processing brain network informing the neural mechanism of its
therapeutic effects.

Apart from the obvious reason of being composed in the same language, Arabic news
and poems were included as the control of the Al-Kursi stimuli since their sound originated
from the same instrument as the Quranic recitations, i.e., human vocal cord. Arabic poem
titled ‘‘If my Lord asks me’’ was chosen for its rhythmic features which is comparable to
the rhythmic features of the Quranic recitation, while Arabic news was chosen since in
contrast to Quranic recitation, it is non-rhythmic in nature. By analyzing the different
responses these stimuli evoke in the brain’s emotion network, the study aims to explore the
neural underpinnings of music therapy. This could potentially lead to more targeted and
personalized therapeutic interventions. The audio files of all stimuli used in the present
study were available online (see Data Availability section).

Acquisition and preprocessing of MEG datasets
Simultaneous EEG and MEG data were recorded at the MEG laboratory of Universiti
Sains Malaysia. The recording were conducted in an electrically and magnetically shielded
room with Vectorview™ 306-channel MEG system (Elekta Neuromag; Elekta Oy, Helsinki,
Finland) combined with a compatible 64-channels EEG system. The MEG system consist
of 204 gradiometers and 102 magnetometers. Subjects were instructed to remove any
metals, electronics or metal containing clothing before entering the room. The recording
sample rate was set at 1000 Hz. The reference and ground electrode were put on the nose
tip and on the right cheek respectively. Eye movements and blinks, were recorded with 2
electrooculogram (EOG) electrodes attached close to the external eye corners on both sides.
Electrocardiogram (ECG) was also simultaneously recorded for the purpose of removing
artifacts of cardiac origin. Four head position indicator (HPI) coils were embedded within
the head cap and used to record head movement and subsequently used for movement
artifact correction. These locations were determined relative to the nasion, two preauricular
points and more than 100 additional points on the surface of scalp and nose which were
recorded by the Polhemus Isotrak 3D digitizer. Through out experiment, subjects were
comfortably seated with eyes closed. Overall, we have the recordings of 30 subjects for each
stimuli except the 8th stimuli and post resting state where there were recordings from only
27 subjects.

MEG data was preprocessed using Brainstorm software (Tadel et al., 2011) and MNE
software (Gramfort et al., 2014). A series of preprocessing steps were done in order to
suppress or remove noise and artifacts. Bad channels were identified and excluded from
analysis. We then applied notch filter to remove power line noise at 50 Hz, 100 Hz, and
150 Hz peaks. The temporal signal space separation (tSSS) were used to suppress noise
originated from outside of the MEG dewar and to correct for head motion artifacts (Taulu
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& Simola, 2006). The following setting parameters were used: length of correlation window,
30 s; subspace correlation limit, 0.98; order of internal component of spherical expansion,
8; and order of external component of spherical expansion, 3. Physiological artifacts of
cardiac origin, eye movements, eye blinks and muscular activity were isolated and removed
using independent component analysis (ICA) method (Barbati et al., 2004). The resulting
MEGweremanually inspected to ensure satisfactory artifacts correction and also to identify
any remaining or additional bad segments which were then excluded from subsequent
analysis.

Source localization
Source localization was done using Brainstorm software (Tadel et al., 2011) by following
the pipeline described in Niso et al. (2019). Specifically, we used fiducial and digitization
points of each subjects to warp the template MRI of International Consortium for Brain
Mapping (ICBM152) (Fonov et al., 2009) in order to create a psudo-individual anatomy.
The warpedMRIs were then coregistered with theMEG sensors for each recording sessions.
We check the result to ensure satisfactory alignment and orientation of the MEG sensors
and the warped MRI.

Wemodelled the remaining sensors and environmental noise as noise covariance matrix
using 2 min of empty room MEG recordings. We then defined forward model for each
recording sessions using the overlapping spheres method (Huang, Mosher & Leahy, 1999).
The forward or head models describe how neuronal activity at the cortical sources is being
transformed to the magnetic flux measured at the level of MEG sensors. In order to capture
neuronal activity at cortical surfaces as well as at deep subcortical structures, we defined
source space as a set of distributed dipoles of the whole brain volume with unconstrained
dipoles orientation.

Once forward or headmodels were defined for each recording sessions, source estimation
was carried out for each of themusing depth weigthedminimumnorm estimation (wMNE)
(Lin et al., 2006). This method has been validated in many studies using either simulation
or by comparing the estimation with intracranial EEG recording (Halder et al., 2018; Afnan
et al., 2023; Mikulan et al., 2020; Pascarella et al., 2023). The depth weighting parameter
was set at 0.75 as suggested by Lin et al. (2006) in order to minimize the localization error
particularly for the deeper subcortical structures. The resulting inverse operators were then
used to reconstruct time series at the level of brain regions of interest. We used automated
anatomical labelling atlas 3 (AAL3) (Rolls et al., 2020) to segment volume source space and
define brain regions of interest. The time series for each brain regions were computed as
the mean of all voxels within each regions.

Brain regions of interest
We considered 61 brain regions that have been shown in the literature to be involved in
emotional regulation (Banks et al., 2007; Cisler et al., 2013; Kohn et al., 2014). Among these
are brain regions that were stipulated to be involved in experiencing musical emotions
(Alluri et al., 2015). Dysfunction of these regions have also been shown to be associated
with several neuropsychiatric pathologies including depression (Greicius et al., 2007; Veer
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Table 2 List of all brain regions of interest.

Brain regions

L Amygdala L Ant OFC L VTA
R Amygdala L Lat OFC R VTA
L Angular R Lat OFC Vermis
R Angular L Med OFC Thalamus
L Calcarine S R Med OFC Nucleus Accumbens
R Calcarine S L Post OFC L Lingual
L Caudate Nucleus R post OFC R Lingual
R Caudate L ParaHippocampal C L ACC
L MCC R ParaHippocampal C R ACC
R MCC L Inf Parietal C L Cerebellum
L PCC R Inf Parietal C R Cerebellum
R PCC L Sup Parietal C L Cerebellum Crus
L Mid Frontal C R Sup Parietal C R Cerebellum Crus
R Mid Frontal C L Putamen L Inf Frontal C
L Sup Frontal C R Putamen R Inf Frontal C
R Sup Frontal C L Inf Temporal C L Vm Frontal C
R Hippocampus R Inf Temporal C R Vm Frontal C
R Hippocampus L Mid Temporal L Dm Frontal C
L Insula R Mid Temporal c R Dm Frontal C
R Insula L Sup Temporal C R Sup Temporal C

L Ant OFC

Notes.
L, Left; R, Right; C, Cortex; Ant, Anterior; Mid, Middle; Med, Medial; Inf, Inferior; Post, Posterior; Sup, Superior;
OFC, OrbitoFrontal Cortex; ACC, Anterior Cingulate Cortex; MCC, Middle Cingulate Cortex; PCC, Posterior Cingulate
Cortex; Vm, Ventromedial; Dm, Dorsomedial.

et al., 2010; Lui et al., 2011), obsessive compulsive disorder (Harrison et al., 2009; Sakai
et al., 2011; Hou et al., 2014; Takagi et al., 2017), and anxiety (Etkin et al., 2009; Kim et
al., 2011; Hahn et al., 2011). We have also included brain regions that have been used
in functional neuroimaging studies to monitor and assess treatment responses in these
disorders (Crowther et al., 2015; Walsh et al., 2017; Scult et al., 2019; Walsh et al., 2019).
Table 2 lists all the brain regions that were included in the analysis. These brain regions
were specified by selecting and merging together brain regions defined in AAL3.

Connectivity analysis
For the purpose of our study, we applied amplitude envelope correlation (AEC) to extract
bivariate connectivity strength between the pairs of all to all 61×61 brain regions (Bruns et
al., 2000a; Bruns et al., 2000b). Connectivity strength were computed at the level of brain
regions using time series estimated for each brain regions as described in source localization
section.

The time series were first band pass filtered to frequency bands of interest: delta (δ)
(2− 4 Hz), theta (θ) (5− 7 Hz), alpha (α) (8− 12 Hz), beta (β) (15− 29 Hz), and
gamma (γ ) (30−59 Hz). This frequency ranges were the convention used in Brainstorm
software and have been used inmany prior studies (Gehrig et al., 2012;Wiesman et al., 2022;
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Rempe et al., 2023; Bergwell et al., 2023; Nugent et al., 2020). In order to avoid spurious
connectivity between the reconstructed source time series caused by signal leakage, we
applied orthogonalized AEC where time series were orthogonalized prior to computation
of AEC (Hipp et al., 2012). Orthogonalization of time series was performed in frequency
domain before computing their power envelopes. A complex signal y⊥x(t ,f ) is orthogonal
to signal x(t ,f ) as defined by the following equation:

y⊥x(t ,f )==
(
x(t ,f )∗

|x(t ,f )|
y(t ,f )

)
(1)

where= denotes imaginary part of the complex signals and x(t ,f )∗ is the complex conjugate
of x(t ,f ).

Analytical signal z(t ) were then constructed using Hilbert transform,

z(t )= x(t )+ iH [x(t )] (2)

H [x(t )] =
1
π
PV

∫
∞

x

x(τ )
t−τ

dτ (3)

where i is the imaginary part, H [x(t )] is the Hilbert transform and PV is the Cauchy
principle value. The amplitude envelope were then computed as follows:

a(t )=
√
(x(t ))2+ (H [x(t )])2 (4)

With amplitude envelope of source time series obtained, connectivity (AEC) between
amplitude envelope of ith brain region ai and jth brain region aj was computed as a Pearson
correlation coefficient ρ between them:

ρ(ai,aj)=
aiajT√

aiaiT
√
ajajT

(5)

where ai and aj are 1×T vectors of mean centered amplitude envelope of ith and jth brain
regions respectively. aiT and ajT are both transposes of ai and aj. Correlation coefficient
of all to all brain regions were organized into matrix forming connectivity or weighted
adjacency matrix A.

Network analysis
Once connectivitymatricesA∈R61×61 with elementswij representing connectivity strength
(AEC) between ith and jth brain regions were computed for each subjects, stimuli and
frequency, we summarized the results using tools developed in graph theory. Graph theory
offers several tools to characterize the topological features of complex brain networks. In
order to ensure robust findings, the connectivity matrices were thresholded leaving out
small and insignificant connectivity values which can be considered as noises.

We adapted the recommendations proposed by Cohen (2014) to threshold connectivity
matrices using absolute thresholding method with median value of connectivity strength
as the cut-off point. In order to ensure the threshold is independent of each stimuli, we
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determined the threshold value based on pooled values of connectivity strength from
all stimuli. We determined specific threshold separately for each frequency bands since
connectivity values differ across frequency bands.

In this study, we computed two topological features from the thresholded connectivity
matrices using the Brain Connectivity Toolbox (BCT) (Rubinov & Sporns, 2010). These
are weighted transitivity and weighted global efficiency. Weighted transitivity and global
efficiency are particularly useful and relevant measures in this study since they allow for the
assessment of the efficiency of both local information processing and global information
transfer respectively.

Weighted transitivity is a variant of mean clustering coefficient which reflects the average
prevalence of clustered connectivity around individual nodes. Weighted transitivity T is
measured using the following formula:

T =
∑N

i 2ti∑N
i ki(ki−1)

(6)

where ki is the number of links connected to node i. ki(ki−1) is thus the total number
of possible links that could exist among the vertices. N is the total number of nodes in
the network and ti is the weighted geometric mean of triangle around node i computed as
follows:

ti=
1
2

N∑
j,h

(wijwihwjh)
1
3 (7)

where wij is the connectivity strength from node i to node j. All self connection strength
wii were set to zero (wii= 0 for all i).

Weighted global efficiency E measures the efficacy of the brain network in integrating
information from distributed brain regions and is calculated using the following formula:

E =
1
N

N∑
i

∑N
j,j 6=i(dij)

−1

N −1
(8)

where dij is the shortest path length between nodes i and j calculated as follows:

dij =
∑

wuv∈gi→j

f (wuv) (9)

where f is a map from connectivity weight to length and gi→j is the shortest weighted path
between node i and node j.

Statistical analysis
The analysis were done using R statistical programming language (R Core Team, 2020).
We analysed the data using Bayesian linear mixed model. Brms package were used to fit
the model (Bürkner, 2017). Brms is the R wrapper for Stan which is another probabilistic
programming language that implement Hamiltonian Monte Carlo (HMC) sampling
algorithm (Carpenter et al., 2017). Following the recommendation by Barr et al. (2013), the
model include the maximal random effects structure justified by the experimental design,
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i.e., varying intercept and slope model with subjects as the grouping variable. Outliers were
identified using Boxplot method where all data points that fall outside the threshold of
1.5 times the interquartile range below the first quartile or above the third quartile and
were excluded before model fitting. As part of sensitivity analysis, we have also performed
the statistical analysis while including the outliers. We have also conducted sensitivity
analysis on strategies for handling missing data by using both only complete cases and
multiple imputations to account for missing data. In line with our research objectives and
experimental design, we fitted the following model for each network measures:

yi|s ∼ LogN (µs,σ ) (10)

µs =αs+
∑
j

βs,jStimulij (11)

[
αs

βs,j

]
∼MV Normal(

[
ᾱ

β̄

]
,Q) (12)

Q=

[
σα 0
0 σβ

]
R

[
σα 0
0 σβ

]
(13)

ᾱ ∼N (µ̄k,0.2) (14)

β̄ ∼N (0,0.2) (15)

σα ∼ halfN (0,0.1) (16)

σβ ∼ halfN (0,0.1) (17)

R∼ LKJcorr(2) (18)

σ ∼ halfN (0,0.1) (19)

where yi|s refers to ith observation of dependent variables of interest (network measures - T
and E) of subject s. LogN (µ,σ ) is the notation for log-normal distribution with location
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µand scale σ . αs is the specific intercept for subject s (pre-stimuli resting state). βs,j is the
coefficient parameter for jth stimulus (how much the stimulus differs from the pre-stimuli
resting state recording; here the stimuli include post-stimuli resting state recordings) in
subject s. Both αs and βs,j are jointly distributed with multivariate normal distribution
around the overall intercept ᾱ and slope β̄. Q ∈R2×2 is the covariance matrix of the
multivariate Gaussian distribution defined as in (Eq.13). σα and σβ are standard deviations
of αs and βs,j respectively. R∈R2×2 is the correlationmatrix. Both Eqs. (10) and (11) define
the likelihood function and the rest (Eqs.12–19) define priors of our generative model.
Additionally, as a component of our sensitivity analysis, we have also utilized the Student’s
t-distribution tomodel the data.Wehave also tested the sensitivity of using non-informative
priors where ᾱ∼N (µ̄k,10),β̄ ∼N (0,100),σα ∼ halfN (0,10),σβ ∼ halfN (0,10), and
σ ∼ halfN (0,10).

We set weakly informative priors (McElreath, 2020) on the parameters β̄ i.e the overall
slope of the stimuli, the standard deviation of the intercept σα , the standard deviation of
the slope σβ , the correlation matrix R and the standard deviation of the models σ . For the
purpose of our research, we set the prior for β̄ so that the slopes values are symmetric around
0 with finite variance. We set priors for parameter ᾱ to be normally distributed around
each network measure mean µ̄k with finite variance. We checked the prior predictive
distributions to ensure the chosen priors make sense and generate plausible and realistic
data prior to observations.

Four sampling chains were used to explore and sample from the posterior distributions
for each model. These chains ran for 14,000 iterations with 4,000 warm-up iterations
yielding 40,000 samples for each parameters. Several HMC diagnostics were monitored
to determine the convergence of numerical integration of posterior distribution. These
include the potential scale reduction factor R̂, traceplots and effective sample size (ESS).
R̂ of < 1.1 indicates convergence of the sampling procedure and EES should be > 10,000
samples for stable posterior estimates (Kruschke, 2014). Once we fit the model, we checked
the posterior predictive distributions to ensure that the model reflects the observed data.

We set equivalence regions based on principles that were laid out in Kruschke (2018);
Kruschke & Liddell (2018); Kruschke (2011). We proceed by specifying the ROPE which
is the range of values within which the difference between two conditions or stimuli
is taken to be small enough to be practically equivalent. Specifically, we used the total
credible interval (CI) of the difference between pre-stimuli resting state and post-stimuli
resting state recordings to specify the ROPE. This ensures that the equivalence region
covers the whole interval of the differences between the two resting states. The 90%
CIs for each stimulus and their differences were defined using the 90% highest density
intervals (HDI). These HDI were then used together with ROPE to test for the presence or
absence of effects. The network measures for each stimulus were considered equivalence
to the resting state recording (absence of effects) if the entire 90% CI of the difference
(i.e., stimuli—pre-resting) lie within the equivalence region. If the entire 90% CI of the
difference was outside the ROPE, the null hypothesis of equivalence or absence of effects
should be rejected in favour of the alternate hypothesis of difference or presence of effects.
If the 90% CI was neither completely lie within nor completely lie outside the ROPE, the
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Figure 2 The violin plots and boxplots illustrate the distribution of weighted transitivity T for each
stimulus across different frequency band.

Full-size DOI: 10.7717/peerj.17721/fig-2

Figure 3 The violin plots and boxplots illustrate the distribution of global efficiency E for each stimu-
lus across different frequency band.

Full-size DOI: 10.7717/peerj.17721/fig-3

presence or absence of effects was undecidable. We reported the means and 90% CI under
posterior distributions for the differences between each parameters.

RESULTS
Figs. 2 and 3 depicted violin plots together with the embedded boxplots of weighted
transitivity T and global efficiency E respectively under all experimental conditions for
each frequency bands: δ, θ , α, β and γ . The boxplots displayed the following data summary:
minimum, 1st quartile, median, 3rd quartile andmaximum. Black dots below and above the
minimum and maximum values were the outliers. Violin plots represent the distribution
of values. Within each frequency bands, the distribution of the weighted transitivity T (Fig.
2) for each conditions were within intervals that were quite similar to each other with the
exception of a few outliers.

Similar trend were also seen for global efficiency E (Fig. 3). Within each frequency
bands, the values of E for each experimental conditions were similar to each other. A few
outliers were also present. These were excluded in subsequent analysis.

The values of each network measures for each experimental conditions varied across
frequency bands. Within each experimental conditions, the values of all network measures
progressively decreased as the frequency band increased from δ to γ .
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Table 3 Equivalence test of transitivity T for each stimuli relative to pre-resting state across all frequency bands.

Frequency bands Contrast Median 90%CI %inside
ROPE

Equivalence R̂ ESS

Stim01 - Pre 0.0013 [−0.0048–0.0072] 100% Accepted 1.00 22043
Delta ROPE: Stim02 - Pre 0.0039 [−0.0026–0.0102] 100% Accepted 1.00 22789
[−0.0127–0.0173] Stim03 - Pre 0.0026 [−0.0037–0.0088] 100% Accepted 1.00 21475

Stim04 - Pre 0.0084 [0.0021–0.0149] 100% Accepted 1.00 21349
Stim05 - Pre 0.0039 [0.0026–0.0104] 100% Accepted 1.00 21457
Stim01 - Pre −0.0027 [−0.0083–0.0031] 100% Accepted 1.00 22177

Theta ROPE: Stim02 - Pre 0.0016 [−0.0039–0.0067] 100% Accepted 1.00 21578
[−0.0108–0.0183] Stim03 - Pre 0.0006 [−0.0048–0.0059] 100% Accepted 1.00 21582

Stim04 - Pre 0.0059 [0.0004–0.0114] 100% Accepted 1.00 21575
Stim05 - Pre 0.0016 [−0.0044–0.0071] 100% Accepted 1.00 21763
Stim01 - Pre −0.0016 [−0.0087–0.0049] 100% Accepted 1.00 30720

Alpha ROPE: Stim02 - Pre −0.0020 [−0.0106–0.0067] 100% Accepted 1.00 26398
[−0.0210 0.00691] Stim03 - Pre −0.0102 [−0.0168,−0.0033] 100% Accepted 1.00 30368

Stim04 - Pre −0.0114 [−0.0180,−0.0043] 100% Accepted 1.00 30221
Stim05 - Pre −0.0039 [−0.0119–0.0038] 100% Accepted 1.00 28364
Stim01 - Pre −0.0003 [−0.0036–0.0033] 100% Accepted 1.00 17773

Beta ROPE: Stim02 - Pre 0.0008 [−0.0017–0.0035] 100% Accepted 1.00 24387
[−0.01–0.01] Stim03 - Pre −0.0004 [−0.0030–0.0023] 100% Accepted 1.00 24423

Stim04 - Pre 0.0009 [−0.0016–0.0032] 100% Accepted 1.00 25290
Stim05 - Pre 0.0008 [−0.0017–0.0032] 100% Accepted 1.00 25925
Stim01 - Pre 0.0026 [0.0010–0.0043] 100% Accepted 1.00 24198

Gamma ROPE: Stim02 - Pre 0.0020 [0.0002–0.0040] 100% Accepted 1.00 23328
[0.00–0.01] Stim03 - Pre 0.0024 [0.0006–0.0041] 100% Accepted 1.00 24653

Stim04 - Pre 0.0039 [0.0023–0.0055] 100% Accepted 1.00 24003
Stim05 - Pre 0.0026 [0.0010–0.0044] 100% Accepted 1.00 24658

In order to test for the absence (equivalence) or presence of effects, we ran the statistical
analysis as discussed in the previous section. The R̂ values which indicate convergence of
the MCMC chains for all parameters for all models were less than 1.1 (Tables 3 and 4).
As can be seen from these tables, the effective length of MCMC chains as indicated by
EES for all parameters were more than 10,000 samples which provided reasonably stable
estimates of the CI limits. From the density plot of observed and simulated data, it can
be seen that the chosen prior for each model generated simulated data that approximate
observations where most values were concentrated around the observed data with small
probability of producing extreme values (refer to Fig. S1 and Fig. S3 in the supplementary
materials). Posterior predictive check revealed that each fitted model provided a relatively
accurate description of the observed data (refer to Fig. S2 and Fig. S4 in the supplementary
materials).

Figure 4 showed the distribution of weighted transitivity T differences between each
auditory stimuli and pre-resting state. The shaded area between dash lines indicated
the ROPE defined as stated in statistical analysis section. The red shaded area of each
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Table 4 Equivalencee test of global efficiency E for each stimuli relative to pre-resting state across all frequency bands.

Frequency Bands Contrast Median 90%CI %inside
ROPE

Equivalence R̂ ESS

Stim01 - Pre 0.0006 [−0.0040–0.0028] 100% Accepted 1.00 21174
Delta ROPE: Stim02 - Pre 0.0009 [−0.0027–0.0047] 100% Accepted 1.00 19763
[−0.0080–0.0104] Stim03 - Pre 0 [−0.0035–0.0036] 100% Accepted 1.00 21364

Stim04 - Pre 0.0038 [0.0002–0.0037] 100% Accepted 1.00 20965
Stim05 - Pre 0.0014 [−0.0022–0.0051] 100% Accepted 1.00 21659
Stim01 - Pre −0.0021 [−0.0052–0.0007] 100% Accepted 1.00 19970

Theta ROPE: Stim02 - Pre 0.0002 [−0.0025–0.0032] 100% Accepted 1.00 20325
[−0.0066–0.0100] Stim03 - Pre −0.0002 [0.0030–0.0026] 100% Accepted 1.00 20562

Stim04 - Pre 0.0026 [−0.0023–0.0055] 100% Accepted 1.00 20502
Stim05 - Pre 0.0008 [0.0021–0.0040] 100% Accepted 1.00 20584
Stim01 - Pre −0.0019 [−0.0052–0.0015] 100% Accepted 1.00 24958

Alpha ROPE: Stim02 - Pre −0.0010 [−0.0055–0.0039] 100% Accepted 1.00 19458
[−0.0129–0.0075] Stim03 - Pre −0.0058 [−0.0093–0.0024] 100% Accepted 1.00 24291

Stim04 - Pre −0.0060 [−0.0094–0.0025] 100% Accepted 1.00 24266
Stim05 - Pre 0.0021 [−0.0062–0.0019] 100% Accepted 1.00 23158
Stim01 - Pre −0.0003 [−0.0022–0.0016] 100% Accepted 1.00 16269

Beta ROPE: Stim02 - Pre 0.0004 [−0.0010–0.0019] 100% Accepted 1.00 23228
[0.0049–0.0040] Stim03 - Pre −0.0002 [−0.0016–0.0013] 100% Accepted 1.00 22834

Stim04 - Pre 0.0006 [−0.0008–0.0019] 100% Accepted 1.00 23813
Stim05 - Pre 0.0005 [−0.0008–0.0018] 100% Accepted 1.00 23960
Stim01 - Pre 0.0012 [0.0003–0.0021] 100% Accepted 1.00 21781

Gamma ROPE: Stim02 - Pre 0.0010 [0–0.0019] 100% Accepted 1.00 20823
[−0.0005–0.0043] Stim03 - Pre 0.0011 [0.0001–0.0020] 100% Accepted 1.00 22414

Stim04 - Pre 0.0020 [0.0011–0.0029] 100% Accepted 1.00 21750
Stim05 - Pre 0.0014 [0.0004–0.0023] 100% Accepted 1.00 21925

distribution is 90% CI. In all frequency bands, the 90% CIs of the weighted transitivity
difference (1T ) of all auditory stimuli as compared to pre-stimuli resting state were entirely
within the ROPE (Table 3).

Similar findings were noted for general efficiency E (Fig. 5). The distribution of general
efficiency differences 1E for all stimuli were completely within ROPE across all frequency
bands (Table 3). All the results remain robust under different priors, different models, and
different strategies of handling outliers and missing data (refer to Fig. S5 to Fig. S12 in the
supplementary materials).

DISCUSSION
MEG is known to be able to capture brain activity at a high temporal resolution but at a
low spatial resolution as compared to functional magnetic resonance imaging (fMRI). In
the context of our experiment which used auditory form of stimuli, using fMRI would
lead to technical difficulties such as scanner noise contamination while MEG can record
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Figure 4 Distribution of differences in transitivity T between each stimulus and resting state across
different frequency bands.

Full-size DOI: 10.7717/peerj.17721/fig-4

Figure 5 Distribution of differences in global efficiency E between each stimulus and resting state
across different frequency bands.

Full-size DOI: 10.7717/peerj.17721/fig-5

neural signals in silent and comfortable environment. In contrast to fMRI, it was believed
that MEG and EEG might not be able to accurately detect the deep subcortical activity
(Hillebrand & Barnes, 2002). However, an increasing number of studies have shown that
MEG can detect signals from deep brain structures such as hippocampus, amygdala,
thalamus and more (Tesche, Karhu & Tissari, 1996; Tesche, 1996; Attal et al., 2007; Attal &
Schwartz, 2013;Dumas et al., 2013). Thus, coupled with depth weighted source localization
method, neuronal activity at these deep subcortical structures can reliably be estimated
from signals recorded at theMEG sensors. Dynamics of these brain structures are important
when it comes to addressing questions pertaining to human emotional processing which
are the core aspects that were probed in this study. In this study, we have included in our
analysis 61 brain regions that were found to be important in emotional processing and
regulations. These include superficial cortex as well as deeper subcortical structures.

In this study, we used network measures to characterize the topological features of
brain networks of each subject under different auditory stimuli. Network measures
quantitatively describe several aspects of functional segregation and integration,
characterize the morphology of local anatomical circuitry, compute the significance of
individual brain regions, and assess the resiliency of a network to insults (Rubinov &
Sporns, 2010). Functional segregation refers to specialization of cognitive processing by
densely interconnected groups of neuronal ensembles (Sporns, 2013). Several measures of
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functional segregation have been proposed, such as, clustering coefficient and its variant
transitivity. In contrast to mean clustering coefficient which is normalized individually
for each node and hence be disproportionately influenced by nodes with a low degree,
weighted transitivity is normalized collectively thus free from such problem (Rubinov &
Sporns, 2010).

Functional integration on the other hand describes the capacity of the brain to combine
information from distributed clusters of specialized neuronal ensembles (Sporns, 2013).
The most widely used measure of functional integration is characteristic path length of the
network. Another related measure is global efficiency which is the average inverse shortest
path length between all pairs of nodes in the network. Contrary to characteristic path
length, global efficiency can be computed for disconnected networks. Some authors argued
that global efficiency is a superior measure of integration (Achard & Bullmore, 2007).

We used brain regions as mentioned in the brain region of interest section to define the
vertices of the network. For the edges, we used the values of connectivity strength between
the brain regions as calculated using orthogonalized AEC. Of the many connectivity
measures developed and introduced in the literature, we opt for orthogonalized AEC since it
is less sensitive to temporal jitter in comparison to coherence especially in higher frequency
bands such as γ band (Bruns et al., 2000a). Thus, AEC can capture coupling among high
frequency signals which might be missed by other methods. AEC is also more apt to detect
long range cortical interaction (Bruns et al., 2000a). AEC has been demonstrated to be
one of the most consistent methods for estimating stationary connectivity in resting state
experimental approach which is similar to the naturalistic paradigm used in this work
(Colclough et al., 2016). Its repeatability is one of the reasons for its use in benchmarking
other newly develop connectivity measures (Godfrey & Singh, 2021). For these reasons, it
has been used as one of the go-to method in hyperscanning study (Zamm et al., 2021).
Hyperscanning study is a form of neuroimaging study where the brains activities of two or
more participants are recorded simultaneously whilst they interact (Hakim et al., 2023). For
example, AEC has been used to measure interbrain coupling associated with performing
musical duet (Zamm et al., 2018). In addition, AEC has also been used to gain deeper insight
on neuropsychiatric disorders such as depression (Nugent et al., 2020), Alzheimer’s disease
(Scheijbeler et al., 2023), and epilepsy (Rijal et al., 2023). It has also been suggested as the
reliable connectivity measure in monitoring the treatment efficacy in Alzheimer’s disease
(Briels et al., 2020). As mentioned before, orthogonalization is applied to the neuronal
signals time series to avoid spurious coupling caused by signal leakage.

Lately, there has been a paradigm shift in the approach of how statistical analysis
is done. In particular, it is widely understood that, in order to further research in all
fields including neurosciences, identifying the experimental manipulation that don’t
cause any effects is equally important as pinpointing those that do (Keysers, Gazzola
& Wagenmakers, 2020). Increasingly, Bayesian methods are being used to analyse data
within the field of neuroscience. Using Bayesian meta-analysis, Gambarota et al. (2022)
examined the evidences for the existence of the unconscious working memory while
simultaneously uncovered several experimental variables that contribute to relevant
heterogeneity in previous studies. Employing Bayesian linear regression model, Nazari &
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Ebersbach (2019) found absence of an effect of distributed exercise over massed exercise
in terms of mathematical performance in 7th graders after two weeks however observed
positive effect in a test six weeks after. Bayesian statistics also provides a more streamline
approach to analyse complex models. It has been used to fit joint models of MEG, EEG data
and behaviour in order to understand cognition (Nunez et al., 2024; Ghaderi-Kangavari,
Rad & Nunez, 2023). It has also been used to dissect the complex interplay between
interhemispheric connectivity, endogenous GABA levels, and aging on behavioural
flexibility(Heise et al., 2022).

In conjunction, the emphasis has now centred around parameter estimation, model
comparison and model expansion instead of widely criticised point-hypothesis testing
(Gelman et al., 2013; McElreath, 2020; Kruschke & Liddell, 2018). By fitting models that
have both fixed and random effects, hierarchical or multilevel models can flexibly model
complex phenomena occurring on different levels. It is useful in experiments with repeated
measure design, when dealing with unequal sample size in experimental arms, or when
handling observations with complex dependency structures.

Since we worked within a Bayesian framework and used linear mixed model which is
a form of multilevel model, we avoided the need to control the family wise error rate for
multiple comparisons (Gelman, Hill & Yajima, 2012). As argued in the article, multilevel
models lead to the shrinkage of point and interval estimates as such the comparisons
have been automatically adjusted, a phenomenon termed as ’partial pooling’. In addition,
choosing a weakly informative prior provides regularization and further minimize the risk
of over-fitting.

In Bayesian statistical analysis, prior is the primary means of encoding informations
that are relevant to the problem being analyzed (Gelman, Simpson & Betancourt, 2017).
These include informations about the problem that are known before considering any
data or observations from the conducted study. Thus, Bayesian analysis allows for the
mathematical formalism of incorporating previously accumulated scientific knowledge
into the analysis via specifying prior distributions. Importantly, prior have to be specified
in the context of the likelihood which necessitates prior predictive distribution check to
ensure the plausibility of the data being generated. In essence, priors must be chosen
carefully on the basis that they would generate reasonable data that are compatible with
the specific domains or problems in questions. This is also important for understanding
the effect of the prior on inference.

In Gelman, Simpson & Betancourt (2017), the authors also argued that mindlessly
applying uniform or extremely broad prior distributions as the default prior in all settings
are often inappropriate and may lead to spurious inferences. The primary reason being
that the vague priors may not necessarily reflect contextual knowledge of the problem
domain. On the other hand, weakly informative priors have been shown to work well in
practice and are thus recommended. Furthermore, estimation using weakly informative
priors by incorporating background knowledge have also been proposed as one of the
ways to deal with small sample size issues (Van de Schoot & Miocević, 2020). The term
weakly informative here is taken to mean that the likelihood will dominate the prior in the
presence of adequate amount of data (Stan Development Team, 2020). The nature of how
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weakly informative a prior is must not solely be determined by how tight its distribution is
but also by how it will interact with the likelihood. Thus, as argued in Gabry et al. (2019),
tight priors might still be considered weakly informative if they generate data that is judged
extreme within the context of the domain knowledge.

Here, we specified the priors on the basis that they are weakly informative andminimally
influence the results while enforcing adequate regularization in order to improve efficiency
and convergence of the sampling chains. We set priors based on the range of values in the
log scale of each network measures given that there were 61 brain regions involved forming
connectivity matrices A∈R61×61. For each network measures, prior predictive checks were
done to make sure that the estimated values included the entire plausible parameter space
with high probability around the observed values while allowing low probability of extreme
values. The priors on the slopes β were set as stated making them unbiased to any effect
direction of the stimuli on the considered network topology.

Together with prior, likelihood function is an important part that forms the generative
model from which posterior distribution is derived using Bayes theorem. Referring to
Eq. (10), we used log-normal distribution in our likelihood function since the network
measures used as the dependent variables have positive real values and are positively skewed.
In addition, it has been demonstrated that the log-normal distribution characterizes many
processes and systems that comprise of many interacting parts such as brain (Buzsáki &
Mizuseki, 2014;Roxin et al., 2011;Roberts, Boonstra & Breakspear, 2015). This phenomenon
has also been observed in many other biological systems (Zhang & Popp, 1994). However,
since log-normal distribution is not robust to outliers, we need to identify and exclude the
outliers.

We set the equivalence region as stated in the statistical analysis section on the basis that
resting state network is stable and does not change significantly within each subjects within
the time frame of the experiment (Chen et al., 2008; Demuru et al., 2017). Furthermore,
since both were resting state recordings, pre and post stimuli recordings could serve as
the most logical reference or control when it comes to testing for the presence or absence
of effects on brain networks which are due to auditory stimuli. The difference between
pre- and post- stimuli resting state are due to other effects which are not caused by the
auditory stimuli of our interest. Thus, we can safely conclude the absence of any effect for
any stimuli if the difference in its network measures and the reference network measures
falls within this equivalence region.

Testing for equivalence is a familiar concept and widely known in many scientific
fields. Of exemplary mention is the field of pharmacology where test for bioequivalence
between generic drug formulation and innovator drug formulation is routinely done.
The test is carried out to ensure that the safety and the efficacy of every new generic
drug is at par with the established innovator drug. Guidelines on bioequivalence study
including recommendations on study design, statistical analysis and many other issues are
well established continuously updated by regulatory bodies in many countries (Midha &
McKay, 2009; Davit et al., 2013; Morais & Lobato, 2010; Kaushal et al., 2016). We argued
that these recommendations could be adopted with suitable modifications in order to
probe into the question of whether there is any effect of any stimuli on the brain networks.
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On this basis, we hence follow these guidelines’ convention of using 90%CIs as the intervals
to test for equivalence. Defining equivalence region as stated allows for testing both the
absence and presence of experimental effects. It also isolates the true experimental effects
from other effects. The experimental design and the statistical approach used in this work
may help expand the direction of future neuroimaging studies by enabling researchers to
test for both presence as well as absence of true effects of experimental manipulations.

In this study, we were interested in exploring the potential underlying neurocorrelates
of musical and other rhythmic auditory stimuli intervention. A large body of research
establishes the efficacy of musical interventions in many aspects of physical, cognitive,
communication, social, and emotional rehabilitation (Standley & Prickett, 1994). Over
the past decade, neuroimaging studies have substantially advanced our understanding
of how music impacts emotions. Initially, researchers primarily focused on investigating
the neural substrates of emotion and how they respond to musical stimuli. These studies
examined brain regions crucially involved in emotional processing and have shown
how music modulates the activity in these brain regions which include the amygdala,
nucleus accumbens, hippocampus, and orbitofrontal cortex (Koelsch, 2014; Koelsch, 2020).
Besides, lateralization hypotheses have also been proposed comprising of the right-
hemispheric dominance hypothesis which suggests that all emotions are processed in the
right hemisphere, and the valence lateralization hypothesis stating that positive emotions
are left-hemisphere dominant, whereas negative emotions are right hemisphere dominant
(Ocklenburg et al., 2021; Stanković, 2021; Ocklenburg, Peterburs & Mundorf, 2022).

However, recent studies point toward the existence of multiple interrelated networks
that span both sides of the brain, each associated with specific components of emotion
generation, challenging the notion of strict hemispheric specialization (Pessoa, 2017;
Palomero-Gallagher & Amunts, 2022; Liu et al., 2023). Wu et al. (2019) demonstrated that
all 5 different musical excerpts activate network of brain regions involved in multiple
cognitive functions. Notably, self-selected musical excerpt and unfamiliar musical excerpt
were found to elicit largest degree of connectivity between the brain regions. Similar
findings were noted by Karmonik et al. (2016) albeit using different musical excerpts. It
was also noted that similar music creates similar functional connectivity patterns in the
brain which however was modulated by musical training (Karmonik et al., 2020; Niranjan
et al., 2019). A meta-analysis of fMRI data from 703 healthy subjects found that music
listening coactivated multiple brain networks including limbic network that are involved
in emotion processing (Chan & Han, 2022). However, the underlying neural mechanisms
for their therapeutic effects remain poorly understood.

In light of this, Hillecke, Nickel & Bolay (2005) has proposed a general heuristic model,
encompassing five music therapy working factors intended to serve as the foundation for
further empirical studies. These factors include attentionmodulation, emotionmodulation,
cognition modulation, behaviour modulation and communication modulation. Although
these factors work in tandem, one factor may play a major role as the main mechanism
behind the effectiveness of music therapy in a particular disease. For example, in the case
of depression, emotion modulation might play a major role in the improvement of mood.
Based on the proposed heuristic model, we conducted this study to investigate the emotion
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modulation factor as the potential neural mechanism of musical therapy. In particular, we
focused on the topology of the brain network that have been shown to be associated with
emotion processing and examined how it changes in response to five different auditory
stimuli. Since, to our knowledge, this has not been done in either healthy or disease
population, we initiated our investigation within healthy subjects as it could serve as the
references for future research.

The results of our study showed that the topology of the brain network as characterized
by the chosen graph metrics under different auditory stimuli were equivalent to the
topology of the initial resting state brain network. This can be seen in all frequency bands
from delta to gamma (δ→ γ ). In other words, the topology of the emotion network
remains unchanged under all auditory stimuli. This finding suggests that the therapeutic
effects of intervention using musical and other auditory stimuli may not be modulated
through changes in the topology of emotion network. The results remain robust across
diverse approaches for managing outliers and missing data, various prior specifications,
and different statistical models. These results are in contrast to the findings of previous
study which found that music perception is associated with enhancement in small world
network organizations in the brain (Qiu et al., 2022;Wu et al., 2012).

The results, however, need to be interpreted within the context of the following study
limitations. First, we have investigated the effects of auditory stimuli in healthy subjects.We
argue that, since healthy individuals have optimal and resilient functional brain network
topology (Achard et al., 2006), such short single session of exposure to auditory stimuli
would not cause any noticeable changes in the topology. It would be interesting to extend
the study population to include subjects afflicted with depression and anxiety. Secondly,
the study consisted of only one session of 3 min length of exposure for each stimulus.
Further studies are needed to investigate the effects of longer length of exposure and the
effects of having multiple sessions and longer follow up. Such study would closely resemble
the therapy sessions that are currently been offered in practice. Thirdly, the graph metrics
that were used in this study characterize the functional brain network topology on a global
scale. It is possible that the effects were more localized thus were missed by such metrics.
Thus, further studies are needed to address these localized changes in the network topology.
Furthermore, diverse underlying neuronal processes could possibly give rise to equivalence
global network topology. Similarly, the same global network topology might be able to
support diverse neuronal process.

CONCLUSION
In this study, we sought to investigate the potential neural mechanism of music therapy
focusing on the topology of the brain network involved in emotion processing in terms of
transitivity and global efficiency. Specifically, we examined how both topological measures
change in response to five different auditory stimuli. Employing a cross-over experimental
design and Bayesian statistical analysis, we have shown that the topologies of the brain
network that are associated with emotional processing in healthy subjects under these
auditory stimuli were equivalent to the topology of the initial resting state brain network.
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This result suggests that changes in the emotion network topology as characterized by
transitivity and global efficiency may not be the underlying neural mechanism of therapy
using music and other rhythmic auditory stimuli.
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